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The article uses confirmatory factor analysis (CFA) as a template to explain didactically
multilevel structural equation models (ML-SEM) and to demonstrate the equivalence of
general mixed-effects models and ML-SEM. An intuitively appealing graphical representa-
tion of complex ML-SEMs is introduced that succinctly describes the underlying model and
its assumptions. The use of definition variables (i.e., observed variables used to fix model
parameters to individual specific data values) is extended to the case of ML-SEMs for
clustered data with random slopes. Empirical examples of multilevel CFA and ML-SEM with
random slopes are provided along with scripts for fitting such models in SAS Proc Mixed,
Mplus, and Mx. Methodological issues regarding estimation of complex ML-SEMs and the
evaluation of model fit are discussed. Further potential applications of ML-SEMs are
explored.
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Multilevel modeling (MLM) and structural equations
modeling (SEM) have evolved from different conceptual
and methodological roots. The former deals with the anal-
ysis of clustered data (e.g., students nested within class-
rooms) and attempts to partition observed variance into
within- and between-clusters components.1 The latter deals
with modeling means and covariances among multivariate
data. The two classes of models focus on different questions

and have different strengths and weaknesses. Because both
clustered and multivariate data are common and of much
substantive interest, it is not surprising that practitioners of
each method are interested in borrowing strengths of the
other (Goldstein & McDonald, 1987; Krull & MacKinnon,
2001; McDonald, 1993; Muthén, 1989; Muthén & Satorra,
1995; Raudenbush, 1995; Raudenbush & Sampson, 1999).
Although considerable advances have been made in this
respect, structural modeling of multilevel data is a relatively
new area of methodological research (Bauer, 2003; Bentler
& Liang, 2003; Curran, 2003; du Toit & du Toit, 2003;
Kaplan & Elliot, 1997; Muthén, 1991, 1994, 1997; Rovine
& Molennar, 2000).

This article develops the notion of multilevel modeling as
well as multilevel structural equations modeling (ML-SEM)
from within the SEM framework by borrowing common
and well-understood metaphors from measurement. In the
broadest sense, ML-SEM combines the best of both worlds.
It allows full-blown SEM models to be developed at each
level of nesting for clustered data. For example, multiple
individual-level indicators can be used to define a latent

1 The term nesting and clustering are commonly used in the
multilevel modeling literature to indicate data-nested structures
such as students clustered or nested within classrooms. This notion
of nesting is distinct from the notion of nested designs in an
analysis of variance context in that in MLM, the sampling units at
both levels are assumed to be sampled randomly. Hence, class-
rooms are assumed to be sampled randomly from a universe of all
possible classrooms, and students are also assumed to be sampled
randomly within each classroom.
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construct at the individual level as well as at the cluster
level, and, mediational hypotheses can be evaluated at both
levels. Finally, the article demonstrates how random slopes
may be incorporated into ML-SEM for clustered data.

Repeated measures data are inherently multilevel, with
repeated measurements on an outcome measure nested
within each individual. It is therefore not surprising that
models of individual growth were initially conceptualized
within the MLM framework (Raudenbush & Bryk, 2002). It
was in the context of latent growth curves (LGC) that
Willett and Sayer (1994) demonstrated how models of in-
dividual change could be fitted using conventional means
and covariance structure analysis with time-structured data
(see also Chou, Bentler, & Pentz. 1998; MacCallum, Kim,
Malarkey, & Keicolt-Glaser, 1997; Meredith & Tisak,
1990). A critical assumption of the means- and covariance-
based LGCs is that the time interval between measurement
occasions must be equal across individuals. The availability
of raw data or full-information maximum likelihood esti-
mation (FIML) in popular SEM software partially alleviated
the limitation of equal time intervals (Arbuckle, 1996;
Neale, 2000b). The missing-data handling capability of
FIML was exploited in order to allow unequal intervals
between measurement occasions in growth curve analysis
(Duncan, Duncan, & Hops, 1996; McArdle & Anderson,
1990). In this missing data approach, an outcome measured
at each time point is treated as a separate variable. Hence,
each individual will have data at some but not at all time
points, allowing unequal intervals between measurement
occasions. This approach is impractical when there is con-
siderable heterogeneity in time of the first occasion or in the
intervals between occasions of measurement. Mehta and
West (2000) demonstrated the use of the individual-likeli-
hood based SEM estimation along with the special data-
handling facility for estimating the parameters of LGC
models with continuous values of time. The current article
extends the idea of estimating random slopes for continuous
predictors to clustered data (e.g., students nested within
classrooms) and multivariate outcomes.

