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Abstract 

As an entry for the 1997 Gordon Bell performance prize, we present results from two methods of solving 

the gravitational N-body problem on the Intel Teraflops system at Sandia National Laboratory (ASCI Red). 
The fist  method, an O ( N 2 )  algorithm, obtained 635 Gigaflops for a 1 million particle problem on 6800 
Pentium Pro processors . The second solution method, a treecode which scales as 0 ( N  log N ) ,  sustained 
170 Gigaflops over a continuous 9.4 hour period on 4096 processors, integrating the motion of 322 mil- 

lion mutuaJly interacting particles in a cosmology simulation, while saving over 100 Gigabytes of raw data- 
Additionally, the treecode sustained 430 Gigaflops on 6800 processors for the first 5 timesteps of that sim- 
ulation. This treecode solution is approximately io5 times more efficient than the O(N2) algorithm for this 
problem. 

As an entry for the 1997 Gordon Bell price/performance prize, we present two calculations from the 

disciplines of astrophysics and fluid dynamics. The simulations were performed on two 16 Pentium Pro 
processor Beowulf-class computers 0;Oki and Hyglac) constructed entirely from commodity personal com- 

puter technology, at a cost of roughly $50k each in September, 1996. The price of an equivalent system in 
August 1997 is less than $30k. At Los Alamos, Loki performed a gravitational treecode N-body simulation 
of galaxy formation using 9.75 million particles, which sustained an average of 879 M o p s  over a ten day 
period, and produced roughly 10 Gbytes of raw data. During the initial 10 hours of the simulation, Loki 
sustained 1.19 Gigaflops. This simulation is nearly identical to that which won a Gordon Bell performance 
prize in 1992 on the 5 12 processor Intel Delta. At Caltech, Hyglac performed a simulation of the fusion of 
two vortex rings using a vortex particle method which took place over a 20 hour period, sustaining about 
950 M o p s  over that time span. Loki and Hyglac were connected together on the floor of Supercomputing 
'96 in November 1996, obtaining 2.19 Gigaflops on an N-body t r d e  benchmark. 



1 Introduction 

We are at a unique point in the history of supercomputing, where the fastest computer in the world (the Intel 
Teraflops system at Sandia National Laboratory, ASCI Red) utilizes exactly the same processor as is found 

inside millions of desktop machines. Powerful mass-market economic forces led Intel to base the design 
of their flagship parallel machine on commodity parts. Presumably, economic forces also convinced them 
to withdraw from the world of supercomputing, turning Intel Supercomputing Systems into Intel Scalable 

Server Products. 
The rate of change for all aspects of computing is extraordinary, and difficult to keep pace with. The fixed 

costs of system maintenance and software development remain roughly constant, while the performance of 

computer hardware keeps increasing by an order-of-magnitude every five years (a corollary of Moore’s 
Law). Paradoxically, the success of supercomputing centers and the Internet has meant that the amount of 
computing available to each individual research group has actually declined over the past few years, since 
practically all large computational resources must be shared with an ever-larger group of people interested 

in high-performance computing. As computational scientists, we need access to usable, reliable, abundant 
and affordable computing power. We have expended considerable effort to develop and implement parallel 
algorithms, while at the same time watching Intel and others retreat from or be destroyed on the battlefield 
of high-performance computing. 

This leads us to consider the danger that the computing systems that we need to do our research will 
either cease to be developed, or become prohibitively expensive. At present, the primary vendors of parallel 
computers are large companies which can subsidize their parallel computing research and development 
through profits from other business divisions. Until recently, economics has played a limited role in the 
evolution of supercomputing. Machines were designed to attract attention, through heroic efforts to achieve 

the highest speeds possible. The era of easily available subsidized supercomputing has come to an end, 
just as many computational scientists have developed efficient codes capable of taking advantage of parallel 
hardware. These forces have led to a quiet revolution in the design and construction of modest message- 
passing parallel machines. Building upon the foundation of the BEOWULF project [l], it is now possible 

to use off-the-shelf hardware and software to construct a parallel machine capable of exceeding 1 Gflop 
performance for only a few tens of thousands of dollars [2,3,4,5,6,7,8,9, 10, 11,12, 13,141. This paper 
describes our experiences at the highest-end of supercomputing with the ASCI Red system, as well as our 
experience with parallel machines we have constructed ourselves, out of commodity parts and software. 

