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PENULTIMATE LIMITING FORMS IN EXTREME VALUE THEORY 
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(Received Sept. 7, 1982; revised Jan. 18, 1983) 

Summary 

Let {X,~},~ be a sequence of independent, identically distributed 
random variables. If the distribution function (d.f.) of M~=max (X~, 
�9 . . ,  X~), suitably normalized with attraction coefficients [a~}~ (a~>0) 
and {b~}~, converges to a non-degenerate d.f. G(x), as n--~ co, it is 
of interest  to study the rate of convergence to that  limit law and if 
the convergence is slow, to find other d.f. 's which better  approximate 
the d.f. of (M,~-b,~)/a~ than G(x), for moderate n. We thus consider 
differences of the form F~(a~x-kb,,)-G(x), where G(x) is a type I d.f. 
of largest values, i.e., G(x)-A(x)=exp(--exp(-x)), and show that  for 
a broad class of d.f. 's F in the domain of attraction of A, there is 
a penultimate form of approximation which is a type II [r 
exp(--x-~ x>O] or a type III [~(x)=exp(-- ( - -x)~) ,  x<O] d.f. of 
largest values, much closer to F~(a~x+b~) than the ultimate itself. 

1. Introduction and preliminaries 

Let {X~}na~ be a sequence of independent, identically distributed 
(i.i.d.) random variables (r.v.'s) with common distribution function (d.f.) 
F(x). If the d.f. of Mn=max X ,  suitably normalized with attraction 

l ' < ~ n  

coefficients {a,},~l ( a ~ 0 )  and {b~}~l, converges to a non-degenerate 
d.f. G(x), i.e. limFn(a~x+b,~)=G(x) for all x in the set of continuity 

points of G(x), we say that  F( . )  belongs to the domain of attraction 
of G(.) and denote this fact by FE ~(G). The only d.f. 's with non- 
empty domains of attraction are of one of the following three types 
(Gnedenko [7]) : 

Type I : A(x) =exp (--exp (--x)),  x E R 

AMS 1980 subject classifications: Primary 62E20; Secondary 60F05, 65U05. 
Key words and phrases: Extreme value theory, penultimate approximations, rates of con- 

vergence, order statistics. 
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72 M. IVETTE GOMES 

II : Oo(x)=i 0 if x<O Type 
exp (-- x-O if x ~ 0 (a > O) 

III : ~(x)  = I exp ( -  (-- x)O if x < 0 
Type 

[ 1 if x>=O ( a > 0 ) .  

I t  is then of practical interest  to s tudy the rate of convergence 
to tha t  limit law G(.) and if convergence is slow, to find other d.f . 's  
which bet ter  approximate the d.f. of (M,~-b,~)/a,~ for moderate n, than 
G(x)--the so-called penultimate behaviour of Fn(.)  first pointed out by 
Fisher and Tippet t  [5]. We shall here deal with  these two problems 
when G(.) is a type I d.f. of largest values. 

Related work appears in UzgSren [16], Dronkers [4] and Haldane 
and Jayakar  [11] with no indication of the closeness of the  approxima- 
tions provided. Anderson [1], [2] considers differences of the form 
F'~(a,,x+b,,)--G(x), F~ ~)(G) and finds tha t  under certain conditions on 
F(x), F~(a,~x+b,,)-- G(x) = r(x)d(n)g(x) +o(d(n)) uniformly over finite in- 
tervals of x, where  both r( ' )  and d(.) depend on the  parent  F and 
g(x)=G'(x). Galambos ([6], pp. 111-116) provides exact estimates, in 
terms of n and given through inequalities for ]Fn(a,~x,+b,)-G(x)l. Such 
estimates depend mainly on the speed of convergence to 0 of n ( 1 -  
F(a,~x+b,,))+logG(x), as n--* co and hold uniformly on finite intervals 
of the real line. Hall [12], [13] deals with  the  rate of convergence of 
normal ext remes  towards A(x) and Reiss [15] deals wi th  asymptotic ex- 
pansions of the  distribution of ext reme order statistics, providing error 
bounds for the  approximations derived. None of these authors refers 
again to the  penult imate form of approximation of n r .v. 's  with d.f. 
F 6  ~(A) as being a type II or a type III d.f. of maxima. Gomes [10] 
considers such a case and Cohen [3] develops a systematic study of 
a penult imate form of approximation to normal extremes expressed in 
terms of type III and type II ex t reme value d.f. 's,  toge ther  with error  
bounds for such approximations. 

In Section 2 of this paper we shall consider Fisher and Tippett 's  
results concerning the penult imate behaviour of the  maximum of nor- 
mal r .v. 's  and generalizing their ideas, we shall consider a broad class 
.2~ of d.f . 's  a t t rac ted to A(x) and show tha t  there  is numerical evidence 
tha t  for d.f . ' s  C(-) in tha t  class, C~(.) is nearer  ei ther to an appro- 
priate type III or type II penult imate form than to the ul t imate type 
I limit d.f. according as d log (a,~)/d log (n)<0 or d log (a~)/d log (n)>0,  
a~ the  scale at t ract ion coefficient. 