The missing data approach has also been extended to the
context of multilevel modeling of clustered data. In a set of
related articles, Bauer (2003) and Curran (2003) demon-
strated the applicability of SEM models to clustered data in
the context of both balanced and unbalanced designs. Bauer
applied two alternate approaches to missing data in longi-
tudinal setting (Mehta & West, 2000) to the clustered data
case. Both Bauer and Curran provided practical examples of
how such models can be fit in conventional software. Con-
sistent with Rovine and Molenaar (2000), Bauer demon-
strated the equivalence between SEM and univariate mixed-
effects model (MEM) matrices. Curran graphically
presented possible extensions of the univariate random-
intercepts model to the case of multiple latent variables at
the individual and the cluster levels.

The primary purpose of this article is to introduce the

ML-SEMs in a didactic fashion using concepts that are well
understood in the context of conventional SEM. This is
accomplished by developing core ML-SEMs as variants of
the restricted confirmatory factor analysis (CFA) in which
factor loadings are not estimated but are fixed by design. We
show how reframing such MLMs as restricted CFA models
readily allows parameter estimation by individual likeli-
hood. Finally, we show how person-specific data may be
used for modeling means, as well as covariances, at an
individual level. As is explained later, the ability to model
person-specific covariances is central to modeling random
slopes in conventional MLMs.

Several alternative representations exist for specifying
and estimating MLMs of varying degrees of complexity
within specific software such as HLM (Bryk, Raudenbush,
Seltzer, & Congdon, 1988), MLwiN (Rasbash et al., 2000),
and SAS Proc Mixed (SAS Institute, 1996). The mapping of
one specification onto another, especially for multivariate
outcomes, is not obvious to the uninitiated. ML-SEMs rep-
resent a considerable advance over conventional MLMs,
considering the fact that the majority of applications of
multilevel modeling are restricted to univariate outcomes.
As such, representation of MLMs within the multivariate
SEM-oriented scripting language such as Mplus (Muthén &
Muthén, 2004) is even less obvious.

The current article aims to clarify the interrelationships
among the different representational schemes by graphically
using an extended RAM (recticular action model) represen-
tation (McArdle & Boker, 1990) of an ML-SEM.2 Scalar
representations of univariate and multivariate MLM map
directly on to this multilevel graphical representation of a
restricted CFA model. Additionally, the SEM matrices for
the CFA model bear a one-to-one correspondence with the
matrices of the general MEM. Finally, the notion of a
random slope for a continuous predictor fits within this
extended graphical representation simply as a fixed factor

2 There are several alternative but highly similar graphical rep-
resentations of SEM. The RAM notation is similar to other nota-
tion in that it uses rectangles and circles to represent observed and
latent variables, respectively. In addition, like other representa-
tions, it uses curved double-ended arrows and directed arrows to
represent covariances and variances, respectively. Because vari-
ances may be thought of as the covariance of a variable with itself,
the RAM notation uses curved double-ended arrows to represent
unconditional and conditional or residual variances. Finally, the
RAM notation uses a directed arrow from a triangle to an observed
or latent variable to represent unconditional or conditional mean.
The triangle represents a fixed constant of 1.0 for each individual;
hence, the directed path can be interpreted as the mean (or the
intercept). An important consequence of RAM notation is that all
of the model parameters are explicitly represented in a path dia-
gram. As a result, the graphical representation can be computa-
tionally transformed into its underlying mathematical representa-
tion (see Neale, Boker, Xie, & Maes, 2004).
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loading. It is hoped that the universal graphical representa-
tion will help researchers familiar with either class of mod-
els to conceptualize and fit models within the more general
ML-SEM context.

ML-SEM: The Building Blocks

Three critical ideas necessary for understanding ML-
SEMs are (a) the concept of a restricted CFA model, (b) the
notion of individual likelihood, and (c) the related idea of
modeling individual-specific data vectors. These building
blocks are used to construct ML-SEMs for clustered data in
a bottom-up fashion.

