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Penny-Packing and Two-Dimensional Codes

R. L. Graham and N. J. A. Sloane

Mathematical Sciences Research Center, AT&T Bell Laboratories,
Murray Hill, NJ 07974, USA

Abstract. We consider the problem of packing n equal circles (i.e., pennies) in the
plane so as to minimize the second moment U about their centroid. These packings
are also minimal-energy two-dimensional codes. Adding one penny at a time accord-
ing to the greedy algorithm produces a unique sequence of packings for the first 75
pennies, and appears to produce optimal packings for infinitely many values of n.
Several other conjectures are proposed, and a table is given of the best packings
known for n =< 500. For large n, U~V3n?/(4n).

1. The Penny-Packing Problem

We wish to find the tightest packing in the plane of n equal circular disks, pennies
for example, for n=1,2,.... Groemer, Wegner, and others have considered
minimizing the area of the convex hull of the pennies [8], [15], but for our
applications it is more appropriate to minimize their second moment.

Suppose the pennies have diameter d, let Py,..., P, be their centers and
P=n"'Y P, their centroid. Then the problem is to choose points Py,..., P, so
as to satisfy

|Pi— P =d, Lj=1,...,mni#}j, ()

and so that the second moment

1 -
U=—Z IP-P| )

is minimized, where || || is the Euclidean distance. Let U(n) be the minimal
value of U (which can always be attained). A set of points P ={P,,..., P,}
satisfying (1) is called an n-point packing, and is optimal if it attains U(n).
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The second moment U is a reasonable parameter to minimize, for several
reasons. For applications to signal design, when the points P,,..., P, form a
two-dimensional code [3], [4], [7], U measures the energy in the code. Figure
1(b), for example, shows what is conjectured to be the 16-point code with the
smallest possible energy [4]. Furthermore, the results look tightly packed (Fig.
1(a)-(c)), and when applied to packings in higher dimensions this criterion avoids
the “sausage catastrophe” [5].

Penny packings also have applications in cluster chemistry [9], [14], quantiz-

(a) (b)

(c)

Fig. 1. Packings of 7, 16, and 19 pennies that are believed to have the smallest second moments.
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ation, and other areas [14]. Figure 1(c), for example, shows the 19 strands of
wire in a cross-section of the cables used in the Brooklyn bridge [12]. The packing
formed by pennies 1 to 37 in Fig. 4 occurs in the cross-section of an optical-fiber
cable [11].

2. The Hexagonal Lattice

The familiar hexagonal lattice A, is spanned by (1,0) and (3, \/§} 2). If we take
d =1 then any subset of A, is a packing.

Conjecture 1. For n#4 every optimal packing is (apart from a magnification,
rotation and translation) a subset of A,.

The case n =4 is exceptional, since all packings of the type shown in Fig. 2
have U =2 (as long as each penny touches its two neighbors), and in general
these are not subsets of A,. Our investigations suggest that n=4 is the only
exception, although we cannot prove this.

Any point P € A, can be written as

r(1, 0)+s(-;—,§\) = (r+-‘2§,#)

for r, s € Z; we call {r, 5) oblique coordinates for P, There is a convenient formula
for the second moment U of a subset {P,,..., P,}< A,. Let P, have oblique

Fig. 2. Optimal packings of four pennies. The second moment is constant, as long as each penny
touches its two neighbors.
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coordinates (r;, 5;), and set M, =Y r, M, =Y 5;, M,, =Y r?, M, =Y rs;,and M,, =
Y s%. Then

U=(Mrr+Mrs+Mss)_;1; (M3+MrMs+M§)' (3)

3. Constructions
We shall use three methods to construct packings.

(i) The Greedy Algorithm. A sequence of packings ?,, ?,, Ps, ... is produced
by the greedy algorithm if (a) %, contains a single point, and (b) forn=2,3,...,

@n=gn—lu{Pn}

minimizes U over all choices of P, satisfying (1). (There are many such
sequences.)

