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Mathematical Sciences Research Center, AT&T Bell Laboratories, 
Murray Hill, NJ 07974, USA 

Abstract. We consider the problem of packing n equal circles (i.e., pennies) in the 
plane so as to minimize the second moment U about their centroid. These packings 
are also minimal-energy two-dimensional codes. Adding one penny at a time accord- 
ing to the greedy algorithm produces a unique sequence of packings for the first 75 
pennies, and appears to produce optimal packings for infinitely many values of n. 
Several other conjectures are proposed, and a table is given of the best packings 
known for n-<500. For large n, U--x/3n2/(4~r). 

1. The Penny-Packing Problem 

We wish to find the tightest packing in the p l a n e o f  n equal circular disks, pennies 
for example,  for n = 1, 2 , . . . .  Groemer,  Wegner, and others have considered 
minimizing the area of  the convex hull of  the pennies [8], [15], but for our 
applications it is more appropriate  to minimize their second moment.  

Suppose the pennies have diameter d, let P 1 , . . . ,  P, be their centers and 
/5 = n-I  y. p~ their centroid. Then the problem is to choose points P I , . . . ,  P, so 
as to satisfy 

IIP,-PJlI~d, i,j=l,. . . ,n,i#j, (1) 

and so that the second moment 

1 
u = ~  ~ ItP,-Ptt 2 (2) 

i=I 

is minimized, where II tl is the Euclidean distance. Let U(n) be the minimal 
value of  U (which can always be attained). A set of  points ~ = { P I , . . . ,  P,} 
satisfying (1) is called an n-point packing, and is optimal if it attains U(n). 
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The second moment U is a reasonable parameter to minimize, for several 
reasons. For applications to signal design, when the points P ] , . . .  ,P, form a 
two-dimensional code [3], [4], [7], U measures the energy in the code. Figure 
l(b), for example, shows what is conjectured to be the 16-point code with the 
smallest possible energy [4]. Furthermore, the results look tightly packed (Fig. 
l(a)-(c)), and when applied to packings in higher dimensions this criterion avoids 
the "sausage catastrophe" [5]. 

Penny packings also have applications in cluster chemistry [9], [14], quantiz- 

(a) 

) 

F'~o 1, 

f 

(b) 

(c) 

Packings o f  7, 16, and 19 pennies that are believed to have the smallest second moments.  
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ation, and other areas [14]. Figure l(c), for example, shows the 19 strands of  
wire in a cross-section of  the cables used in the Brooklyn bridge [12]. The packing 
formed by pennies 1 to 37 in Fig. 4 occurs in the cross-section of an optical-fiber 
cable [11]. 

2. The Hexagonal  Lattice 

The familiar hexagonal lattice A 2 is spanned by (1, 0) and (½, , /3/2).  I f  we take 
d = 1 then any subset o f  m 2 is a packing. 

Conjecture 1. For n ~ 4 every optimal packing is (apart from a magnification, 
rotation and translation) a subset of A2. 

The case n = 4 is exceptional, since all packings of  the type shown in Fig. 2 
have U = 2 (as long as each penny touches its two neighbors), and in general 
these are not subsets o f  A2. Our investigations suggest that n = 4 is the only 
exception, although we cannot prove this. 

Any point P E A 2 can be written as 

r(1, 0) + s ( ~ , - ~ - )  s 

for r, s ~ Z;  we call (r, s) oblique coordinates for P. There is a convenient formula 
for the second moment  U of a subset {P ~ , . . . ,  P , } _  A2. Let Pi have oblique 

Fig. 2. Optimal packings of four pennies. The second moment is constant, as tong as each penny 
touches its two neighbors. 
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2 coordinates ( r ,  st), and set Mr = ~ r~, Ms = ~ si, Mr, = ~ ri, M,s = ~ r : ,  and M~s = 
s~. Then 

U= (Mr,+Mr~+Mss) - 1  (M~+M,.M~ +M2). (3) 
n 

3. Constructions 

We shall use three methods to construct packings. 

(i) The Greedy Algorithm. A sequence of  packings ~1, ~2, ~ 3 , . . .  is produced 
by the greedy algorithm if  (a) ~ contains a single point, and (b) for n = 2, 3 , . . . ,  

~ ,  = ~,-x u {P,} 

over all choices of P, satisfying (1). (There are many such minimizes U 
sequences.) 

(ii) Circular Clusters in A2 with a Specified Center. Let C be a fixed point of 
the plane, let t be a real number, and let 

~ ={P~A2:  IIe-cll<-t}. 

In general, the centroid of 0~ will not coincide with C. If it does, we call ~ a 
circular cluster with center C. 