2 Architecture 

2.1 The Intel Teraflops System 

The complete ASCI Red machine contains 4,536 compute nodes, each containing two 200 Mhz Pentium Pro 
processors and 128 Mbytes of 4way interleaved DRAM. A custom interconnect provides 800 Mbytes/sec 
of bi-directional bandwidth at the hardware level, using a 38x32~2 mesh. Using MPI, we measured uni- 
directional bandwidth out of one node of 290 Mbytes/sec, and round-trip latencies of 68 or 41 microsec- 
onds, depending on whether or not the second CPU was used a a communication co-processor. When the 

calculations described here were performed, the complete system was not yet installed, so the maximum 
number of nodes available was 3400 (6800 processors) with a theoretical peak speed of 1.36 Gigaflops. For 
further information, refer to [151. 

Intel claims [ 161 that “The [Intel Teraflops] system will be the &st large-scale supercomputer to be built 
entirely of commodity, commercial, off-the-shelf (C-COTS) components - the same processors, memory, 
disks and other modules found in millions of desktop computers and servers.” This is true, as far as the 
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components which are mentioned. However, the network technology and operating system of that machine 
are far from off-the-shelf. We describe a truly off-the-shelfparallel architecture in the following section. 

Ext. 

9520 
240 

4720 
15040 
5744 
1360 
2064 

1904 
9588 
255 

944 

2.2 Loki and Hyglac: A Commodity Parallel Architecture 

In 1992, two authors of this paper were awarded a Gordon Bell Performance Prize [ 171 for “Astrophysical 
N-body Simulations Using Hierarchical Tree Data Structures,” which was run on the 512 processor Intel 

Delta machine. It is now five years later, and as we show below, it is possible to run that same simulation 
on a machine constructed out of mail-order parts and free software for a cost of less than $50k. We have 

invested our time and money in these systems because they are (at present) clearly superior to any other 
technology for solving the computational physics problems that we are most interested in. We have no 
particular desire to build and maintain our own computer hardware. If we could buy a better system for the 
money, we would be using it instead. 

We have constructed two distinct 16 processor Pentium Pro machines, each having 2 Gbytes of RAM, 
and either 50 or 80 Gbytes of disk space. The machines differ primarily in their network topology. The cost 
of the machines in the fall of 1996 was roughly $50,000-$60,000. The price to construct an equivalent 

system as we go to press in August 1997 is less than $30,000. Loki and Hyglac use a commodity commu- 

nication network based on fast ethernet [ 181 and the PCI bus [19], as well as the freely available Linux [20] 

operating system and development tools from the GNU project [21] and RedHat [22], making them true 
commodity, off-the-shelf machines. 

Description 

Intel Pentium Pro 200 Mhz CPU/256k cache 
Heat Sink and Fan 
Intel VS44OFX (Venus) motherboard 
8x36 6Ons parity FPM SIMMS (128 Mb per node) 
Quantum Fireball 3240 h4byte D E  Hard Drive 
D-Link DFE-5OOTX 100 Mb Fast Ethernet PCI Card 
SMC Etherpower 10/100 Fast Ethernet PCI Card 

ATXCase 
3Com Superstack II Switch 3000,8-port Fast Ethernet 
Ethernet cables 

S3 Trio-64 1Mb PCI Video Card 

16 
16 
16 
64 

16 

16 
16 
16 
16 
2 

595 
15 

295 
235 
359 
85 

129 
59 

119 

4794 

Table 1: Loki architecture and price (September, 1996). 

