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PENULTIMATE LIMITING FORMS IN EXTREME VALUE THEORY

M. IVETTE GOMES
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Summary

Let {X,}.:: be a sequence of independent, identically distributed
random variables. If the distribution function (d.f.) of M,=max (X,
-+, X,), suitably normalized with attraction coefficients {a,},s: (@,>0)
and {b,},.;, converges to a non-degenerate d.f. G(x), as m—> oo, it is
of interest to study the rate of convergence to that limit law and if
the convergence is slow, to find other d.f.’s which better approximate
the d.f. of (M,-b,)/a, than G(x), for moderate n. We thus consider
differences of the form F*(a,x+b,)—G(x), where G(x) is a type I d.f.
of largest values, i.e., G(x)=A4(x)=exp (—exp (—x)), and show that for
a broad class of d.f.’s F in the domain of attraction of 4, there is
a penultimate form of approximation which is a type II [@.(x)=
exp(—x~), *>0] or a type III [¥ (x)=exp(—(—2x)), x<0] d.f. of
largest values, much closer to F*(a,x+b,) than the ultimate itself.

1. Introduction and preliminaries

Let {X.}.»: be a sequence of independent, identically distributed
(i.i.d.) random variables (r.v.’s) with common distribution function (d.f.)
F(x). If the d.f. of M,=max X,, suitably normalized with attraction

18510
coefficients {a,}.z1 (@,>0) and {b,},.;, converges to a non-degenerate
d.f. G(z), i.e. im Fa,x+b,)=G(x) for all x in the set of continuity

points of G(z), we say that F(.) belongs to the domain of attraction
of G(-) and denote this fact by Fe¢ 9(G). The only d.f.’s with non-
empty domains of attraction are of one of the following three types
(Gnedenko [7]):

Type I : A(x)=exp(—exp(—x)), reR
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72 M. IVETTE GOMES

0 if z<0
Type II : a)a(x)={
exp (—a™%) if =20 (@>0)

exp (—(—x)%) if z<0
Type III: @;(m):{

if 220 (@>0).

It is then of practical interest to study the rate of convergence
to that limit law G(.) and if convergence is slow, to find other d.f.’s
which better approximate the d.f. of (M,—b,)/a, for moderate n, than
G(x)—the so-called penultimate behaviour of F*(.) first pointed out by
Fisher and Tippett [5]. We shall here deal with these two problems
when G(-) is a type I d.f. of largest values.

Related work appears in Uzgtren [16], Dronkers [4] and Haldane
and Jayakar {11] with no indication of the closeness of the approxima-
tions provided. Anderson [1}], [2] considers differences of the form
Fa,x+b,)—G(x), Fe (G and finds that under certain conditions on
F(x), F*a,x+b,)—G(x)=r(x)d(n)g(x)+o(d(n)) uniformly over finite in-
tervals of x, where both 7(-) and d(-) depend on the parent F and
9(x)=G'(x). Galambos ([6], pp. 111-116) provides exact estimates, in
terms of n and given through inequalities for |F*(a,x-+b,)—G(x)|. Such
estimates depend mainly on the speed of convergence to 0 of n(1—
F(a,x+b,)+log G(x), as n— oo and hold uniformly on finite intervals
of the real line. Hall [12], [13] deals with the rate of convergence of
normal extremes towards A(x) and Reiss [15] deals with asymptotic ex-
pansions of the distribution of extreme order statistics, providing error
bounds for the approximations derived. None of these authors refers
again to the penultimate form of approximation of n r.v.’s with d.f.
Fe 9(4) as being a type Il or a type III d.f. of maxima. Gomes [10]
considers such a case and Cohen [3] develops a systematic study of
a penultimate form of approximation to normal extremes expressed in
terms of type III and type II extreme value d.f.’s, together with error
bounds for such approximations.

In Section 2 of this paper we shall consider Fisher and Tippett’s
results concerning the penultimate behaviour of the maximum of nor-
mal r.v.’s and generalizing their ideas, we shall consider a broad class
L of d.f.’s attracted to A(x) and show that there is numerical evidence
that for d.f.’s C(-) in that class, C*(-) is nearer either to an appro-
priate type III or type II penultimate form than to the ultimate type
I limit d.f. according as dlog (a,)/d log (n)<0 or dlog (a,)/dlog (n)>0,
a, the scale attraction coefficient.

Since the numerical results obtained call for an explanation that,
we believe, lies much deeper than the one put forward by Fisher and
Tippett, in Section 3 of this paper we shall prove that for a d.f. F e 9(4)
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for which von-Mises’ condition together with some mild regularity con-
ditions on k(x)=—d log (—log F'(x))/dx hold, F™a,x+b,) is closer to
a type III (to a type II) d.f. when E'(x)>0 for x=x, (when k'(x)<0
for x=x,) than to the ultimate limiting form A(x).