Since the  numerical results obtained call for an explanation that ,  
we believe, lies much deeper than the one put  forward by Fisher and 
Tippett ,  in Section 3 of this paper we shall prove tha t  for a d.f. F 6 ~)(A) 
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for which von-Mises' condition together  with some mild regular i ty con- 
ditions on k(x)=-dlog(-logF(x))/dx hold, F'~(a,~x§ is closer to 
a type III (to a type II) d.f. when k'(x)>O for x~x~ (when k'(x)<O 
for x~x~) than to the ult imate limiting form A(x). 

In Section 4 of this paper we study the influence of the at t ract ion 
coefficients upon the rate of convergence and in Section 5 we generalize 
the results obtained in Section 3, to obtain the  penult imate behaviour 
of the  joint d.f. of the i largest  order statistics (o.s.), suitably nor- 
malized. 

Finally, in Section 6, we study the d.f. 's belonging to the class _~C 
previously referred to under the  general theory.  For this part icular  
class A? the  error bounds are valid on the  whole real line. 

2. Penultimate behaviour of the maximum of i . i .d.r .v. 's attracted to 
A and with d.f. in a class At' 

Fisher and Tippett,  in [5], show tha t  the normal d.f. r e ~D(A), and 
consequently the d.f. of the maximum of n independent,  normally dis- 
t r ibuted r .v . ' s  should be approximated, when n is large, by A(x; b~, a~) 
=A((x--b~)/a,~), where ~/2~ b~ exp (b~/2)=n and a~=b,J(b~+l) (since lim (1 

-~(x))/r this choice of at traction coefficients is asymptotically 
equivalent to the one suggested by Gnedenko [7], 1 - r  a*=l/ 
(nq~'(b~))). 

They also remark  tha t  the  convergence of r to A(x) is 
extremely slow and they conclude their  paper by showing tha t  r 
is "c loser"  (skewness and kurtosis coefficients are used as an indicator 
of closeness) to a suitable type III ~r%(x; 2~, 3~)=~%((x-~)/3~), than to 
A(x; b~, a~), even for n=10~h 

The justification given by Fisher and Tippett  is then essentially 
the following: it is obvious tha t  any extreme value d.f. belongs to its 
own domain of attraction, and 

( i )  if {X~}~ are i . i . d . r . v . ' s  with d.f. A(x), then M~,~Xj+log(n) 
(there is a change in location only), 

(ii) if {Xy}i~ are i . i . d . r .v . ' s  with d.f. ~P~(x), then M,~n'/~ (scale 
is  ~U~.__~ co, a s  ~---~ oo), 

(iii) if {Xj}j~t are i . i .d . r .v . ' s  wi th  d.f. ~r(x), then M,~n-u~X~ (scale 
is n - u ~  --..* O, as n --~ oo). 

As in the  approach A(x;b~, an) suggested by Fisher and Tippett  (or any 
ul t imate approach A(x; b*, a*), {a*, b*},~t asymptotically equivalent to 
the  first choice of attraction coefficients), the  scale a, goes to zero, as 
n - ~  co, as happens to the scale n -~/~ of the maximum of n i.i.d, type 
III r .v . ' s  wi th  index a, they  suggest  tha t  one should equate the  rates 
at  which the  scale decreases in both cases, i.e., put  -1/a,~=d log (an)/ 
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dlog(n) ,  from which follows a,,=(b~-kl)~/(b~-l), and use tv~(x; ~,3~), 
where $,,=a,,o~,,, ~,~=b,,-b3~, are chosen so tha t  lim[A(x;b,,a,,)--~'~,,(x; 

n ~ o o  

2~, 3~)]=0, as a penult imate form of approximation for ~ (x ) - -bea r ing  
in mind, of course, tha t  the ult imate limiting form is a type I d.f. of 
largest values. 

The results of Fisher and Tippett  suggest,  at  first glance, the  fol- 
lowing conjecture :  Let F ~  _~(A)be such tha t  Fn(x) is approximated 
by A(x; b,,, an) ({a~, b~}~a~, possible at traction coefficients of F to the  
law A). 

(a) if a~--. 0, as n--~ oo, then there  is a type III d.f. of largest  
values, which provides a bet ter  approximat ion to F'~(x) than 
A(x; b,,, a,~), 

(b) if a~--~oo, as n- - .oo ,  then there is a type II d.f. of largest  
values, which provides a bet ter  approximation to F"(x) than 
a(x; b,,, a,~), 

(c) if a,,---*c, 0~c~r  A(x; b~, a,~) is closer to F'(x)  than any type 
II or type III d.f. of largest values. 

Later  on, we shall turn  back to this conjecture. Now and in wha t  
concerns the  normal d.f., we present  the Kolmogorov-Smirnov distances 
between ~'(x), the  d.f. of the maximum of n i.i.d, normal r .v. 's  and 
the  penul t imate  and ultimate forms of approximation. Here, the at- 
traction coefficients are the ones suggested by Gnedenko, 1-r  
a,,--1/(n~'(b~)), the  parameters in ~,~(x; ~., ~)  being a~=l/(1-a,,b,,), ~,~= 
a,~a~, ,~,,=b~-t-~,~. ko,,, denotes the Kolmogorov-Smirnov distance between 
r and A(x;b, ,  a,~), k~,,, denotes the Kolmogorov-Smirnov distance be- 
tween ~(x)  and ~,~(x; ~ ,  ~.) and P . =  {(ko,,,-k~,,,)/max (ko,,, k~,~)} .100%. 