At the Theoretical Division of Los Alamos National Laboratory, Loki [5] was constructed from 16 
nodes as described in Table 1. The whole machine contains 2 Gbytes of memory and 50 Gbytes of disk. 
All of the operating system software (Linux), software tools and compilers (GNU) used for these results are 
freely available. We have measured Fast Ethernet bandwidth of 1 1.5 Mbytes/sec (uni-directional, per port) 
and latencies of 208 microseconds (round-trip) at the user level with MPI [23]. At the hardware level, we 

have measured fast ethernet latencies of 55 microseconds (round-trip). An early lesson we learned is that 
the memory bandwidth of the Pentium Pro Natoma chipset is not sufficient to support more than two fast 

ethernet ports (about 20 Mbytes/sec of message traffic) per node when using TCP or UDP protocols, due to 
copies of data from the kernel to user space. Thus, for the results quoted in this paper, Loki was connected 

in a split-switch topology, using only two ethernet ports per node. It should be noted that each node also 
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contains a 4-port Cogent Ethernet card, but those cards were not connected during the runs described here 
(the topology was two 8-way switches, with 8 cables connecting each half of the machine). The video card 
in each node is not strictly necessary, but is required to access the initial BIOS setup screen, and to see 
certain hardware error messages. 

At CaltecWJPL, Hyglac [6] was constructed from 16 nodes which were almost identical to those of Loki. 
The primary differences were the use of D-Link DFE-5OOTX 100 Mb Fast Ethernet Cards ($85 each), a Bay 
Networks 281 15 16-way Fast Ethernet Switch, two Western Digital 2.52 Gbyte drives per node, and the use 

of ED0 DRAM. The total price of Hyglac (including 8.75% sales tax) was $50,498. 
The current cost of a machine such as Loki or Hyglac is considerably less than the values listed in 

Table 1. Table 2 shows the costs for the relevant components in August 1997. It is likely that a machine with 
components equivalent to those in Loki or Hyglac will be constructed for less than $25,000 by the time this 
paper is published in the Fall of 1997, which would result in price/performance figures which exceed those 

listed here by a factor of two. 

Item 

Pentium Pro 
Pentium Pro 

SIMM 

Disk 
Fast Ethernet 

Misc. 

BavStack 350T 

ASUS P/I-XP6NP5 

Description 

motherboard 
200 MHz,  256k L2 
150 MHz,  256k L2 

FPM 8x36~60,32 Mbyte 
Quantum Fireball 3.2GB EIDE 

Case, Floppy, Heat Sink 
16port 10/100Mbit switch 

DFE-5OOTX 21 140 PCI 

4 

price ($1 
220 
467 
204 
112 
215 

53 
150 

2500 

Table 2: Spot prices for August, 1997. These were obtained from sites listed at www.uvision. corn A 

16 processor 2OOMhz-2 Gbyte memory-50 Gbyte disk system with BayStack switch would be $28k. 

3 N-body methods 

N-body methods are widely used in a variety of computational physics algorithms where long-range interac- 
tions are important. The 0 ( N 2 )  solution of the gravitationalN-body problem with special purpose hardware 
has been recognized with a Gordon Bell prize for two years in a row. While that method is appropriate for 
some problems, we feel a need to vigorously promote the use of smarter algorithms and general purpose 

hardware. 
Several methods have been introduced which allow N-body simulations to be performed on arbitrary 

collections of bodies in time much less than O ( N 2 ) ,  without imposition of a lattice [24,25]. They have 
in common the use of a truncated expansion to approximate the contribution of many bodies with a single 
interaction. The resulting complexity is usually determined to be O ( N )  or O(N1og N ) ,  which allows 

computations using orders of magnitude more particles. These methods represent a system of N bodies in 
a hierarchical manner by the use of a spatial tree data structure. Aggregations of bodies at various levels 
of detail form the internal nodes of the tree (cells). These methods obtain greatly increased efficiency by 
approximating the forces on particles. Properly used, these methods do not contribute significantly to the 

total solution error. This is because the force errors are exceeded by or are comparable to the time integration 
error and discretization error. 

Using a generic design, we have implemented a variety of modules to solve problems in galactic dynam- 
ics [26] and cosmology [27] as well as fluid-dynamical problems using smoothed particle hydrodynamics 



[28], a vortex particle method [29] and boundary integral methods [30]. Solving each of these problems 
with different varieties of special purpose hardware, such as GRAPE [31], is clearly intractable. 