In Section 4 of this paper we study the influence of the attraction
coefficients upon the rate of convergence and in Section 5 we generalize
the results obtained in Section 3, to obtain the penultimate behaviour
of the joint d.f. of the 7 largest order statistics (o.s.), suitably nor-
malized.

Finally, in Section 6, we study the d.f.’s belonging to the class .
previously referred to under the general theory. For this particular
class . the error bounds are valid on the whole real line.

2. Penultimate behaviour of the maximum of i.i.d. r.v.’s attracted to
A and with d.f. in a class [

Fisher and Tippett, in [5], show that the normal d.f. @ ¢ 9(4), and
consequently the d.f. of the maximum of »n independent, normally dis-
tributed r.v.’s should be approximated, when = is large, by A(x;b,, a,)
= A((x—b,)/a,), where v 2z b, exp (b3/2)=n and a,=b,/(b:+1) (since lim (1

—@(x))/@'(xz)=1, this choice of attraction coefficients is asymptotically
equivalent to the one suggested by Gnedenko [7], 1—®(b})=1/n, af=1/
(n@'(b%)))-

They also remark that the convergence of &% (a,x-+b,) to A(x) is
extremely slow and they conclude their paper by showing that @"(x)
is “closer” (skewness and kurtosis coefficients are used as an indicator
of closeness) to a suitable type III U, (%5 An 5,,):%&71((90—2")/5"), than to
A(xz; b, @), even for m=10"

The justification given by Fisher and Tippett is then essentially
the following: it is obvious that any extreme value d.f. belongs to its
own domain of attraction, and

(i) if {X)},;, are i.i.d. r.v.’s with d.f. A(z), then MnéX]-{—log (n)

(there is a change in location only),
(ii) if {X,},z are iid. r.v.’s with d.f. &,(x), then M,=n"X; (scale
is nY* — co, as n — o),
(i) if {X,},z arei.id. r.v.’s with d.f. T(x), then M,=n"Y=X, (scale
is n7Y*— 0, as n— o).
As in the approach A(zx;b,, a,) suggested by Fisher and Tippett (or any
ultimate approach A(z; b, a¥), {aX, b¥}..; asymptotically equivalent to
the first choice of attraction coefficients), the scale a, goes to zero, as
n — oo, as happens to the scale n V= of the maximum of n i.i.d. type
III r.v.’s with index «, they suggest that one should equate the rates
at which the scale decreases in both cases, i.e., put —1ja,=d log (a,)/
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dlog (n), from which follows a,=(b2+1)}(b:—1), and use Y. (%5 Ay 3,),
where 8,=a,a, 2,=b,+3, are chosen so that lim [A(x;b,, a.)—¥, (v;

N-00

A, 0,)]=0, as a penultimate form of approximation for @*(x)—bearing
in mind, of course, that the ultimate limiting form is a type I d.f. of
largest values.
The results of Fisher and Tippett suggest, at first glance, the fol-
lowing conjecture: Let F e 9(A) be such that F*(x) is approximated
by A(x; b, a,) ({@., b.}.z1, possible attraction coefficients of F to the
law A).
(a) if @,— 0, as n— oo, then there is a type III d.f. of largest
values, which provides a better approximation to F7*(z) than
A(z; by, a,),

(b) if a,— o, as n— oo, then there is a type II d.f. of largest
values, which provides a better approximation to F*(x) than
Az ; by, ),

(¢) if an—c¢, 0<c< 0, A(z;b,, a,) is closer to F*(x) than any type
II or type III d.f. of largest values.

Later on, we shall turn back to this conjecture. Now and in what
concerns the normal d.f., we present the Kolmogorov-Smirnov distances
between @*(x), the d.f. of the maximum of 7 i.i.d. normal r.v.’s and
the penultimate and ultimate forms of approximation. Here, the at-
traction coefficients are the ones suggested by Gnedenko, 1—-&(b,)=1/n,
a,=1/(n@'(b,)), the parameters in &, (x; 1, 3,) being a,=1/(1—a,b,), 8,=
0y Ay=b,+8,. kg, denotes the Kolmogorov-Smirnov distance between
0"(x) and A(x;b,, a,), k,, denotes the Kolmogorov-Smirnov distance be-
tween 0"(2) and 7, (%; 4., 8,) and P,= {(ky,—Fk; .)/max (Ko, &1 .)} -100%.

