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Abstract

Carbon is the most versatile of chemical elements in com@iwith itself or other elements
to form chains, rings, sheets, cages, and periodic 3D stegt One of the perspective trends
for creating new molecules of nanotechnological interestiglwith constructs which may be
formed by chemically linking of cage molecules.

The growing interest to fullerene polyhedra and other mdéscwith pentagonal rings raises
also a question about geometrically consisterifimanoarchitectures which may be obtained
by aggregating many such molecules. Simple examples ameschad rings assembled from
pyramidal (car)borane subunits. Adequate geometricalatsoaf such objects are a chain and
an annulus built from regular pentagons wherein any twocadjgpentagons share an edge.

Among arising combinatorial problems may be both analyécal constructive enumer-
ation of such chains and annuli drawn in plane with no two sdgessing each other. This
may also employ several mathematical disciplines, sucteamgtry, (spectral) graph theory,
semigroup theory, theory of fractals, and others.

We discuss some practical approaches for solving the mresdismathematical problem.
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1. Introduction

The enumeration of chemical graphs (molecular graphs) andgtric molecular models
satisfying given constraints [1-5] is one of the fundamieptablems in chemoinformatics,
because it leads to a variety of useful applications incgditructure determination and devel-
opment of novel chemical compounds. One of the perspecéwds for creating new molecules
of nanotechnological interest deals with constructs whiely be formed by chemically linking
of cage molecules [3-5]. Among such constructs, chainsiagd from pentagonal pyramidal
clusters are rather simple instances, which have simplitiatblded” representations by regu-
lar pentagons ifit? [5]. This allows to reduce the consideration of 3D moleciteguestion to
the consideration of pentagonal chains and annuli drawiplane (see Figure 1).

e
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Figure 1: (a) Ten-pentagon annulus — left — and the correfipgreyclic borane molecule 8H40 — right — cor-
responding to an energy minimum, and therefore a poter@imolecule. (b) One of the six 6-pentagon chain
isomers — left —and the corresponding borane molecule +iBbsH3o corresponding to an energy minimum. The
geometry of the borane molecules shown in Figure 1 is obdaiiséng an optimizing algorithm which minimizes
the energy derived from Sabalinger’s equation, as the nuclei move within an energy rspéace defined by their
coordinates, using the B3LY&31G* model chemistry [6]. The+” and “~” signs represent boron atoms above
and below the pentagon in the plane corresponding to the¢gmgen. Boron and hydrogen atoms are represented
by bigger and smaller spheres, respectively. See [5] for i@ mamprehensive explanation of these structures.
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Among the elements from the Periodic Table, aside from cggrboron is possibly the
most versatile element for forming rich architectural damss in combination with hydrogen
(boranes), carbon (carboranes), and most elements of tiedieeTable [7, 8]. One of the
most conspicuous aspects of boron is the transition fromdBCX structures quite easily [7,
8]. Here, one of tasks is the selection and enumeration df sanstructions built from equal
regular pentagons.

Say, take an annulus whose connected part is formed fronfarggentagons wherein two
adjacent pentagons have an edge in common, and no two ieati@@ntagons or three arbitrary
ones share a common point. While considering possible anhsbme bigger size, one may
observe that there are also some approximate geometritoswf a problem, when there is a
slight noncoincidence of two edges (of two pentagons) whight yet “flexibly” be deformed
to fuse and reform a common edge. (In perspective, we meamguke, a full-size problem
of geometrically-consistent linking of respective cagdeunales comprising a molecular ring.)
What do such approximate solutions mean for chemistry? Aaasvk, all molecules as well
as crystals are systems of vibrating atoms wherein the hatteate about some geometrically
averaged coordinate points. Clearly, exact ‘frozen’ camtés of atoms simply do not exist.
Therefore, a question about whether approximate geomegdrgions of pentagonal annuli are
suitable as models for nanorings-may-be may have also ayecsnswer. But in any such case,
the conditions imposed on a problem must simultaneousljocomto specific geometric and
chemical requirements. Thereby, the problem cannot beedalverall and should be divided
into separate smaller ones, each of which obey its own aingsr

Pentagonal chains are constructed in a similar way, witlotig distinction that, therein,
there are two end pentagons having each only one adjacegmiywei The exhaustive construc-
tion of all of pentagonal chains and annuli of given size isfaalilt combinatorial problem.
Indeed, the simpler model of selfavoiding walks on the sguwgid [9, 10] has been proven to
be aN#P-hard problem [9]. (See the vast bibliography on the Intejneere, the possibility
of building borane molecules by analogy with the mathenaapcoblem in question raises the
possibilty of using quantum chemistry for helping in solyjoroblems in mathematics.