Table  1. Comparison of @n(x) with  suitable ul t imate  and 
penult imate forms of approximation 

n 10 103 103 104 105 10 ~ 

k0,n 0.0522 0.0272 0.0183 0.0137 0.0109 0.0091 

kl,n 0.0264 0.0052 0.0024 0.0013 0.0009 0.0006 

Pn 49.30 80.76 87.07 90.27 92.17 93.47 

The numerical  results obtained in Gomes [8] for other  possible 
choices of a t t ract ion coefficients show tha t  in any circumstances we 
achieve identical results. I t  could however be argued tha t  we are fit- 
t ing the  distributions with parameters  whose validity is asymptotic 
and tha t  this fact  accounts for the unexpected result.  However if we 
fit the distributions with parameters determined, for instance by a quan- 
tile method, i.e., if we put  r ,l,,, ~,,)=A(b~; b,~, a~)=exp ( -1 ) ,  
~n(a,+b,~)=~'~,~(a,,--t-b,~; ,~,,, ~,~)=A(a,,+b,,; b,,, a~)=exp (--exp (--1)), the  para- 
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meter  a, being determined as before by (--d log (a,,)/d log (n)) -~, P~ is 
an increasing function of n, and P~0=85.74, P10~=95.26. If we choose 
{a~, b~}~ in order to minimize k0,~ and {~, 3~, a~}~ in order to mini- 
mize k~,~, we reach exactly the same conclusions, and P~ varies monoto- 
nically from 87.75 to 97.25 as n varies from 10 to 10 ~ 

We shall now consider a class .t" of d.f. 's at tracted to A. Before 
defining such a class, we state without proof the following resul t - -  
Let F be a d.f. with right endpoint x0F=sup {x: F (x )< l}  at infinity. 
Then for some real constants p and q, fl and a (q, a>0),  lira (1-F(x))/  

((ax+~)Pexp(-(ax+p)~))=A, 0 < A < o o ,  if and only if limF~(a~x+b~) = 

A(z), with {a~, b~}~ given by a~= {qa (logn)C~-'/~} -~, b~=(logn)~/~/a+ 
(log A + p log log n/q)/(qa (log. n) (~-~)/~)- ~/a. 

It is then natural to put :  

DEFINITION 1. .~" is the class of the d.f. 's of the form {1-A(ax 
+~)Pexp(-(ax+~)~)(l+~(x))}I[yo,~), where Y0 is the greatest  real solu- 
tion of A(ax+p)Pexp(-(ax+~)~)(l+~(x))=l, A chosen in such a way 
that  such a solution does exist, /~ and p real, q and a positive real, 
~(x)--.0, as x - ~ .  

We shall often use the notation C(x; a, ~; A; p, q; ~(x)), which is 
self explanatory, to denote a member of the class .E. The normal d.f. 
is obviously a member of .~: r  1/~/2-, 0; 1/2~/~-;--1, 2; z(x)), 
with ~(x) = :E ( -- 1)~1 - ' -  (2n - 1)/x 2~. 

n ~ l  

It  is then possible to show that  there is numerical evidence that  
for several d.f. 's in the class l ' ,  the d.f. C~(x) is nearer to an appro- 
priate type III (or type II) penultimate form, than to the ultimate 
type I d.f. 

Note that  a~-~0 iff q > l ,  iff there exists no such that  dlog(aJ/ 
d l o g ( n ) < 0  for n~no, and a~--+ co iff q < l ,  iff there exists n~ such that  
d log (a,)/dlog (n)>0 for n:>n, Consequently, according to the conjec- 
ture previously put forward, it seems sensible that  if q > l  there is 
a penultimate type IIt approximation, if q < l  there is a penultimate 
type II approximation and if q = l  there is no penultimate at all, i.e., 
A itself is approached rapidly. But if we have a closer look at it, we 
remark that,  following Fisher and Tippett, a, should be taken equal to 
Id log (a,)/d log (n)] -~. Moreover, as n - *  oo, d log (a,)/d log (n)<0 if q > l  
and d log (a,)/d log (n)>0 if q < l ;  but there are obviously finite values 
no(q) and n~(q) such that  d log (an)/dlog (n)>0 for n<=no(q) though q > l ,  
and dlog(a,)/dlog(n)<O for n~_n~(q) though q < l .  So, it seems more 
sensible to conjecture that  if d log(a,)/dlog(n)<O there is a type III 
penultimate approximation and that  if d log(a,)/dlog(n)>O there is 
a type II penultimate form of approximation. The numerical results 
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obtained support this conjecture. 
For simplicity, we have restricted ourselves to the elements of A? 