Table 1. Comparison of @#(x) with suitable ultimate and
penultimate forms of approximation

n 10 102 108 10t 108 108

ko,n 0.0522  0.0272  0.0183  0.0137  0.0109 0.0091
ki,n 0.0264 0.0052 0.0024 0.0013  0.0009 0.0006
Py 49.30 80.76 87.07 90.27 92.17 93.47

The numerical results obtained in Gomes [8] for other possible
choices of attraction coefficients show that in any circumstances we
achieve identical results. It could however be argued that we are fit-
ting the distributions with parameters whose validity is asymptotic
and that this fact accounts for the unexpected result. However if we
fit the distributions with parameters determined, for instance by a quan-
tile method, i.e., if we put @*(b,)=¥, (b,; . 8,)=4(b,; b, a,)=exp (—1),
DY@y +b,) =T, (@n+bn; Any 8,) =A@+, ; by @,)=eXp (—exp (—1)), the para-
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meter a, being determined as before by (—d log (a,)/dlog (n))™', P, is
an increasing function of n, and P,=85.74, P,s=95.26. If we choose
{a, .} 4z Iin order to minimize k,, and {2, 8,, @,},z: in order to mini-
mize k, ,, we reach exactly the same conclusions, and P, varies monoto-
nically from 87.75 to 97.25 as n varies from 10 to 108

We shall now consider a class . of d.f.’s attracted to 4. Before
defining such a class, we state without proof the following result—
Let F be a d.f. with right endpoint xzf=sup {z: F(x)<1} at infinity.
Then for some real constants p and ¢, 8 and a (g, a>0), lim (1—F(x))/
((ax+pB)? exp (—(ax+p)1))=4, 0< AL, if and only if lim FYa.x+b,)=

R—00

A(z), with {a,, b.}ezr given by a,={ga (log n)*~"e}~!, b,=(log n)"!/a+
(log A+plog log n/g)i(qe (log n)* /) — fa.
It is then natural to put:

DeEFINITION 1. _[ is the class of the d.f.’s of the form {1—A(ax
+B)? exp (—(ex+B))(1+e(®)} Iy, «), Where y, is the greatest real solu-
tion of A(ax+p8)Pexp (—(ax+8))(1+e(x))=1, A chosen in such a way
that such a solution does exist, 8 and p real, ¢ and « positive real,
e(x) — 0, as x — co.

We shall often use the notation C(zx;a, 8; A; p, q; e(x)), which is
self explanatory, to denote a member of the class .. The normal d.f.
is obviously a member of £: Ox)=Clz;1/v2,0;1/2V 7 ; —1, 2; «(x)),
with s(oz:):%}1 (=1)1---2n—1)/x™.

It is then possible to show that there is numerical evidence that
for several d.f.’s in the class ., the d.f. C*(x) is nearer to an appro-
priate type III (or type II) penultimate form, than to the ultimate
type I d.f.

Note that a,— 0 iff ¢>1, iff there exists m, such that dlog (a,)/
dlog (n)<0 for n=mn,, and a,— oo iff ¢<1, iff there exists », such that
d log (a,)/d log (n)>0 for n=n,. Consequently, according to the conjec-
ture previously put forward, it seems sensible that if ¢>1 there is
a penultimate type III approximation, if g<1 there is a penultimate
type II approximation and if g=1 there is no penultimate at all, i.e.,
A itself is approached rapidly. But if we have a closer look at it, we
remark that, following Fisher and Tippett, a, should be taken equal to
|d log (a,)/d log (n)|". Moreover, as n— oo, d log (a,)/d log (n)<0 if ¢>1
and d log (a,)/d log (n)>0 if ¢<1; but there are obviously finite values
ny(q) and n,(g) such that dlog (a,)/d log (n)>0 for n=mng) though ¢>1,
and d log (a,)/d log (n)<0 for m=<n,(g) though g<1. So, it seems more
sensible to conjecture that if dlog (a,)/d log (n)<0 there is a type III
penultimate approximation and that if dlog(a,)/dlog(n)>0 there is
a type II penultimate form of approximation. The numerical results
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obtained support this conjecture.