The three most important cases occur when C is an element of A2, e.g., 

C, = (0, 0) (4) 

in oblique coordinates, C is midway between two neighboring elements of A2, e.g., 

(:72 = (½, 0), (5) 

or C is at the center of three neighboring elements of Az, e.g., 

(:'3 = (½, ~). (6) 

Figure l(a) and (c) shows examples of  clusters centered at Ct. Figure 5 below 
shows a cluster centered at C2. 

(iii) The Iterative Construction. The following iterative procedure produces an 
n-point packing with a small value of U. Choose a random initial point To. For 
k = 1, 2 , . . .  let ,9 0 be the smallest circle around Tk-i that contains at least n points 
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of  A2, let ~k be obtained by discarding just enough (randomly chosen) points 
from the perimeter of 6e to leave n points, and let Tk be the centroid of ~k. 
The sequence ~ ,  ~ 2 , . - .  converges rapidly to an n-point circular cluster 
in A2. 

The construction may now be repeated with a different choice for To, 
and after a number of tries the cluster with the smallest second moment is 
selected. 

For example, when n = 16, if the initial point To is close to the origin, the 
algorithm usually converges in one step to the cluster shown in Fig. l(b),  which 
has centroid 

c ,~  = (¼, o>. (7) 

4. Results 

The most remarkable result, and our motivation for writing this note, is the 
following. 

The greedy algorithm produces a unique packing for the first 75 pennies. 
("Unique" means unique up to symmetry, of course. There are six ways to 
add a penny to Fig. l(a),  for example, but all are equivalent under symmetries 
of  A 2 .) 

There are two essentially distinct choices for the 76th penny, both leading to 
packings with the same second moment. Whichever is chosen, the other must he 
chosen next, and the 77-point packing is unique (see Fig. 3). The packings now 
remain unique up to 313 pennies, when again there are two inequivalent choices. 
The 313-point packing is shown in Fig. 4, together with two inequivalent choices 
for the 314th penny. The two paths merge again at the 318th penny, and the next 
choice occurs at the 354th penny (see Fig. 3). 

The pennies in Fig. 4 are labeled sequentially, so in this figure one can see 
the n-point packings produced by the greedy algorithm for all n-< 313. 

Beyond 354 pennies we only followed one path of the greedy algorithm, which 
next splits at the 426th penny. 

Table 1 combines the best results produced by the three algorithms (using 100 
random initial points for the iterative construction). Table l(a) gives the smallest 
second moment found for all packings of n-< 100 pennies. Table l(b) gives a 
selection of the best packings found for 101-< n-< 500, including all the cases 
where the best packing is a cluster centered at C1, C2, or C3, and some of  the 

76 313 318 

/ / \ 
314 315 316 317 

Fig. 3. Sequences of packings found by the greedy algorithm. 
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Fig. 4. Packing of the first 313 pennies found by the greedy algorithm. There are two inequivalent 
but eqully good choices for the 314th penny (shaded). 

cases where the greedy algorithm is the best (often just giving the beginning and 
end of a run of  successes for the greedy algorithm). 

A superscript g in the table indicates that the packing is produced by the 
greedy algorithm, and an asterisk that it is definitely not produced by the greedy 
algorithm. An integer superscript k denotes a circular cluster in the A2 lattice 
with center Ck. We have defined C~, (72, Ca, and Ct6 in equations (4)-(7); some 
other interesting centers are 

1 1 1 1 c5 = (~, ~), c6 = <~, 0), c8 = <~, ~), 

c,5 = <~, ~>, C~o = <~o, ~o>, c32 = <~, o>, 
1 1 C~,=(~ ,~) ,  C 6 o = ( ~ , 0 } ,  r _ / , 8  _s~ ~-~256 - -  \ 2 5 6  ~ 2 5 6 / "  

(8) 

A superscript a indicates that the packing is known not to be unique. (For 
example 48-point clusters with the same second moment may be centered at 
either C2 or C3.) 

Our second discovery is that the greedy algorithm produces surprisingly good 
results. It finds all the best packings known for n-<21, including those of Fig. 
l (a)-(c) ,  and many clusters centered at C1, C2, or Ca that are the best known. 
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Conjecture 2. The greedy algorithm produces optimal packings for infinitely many 
values of n.  

Figure 5 shows a 22-point duster centered at C2 that is better than that found 
by the greedy algorithm. The results suggest: 

Conjecture 3. Circular clusters in the hexagonal lattice centered at the points CI, 
C2, or C3 (or at equivalent points in the lattice) are optimal packings for infinitely 
many values of  n. Clusters centered at any other point are optimal for only finitely 
many values of n. 

For example, out of all the centers C 5 , . . . ,  C256 defined in (7) and (8), only 
C44 and C6o occur more than once in the table. 

There are also many examples where the greedy algorithm produces packings 
that are better than clusters centered at C1, (?2, or C3 (e.g., n = 13, 6, 8, respec- 
tively). 