of the form C(x; 1, 0; 3 ;p ,q ;  0), i.e., to d.f. 's of the type F~.~(x)= 
{1-3xPexp (-x~)}Ic~0.~), where Yo, the greatest real solution of 3xPexp 
( - x 9 = 1 ,  does always exist because we have chosen A = 3 > e x p  (1), and 
we shall present graphically the results obtained for p = - 4 ,  4(4), q= 
0.2, 4(0.1). In Graph 1 (a continuous version of the discretized graph 
really obtained for q=0.2, 4(0.1)), we plot for values of p = - 4 ,  0, 4, q 
against R=(ko-k~)/max(ko, k,), for n=lO and n=lO', where k0 is the 
Kolmogorov-Smirnov distance between the actual d.f. of the maximum 
of n i . i .d . r .v . ' s  with d.f. Fp.q(x) and the ultimate type I d.f., i.e., ko= 
sup [F~(x)--A(x; bn, a,~)l, k~ is the Kolmogorov-Smirnov distance between 
F~(x)  and the penultimate form of approximation, i.e., k~=sup [F~q(x) 
-A~(x)l, where A,,(x)-O.~(x; .~,~, ~) if d log (a,,)/d log (n)>0 and A,,(x)-- 
~.~(x ; ~, a~) if d log (a,,)/d log (n)<0. For this graph, the parameters 
{a~, b~}~ and {2~, 3~, a~}~ were chosen by a quantile method, i.e., 
F~q(b,~)=~ro,~(b,~; .t,,, ~)----A(b~; b~, a~)=exp (--1) (=r ~,  ~)), F~(a,~+b,~) 
=~o~(a~+b~; ~, 5,~)=A(a,~+b~; b~, a. )=exp (--exp (--1))(=4)=~(a~+b,; 2~, ~)), 
being a~ = I d log (a,,)/d log (n) l -~ = I{n. exp (1). a~. (exp (1/(n exp (1)))- 1). 
(exp ( l / n ) -  1). (q(a,, + b,~) q - p ) .  (abe-p)}/{b~ exp (1). (exp (1/(n exp (1)))-1). 
(q(an + b,~) q -  p)-- (a,~+ b~). (qb~- p). (exp ( l / n ) -  1)}l, although analogue re- 
sults have been obtained for other choices of the parameters. There is 
always a penultimate type II or type III approximation nearer to the 
actual F~q(X) than the ultimate type I d.f., except when d log (aJd log (n) 
is quite close to zero. For instance, for (p, q, n)=(4, 1, 10), d log (a,~)/ 
d log (n) = 0.0021. 

1.0 

0.5 

0.0 

-0.5 

J l /  i i 

o .! o. s i .:..o - ~ l 
-" iI 

! p= -4.0 
. . . .  p=O.O }n=lO 
........... p=4.0 

p = - 4 . 0  } 
. . . .  p=0.0 r~=104 
............ p=4.0 

Graph 1. R=(ko-k~)/max(ko, k~) plotted against q, for part icular  
values of p and n. 
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3. Rate of convergence and penultimate behaviour 

As we have already seen, the reason given by Fisher and Tippett 
for approximating ~"(x), the d.f. of the maximum of n independent, 
standard normal r.v.'s, by a type III d.f. of largest values, is the fact 
that the attraction coefficient a,, in 4)"(a,x+b~), decreases to zero as n 
--, oo, as also happens to the scale of the maximum of n i.i.d, type III 
r.v.'s. It seems to us that the numerical results of Section 2 call for 
a deeper explanation of the problem. 

Let us suppose for simplicity that the right endpoint x0 F of the d.f. 
F is infinity and that yon Mises' condition holds for the parent d.f. 
F(.), that is, F(x) is twice differentiable, at least for large values of 

x, and 

lira d--~-{(1--F(x)/f(x)} = 0  (3.1) 
C t X  

where  f(x)-=F'(x) ( then F ~  ~(A), yon Mises [14]). 
P u t t i n g  k(x)=-dlog( - - log(F(x) ) ) /dx ,  it  is easily seen t h a t  von 

Mises' condit ion is equivalent  to pu t  

(3.2) lim d(1/k(x))/dx = O . 

Anderson  [1] considers differences of the  form F"(a,x+b,)--A(x), 
where  F e _q)(A) and finds t h a t  under  cer ta in conditions on the  funct ion  
k(x), F"(a~x+b~)-A(x)=r(x) d(n)~(x)+o(d(n)) uni formly  over finite in- 
tervals  of x. Both r( . )  and d(.)  depend on the  paren t  d.f.  F ( . )  and 
](x)=A'(x). Using a technique  similar to the  one used by Anderson,  
we shall der ive the  following resu l t :  

THEOREM l. Suppose that yon Mises' condition holds for the d . f .  
F( . )  and let the attraction coefficients {a,}~_~ (an>0) and {b,}.~l to the 
limiting law A(.) be then defined by 

(3.3) F(b.) = exp (-- 1/n) ; a~--  l/k(b~) 

with k(x)=  --d  log (-- log (F(x)))/dx. 
I f  

(3.4) k'(x) is of constant sign for all x large enough 

and 

(3.5) lim (k(x)k"(x))/(k'(x)) ~ = c < oo , 
m ~ r  

putting a , = I ( d l o g  (a,)/d log (n))-II=k2(b,)/]k'(b,)[, there exists no such that 
for n~_~no, 
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(3.6) Fn(a,,x+b~)=~r~(x/a~--l)+O(1/a~) i f  k'(b~)>O 

(3.7) F~(a~x+b~)=r i f  k'(b~)<O 

uniformly over finite intervals of x. 