For simplicity, we have restricted ourselves to the elements of .[
of the form C(zx;1,0;3;p,¢q;0), i.e.,, to d.f.’s of the type F, (x)=
{1—3x? exp (—29)} Iy~ Where y,, the greatest real solution of 3x?exp
(—2%)=1, does always exist because we have chosen A=3>exp (1), and
we shall present graphically the results obtained for p=—4, 4(4), ¢=
0.2, 4(0.1). In Graph 1 (a continuous version of the discretized graph
really obtained for ¢=0.2, 4(0.1)), we plot for values of p=—4,0,4, ¢
against R=(k,—k,)/max (k, k), for n=10 and n=10%, where k, is the
Kolmogorov-Smirnov distance between the actual d.f. of the maximum
of n i.i.d. r.v.’s with d.f. F}, (z) and the ultimate type I d.f., i.e., ky=
sup | Fip () —A(x; b,, @,)|, k; is the Kolmogorov-Smirnov distance between
Fr(x) and the penultimate form of approximation, i.e., k,=sup |F7(x)
— A, (w)|, where A, (x)=0, (%; ,, 3,) if dlog(a.)/dlog(n)>0 and A,(z)=
¥, (x5 Any 3,) if dlog(a,)/d log (n)<0. For this graph, the parameters
{@n, boYazs and {4, 6., @,}.z1 Were chosen by a quantile method, i.e.,
P b =T, (bas Ay 3,)=4(b,: by, 0,)=0XD (—1) (=0, (b} Aa, 3,)), Fro(Gutb)
=, (@,+b,; Ay 3,)= A0 +b,3 b, @) =€Xp (—exp (—1)) (=0, (An+by; An, 32)),
being a,=|dlog (a,)/d log (n)|™ =|{n-exp (1)-a,-(exp (1/(n exp (1)))—1)-
(exp (1/n)—1)-(a(a,+b.)"—p) - (¢bi—p)}/ {b, exp (1) - (exp (1/(n exp (1)))—1)-
(g(a,+b,)'—p)—(a,+b,) - (gbi—p)-(exp (1/n)—1)}|, although analogue re-
sults have been obtained for other choices of the parameters. There is
always a penultimate type II or type III approximation nearer to the
actual F7,(x) than the ultimate type I d.f., except when d log (a,/d log (n)
is quite close to zero. For instance, for (p, q, n)=(4, 1, 10), dlog (a,)/
d log (n)=0.0021.

i
1.0 —
e et iresessaes i
0.5
0.0 .
olo 3 \7,5 3.0
< —— = —4 ()
————p=(),0 n=10
=0.5 seep=4.0
———p=—4.0
~———p=0.0 n=10*
............ p=4_0

Graph 1. R=(ke—ki)/max (ko k:) plotted against g, for particular
values of p and #.
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3. Rate of convergence and penultimate behaviour

As we have already seen, the reason given by Fisher and Tippett
for approximating @%(x), the d.f. of the maximum of n independent,
standard normal r.v.’s, by a type III d.f. of largest values, is the fact
that the attraction coefficient a,, in @*(a,x+b,), decreases to zero as n
—» co, as also happens to the scale of the maximum of »n i.i.d. type III
r.v.’s. It seems to us that the numerical results of Section 2 call for
a deeper explanation of the problem.

Let us suppose for simplicity that the right endpoint xf of the d.f.
F is infinity and that von Mises’ condition holds for the parent d.f.
F(.), that is, F(z) is twice differentiable, at least for large values of
2z, and

(3.1) lim & {(1— F(2)/f (@)} =0
RN 1

where f(x)=F'(z) (then F e 9(4), von Mises [14]).
Putting k(z)= —d log (—log (F'(x)))/dx, it is easily seen that von
Mises’ condition is equivalent to put

(3.2) lim d(1/k(a))/dw=0.

Anderson [1] considers differences of the form F™(a,x+b,)—A(x),
where Fe 9(4) and finds that under certain conditions on the function
k(x), Fa,x+b,)—Ax)=7(z) d(n)i(x)+o(d(n)) uniformly over finite in-
tervals of z. Both 7(-) and d(-) depend on the parent d.f. F(-) and
iA(x)=A'(x). Using a technique similar to the one used by Anderson,
we shall derive the following result:

THEOREM 1. Suppose that von Mises’ condition holds for the d.f.
F(-) and let the attraction coefficients {a,}nz1 (@,>0) and {b,}.=: to the
limiting law A(-) be then defined by

(3-3) F(b,)=exp(—1/n); a,=1/k(b.)
with k(x)=—d log (—log (F(x)))/dx.
If
(3.4) k'(x) 1s of constant sign for all x large enough
and
(3-5) lim (R(x)k"(x))/(K' (@)} =c < oo,

putting a,=|(d log (a,)/d log (n)) " |=kb,)/|K'(b,)|, there exists n, such that
for nzm,,



78 M. IVETTE GOMES

(3.6) F(a,x+b,)=¥, (x/e,—1)+O0(1/a;)  if K'(b,)>0
(3.7) FYa,x+b,)=0, (x/a,+1)+0(1/e;)  if K'(5,)<0
uniformly over finite intervals of .