4 The Hashed Oct-Tree Library 

Our parallel N-body code has been evolving for several years, and on many platforms. We began with an 
Intel ipsd860, Ncube machines, and the CaltecWJFL MarkIII [32,26]. This original version of the code 

was abandoned after it won a Gordon Bell Performance Prize in 1992 [17], due to various flaws inherent in 
the code, which was ported from a serial version. A new version of the code was initially described in [33], 
and further simulations and other details are reported in [34,35,28,36,30]. 

The basic algorithm may be divided into several stages. Our discussion here is necessarily brief. First, 
particles are domain decomposed into spatial groups. Second, a distributed tree data structure is constructed. 
In the main stage of the algorithm, this tree is traversed independently in each processor, with requests for 

non-local data being generated as needed. In our implementation, we assign a Key to each particle, which 
is based on Morton ordering. This maps the points in 3-dimensional space to a 1-dimensional list, which 
maintaining as much spatial locality as possible. The domain decomposition is obtained by splitting this 
list into N p  (number of processors) pieces. The implementation of the domain decomposition is practically 
identical to a parallel sorting algorithm, with the modification that the amount of data that ends up in each 
processor is weighted by the work associated with each item. 

The Morton ordered key labeling scheme implicitly defines the topology of the tree, and makes it possi- 
ble to easily compute the key of a parent, daughter, or boundary cell for a given key. A hash table is used in 
order to translate the key into a pointer to the location where the cell data are stored. This level of indirection 

through a hash table can also be used to catch accesses to non-local data, and allows us to request and receive 
data from other processors using the global key name space. An efficient mechanism for latency hiding in 
the tree traversal phase of the algorithm is critical. To avoid stalls during non-local data access, we effec- 
tively do explicit “context switching”. In order to manage the complexities of the required asynchronous 
message traffic, we have developed a paradigm called ”asynchronous batched messages (ABM)” built from 
primitive send/recv functions whose interface is modeled after that of active messages. 

All of this data structure manipulation is to support the fundamental approximation employed by treecodes: 

+ 

where di,cm = i?i - Zcm is the vector from i?i to the center-of-mass of the particles that appear under the 
summation on the left-hand side, and the ellipsis indicates quadrupole, octopole, and further terms in the 
multipole expansion. The monopole approximation, i.e., Eqn. 1 with only the fist  term on the right-hand 
side, was known to Newton, who realized that the gravitational effect of an extended body like the moon can 
be approximated by replacing the entire system by a point-mass located at the center of mass. Effectively 
managing the errors introduced by this approximation is the subject of an entire paper of ours [37]. 

Isolating the elements of data management and parallel computation dramatically reduces the amount 
of programming required to implement a particular physical simulation. For instance, only 2000 lines 
of code external to the library is required to implement a gravitational N-body simulation. The vortex 
particle method is implemented with 2500 lines interfaced to exactly the same library. Smoothed Particle 
Hydrodynamics is implemented with 3000 lines. This may be compared to the nearly 20,OOO lines of code 

in the treecode library. 
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5 Recent simulations on ASCI Red 

The statistics quoted below are based on internal diagnostics compiled by our program. Essentially, we keep 
track of the number of interactions computed. We obtain optimal performance on the Pentium Pro processor 
by decomposing the reciprocal square root function required for a gravitational interaction into a table 

lookup, Chebychev polynomial interpolation, and Newton-Raphson iteration, using the algorithm of Karp 

[38]. This algorithm uses only adds and multiplies, and requires 38 floating point operations per interaction. 
We do not use assembly language for any part of the code. The flop rates follow from the interaction counts 
and the elapsed wall-clock time. The flop counts are identical to the best available sequential algorithm. We 
do not count flops associated with decomposition or other parallel constructs. The reported times are for the 
entire application, including YO, communication, program initialization, etc. For all results quoted below, 
we use both processors on each node as compute processors. 