PROOF. We have F'(a~x+b~)=A(x+d~(x)), with dn(x)=-x- log(n)  
- l o g  (--log (F(a~x+b~))). From (3.3) and from Taylor's expansion for 
d~(x), d~(x) = - log ( - l o g  (F(b~))) + a~xk(b~) + (a~x)2k'(b~+a~(x))/2--x-log 
(n), O<8~(x)<x, it follows that  d~(x)=(a~x)2k'(b~+a~O~(x))/2. Also from 
Taylor's expansion for 1/k(b~+a~y), 1/k(b~+a~y)=l/k(b,)+a~y{-k'(b~+ 
a~r162 Ir we derive that  limk(b~)]k(b~+a~y)= 

1, uniformly over finite intervals of y. On the other hand, the validity 
of (3.4) enables us to write log Ik'(b~+a~y)[--log IM(b,)l+a~yk"(b~+a~p~(y))/ 
k'(b~+a~(y)), Ifl~(y)[<lyl, and condition (3.5) implies that  

(3.8) d,~(x) = x2k'(b~)(1 -t- O(M (b,,)/k2(b~) ) )/( 2k2(b~) ) 

uniformly over finite intervals of x. 
From (3.3) it follows that  d log (a,,)/dlog (n)=-M(b,,)/k~(b,). 
If k'(x)>O for large values of x, there is n~, such that  for n>__n, 

k'(b~)>0, and putting a,,=k2(b~)/k'(b,~) it follows from (3.8) that  d,~(x)= 
x~/(2an)+O(1/a~) uniformly over finite intervals of x, from which (3.6) 
follows. 

Analagously, if k'(x)<O for large values of x, a~=-k~(bn)/k'(b~), n 
~n2, and consequently for n>=n2, F"(a,x+b~)=A(a~log (l+x/a,))+O(1/a~) 
uniformly over finite intervals of x, from which (3.7) follows at once. 

In order to make a comparison we remark that  the formula de- 
rived by Anderson [1] was, under the same conditions of Theorem 1, 
F'(a~x+b~)=A(x)--x2~(x)/(2a~)+o(1/a~), uniformly over finite intervals 
of x. 

So, even for large values of n, F'~(a~x+b~) is closer to a type III 
(to a type II) d.f. when k'(x)>O for x>_x~ (when k'(x)<O for x~_x~), 
than to the ultimate limiting form A(x). 

It  is also worth remarking that  for the intermediate case lim k(x) 

--_a, 0 < a < o o ,  although (3.4) may hold we cannot immediately claim 
its validity, and we could not get any type II or type III penultimate 
form of approximation of Fn(a~x+b,3. In such a situation it seems 
sensible to conjecture that  A(x) is closer to F~(a~x+b~) than any type 
II or type III d.f. of largest values. For results in this direction see 
Anderson [1] and Gomes [8]. Moreover, we should need extra condi- 
tions, in order to have analogue results valid not only on compact sets 
but on the whole real line as, for instance, kC~)(x)/M+~(x)=O((k'(x)/k2(x))O, 
as x--* ~ ,  for all j>_2. 
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An interesting result on speed of convergence towards limiting 
forms appears in Galambos ([6], Theorem 2.10.1) : under mild conditions, 
I F~(a~ x + b~) - G(x) I <= G(x) [rl,n(x) + r~,n(x) + rl,~(x)r2.~(x)] where G(. ) is one 
of the possible extreme value distributions (the hypothesis that  F e ~(G) 
is not used in the body of the proof, and hence the theorem is of in- 
terest  in the study of the penultimate behaviour), r~,n(x)=2z~(x)/n§ 
2z~(x)/(n2(1-q)), r~,~(x)=lp~(x)l+p~(x)/(2(1-s)), with zn(x)=n(1--F(a~x + 
bn)), p~(x)=z~(x)+logG(x), q < l  and s < l  such that  2z~(x)/(3n)~_q and 
]pn(x)/3]~_s respectively. Hall [12] and Cohen [3] papers, referred to in 
more detail in other points of the present work, make explicit use of 
Galambos' general results to study ~ate of convergence problems. 

Observe that, though implicitly, Galambos' inequalities are given 
in terms of the attraction coefficients, while our results make explicit 
use of the coefficients. In fact, in all possible cases, r~,~(x)=O(1/n); 
on the other hand the rate of convergence of r~.~(x) towards zero de- 
pends on the behaviour of p~(x)=n(1-F(a,x+b~))§ G(x), and in this 
sense on the choice of the (either ultimate or penultimate) limiting 
form G(x) and on the choice of the attraction coefficients a~ and b~. 
Hence, a comparison of Galambos' results with the results in the pre- 
sent paper is not difficult to achieve and, though tedious, seems worth 
to be presented elsewhere in detail. In the light of what  we have 
just said, it is obvious that  the heart  of the mat ter  lies on the faster 
speed of convergence of n(1--F(a~x+b~))+logG(x) towards zero, when 
we replace G(x), F~ ~(G), by a suitable penultimate approximation. 

4. Influence of the attraction coefflcients upon the rate of 

convergence 

Theorem 1 was proved for a particular choice of attraction coeffi- 
cients {an, bn}n~l (an>0) defined by (3.3) of the d.f. F to the extreme 
value d . f . A .  We are now interested in what  happens if we choose 
new attraction coefficients {a*, b*}~ (a*>0), that  is, real constants 

n $ $ __>  such that  F (a~x+b~) A(x), as n--* oo, and for all real x. 