ProorF. We have F™a,x+b,)=A(x+d(x)), with d(x)=—z—log (n)
—~log (~log (F(a,x+b,))). From (3.3) and from Taylor’s expansion for
d(x), do(2) =—1log (—log (F(b.))) + a.zk(b,) + (a.2)’K' (b, +a,0.(2))/2—z—log
(n), 0<b.(x)<x, it follows that d,(x)=(a,x)*k'(b,+a.0.(2))/2. Also from
Taylor’s expansion for 1/k(b,+a,y), 1l/k(b,+a,y)=1/k(b,)+a,y{—k (b,+
T U)K (Ont+ aa(y)}, |9a(y)I<lyl, we derive that lim k(b,)/k(b,+a.y)=

1, uniformly over finite intervals of 4. On the other hand, the validity
of (3.4) enables us to write log |k'(b,+a,y)|=log |k/(b,)| 4 a,yk" (b, +a,.8.(¥))/
k'(b,+a.8.(¥), 18.(»)|<|y], and condition (3.5) implies that

(3.8) da() = 27K (,)(1 + Ok (b,) /(b)) (2K (b))

uniformly over finite intervals of z.

From (3.3) it follows that d log (a,)/d log (n)= —k'(b,)/k*(b,).

If k¥'(x)>0 for large values of x, there is m,, such that for n=n,,
k'(b,)>0, and putting «,=k¥b,)/k'(b,) it follows from (3.8) that d,(x)=
2*/(2a,)+0O(1/e?) uniformly over finite intervals of z, from which (3.6)
follows.

Analagously, if k'(x)<0 for large values of z, a,=—k*(b,)/k'(].), n
=n,, and consequently for n=n,, F*a,x+b,)=A(a, log (1+2z/e,))+0(1/ak)
uniformly over finite intervals of x, from which (3.7) follows at once.

In order to make a comparison we remark that the formula de-
rived by Anderson [1] was, under the same conditions of Theorem 1,
Fr(a,x+b,)=A(x)—x*A(%)/(2e,)+0(1/a,), uniformly over finite intervals
of x.

So, even for large values of n, F™(a,x+b,) is closer to a type III
(to a type II) d.f. when K'(x)>0 for x==x, (when k'(x)<0 for rz=u,),
than to the ultimate limiting form A(x).

It is also worth remarking that for the intermediate case lim k(x)

2—sco

=a, 0<a< oo, although (3.4) may hold we cannot immediately claim
its validity, and we could not get any type II or type III penultimate
form of approximation of F*(a,rx--b,). In such a situation it seems
sensible to conjecture that A(x) is closer to F™a,r+b,) than any type
II or type III d.f. of largest values. For results in this direction see
Anderson [1] and Gomes [8]. Moreover, we should need extra condi-
tions, in order to have analogue results valid not only on compact sets
but on the whole real line as, for instance, k(x)/k’*'(x) =O((k'(x)/K*(x))’),
as & — oo, for all 7=2.
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An interesting result on speed of convergence towards limiting
forms appears in Galambos ([6], Theorem 2.10.1) : under mild conditions,
| F™(a,2+b,) — G()| S G(2)[71,2(%) + T2, () + 71, o(#)7 1(%)] Where G(-) is one
of the possible extreme value distributions (the hypothesis that F' e 9(G)
is not used in the body of the proof, and hence the theorem is of in-
terest in the study of the penultimate behaviour), 7 .(x)=2z3(x)/n+
223(2)/(n*(1—q)), T2a(%)=|0.(%)|+p2x)/(2(1—38)), With z,(z)=n(l—F(a.x+
b)), ou(%)=2z.x)+log G(z), ¢<1 and s<1 such that 22i(x)/(3n)<q and
|p(%)/3|<s respectively. Hall [12] and Cohen [3] papers, referred to in
more detail in other points of the present work, make explicit use of
Galambos’ general results to study rate of convergence problems.

Observe that, though implicitly, Galambos’ inequalities are given
in terms of the attraction coefficients, while our results make explicit
use of the coefficients. In fact, in all possible cases, 7 .(x)=0(1/n);
on the other hand the rate of convergence of 7,.(x) towards zero de-
pends on the behaviour of p,(x)=n(1-F(a,x+b,))+log G(x), and in this
sense on the choice of the (either ultimate or penultimate) limiting
form G(xz) and on the choice of the attraction coefficients @, and b,.
Hence, a eomparison of Galambos’ results with the results in the pre-
sent paper is not difficult to achieve and, though tedious, seems worth
to be presented elsewhere in detail. In the light of what we have
just said, it is obvious that the heart of the matter lies on the faster
speed of convergence of n(l—F(a,x+b,))+log G(x) towards zero, when
we replace G(x), F ¢ 9(G), by a suitable penultimate approximation.

4. Influence of the attraction coefficients upon the rate of
convergence

Theorem 1 was proved for a particular choice of attraction coeffi-
cients {a.,, b}nz1 (@,>0) defined by (3.3) of the d.f. F' to the extreme
value d.f. 4. We are now interested in what happens if we choose
new attraction coefficients {aX, b¥},., (a¥>0), that is, real constants
such that F*(aXx+b})— A(x), as n— oo, and for all real x.