2. Preliminaries

A pentagonal annuluép.a.) has a connected part formed from regular pentagoesaivh
two adjacent pentagons have an edge in common, and no twadead pentagons or three
arbitrary ones share a common point. p&ntagonal chair(p.c.) is constructed in a similar
way, with the only distinction that, therein, there are twa ggentagons having each only one
adjacent neighbor.

Each p.a. (res. p.c.) made up fram> 2 pentagons is obtained by addition of th¢h
pentagon to a fixed end (res. to both ends) of a certain p.cpesed ofn — 1 pentagons. In
general, there are only two possibilities to attach the pextagon to a fixed end of a growing
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chain or yet to the seed pentagon providing two ‘front’ edfpgscontacts. Namely, making

a turn to the ‘left’ or to the ‘right’, which we denote by chatersl andr, respectively. Let

A = {l,r}. If one starts with a rooted pentagon (fixed in the plane)thaits derived chains of
lengthp > 3 can be represented 8k .., or sr...a;, wheresis an ancillary character to
temporarily mark the first (seed, or start) pentagon, @and, € A. The start charactesis to

be substituted by a proper charactesy r, if another character is added on the left (say, under
concatenation of strings); so, alse& A.

Let A* andA* be the free monoid and free semigroup over the alph@hethereA* is the
subsemigroup oft* containing all elements except the empty stringfor= A* \ 1). Denote
by A; the set of all words (strings) of lengih > 1 overA; |Aj| = 2°*. Let € and¥ be the
sets of all target p.c.’s and p.a.’s, respectivélyll c A*.

The set€ (or ) of words is called danguage A languaget (but not?) is calledfactorial
[11], since€ = F(C€), whereF(€) denotes the set of all the factors of all wordsGof (All
linear factors of cyclic words frol belong to€, too.) A languagef is factorial if and only
if € = A"\ 9, wheredJ is atwo-sided ideal ofA*. Here, 7 is the set of all forbidden words
(representing selfcrossing p.c.’s); and, in particytarp A. The monoid FC) of the factors
of € is defined as the epimorphic image of the Rees quotient marvdigr of A* by the ideal
g = A"\ F(€) (see [11-13]). The monoiQ(C) is isomorphic to the monoid having as support
F(€)u{0} endowed with the product), defined asyca, = 0if a;0a, ¢ F(€) andaca, = a a,,
otherwise.

Our further exposition needs an excursion into geometryt the inradius of a regular
pentagon be equal to/2; thus, the distance between the centers of two adjacethgmms
in plane is equal to 1. We assume that the center of the firstl{ggentagon is in the origin
of a rectangular coordinate system, and one of its vertiessdn they-axis. Here, we call
the orientation of this pentaggoositiveif this vertex is the apex andegativeif the nadir.
Apparently, the positive and negative orientations of ag@gon can swap their places after its
rotation byr radians around the 5-fold symmetry axis.

At any step of the construction of pentagonal chains andlgrithere may be used only 10
vectorsy, (k € [1, 10]) (of unit length) connecting the centers of adjacentpgons. One way to
realize which vectors are these is to construct a regulartQdus (from ten regular pentagons)
and consider ten vectors of shifts between the centers atadi pentagons therein. Simple
manipulations with additional pentagons may demonstfraethere are no other vectors than
these. In order to prove this rigorously, one my apply thiowihg technical lemma:

Lemma 1. Each pair of adjacent regular pentagons in plane (sharingf jpne edge) have op-
posite orientations.

Proof. This is an obvious geometric conclusion. O
One evident corollary is:



Corollary 1.1. Each connected construction in plane built from regular tagons (wherein
any pair thereof share just one or no edge) has just two origria of pentagons, and all
pentagons with either orientation has no point in common.