5.1 A 1 million body O ( N 2 )  benchmark. 

We are not fans of the trivial 0 ( N 2 )  solution to the N-body problem. To its credit, several features of the N 2  
algorithm make it easy to obtain high performance. First, the software implementation is simply a double 
loop, and is very easy to parallelize using a ring decomposition. Second, the number of operations scales 
like N 2 ,  while the communication scales like N .  This means that for reasonably large numbers of particles, 
the speed of the communication network is not a limiting factor on performance. Third, the computational 
intensity is fairly high, requiring 38 floating point operations to be performed on each 32 bytes of data, 

which is read in a regular fashion from memory. This means the usual memory hierarchy can easily keep 

the processor busy. It is possible to save a factor of two in the overall flop count by using the pair-wise 

symmetry of the forces, but this requires an additional memory write for each interaction, which slows 

down the computation to the point where you end up not saving any time. 
Solving the N-body problem with an N 2  algorithm is not difficult, but as we show below, it takes a whole 

lot longer than necessary. Thus, we do not see much benefit to humanity from running an N 2  algorithm for 
hours and hours. However, we are willing to provide the results of a few minute benchmark in order to 

compare the raw speeds of the Intel Teraflops system vs the GRAPE system on almost identical problems. 
We ran a 1 million particle problem for four timesteps on 3400 nodes (6800 processors). The total time 
required was 239.3 seconds. Thus, we computed lo6 x lo6 x 38 x 4 flops in 239.3 seconds, for an overall 
throughput of 635 x lo9 floating point operations per second (635 Gflops). 

5.2 A 322 million body O( N log N )  simulation. 

On April 26-27 1997, we ran a simulation with 322,159,436 particles on a number of nodes which ranged 
between 1024-2048 for 437 timesteps. We believe this is the largest gravitational N-body simulation ever 
performed. For a cosmological simulation, having the largest number of particles possible is critically 
important. Our ability to identify galaxies which can be compared to observational results requires that each 
galaxy contain hundreds or thousands of particles, and galaxy catalogs will soon be available which contain 
the positions and redshifts of a million or more galaxies. An image of this simulation is shown in Figure 1. 

The simulation was of a spherical region of space 200 Mpc (Megaparsec) in diameter; a region large enough 
to contain several hundred thousand typical galaxies. The region inside a sphere of diameter 160 Mpc was 
calculated at high mass resolution, while a buffer region of 20 Mpc with a particle mass 8 times higher 
was used around the outside to provide boundary conditions. The initial conditions were extracted from a 1 

billion point dataset, calculated using a a 10243 point 3-d FFT from a Cold Dark Matter power spectrum of 
density fluctuations. Overall, the simulation carried out 9.7 x lOI5  floating point operations Cjust shy of 10 
Petaflops). We created 10 data files totaling 100 Gbytes. A single data lile from this simulation exceeds 10 
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Gbytes. The only difficulty porting the code to the Teraflops system had to do with saving these large files. 

Since each data file exceeds 231 bytes, several I/O routines in our code had to be extended to support @-bit 

integers. 
We quote two performance results from this simulation. The portion of the simulation between timestep 

150 and 437 was accomplished during a single continuous run on 2048 nodes (no crashes, no restarts), and 
was tuned to the greatest extent possible to obtain useful scientific data (as opposed to the largest number 
of Gflops). During this period, the code computed 1.52 x 1014 interactions over a time span of 9 hours and 
24 minutes, for an overall throughput of 170 x lo9 floating point operations per second (170 Gflops). It is 
perhaps interesting to note that the number of floating point operations and amount of data created during 

this single simulation is comparable to the aggregate amount of computing our group has performed during 
the five year period preceding this simulation. 

We quote a better performance result using 3400 nodes (6800 processors) during the initial portion of 
the same simulation. For the first five timesteps, we computed 7.18 x 10” interactions over a time span 
of 632 seconds for an overall throughput of 431 x lo9 floating point operations per second (431 Gflops). 