THEOREM 2. Let F(x) be a d.f. satisfying von Mises’ condition
and let the attraction coefficients {a,, b.}.»1 of F' to the law A be defined
by (3.3). Then, under the conditions of Theorem 1 and assuming addi-
tionally that for the choice of attraction coefficients {af, bf}nz1, asymp-
totically equivalent to the choice (3.3), the following condition holds
(4.1) lim (da}/dn)/(da,/dn) exists, and lim a, is equal to either O or oo

N0

we have for all sufficiently large x and uniformly over finite intervals

of x
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4.2)  Frare+bf)=Ta(zjer—1)+2(4,—1)+B,+0(l/et®)  if a,—0
(4.3) Fafr+bf)=0.;(x/af+1)+x(A,—1)+B,+0(1/e}?)  if a,—
with of=(ld log (ax)/d log ()], A.=af/a,, and B,=(bf—b,)/a,.

ProoF. Convergence of types theorem asserts that 4,—1 and B,
— 0, as n— oo. Besides, since affa,=(a,/aX)(d af/dn)/(d a./dn)), the
validity of (4.1) and I"Hépital’s rule imply that o}/e,— 1, as n— co.

But a*=a,A,, b¥=b,+a,B, gives FYa*z-+b¥)=F"(a,(Ax+B,)+b,)
and so, if a,— 0, as n— oo, k¥'(b,)<0 for n=n, and then F*(afx+bf)=
A(x+x(4A,—1)—(A4,2+ B,)’1+0(1/e,))/(2¢,)+B,). Since A,xz+B,—x, as
n — oo, uniformly over finite intervals of %, and lim ¢}/e,=1, it follows

that F™afx+b})=A(—a¥log (1—z/a})+0(1 /) +2(A,—1)+B,), from
which (4.2) follows. (4.3) follows analagously.

Consequently, if o}(A.—1) and «}'B, go to ¢<o as n— oo, the
overall rate of convergence is still O(1/a¥?). If either A,—1 or B, con-
verges to zero more slowly than 1/e*?, than the convergence is of
smaller order than 1/a*’, and this happens for instance when, for nor-
mal extremes, we consider the attraction coefficients {a}, bf},:: given
by 2zb¥® exp (b¥)=n? a¥=1/bF (the ones considered by Hall [12]).

In Section 1 we have mainly worked with the attraction coefficients
{a¥, bf}nz1 given by

(4.4) FOH=1-1/n; af=1/(n f(b))

for which af=|(d log (a})/d log (n))!|=|([d(L— F(x))/f(®))/dx].=s2) . We
thus state the following result:

THEOREM 3. For the attraction coefficients {a}, bf},. given by (4.4)
and under the conditions of Theorem 2 and the additional condition

.1 (d 1-F@)
(4.5) Pl Wy i P o } >0

we have lim af(A,—1)=lim «}B,=0, where A, and B, are defined as in

Theorem 2, and so the overall rate of convergence in (4.2) and in (4.3)
is still O(1/af?).

PROOF. Since exp(—1/n)>1~1/n, we have b,>b¥, and so (b,—b})/a,
=B*>0, with lim B¥=0. From b,=b*+a*B*, we get F(b,)=F(b})+arB}

R—r00

fbr+aXe,), 0<6,<B¥, and from the fact that 1/f(bF+afs,)=1/fb¥)+n
aE0.0(— ' [ f)]s2sazsn 0K Pp<0,, and that b¥+aky, — oo, as n— o0, We
get f(0.)/f(0F +a¥0,)=1+0.[(—F'/(nf*)lspras, =1 +0,0(1)=1+40(1), from
which follows that n B¥=n¥F(b,)—F(1})/(1+0,0Q1)). Since n*(F(b,)—
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F(b¥)=n(exp (—1/n)—1+1/n)—1/2, as n—oo, we get that Bf=0(1/n)
and consequently the same happens to B,=—(a¥/a,)B¥. On the other
hand, A¥=a,jaf=exp(—1/n) f(b¥)]/f®,), and since 1/f(b,)=1/F({bF)+
et BE(— £/ (0 Wizsazs, 0<8.<BE, we get f(51)/f(b)=1+B3O0(1), and
consequently n(A*—1)=n (exp (—1/n)—1)+n exp (—1/n)BF0O(1), which
goes to 1/2, as n—oo, the same obviously happening to 4,—1=—(A4F—1)
aXla,.

Since condition (4.5) implies that «f*n — ¢*< o0, ag n — oo, we get
the result.