Lemma 1 has another elementary but useful corollary:

Corollary 1.2. Every cyclic sequence of regular pentagons in plane wherne éwe consecu-
tive pentagons are adjacent (in particular, an annulus) bagven length.

Proof. By virtue of Lemma 1, any sequence of pairwise adjacent pentwag a one where
orientations of pentagons alternate. This is obeyed insedsequencegiit uses equal numbers
of positive and negative orientations of pentagons. Hemeerrive at the proof. O

A further generalization of Corollary 1.2 is possible. Fingte need to introduce some
graph-theoretic notions. Lét(V, E) be a connected graph with the vertex 8eind edge seE
(V] = n> 0;|E| = m > 0). We associate the sétwith a countable set of pentagons in a plane,
while two vertices oW/ are adjacent it iff the respective two pentagons are adjacent (share just
one edge). The graph may correspond to any process of successive addition okgqubst
pentagons, where theth pentagon is obligatorily adjacent to the< 1)-th pentagon and may
also allow an arbitrary nonadjacency intersection withieapentagons. The target sétsand
A of pentagonal constructions are here only a particular.case

We state the following:
Proposition 2. LetI"(V,E) (]V| = n > 0;|E| = m> 0) be a connected graph as above. Thén,
is a bipartite graph.
Proof. A graph is bipartiteft all its cycles have only even lengths. By virtue of Corollar®,1.
this condition is obeyed b¥(V, E). Whence the proof is immediate. O

As to an easy calculation of the 10 shift vectaggk € [1, 10]), one may use for them ten
vectors of unit length radiating from the center of a pentagdive directed to its vertices and
the other five perpendicularly to its edges (where the léittercan be obtained by the inversion
of the former five, or vice versa). We have the following geh&rmula for theshift vectors

Vi = [xcos(%() + ysin(%k)] = {xRe[exp(’%ki) +ylm [exp(n—ki)]} (k€ [1,10];i = V-1),

5
1)
wherevy,s = =V (K € [1, 5]).
Since addition and subtraction of complex numbers do ndusenmaginary parts with real
parts thereof, vectors (1) may be replaced in certain cistantes by respective coordinates in
the complex planesiz.

Vi B U = t[exp(’%ki)] (k € [1,10)), (2)

wheret may be used as a dumb variable “for counting” vectors or asranndiowever, the
numbers (2) contain less information than vectors (1), beedhey mix X-component’ with
‘y-component’ (ofu,’'s) under multiplication, which is used in our calculatidmedow.
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The set{vy, v,, ..., Vio} Of all these vectors has its intrinsic symmetry grddgpand also
generates a countably infinite, commutative additive group

H+ = <Vla V2, ceey V10> = <Vl’ V2, ceey V5> (3)

of vectors, not all of which are relevant to constructionets§ and2l. Along with this additive
group, we use herein for our analytical convenience alsoitiiplicative representation:

H. = (expfa), expls),. .., exp(vlo»|exp(vk):exp[xcos(%k)+ysin(%k)] (ke[1,10]) * (4)

The form ofH, allows to more conveniently perform symbolic multiplicatiof matrix entries
using the program packages Maple.

The number of vectors used for generating the grypn (3) is 5 but we consider plane
objects inE? only, where maximum two vectors may be linearly independehtle the others
are expressed as a linear combination of the first two. Sheeéue vectors have noncointegral
codficients, such linear combinations may have irrationaftoments. However, with any given
accuracy, irrational cdicients can be approximated by rational numbers. That is dsides
exact solutions comprising the s€tand?, there may also exist approximate ones. Say, the last
added pentagon completing construction of an annulus maydraedge which does not exactly
coincide with an edge of the other end of a closing chain. Ifediinary agreement allows to
construct annuli with some ‘chemical admittances’, a teagect may also be obtained with
some allowed deformation. So, this would not practicallptcadict the plans of designers of
respective hanobjects from cages. In a more rigorous layegwee state here the following:

Proposition 3. Let H, = (v1,Vs,...,Vs) be the infinite group of vectors as defined above, and
let € be an arbitrary positive number. Then, there exist infigitany pairs of vectorsv' € H,
such thalv— V| < e.