This result is better than the 170 Gflops quoted above for two reasons. Flrst, a larger compute partition was 
available for a limited period of time, and the initial stages of the calculation are more well-behaved in terms 

of load balance and the amount of time spent in tree traversal overhead. 
The demands of the simulation after significant clustering develops are extreme. The load balancing 

problem associated with galaxy formation is probably more severe than any other conventional computa- 
tional physics algorithm. The problem domain is irregular and time-dependent, with some regions of space 
having a density of particles more than 1 million times the mean density. The second factor which results in 

a lower computational throughput (as clustering develops) is that it takes more operations to traverse the tree 
and identify which interactions to compute. Much of the useful work accomplished by our algorithm has 
nothing to do with floating point operations, and is not reflected in the number of Gflops which we report. 
The only purpose of using a treecode is to avoid doing as many floating point operations as possible. While 

more and more attention is focused on codes which obtain huge “Gflops”, real computational physics is 
advanced to a far greater degree through the use of sophisticated algorithms which solve a problem faster, 

with the usual side-effect of doing less floating point operations per second. 

6 Recent simulations on Loki and Hyglac 

6.1 A 9.75 million particle gravitational N-body simulation. 

We compute the statistics below in manner identical to that described in the preceding section. On April 
18-30 1997, we ran a simulation with 9,753,824 particles on the 16 processors of Loki for 750 timesteps. 
An image of this simulation is shown in Rgure 2. The simulation was of a spherical region of space 100 
Mpc (Megaparsec) in diameter; a region large enough to contain a few hundred thousand typical galaxies. 
The region inside a sphere of diameter 100 Mpc was calculated at high mass resolution, while a buffer region 
of 50 Mpc with a particle mass 8 times higher was used around the outside to provide boundary conditions. 
The initial conditions were extracted from a 134 million point initial dataset, calculated using a a 5123 point 

3-d ITI’ on Loki, from a Cold Dark Matter power spectrum of density fluctuations. Overall, the simulation 

carried out 6.6 x 1014 floating point operations. We created 33 data !Yes totaling just over 10 Gbytes. A 

single data file from this simulation is 312 Mbytes is size, and they were written striped over the 16 disks in 
the system, obtaining an aggregate I/O bandwidth of well over 50 Mbytes/sec. 

We quote two performance results from this simulation. The simulation up to April 30 required the 

computation of 1.97 x 1013 interactions over a wall clock time of 850000 seconds (236 hours, just shy of 
ten days), for an overall throughput of 879 x lo6 floating point operations per second (879 Mflops). This 

7 



figure 1 : The image shows an intermediate stage of a gravitational N-body simulation using 322 million 
particles, computed on ASCI Red. Using initial conditions derived from fundamental theories, the evolution 

of matter in the universe is simulated from a time shortly after the Big Bang through its non-linear evolution 
to the present epoch. The region shown is about 400 million light years across, and the color of each 
pixel represents the logarithm of the projected particle density along the line of sight through the periodic 
computational volume. The particles have formed clumps which represent dark matter halos, which are the 

sites where galaxy formation occurs. . 
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Figure 2: The image shows an intermediate stage of a gravitational N-body simulation using 9.7 million 
particles, computed on Loki. The region shown is about 150 million light years across. 
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simulation was tuned to the greatest extent possible to obtain useful scientific data (as opposed to the largest 
number of Gflops). We quote a pridperformance for this 10 day simulation of $58FIflop. We quote a 
better performance result during the initial 30 timesteps of the same simulation. We computed 1.15 x 10l2 
interactions in 36973 seconds of wall-clock time, for an overall throughput of 1.186 x lo9 floating point 
operations per second (1.19 Gflops). 

Between April 25 and May 8, the code ran continuously for 13.5 days, with no restarts. This accomplish- 
ment is a clear evidence that Loki is capable of performing large calculations reliably. The entire simulation 

of over 1000 timesteps was completed on May 8, after a total computation of 1.2 x 1015 floating point op- 
erations (1.2 Petallops). This simulation on Loki consisted of as many operations as any single simulation 

we had performed on any parallel supercomputer prior to April 1997. 