5. Penultimate behaviour of the joint d.f. of the 4 largest order
statistics

Theorem 1 has an immediate analogue if instead of {a,, b,}.>: given
by (3.3) we choose {af, b¥}.»; given by (4.4), and if instead of F™(a,x
+b,) we consider n(1—F{a*x-+b*)). Then, we get uniformly over finite
intervals of «,

(5.1) nl—F(atx+b¥)=(1—x/aX)m+O0(1/ar?) if k'(x)>0
for large values of »

(5.2) n(l—F(afz+b¥)=1+x/a)5+01/e}?)  if E'(x)<0
for large values of z.

Besides, (5.1) and (5.2) remain valid if {a}, b}, &)}, is replaced by
{@s by A}z With {a,, b,},2: given by (3.3), and if we further assume
the validity of (4.1) and (4.5).

We may thus generalize Theorem 1 for the joint d.f. of the 7
largest order statistics (M, ---, M), suitably normalized, of the
sample (X, ---, X,), with the XX’s ii.d. r.v.’s with d.f. F, 7 a fixed
integer. For simplicity of notation we state the following result for
1=2, although there is an immediate analogue for any fixed 1.

Related work appears in Reiss [15] who considers asymptotic pe-
nultimate expansions for the joint d.f. of the 7 largest order statistics
(M®, -+, M®), 1 fixed, together with estimates of the remainder terms.
The approximations hold uniformly over all Borel sets.

THEOREM 4. Under the conditions of Theorem 1 and assuming ad-
ditionally that (4.5) holds and that for {a,, b,}..: given by (4.4), (4.1)

holds, we have for {@., D @) nz: €ither equal to {a,, b, a,}as: or to {aF, bf,
Yoz and uniformly over finite intervals of x,

(6.3) PP <am+b, M®<a.2,+b,)



82 M. IVETTE GOMES

7 (/@ ~1)+0(1a;)  if m 5w

=1 & (v/a,—1)[1+]log (¥ (x:/@,—1)/T; (w:/a,—1))]+O0(1/a7)
if x>,

if K'(x)>0 for large values of x.

(5.4) P(MO<a,z+b,, MO<a,x,+b,)
9; (z/a,+1)+0(1/a;)  if x, =,

=1 @ (v/a,+1)[1+]1og (P, (:/a,+1)/D; (x./a,+1))]+O(1/az)
if 2>,

if kK'(x)<0 for large values of =x.

We just remark here that if F e 9(G) for maxima, in the context
defined in Section 1, with attraction coefficients {a,, b,},.s: (@,>0), the
joint limiting d.f. of the ¢ largest order statistics suitably narmalized,

ie., lim P(ﬁ M,E”§a,,x,+b,,> is given by
J

n—rco =1

i—1

G(minz,) > .- 3T {log (G(min «,)/G( min «,))}7+77/(r ;. —7,)!
175 Té?gtlj j=1 18kss 1sks7+1

with 7,=0, where G(-) is obviously the limiting d.f. of (M®—b,)/a,.

This joint d.f. is to be taken 0 or 1 if one of the x,’s is such that

G(x,)=0 or if all the z,’s are such that G(x,)=1, 1<j=<1, respectively.

For details see Gomes [8], [9] and Weissman [17].

6. Distribution functions in the class .

THEOREM 5. If F(x) ¢ .L, given in Definition 1 and e(z) is defined
and bounded for large values of x, &'(x) and ’(x) exist, ¢'(x) is a con-
tinuous function of x and £"(x) is monotone, than for (p, ¢)+(0, 1), as-
sumptions (3.4), (3.5) and (4.5) hold, and for p#0 and {a¥, b}}.: given
by (4.4), condition (4.1) holds. Consequently, Theorem 1 and 3 hold for
those parent d.f.’s. Moreover, for p=+0, the optimal overall rate of con-
vergence 1 (3.6) and (3.7) is O(1/(log n)®) if q#1 and O(/(logn)*) if ¢
=1, uniformly on the whole real line.

PrRoOOF. We first note that the conditions imposed on e(x) imply
ze'(x) — 0 and x%"(x)— 0, as x— co. From

(6.1) F(x)=1—A(az+8)? exp (—(ax+B8))(1+<(x))=1—y(x)

we get
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(6.2) F(@)=y(@){galax+ )" — pef(ax + ) — &'()/(1+ (x))}
=y(x)B(x)

from which follows that f'(z)=— f(x)B(x)-+ f(x)B'(x)/B(z), and conse-
quently, after some manipulation, we get

(6.3)  f'(@)/f(x)=—qa(ex+B)*" +(p+q—1)a/(ex+p)+paf(ex+p)*
+&'(@)/(1+e(x)) +o(1/z**)

(6.4)  f(@)fi(@)={—1+(@—D)/(qlexw+B)")+ p/(ax+ B)*+o(1/2*)} [y(x)

6.5) (f'(@)/f(2)) =—q(g—L)a*(ax+B)?"* — pa*/(ax -+ )+
—(p+a—1)a*/(ax+8):+ (' (x) /(1 +e(z))) +o(1/x+?) .