THEOREM 2. Let F(x) be a d . f .  satisfying yon Mises' condition 
and let the attraction coeJficients {a~, b~},~ of F to the law A be defined 
by (3.3). Then, under the conditions of Theorem 1 and assuming addi- 
tionally that for  the choice of attraction coel~cients {a*, b*}~l, asymp- 
totically equivalent to the choice (3.3), the following condition holds 

(4.1) lim (da*/dn)/(daJdn) exists, and lim a~ is equal to either 0 or oo 
n ~ o e  n ~ e o  

we have for  all su~ciently large x and uniformly over finite intervals 

o fx  
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(4.2) F (a .x+b~)-~r .~(x /a . -1)§  *~-) i f  a.--* 0 

(4.3) F~(a*x+b*)--O.~(x/a*+l)+x(A~--l)+B.+O(1/a .2) i f  as--+ oo 

with a* = (]d log (a*)/d log (n)I)-1, A. = a*/a~, and B~ = (b*-  b~)/a.. 

PROOF. Convergence of types theorem asserts t h a t  A. - - ,  1 and B~ 
- . 0 ,  as n--* oo. Besides, since a*/~=(a./a*)((d a*/dn)/(d aJdn)), the  
validity of (4.1) and l 'HSpital's rule imply tha t  a*/a.--, 1, as n--* oo. 

But a*=a.A.,  b*=b.+a.B, gives F (a.x+b~)=F"(a.(A~x+B~)+b~) 
and so, if a . - - . 0 ,  as n--,  oo, k'(b.)<O for n>=no and then  F"(a*x+b*)= 
A(x +x(A.- -1)- - (A.x  + B~)~(l +O(1/a.))/(2a~)+ B.). Since A.x + B.-- ,  x, as 
n - .  oo, uni formly over finite intervals of x, and lima*lab=l, it follows 

n ~ o o  

t ha t  F (a~x+b~)--A(-a~ l og (1 -x / a* )+ 0 (1 / a*2 )+x (A ~- - l )+B . ) ,  f rom 
which (4.2) follows. (4.3) follows analagously. 

Consequently,  if a*2(A.-1) and a*~B. go to c<oo  as n - - . oo ,  the  
overall ra te  of convergence is still 0(1/a'2). If  e i ther  A. - -1  or B. con- 
verges to zero more  slowly than 1/a .2, than  the  convergence is of 
smaller order  than  1/a *~, and this happens for instance when,  for nor- 
mal ex t remes ,  we consider the  a t t rac t ion coefficients {a*, b*}.~ given 
by 2,~b*2exp(b*)=n ~, a*=l/b* (the ones considered by Hall [12]). 

In Section 1 we have mainly worked with  the  a t t rac t ion  coefficients 
{a*, b * } ~  given by 

(4.4) F(b* )= l -1 /n ;  a*=l/(n f(b*)) 

for which a* = ](d log (a*)/d log (n))-1]=l([d((1-- F(x))/f(x))/dx].=b.)-~I. We 
thus  s ta te  the  following resul t :  

THEOREM 3. For the attraction coe:~cients {a*, b*}.al given by (4.4) 
and under the conditions of Theorem 2 and the additional condition 

lim 1 I d 1 - F ( x )  l~>0 (4.5) 
~ 1--F(x)  ~ dx f(x)  ) 

we have l ima*(A.- l )=l ima*B~=O, where A~ and B~ are defined as in 
n ~ o a  n ~ r  

Theorem 2, and so the overall rate of  convergence in (4.2) and in (4.3) 
is still 0(1/a'2). 

PROOF. Since exp (--1/n)>l--1/n,  we have b~>b*, and so (b~-b*)/a~ 
=B*>O, with  l i m B * = 0 .  From b~-b~ +a.B~, we ge t  F(b~)=F(b*)+a*B* 

n ~ o o  

f(b*+a*O~), O<O.<B*, and from the  fact  tha t  1/f(b*+a*O.)=l/f(b*)+n 
a*O.[(--f'/(nf2))]b.+~, 0 < r  and tha t  b*~a*,I,~ _ ~ . - - ~  oo, as n - - .  ~ ,  we 
ge t  f(b.)/f(b* + a*8.) = 1 + 8.[( - f'/(nf2))]~.+:.~ = 1 + t~O(1) = 1 +  o(1), f rom 
which follows tha t  n B*=n2(F(b.)--F(b*))/(l+O~O(1)). Since n~(F(b.) - 
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F(b*))=n2(exp (-1/n)-l+l/n)---~l/2, as n- ,co ,  we get  tha t  B*=O(1/n) 
and consequently the same happens to B~=-(a*/a~)B*.  On the  other 
hand, A*=a~/a*=exp(-1/n)f(b*)/f(b~), and since 1/f(b~)=l/f(b*)§ 
na*B* [(-- f'/(nff))]b:~+~%,, 0 < r ( B*, we get  f(b*)/f(b~) = 1 + B*O(1), and 
consequently n(A* - 1) = n (exp ( -  l / n ) -  1) + n exp ( -  1/n)B*O(1), which 
goes to 1/2, as n- .c~,  the same obviously happening to A ~ - - I = - ( A * - I )  
a*/a~. 

Since condition (4.5) implies tha t  a*2/n--~ c*<c~, as n--* co, we get  
the  result.  

5. Penultimate behaviour of the joint d.f. of the i largest order 
statistics 

Theorem 1 has an immediate analogue if instead of {a~, bn}n~l given 
by (3.3) we choose {a*, b*}~  given by (4.4), and if instead of F~(a~x 
+b~) we consider n(1-F(a*x+b*)). Then, we get  uniformly over finite 
intervals of x, 

(5.1) n(1-F(a*x+b*))=(1--x/a*)4+O(1/a .2) if k'(x)>O 

for large values of x 

(5.2) n(1--F(a*x+b*))=(l+x/a*)-4+O(1/a .2) if k'(x)<O 

for large values of x .  