(ii) Circular Clusters in A, with a Specified Center. Let C be a fixed point of
the plane, let ¢ be a real number, and let

2={PcA,;:|P-C|=1}.
In general, the centroid of 2 will not coincide with C. If it does, we call 2 a
circular cluster with center C.
The three most important cases occur when C is an element of A,, e.g.,
C,=(0, 0) (4)
in oblique coordinates, C is midway between two neighboring elements of A,, e.g.,
C=(,0), (5)
or C is at the center of three neighboring elements of A,, e.g.,
Ci=3, ). (6)

Figure 1(a) and (c) shows examples of clusters centered at C,. Figure 5 below
shows a cluster centered at C,.

(iii) The Iterative Construction. The following iterative procedure produces an
n-point packing with a small value of U. Choose a random initial point T,. For
k=1,2,...let & be the smallest circle around T;_, that contains at least n points
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of A,, let &, be obtained by discarding just enough (randomly chosen) points
from the perimeter of & to leave n points, and let T, be the centroid of &;.
The sequence &,, R,,... converges rapidly to an n-point circular cluster &
in A,.

The construction may now be repeated with a different choice for T,
and after a number of tries the cluster with the smallest second moment is
selected.

For example, when n =16, if the initial point T, is close to the origin, the
algorithm usually converges in one step to the cluster shown in Fig. 1(b), which
has centroid

C16=<%’ O)‘ (7)

4. Results

The most remarkable result, and our motivation for writing this note, is the
following.

The greedy algorithm produces a unique packing for the first 75 pennies.
(*“Unique” means unique up to symmetry, of course. There are six ways to
add a penny to Fig. 1(a), for example, but all are equivalent under symmetries
of A,.)

There are two essentially distinct choices for the 76th penny, both leading to
packings with the same second moment. Whichever is chosen, the other must be
chosen next, and the 77-point packing is unique (see Fig. 3). The packings now
remain unique up to 313 pennies, when again there are two inequivalent choices.
The 313-point packing is shown in Fig. 4, together with two inequivalent choices
for the 314th penny. The two paths merge again at the 318th penny, and the next
choice occurs at the 354th penny (see Fig. 3).

The pennies in Fig. 4 are labeled sequentially, so in this figure one can see
the n-point packings produced by the greedy algorithm for all n=<313.

Beyond 354 pennies we only followed one path of the greedy algorithm, which
next splits at the 426th penny.

Table 1 combines the best results produced by the three algorithms (using 100
random initial points for the iterative construction). Table 1(a) gives the smallest
second moment found for all packings of n =100 pennies. Table 1(b) gives a
selection of the best packings found for 101 = n =500, including all the cases
where the best packing is a cluster centered at C,, C,, or C;, and some of the

|
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Fig. 3. Sequences of packings found by the greedy algorithm,
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A superscript g in the table indicates that the packing is produced by the
greedy algorithm, and an asterisk that it is definitely not produced by the greedy

algorithm. An integer superscript k denotes a circular cluster in the A lattice

@v A@

cases where the greedy algorithm is the best (often just giving the beginning and

end of a run of successes for the greedy algorithm).
with center C,. We have defined C,, C,, C;, and Cy4 in equations (4)-(7); some

other interesting centers are

(8)

C20 = (.2269 515)9 C32 = (5359 O)a

ClS = (%9 i%)s
C44= (l—lh %)’

18 8
may be centered at

Cise= <256 » 75%)-

<%5‘ * O)’

A superscript a indicates that the packing is known not to be unique. (For

Ceo
Our second discovery is that the greedy algorithm produces surprisingly good

results. It finds all the best packings known for n =21, including those of Fig.
1(a)-(c), and many clusters centered at C,, C,, or C, that are the best known.

example 48-point clusters with the same second moment

either C, or C;.)
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Conjecture 2. The greedy algorithm produces optimal packings for infinitely many
values of n.

Figure 5 shows a 22-point cluster centered at C, that is better than that found
by the greedy algorithm. The results suggest:

Conjecture 3. Circular clusters in the hexagonal lattice centered at the points C;,
C,, or C; (or at equivalent points in the lattice} are optimal packings for infinitely
many values of n. Clusters centered at any other point are optimal for only finitely
many values of n.

For example, out of all the centers Cs, ..., C,s defined in (7) and (8), only
Cu and C4 occur more than once in the table.