The experimental evidence suggests that all the packings in Table 1 are optimal. 
Unfortunately we can only determine the optimal packings for n -  5. 

Physicists have considered similar problems in three dimensions [1], [10], 
although not exactly from this point of view. It would be nice to know what the 
greedy algorithm produces in three or more dimensions. 

5. Lower Bounds on U(n) 

The optimal packings of  one, two, and three pennies are obvious, and it is easy 
to show that the packings of  four pennies in Fig. 2 are optimal. 

Theorem 1. The five-penny packing in Fig. 6(a) is optimal, and U(5)=3.4. 

Sketch of Proof. Let P1 , . . . ,  P5 be the centers of an optimal packing ~ of five 
pennies of  diameter 1. The corresponding adjacency graph G has a node for 
each penny, two nodes being joined by an edge if the pennies touch. It is easy 
to show that the only possibilities for G are the four connected graphs in Fig. 
6(b)-(e), in which all nodes have valency ->2. Figure 6(b) corresponds to 
Fig. 6(a). The graphs in Fig. 6(c) and (d) have one degree of freedom. It is a 
straightforward exercise in calculus to show that the second moment U for Fig. 
6(c) and (d) is minimized when an extra edge occurs and the graphs reduce to 
Fig. 6(b). 

The pentagon in Fig. 6(e) has two degrees of freedom. Let the points P~ 
be ( -cos  0, 0), (0, - s in  0), (cos 0,0), (cos 0 - c o s  a, sin a) ,  and (-cos 0+ 
cos fl, sin fl). The condition [[ P4, P5 [[ = 1 implies 

4 COS 2 0 - 4 COS O(cos a + COS 13) + 2 cos(a + 13) + 1 = O. (9) 
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Fig. 6. 

Fig. 5. A 22-point cluster centered at C 2. This is the smallest known example of a packing that is 
better than any found by the greedy algorithm. 

(b) 

(c) 

(e) 

(d) 
(a) and (b) Optimal packing of five pennies. (c)-(e) Other arrangements of five pennies. 
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Using (9) we find that 

U = {sin 0 sin s(4(cos 2 0 + c o s  2 s) - 1) 

+cos  0 cos s(12(cos 2 0 - c o s  2 s )+25)} / (10  cos 0 cos s), 

where s = (a  +/3)/2.  We wish to prove that there is no local minimum of  U in 
the interior of  the permissible range of  values of  0, a, and/3. This will imply that 
the minimum of  U is attained at the boundary,  when the graph has an additional 
edge and has therefore already been discussed. 

The conditions 0 U / d O = 0 U / O s = 0 imply 

~/1 - u 2 (8 v 4 -  4v 2 + 4u 2 - 1) = x/1 - v 2 (24uv3), 

I ) 2 ( - - 8 U 4 - - 4 ~ ) 2 + 4 U 2 +  1) = J i :  u2(24u3v}, 

(10) 

(11) 

where u = c o s  s, v =cos  0. We square (10) and (11) and eliminate v, obtaining a 
condition f ( u )  = 0, where f is a polynomial of  degree 42 with integer coefficients. 
For each root u with -1 -<  u - 1  we determine v from (10) and (11) and hence 
0, s, a, and/3. It turns out that there is no solution to (10) and (11) for which 
the angles lie in the permissible range. This completes the proof. [] 

Oler 's inequality [6], [13] leads to a lower bound on U ( n )  for all n. 

Theorem 2. 

k=, ~--~ ( k - 1 ) + ~ ) -  (12) 

Proof. Let {P~ . . . .  , P,} be an optimal packing of pennies of  diameter 1, let 
dk = ]] Pk - 15 H, and assume dl -< d2-<" " ". Let Cr be a circle of radius r centered 
at/5. Oler's inequality states that if 

then Pk ~ C,, and so dk > r. Therefore 

d k - ~ " ~ ( k - 1 ) +  3 )  ---~- 

which implies (12). 
Unfortunately (12) is not strong enough to imply Theorem 1, nor (for example) 

to show the optimality of  Fig. l(a). 
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Coro l la ry .  A s  n --> ~ ,  

. 

41r 

P r o o f  It  is easy  to s h o w  (see [2],  T h e o r e m  4) t ha t  fo r  a c i r cu l a r  c lus t e r  in the  

h e x a g o n a l  la t t ice  c e n t e r e d  at a la t t ice  p o i n t  we  h a v e  

U = ~ n2(1 + o (1) ) ,  (13) 

w h i c h  is t h e r e f o r e  an  u p p e r  b o u n d  on  U ( n ) .  O n  the  o the r  h a n d  (12) imp l i e s  

,/5 
U ( n )  > - - ~  n2(1 + o (1) ) ,  

w h i c h  c o m p l e t e s  the  p roo f .  [] 
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