6.2 A 360 thousand vortex-particle fluid dynamics simulation 

To demonstrate the flexibility of our code, we have simulated the fusion of two vortex rings using the vortex 
particle method on Hyglac. The simulation started with 57,000 vortex particles in two “smoke rings”. Dur- 
ing the computation, the particles are occasionally “remeshed” in order to satisfy the core-overlap condition. 

This creates additional particles, so that by the end of the 340 timestep simulation, there were 360,000 vortex 
particles. Each vortex particle interaction is substantially more complex than a gravitational interaction, and 
directly counting the flops by looking through the code is prone to error. Through the use of the Pentium Pro 
hardware performance monitors, we have directly counted the actual number of floating point operations 
involved while the code was running. Measuring single processors during a parallel run, the code maintains 

somewhat over 65 Mflops per processor during the majority of the computation, with the tree building, do- 

main decomposition and I/O contributing an overhead of less than 10 percent. Thus, the overall throughput 

of the code running on 16 processors is close to 950 Mflops. 

6.3 Loki and Hyglac at Supercomputing ’96 

Loki and Hyglac were physically present at Supercomputing ’96 in Pittsburgh. During that time period, 
with the addition of 32 Fast ethernet cards and 16 cables the two machines performed a 10 million particle 
tr&e benchmark at the rate of 2.19 Gflops. The cost of the combined system (including the $3000 of 
additionalhardware to connect the two machines) was $103k. Thus, wequote a price/performance result for 
this benchmark of $47/Mflop, or equivalently, 21 Gflops per million dollars. Unfortunately, although these 
systems were available prior to last year’s pricdperformance award, they were not available at the entry 
deadline, which was six months prior to the conference. We note that this result and the application results 
above are about a factor of three better than last years Gordon Bell pridperformance winner. If we were to 

construct a similar system today, it would have a price/performance almost a factor of two better than that 
which we quote here. 

7 NAS Parallel Benchmarks 

The N-body problems described above are not the only ones on which these types of machines perform well. 
The results shown in Table 3 use the NAS Parallel benchmarks version 2 [39]. These benchmarks, based on 
Fortran 77 and the MPI standard, are intended to approximate the performance a typical user can expect for 
a portable parallel program on a distributed memory computer. 
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C 1 
Loki 

PGI 

354.6 

255.5 
428.6 
296.8 

177.8 
8.9 

14.8 

GNU 

331.4 

224.5 

403.7 
267.1 

12.7 
14.6 

ASCI 
Red 

445.5 

334.8 
490.2 

363.7 

7.1 
38.0 

957.0 
1317.4 

1039.6 

33.9 

Table 3: Sixteen processor performance (Mops) for Class B NPB 2.2 benchmarks. Data from Loki with the 
Portland Group (PGI) pgfl7 Re1 1.3-3 Fortran 77 compiler, the GNU 2.7.2.f.l compilers, and the ASCI Intel 
Teraflops system with PGI Re1 1.3-4a, and an SGI Origin 2000 are presented. Results for Loki and ASCI 
Red were obtained by the authors; results for the SGI were obtained from the NPB Web page [401. 

BT I SP I LU I FT 

78 5.7 

281 15.0 

Table 4: Data for the NPB 2.2 Class A benchmarks on Loki. The first column denotes the number of 
processors, and the data are M.fiops/sec (Mops/sec for IS). This data is plotted in Figure 3. 

8 Comparing machines 

We can compare Loki to the results obtained on 16 nodes of the ASCI Red system (Janus, which incidentally 

is binary compatible with Loki at the object file level). Janus has exactly the same Pentium Pro processor, 
amount of memory, and compiler as Loki. The differences were the network on Janus is about 15 times 

faster (160 Mbytes/sec), the latency is less (60 microseconds round-trip), and the memory bandwidth is 
higher. Overall Janus has an advantage at the 16 processor level that ranges from 10%-30% (Table 3). 
We estimate that roughly half of this improvement comes from the better memory bandwidth of the Janus 
nodes. Thus, we conclude (surprisingly!) that using switched fast ethemet instead of an exotic networking 
technology appears to have a fairly small effect on performance for a 16 processor machine on the NAS 
benchmarks (with the exception of the message bandwidth hungry IS benchmark). The effect of improved 
memory bandwidth from the interleaved memory on Janus is practically the same as its network advantage. 
We have observed that memory bandwidth is critical to both floating point performance, as well as network 
performance. It is for this reason that using multiple processors within each node ( S M P )  is unlikely to be a 
good idea for many applications. It simply makes the shortage of memory bandwidth even worse. 