There are also many examples where the greedy algorithm produces packings
that are better than clusters centered at C,, C,, or C; (e.g., n=13, 6, 8, respec-
tively).

The experimental evidence suggests that all the packings in Table 1 are optimal.
Unfortunately we can only determine the optimal packings for n=<35.

Physicists have considered similar problems in three dimensions [1], [10],
although not exactly from this point of view. It would be nice to know what the
greedy algorithm produces in three or more dimensions.

5. Lower Bounds on U(n)

The optimal packings of one, two, and three pennies are obvious, and it is easy
to show that the packings of four pennies in Fig. 2 are optimal.

Theorem 1. The five-penny packing in Fig. 6(a) is optimal, and U(5)=3.4.

Sketch of Proof. Let P,,..., Ps be the centers of an optimal packing 2 of five
pennies of diameter 1. The corresponding adjacency graph G has a node for
each penny, two nodes being joined by an edge if the pennies touch. It is easy
to show that the only possibilities for G are the four connected graphs in Fig.
6(b)-(e), in which all nodes have valency =2. Figure 6(b) corresponds to
Fig. 6{(a). The graphs in Fig. 6{c) and (d) have one degree of freedom. It is a
straightforward exercise in calculus to show that the second moment U for Fig.
6(c) and (d) is minimized when an extra edge occurs and the graphs reduce to
Fig. 6(b).

The pentagon in Fig. 6(¢) has two degrees of freedom. Let the points P,
be (—cos 8,0), (0,-sin8), (cos 6,0), (cos §—cos a,sina), and (—cos 8+
cos B, sin B). The condition || P,, Ps|| =1 implies

4 cos® 0 —4 cos 9(cos a+cos B)+2 cos(a+8)+1=0. )]
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Fig. 5. A 22-point cluster centered at C,. This is the smallest known example of a packing that is
better than any found by the greedy algorithm.

(b)

(c)

(d)

Fig. 6. (a) and (b) Optimal packing of five pennies. (c)-(e) Other arrangements of five pennies.
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Using (9) we find that

U = {sin 0 sin s(4(cos’ 8 +cos’ s)~ 1)

+cos 8 cos s(12(cos’ 6 —cos® §)+25)}/(10 cos 8 cos s),

where s =(a + 8)/2. We wish to prove that there is no local minimum of U in
the interior of the permissible range of values of 8, o, and 8. This will imply that
the minimum of U is attained at the boundary, when the graph has an additional
edge and has therefore already been discussed.

The conditions aU /98 =6U/3s =0 imply

V1-u? (80 —4v*+4u — 1) =V1 - 0> (24ur’), (10)
J1- 03 (~8u* — 40>+ 4uP +1) =V1 - u* (241u0), (11)

where u =cos 5, v =cos 6. We square (10) and (11) and eliminate v, obtaining a
condition f(u) =0, where f is a polynomial of degree 42 with integer coefficients.
For each root u with —1<u =<1 we determine v from (10) and (11) and hence
9, s, a, and B. It turns out that there is no solution to (10) and (11) for which
the angles lie in the permissible range. This completes the proof. O

Oler’s inequality [6], [13] leads to a lower bound on U(n) for all n.

Theorem 2.
n (V3 V3
Un)= 3 {(m(k 1)+ ) } (12)
k=1 4
Proof. Let_{P,,..., P,} be an optimal packing of pennies of diameter 1, let
di=| P~ P|, and assume d,=d,=<- - -. Let C, be a circle of radius r centered

at P. Oler’s inequality states that if

2
k>==r’+mr+1,

J3

then P, ¢ C,, and so d, > r. Therefore

we(Bocne2) "B

which implies (12).
Unfortunately (12) is not strong enough to imply Theorem 1, nor (for example)
to show the optimality of Fig. 1(a).
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Corollary. As n—> 0,

3 2
U(n) yp n’.

Proof. 1t is easy to show (see [2], Theorem 4) that for a circular cluster in the
hexagonal lattice centered at a lattice point we have

U=£n2(1+o(1)), (13)
41

which is therefore an upper bound on U(#n). On the other hand (12) implies

U(n)zi-/% n’(1+0(1)),

which completes the proof. O
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