On the other hand, since k(x)=d(x)B(x), where d(x)=—y(x)/((1—
y(x)) log (1 —y(x))) —» 1, as z— oo, d(x)—1, d'(x) and d’(x) being of
smaller order than 1/2* for every finite arbitrarily chosen ». We thus
have

(6.6) k(x)=qa(ax+ )"~ — paf(ax -+ 8)— &' (x)/(1+£(x)) +o(1/2") .

It immediately follows that if ¢>1, k(z) — <« and, as k(x)>0, ¥'(x)
is positive for large values of x; if ¢<1, k(zx) — 0 and so k'(x)<0 for
large values of z; if ¢=1, k(x) — 1 and then %'(x) has the sign of p
for large values of z if p#0; only if p=0, ¢=1 can we not guarantee
that condition (3.4) holds.

Concerning von Mises’ condition, we get from (6.3) and (6.6) that
FI(fl)=—1+(g—1)/(g(ex+B)")+O(1/x*), and since

(6.7) k' (@) /(@)= 1" (2)(f (2)k(x)) +1+log (F(x)

we have (1/k(x)) = —log (F(x))+O0(1/x9), if ¢#1 and (1/k(z)y = —log (F'(x))
+0(1/2Y if g=1, and consequently (1/k(z))’ goes to zero, as & — oo, for
all values of p and gq.

To check the validity of condition (3.5) we use the relation

(6.8) k" [(kk')= f'[(fk)+2(1+log (F))
+{(f']fY lk—k log (FJ/Lf'| f + (1+log (F)k]

and the fact that Ek"/k*=(kK"[(kK"))/(K [K).

From (6.3) and from the fact that (1+log F)k=qa(ax+p)*'—(g—1)/
(e +B)—&'(x)/(1+<(x)) +o(1/x*), we get f'/f+(1+log Fk=(q—1)e/(ax+p)
+paf(ax+ ) +o(1/xt*Y), and since k(x)log (F(x))=o(l/x") for every v
finite and arbitrarily chosen, we get that klog (F)/(f'/f+(1+log (F)k)
—0, as x — oo. But f//(fk)— —1, as ¥ — oo and 2(1+log (F))— 2, as
x — oo, and so it follows from (6.8) that the behaviour of k"/(kk'), as
x — oo, depends on the behaviour of (f'/f)/(k(f']f+(1+]1og (F)k)).
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But, from the fact that (f’/f+(1+log (F))k)=q(q—1)e*(ax+B)* " +qa?/
(ax+p)+o(1/x*) and from (6.5) we get the validity of condition (3.5)
for all values of »,q, e, 8, except for p=0, ¢=1. From now on, we
consider (p, ¢)#(0,1). In this particular case, since [k“’(b,)/(k(b,))*"]=
O((K'(b,)[K¥(b,))), we have d,(x)=2x*(2a,)+O0(1/a?) over the whole real
line. Besides, since ((1—F)/f)=—B'(x)/B{(x)=—y(x)f(x)/f ), it fol-
lows from (6.4) that (1—F)/f)Y = —(q—1)/(g(ez+ B)?) — p/(ax + B)¥ +o(1/x*).
So, (AL—F)/f'V/(L—F) goes to infinity, as z — oo and ((1—F)/f)[((1/k))
goes to 1, as ¢ — oo, which implies the validity of (4.1) for {a¥, b¥}..,
given by (4.4).

We now need to find an explicit form for the rate of convergence
Ve, =[|d(1/k(z))/dz|]s=,.

First of all, from F(b,)=exp (—1/n) and from (6.1) we get A(ab,+
B)? exp (— (ab,+B)*)(1+¢(b,))=1—exp (—1/n) and so nA(ab,+ ) exp (— (b,
+ 8y =n(l—exp (—1/n))/(1+e(®,) —>1, as n— oo, from which follows
log (n)+log (A)+p log (ab,+8)— (b, +8)?=0(1). Working out this last
identity, we get

(6.9) (ab,+B)*=log (n)+log (A)+p log (log (n))/g+o(1) .

Besides, from (6.7) and (6.4) we get [(—1/k)'),, =1—1/n—exp (—1/n)/
(n(1—exp (—1/n))) —exp (—1/n){(g—1)/(g(ad, +B)*) + p/(ab,+B)* + o(1/03)} /
(n(l1—exp (—1/n))), and recalling (6.9) and the fact that 1-—1/n—exp
(=1/n)[(n(1—exp (—1/n))=0(1/log® (n)), we get [(—1/k)'],,=(g—1)(1—p
log (log (»))/(q log (n)))+0(1/log® (n)) and hence the result.
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