Proposition 3 predicts the existence of loci of closely dy(osculating) points generated bly
in the plane. Such loci are responsible for developing sytriofeatures observed in quasicrys-
tals [14], which is supported in [15] (see p. 62—66 and Fig. Bre, it is interesting to recall
that a plotted functioly = sin¢x) (¢ to be varied) whose values are calculated under integer
X € [1,1000] just displays such an appealing picture, which scetyoesembles a symmetric
one (we recommend to see this).

Enumeration of chains and cyclic sequences constructedgmdygons was a target subject
of such papers as [16—20]. The authors appligtedent approaches, in particular, Elk [17]
used code sequences of symbols (which is also a linguispooaph), while Cyvin, Cyvin,
Brunvoll, and Dobrynin [20] used symmetry considerationse &uthors of [20] so enumerated
any chains of regulag-gons (with a fixedy > 5), considering only symmetry nonequivalent
ones; however, they allowed chains to selfcross, if this maypen, — which just should be



excluded in our case. Their overall formula (as (12) in [26])

1 L, 1 1 2
= @3 gl (2T gl a1 (%) ®)
; %{1 F (-1 + %[1 — (1ML + (~1)] +
+ L= CDI@E-3y2l)@- 07 > )

wherer is the number of concatenatgeings in a chain.
Here, we derive a special case of (5) for 5-gons:

lha=2"+2"2 (r>0), (6)

showed Harary and Schwenk [22]. Recall thatagerpillar is a tree in which all vertices are
within distance 1 of a central path. Thus, an enumeratidg tsit was stated in [20], can also
be reduced to enumeration of caterpillars; and in our case-special subclass thereof, which
we cannot so far determine here. The very sequence of nurhk{ers 1) for the first values of
ris:

where the numbet.,, is also the number of all caterpillars with+ 4 (r > 0) vertices, as

l»1:1,1,1,2,3,6,10,20,36,72 136 272 528 1056 2080 416Q 8256 . .. (7)

Another representation of the same result, as (6) is, mawka,glue to a found recurrence:
Ih;’+3 = 2(|~r+2 + INr+l) - 4|~r (r > 3) (8)

or in a shorter form:
[ =20 - [1+ (-1)]25° (r>23). 9

Moreover, there exists a (reduced) transfer matrix comedimg to (8), whose characteristic
polynomial isx® — 2x%2 — 2x + 4 = 0, with rootsx;, = 2,% = V2,x3 = —V2. Hence, as
well as from (6), it follows that limL. i;.1/1; = 2. Other versions are: lime i;+4/2" = 1 or
lim, . I,/2" = 1/186.

Without symmetry considerations applied in [20], the respe sequence of numbers for
g = 5 should correspond to a geometric progressioR,; 4, ..., with ther-th member equal
to 21 (r > 1). After comparing the members of both series (of that irf @@ of the last
geometric one), it is clear that all symmetry-nonequivaisomers of pentagonal chains of an
essentially long lengthcomprise in limit just 18 of all such chains produced by both the ‘left’
and ‘right’ attachments of the next pentagons. An analyX$¢f all possible symmetry groups
of chains give®,n, Con, Coy, Cs (ID2n] = 8;|Conl = |Cal = 4;|C4 = 2). Here, the highest possible
symmetry of a chain obeys the first grobDg, of order 8. Therefore, each nonsymmetric chain
implies the existence of seven other chains which are symyreguivalent to it (or totally 8
such chains). Hence, it immediately follows a general amgioh that almost all chains are in
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mass asymmetric ones. Only so the share of symmetry norsdemnichains may comprise in
mass 18 of the total amount of chains produced by the process. Thislme used later.

In order to proceed, we need to introduce some notiongolgon Pis usually defined as
a collection ofn pointspy, P, . .., Py andn edgesp; P2, P2Ps, - - - » Pn-1Pn» PnP1 SUCh that no pair
of nonconsecutive edges share a point. petp,, ..., px be path or chain. A chain is called
monotone with respect to a line(p. 14 in [23]) if the projections opy, pa, ..., px ontoL are
ordered the same as in the chain; that is, there is no “dayblaTk” in the projection as the
chain is traversed. The chainnsonotongp. 14 in [23]) if it is monotone with respect to at
least one line.