Besides, (5.1) and (5.2) remain valid if {a*, b,*, a*}~l is replaced by 
{a~, b~, a~}~ with {a~, b~}~i given by (3.3), and if we fur ther  assume 
the  validity of (4.1) and (4.5). 

We may thus generalize Theorem 1 for the  joint d.f. of the i 
largest  order statistics (M~(1), .. ., M,~)), suitably normalized, of the  
sample (X,  . . . ,  X~), with the XX's  i . i . d . r . v . ' s  with d.f. F, i a fixed 
integer.  For simplicity of notation we state the following result for 
i = 2 ,  al though there is an immediate analogue for any fixed i. 

Related work appears in Reiss [15] who considers asymptotic pe- 
nul t imate  expansions for the joint d.f. of the i largest order statistics 
(M2), . . . ,  M~(')), i fixed, together  with estimates of the remainder terms. 
The approximations hold uniformly over all Borel sets. 

THEOREM 4. Under the conditions of Theorem I and assuming ad- 
ditionally that (4.5) holds and that for {a~, b~}~1 given by (4.4), (4.1) 

holds, we have for {~, b~, a,}n~_l either equal to {a~, b~, a~}~ or to {a*, b*, 
a*}~ and uniformly over finite intervals of x, 

(5.3) P(M~I)<5~xl+{~n, M~)<5~x2+b~) 
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{ G,,(x,li.-l)+O(lla~) if x,~_x2 

= Ggx, /a . -  1)[1 + log (Ggx,/a~- 1)lGgxda~ - 1))] + O(lla~) 

if x~ > x2 

i f  k'(x)>0 for large values of x. 

(5.4) P(M2)<a~xl+~, M2~<a~x~+~) 

= Ggx,/a~ + 1)[1 + log (r + 1)/Ggxda~ + 1))] + o(1/a~) 
if x~ > x2 

i f  k'(x)<0 for large values of x. 

We just remark here that if F e _q)(G) for maxima, in the context 
defined in Section 1, with attraction coefficients {an, b~},~ (a.>0), the 
joint limiting d.f. of the i largest order statistics suitably narmalized, 

i.e., limP(,_. \;=~fl M}J>Ga,xj+b,) is given by 

G(minxj) ~ . . .  
3--1 

~, -IT {log (G(min x~)/G( min x~))} "~+~-'J/(rj+~-rj)! 

with r l=0,  where G(.) is obviously the limiting d.f. of (M,~')-bn)/a~. 
This joint d.f. is to be taken 0 or 1 if one of the x / s  is such that  
G(xj)=O or if all the x / s  are such that  G(xj)=l, l~_j<=i, respectively. 
For details see Gomes [8], [9] and Weissman [17]. 

6. D is t r ibut ion funct ions in the class -L ~ 

THEOREM 5. I f  F(x) ~ .~, given in Definition 1 and ~(x) is defined 
and bounded for large values of x, ~'(x) and ~'(x) exist, r is a con- 
tinuous function of x and ~"(x) is monotone, than for  (p, q)r  (0, 1), as- 
sumptions (3.4), (3.5) and (4.5) hold, and for pC0 and {a*, b*}~ given 
by (4.4), condition (4.1) holds. Consequently, Theorem 1 and 3 hold for 
those parent d.f. 's. Moreover, for pC0, the optimal overall rate of con- 
vergence in (3.6) and (3.7) is O(1/(logn) ~ i f  q r  and O(1/(logn) 4) i f  q 
--1, uniformly on the whole real line. 

PROOF. We first note that  the conditions imposed on ~(x) imply 
x~'(x) --~ 0 and x2~"(x) --~ O, as x --* oo. From 

(6.1) F(x)=l--A(ax+#) ~ exp (--(ax+#)~)(l+~(x))=l--y(x) 

we get 
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(6.2) f(x)=y(x){qa(ax+~)q-l--pa/(ax+fl)--~'(x)/(l+~(x))} 

=y(x)B(x) 

f rom which follows tha t  f ' ( x )=- - f ( x )B(x )+ f ( x )B ' ( x ) /B (x ) ,  and conse- 
quent ly,  a f t e r  some manipulation, we get  

(6.3) f ' ( x ) / f ( x ) =  -qa(ax-~-~)q-l-t-(p+q-1)a/(ax+p)+pa/(ax--~fl) q-~ 

+ + +o(1/x 

(6.4) f ' (x)/ f2(x) --- { - - l  +(q--1)[(q(ax+fl)~)-t-p/(ax+fl)~+o(1/x~q)}/y(x) 

(6.5) ( f ' (x) / f (x)) '  = -- q(q -- 1)a2(ax + p)q-3-- pa2/(ax + ~)q +2 

_ (p + q _ 1)a2/(ax + ~)2 + (~,(x)/(1 + ~ (x)))' -t- o(1/x ~ +2). 

0n  the  other  hand, since k(x)=d(x)B(x),  where  d ( x ) = - y ( x ) / ( ( 1 -  
y(x)) log (1--y(x)) ) -*  1, as x-- .  ~ ,  d ( x ) - l ,  d'(x) and d"(x) being of 
smaller order  than l/x" for every  finite arbi t rar i ly  chosen , .  We  thus  
have 

(6.6) k(x)=qa(,~x+p)q-~--pa/(ax+~)--~'(x)/(l+~(x))+o(1/x~). 