We are aware that current machines such as the SGI Origin series can approach the price/performance 
figure above, but any such machine with enough memory and disk space to pexform the simulations reported 
here would come nowhere near our price/performance. Until the summer of 1997, it was impossible to obtain 
memory for the Origin series for less than W W y t e .  At list price, just the memory to do this problem on an 
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Figure 3: Scaling of the NAS Class A benchmarks on Loki. 

Origin machine would exceed the total cost of Loki or Hyglac. It is currently possible to obtain unlicensed 
Origin memory for about $12 Mbyte, while SGI approved third party memory is $24 per Mbyte. This may 
be compared to the parity DRAM in Loki, which is currently less than $4 per Mbyte. 

Taking a look at the vendor reported prices in Nov. 1996 for NPB Class B capable machines as reported 

in [41] ($960,000 for a 24 processor Origin 2000, $3,520,000 for a 64 processor IBM SP-2 PZSC, and 

$580,000 for a DEC AlphaServer 8400 5/440), we find that the price/performance of our commodity parallel 
processor (CPP) machines on the NPB 2.2 MPI/Fortran 77 benchmarks are better by a factor of three or 

more. For example, the time for a 64 processor SP-2 p2SC-120 machine to m the NPB version 2 Class B 
BT benchmark is 118 seconds, beating Loki in speed by a factor of 17, at a cost about 60 times higher. The 

SGI runs the benchmark in 471 seconds, 4.2 times faster, at a cost 16 times higher. 

9 Conclusion 

We feel the simulations reported above which were computed on Loki and Hyglac are clearly of the “su- 
percomputer” class. Both simulations required nearly 2 Gbytes of memory, and the gravitational simulation 
required 1.2 x i0l5 floating point operations. E these machines are not “supercomputers”, then one must 
admit that a state-of-the-art problem which won the Gordon Bell Performance Prize five years ago is now a 
mundane problem solvable on run-of-the-mill computers. We believe that we have demonstrated that mod- 

erately parallel computers constructed from commodity parts which can perform at a level of 10-100 times 
the capability of a desktop machine deserve a respected position in the hierarchy of computer hardware that 

a computational scientist should consider for production simulations. 
For ASCI Red, the real metric for evaluating gravitational N-body simulations is not Teraflops, but how 

many particles are updated per second, at an accuracy sufficient to accurately represent the physics involved. 
For our 322 million particle simulation, we can update 3 million particles per second on 3400 nodes with an 
RMS force accuracy of better than low3. Using an N 2  algorithm on 3400 nodes we can update 52 particles 
per second. We conclude that the ASCI Teraflops system (in its partial configuration of April 1997) exceeds 
the performance of the GRAPE system (which won the Gordon Bell performance prize last year) when 
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using an identical solution algorithm, and exceeds the performance that the GRAPE system could achieve 
on this problem by a factor of roughly one hundred thousand through the use of a sophisticated treecode 
algorithm. For this problem, our treecode on the Intel Teraflops system is equivalent to special purpose 
hardware running an N 2  algorithm at 25 million Gigaflops, or 25 Exaflops. We make this point in order to 

firmly emphasize the advantages of a good algorithm. 
Tree-based codes can solve a very general class of problems that can be expected to grow in importance 

as the need for spatial adaptivity becomes necessary for the simulation of ever more difficult problems. We 

believe that our most important demonstration is that a good algorithm can achieve an increase of many 
orders of magnitude in performance, while hardware is limited to a mere factor of ten every five years. 
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