Utilizing the above definition, we conclude that our target sf nonselfcrossing chains
contains all monotone chains. We could enumerate the lasieg a reduced transfer matrix
which was constructed stepwise as follows. First we consthe entire transfer matrix whose
weight entries are exp( (i € [1, 10]), where shift vectorg’s were introduced earlier in the text
(see (1)). This basic matrix is relevant to generating adisgale chains andr annuli, without
taking account symmetry. It is a weighted adjacency mafrx @veighted) 10-cycle:

0 expfr) O 0 0 0 0 0 0  expho) |
expvy) 0 expis) 0 0 0 0 0 0 0

0 expi,) 0 expis) 0 0 0 0 0 0

0 0 expis) 0 expis) 0 0 0 0 0

0 0 0 expys) 0 expis) 0 0 0 0

0 0 0 0 expys) 0 expi-) 0 0 0

0 0 0 0 0 exXNe) 0 expis) 0 0

0 0 0 0 0 0 expé) 0 expi) 0

0 0 0 0 0 0 0 expls) 0 expi/1o)
| expfn) 0 0 0 0 0 0 0 explo) (O

(10)

The above matrix describes the general process which ensareect attachment of the
next pentagon, disregarding occurring selfcrossing ofedchts nonzero entries are functional
weights which allow to watch the sum vector of shifts, cooawding to a total shift from the
origin to the center of the last attached pentagon. When sgcimavector equalg® = (0, 0),
the process returns us to the very first pentagon, thus itilica closed walk — in particular,
indicating a built annulus, but admitting in general mu#ipeturns to the same point. But if we
numerically sum the- andy-coordinates, we obtain a zero sum of both mixed coordinaites
all shift vector every time that the center of the last peoteafalls into liney = —x. Here, we
need to turn from the above matrix to its two reductions.

The first reduced matrix takes into account the notion of tk@atonicity of a chain. Ac-
cordingly, we nullify all entries which correspond to shitectorsy; (i € [1,10]) having a
nonnegative value of thg-coordinate; from (1), it follows that not nullified entrigemain
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those equal to exp(), expl,), expls), explvs), explvio) (Wwhere these previously were above).
We obtain a weighted adjacency matrix of the union of (i) aor@nted path on 5 vertices,
with two affluent arcs attached to its end points (that is, a mixed weakipected graph on 7
vertices), and (ii) 3 isolated vertices:

0O expfr) 00000 O 0  explo) |
expfy) O 00000 O 0 0

0O expf) 00 00O O 0 0
0 0 0 0O0O0O 0 0 0
0 0 0 00O0O 0 0 0 (11)
0 0 0 00O0O 0 0 0
0 O 0O0O0O0O exp O 0
0 0O 00000 O exp) O
0 0 0 0 0 0O O exph) 0 expl/10)

| exp(n) 0 0 00O0OO 0 explo) 0

The second matrix excludes selfcrossings of a chain, wHileulified mixed coordinates
(that is,x + y = 0) do not anymore correspond to cyclic constructions; tloegss generates
only chains, and there is no even need in knowing the coaielrat the last pentagon’s center,
as such. Therefore, we reduce the second matrix to anotbevlogre all nonzero entries of the
preceding one are replaced by 1's. Thereby we have (12).

(12)

O O OO0 o o o r O
O O OO0 o0 oo Ok
O O O O OO o o o
O O OO O o o o o o
O O OO0 O o o o o
O O O O O O O O o
O O O O O O O O o
R O P OO O O O O
P O P, OO OO O o o
P O O O O O O O k=,

0 0 0O0O 0

| 1

The characteristic polynomial of the third matrix4¥ — 4x8 + 3x® = 0, with nonzero roots
+/3,+1 and six 0's. Thus, we have the following recurrence:

Jia=4%2-33, (r>2), (13)
with the first numbers
Js1:1,1,1,23,5,9,14,27,41,81, 122 243 3657291094 . ... (14)
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It is easy to see shorter recurrences:

1
'Jr+2 = 3‘Jr - 5[1 + (_1)r] (r 2 2) (15)
and (partial)
Jori1 = 2\]2r -1 (r 2 1) (16)
From (15), in particular, it follows that lip,e. Jr2/J = 3 < liMiLe lri/l; = 4. Thus,

(13-16) also demonstrates an exponential growth byt lind,/ I, = 0; therefore, the share
of nonselfcrossing chains tends to O,raends toco. In perspective, we are targeted at ob-
taining the number§, (r > 1) of all r-pentagon chains fror§i, for which J, < ¢, < I, and
3<lim_. € ,2/C <4 hold.