I t  immediate ly  follows tha t  if q > I ,  k(x)---. ~ and, as k(x)>O, k'(x) 
is positive for large values of x;  if q < l ,  k(x)---.O and so k'(x)<O for 
large values of x;  if q = l ,  k ( x ) - ~ l  and then M(x) has the  sign of p 
for  large values of x if p C 0 ;  only if p = 0 ,  q = l  can we not  guaran tee  
tha t  condition (3.4) holds. 

Concerning von Mises' condition, we get  f rom (6.3) and (6.6) tha t  
f ' / ( f k )  = -- 1 + (q-- 1)/(q(ax + fl)q) + O(1/x2~), and since 

(6.7) k'(x)/k2(x) = f '(x)/(f(x)k(x)) + 1 + log (F(x)) 

we have (1/k(x))'= - l o g  (F(x))+O(1/xq), if q r  and (1/k(x))'= - l o g  (F(x)) 
+O(1/x 2) if q = l ,  and consequently (t/k(x))' goes to zero, as x - ~  c~, for  
all values of p and q. 

To check the validity of condition (3.5) we use the  relation 

(6.8) k"/(kk') = f ' / ( f k )  + 2(1 + log (F)) 

+ [( f ' / f ) ' /k--  k log ( F ) ] / [ f ' / f  + (1+  log (F))k] 

and the fac t  tha t  kk"/k'~= (k"/(kk'))/(k'/k2). 
From (6.3) and from the fac t  tha t  (1+ log  F)k=qa(ax+fl)~-~--(q-1)/  

(ax + fl) -- ~'(x)/(1 + ~ (x)) + o(llx~), we get  f ' / f  + (1 + log F)k  = (q -- 1)a/(ax + p) 
+pa/(ax+fl)~+~+o(l/x~+~), and since k(x)log(F(x))=o(l /x")  for every  
finite and arbi t rar i ly  chosen, we  ge t  tha t  k log ( F ) / ( f ' / f + ( l + l o g  (F))k) 
--~ 0, as x -~ ~ .  But  f ' / ( f k )  - .  - 1 ,  as x --* ~ and 2(1+1og (F)) --~ 2, as 
x-- .  ~ ,  and so it follows from (6.8) tha t  the  behaviour  of k"/(kk'), as 
x - . c ~ ,  depends on the behaviour  of ( f ' / f ) ' / ( k ( f ' / f + ( l + l o g ( F ) ) k ) ) .  



84 M. IVETTE GOMES 

But, f rom the  fact  tha t  (f'/f-5(1-51og(F))k)=q(q--1)a~(ax-hfl)q-~-hqa2/ 
(ax-hp)*-5o(1/x z) and from (6.5) we ge t  the  validity of condition (3.5) 
for all values of p , q , a ,  tg, except  for p = 0 ,  q=l .  From now on, we 
consider (p, q) r  1). In this part icular  case, since [k(~)(b~)/(k(b,~))J+l]= 
O((k'(b~)/k~(b~));), we have d,~(x)=x2/(2a~)-50(1/a~) over the  whole real 
line. Besides, since ( (1-F) / f ) '=--B ' (x) /B2(x)=--y(x) f ' (x ) / f2(x) ,  it fol- 
lows f rom (6.4) t ha t  ((1-F)/f)'=--(q--1)/(q(ax-5~)~)--p/(ax-5~)2q-5o(1/x2q). 
So, ( ( (1--F) / f ' )2 / (1-F)  goes to infinity, as x - *  oo and ((1--F)/f)'/((1/k)') 
goes to 1, as x - - ,  oo, which implies the  validity of (4.1) for  {a*, b * } ~  
given by (4.4). 

We now need to find an explicit fol'm for the  ra te  of convergence 
= [Id(l/k(x))/dx I]~=b.. 
Firs t  of all, f rom F(b~)=exp ( - l / n )  and from (6.1) we ge t  A(ab.+ 

~)P exp ( -- (ab,,-5 ~)q)(1-5 e(b~)) = 1 -- exp ( -- l /n) and so nA(ab,,-5 fl) exp ( - (ab,, 
-5~)q=n(1--exp (--1/n))/(1-5 ~(b,,)) --. 1, as n--* cr f rom which follows 
log (n )+ log  (A)+plog(ab~-sfl)-(ab,,-sfl)q=o(1). Working out this last 
identi ty,  we ge t  

(6.9) (ab, + p)q = log (n)-hlog (A)-5 p log (log (n))[q-5 o(1). 

Besides, f rom (6.7) and (6.4) we ge t  [(--1]k) ']b,=l--1/n--exp ( - - l /n ) /  
(n(1 -- exp (-- l /n))) -- exp (-- 1/n) {(q-- 1)/(q(ab,~ + ~9)~) + p/(ab,~ + ~9) 2q + o(1]b~q)} ] 
(n(1--exp(--1/n))) ,  and recalling (6.9) and the  fact  tha t  1 - -1 /n - - exp  
(--1/n)/(n(1--exp (--l/n)))=O(1/log 2 (n)), we ge t  [(--1/k)']b ----(q--1)(1--p 
log (log (n))/(q log (n)))+O(l/log 2 (n)) and hence the  result .  
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