As it was stated, our target is, in particular, plane chafipeatagons. The first 9 numbers of
such chains (but not the 10-¢t seq) are given in (7). Here, we add some subsequent numbers,
which were found with a computer program:

C.10: 71,134 267,515 1021 1992 3954 7763 15354 30211 59722 117633232102
4570579011401774114... (C; =1y;r €[1,9)). (17)

The number€, from (7) and (17) allow to build a system of 13 simultaneounséir equa-
tions, in order to look for a linear recurrence, as was usedabHowever, in the last instance,
no linear recurrence has been found. The only evident ceinrius that

Co=a()i: (rell o)), (18)

wherea(r) = C, /i, (0 < a(r) < 1) determines the share of plane pentagonal chains among all
pentagonal chains (as the latter were determined in [2@}). L

a(r) = a(X)lyr (r € [1, ), (19)

wherea(x) is a continuous nonincreasing functionxnwhich is assumed here to be smooth
enough. We also use here its truncated inverse:

a(x) = /809 .o (20)
al() =T,/ (r €[10.)). (21)

The following technical lemma plays an important role in taxt:

Lemma4. Let al(x) be as above. Then;¥X) is a function rational under all natural values
of x, which is expanded in a polynomial'éx) = )% asx* in x, whose all cogicients a are
rational and all powersy; of x are natural numbers.
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Proof. Since a value o () is a rational number under eagh- r (r € [1, «)), the powersr

in the expansion are all natural numbers — otherwise, su@xpansion would give irrational

values at some natural values xyfwhich is prohibited by the definition af(x). In order

to avoid any irrationality ofa~*(x) under all naturalk, the expansion cannot have irrational

codficients and be an infinite series, either. Hence, the ovemadifollows. O
Using the sequence (17) of known to us numbers and takingaictount Lemma 4, we

found the following approximate expansion:

a‘l(x) ~ 0.9915612179 0.003054367868+ 0.000427934873¢. (22)
Hence, we obtain:
a(x) ~ (0.9915612179- 0.003054367868+ 0.000427934873)4-2)‘1. (23)

Though (23) seems a too simple approximationdfx), its worst interpolation value foC,
gives an errok 1.5% forr € [1,9] and~ 1% forr € [10, 25], then,~ 0.2% forr = 15,~ 0.1%
forr = 19, and ever: 0.1% forr € [19, 25]. Since at some intermediate step of manipulations
the interpolation was due to a straight-line plot, one madpmt that (23) may allow a further
acceptable extrapolation for some consecutive25. All this allows to state:

Proposition 5. Let aX) ~ (0.9915612179- 0.003054367868+ 0.000427934873¢)* be an
interpolation function for éx) (x € [1, 25]). Then,

C: ~ I} (0.9915612179- 0.003054367868+ 0.000427934873:2)‘1 (re[1,25]). (24)

Since (24) depends on exact numbiers € N\ 0), this does not allow to estimate the num-
bersC, for valuesr which are beyond our ability to calculate respective vabfds. Therefore,
it is worth giving here a purely asymptotic “independenttimsition. Earlier (see after (9)),
there was established that Jim, I, /2" = 1/16. Can this estimation be applied for finite values
of r? E. g, underr = 25, 25/16 = 22! ~ 2097152, while an exact numbkg = 2098176,
which indicates an errot 0.05%. From the last calculation, it follows th@gs ~ 1773248; in
comparison with the exact vali&s = 1774114, this gives an error alsn0.05%. Therefore,
as a technical corollary of Proposition 5, we propose:
Corollary 5.1. There exists the following approximation:

C,/2" ~ (1586497949- 0.04886988580+ 0.00684695797¢) % (r €[1,25]).  (25)

Another corollary is:

Corollary 5.2. There exists the following approximate limit:
. Cyr?
LE

Corollary 5.2 (motivated by the above observations) giveislaa of the following conjecture:

~ 1460502611 (26)

Conjecture 6. There exists the following exact limit:

_ Cr?
lim

r—oo

= const (27)
11
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