CFA

The pattern of means and covariances of MLMs is iden-
tical in form to that of CFA. CFA can therefore serve as a
template for formulating MLMs. The relation between the
two classes of models has been recognized in univariate and
multivariate SEM formulations of latent growth (MacCal-
lum et al., 1997; Willett & Sayer, 1994) as well as explicit
MLM models (Rovine & Molenaar, 2000). At a practical
level, the template can be easily adapted to specify and fit
more complex MLMs. For example, multilevel latent vari-
able models have been conceptualized as hierarchical factor
models (Bauer, 2003; Curran, 2003).

Apart from the similarity in the data structure (i.e., nesting
and unbalanced data) and the scalar representations of growth
curves and multilevel regression models, there are important
differences between the two classes of models. For example,
unlike variables ordered in time, individuals within a cluster do
not have a specific order. Such similarities and differences
among different MLMs lead to a specific set of expectations
regarding the structure imposed on the data as well as distri-
butional assumptions (e.g., conditional independence and ho-
moscedasticity) for the latent variables and residuals at each
level. To the extent that the chosen factor model template
adequately captures the underlying assumptions of MLMs, the
use of CFA as a template is appropriate. The current article
summarizes the critical implicit assumptions in SEM models
for clustered data. For example, the hierarchical factor model
representation of latent variable models of multivariate clus-
tered data implies a set of falsifiable restrictions on the general-
specific factor model (Gustafsson, 2002; Gustafsson & Balke,
1993).

CFA aims to explain the covariance among p observed
variables (Yp) in terms of q latent variables (�q). All un-
specified sources of variability including error and specific
factors are labeled as residuals, epi:

Ypi � �p � �pq�qi � epi, (1)

where for an individual i, Ypi is the score for the pth
observed variable, and �qi is the score for the qth latent
variable, and epi is the residual or the error term for the pth

observed variable. The factor loadings (�pq) reflect the
magnitude of change in the observed variable (Yp) for unit
change in the latent variable (�q), and �p is the measurement
intercept. The model implied mean vector is

� � � � ��, (2)

where � is a q � 1 vector of latent variable means,3 and the
covariance � (p � p) is

� � ���� � �, (3)

where � (q � q) is the latent variable covariance matrix,
and � (p � p) is a diagonal matrix containing residual
variances.

Individual Likelihood Based SEM

The second building block necessary for understanding
ML-SEMs is the notion of fitting SEM models to individual
data vectors. The conventional means- and covariance-
based SEM is limited to complete data. Cases with missing
data are typically eliminated in a listwise fashion. FIML
estimation was introduced in SEM as a means of handling
missing data (Arbuckle, 1996; Neale, 2000b). The bulk of
discussion regarding the limitations of the SEM approach to
clustered data has focused on its inability to deal with
unbalanced data (Bauer, 2003; Curran, 2003; Mehta &
West, 2000; Willett & Sayer, 1994). This is not a limitation
of the model per se, but instead reveals two related issues
contributing to the inflexibility of the SEM framework: (a)
the use of the sample means- and covariance-based estima-
tion approach and (b) data handling and structuring issues
that make such models difficult to formulate in a script and
also make such models computationally inefficient to esti-
mate. The availability of estimation methods based on in-
dividual likelihood makes it possible to specify and estimate
fairly complex models that naturally accommodate unbal-
anced data structures. In this approach, likelihood is com-
puted using individual data vectors. Assuming multivariate
normality among the observed outcomes, the likelihood of a
specific response vector is

Prob�yi� � �2���p/ 2|�|�1/ 2exp� � 0.5�yi � �����1�yi � ���,

where � is a vector (p � 1) of means of the variables, and
� is the covariance matrix (p � p); ��� and ��1are the
determinant and inverse of the covariance matrix, respec-
tively. For any given � and �, twice the negative log
likelihood of an individual data vector (yi) is

3 Latent variable mean is typically represented by the Greek
symbol �. In this article, we use 	 to represent latent variable
means in order to be consistent with the fixed-effects vector in a
multilevel model.
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�2LogLi � Ki � log|�i| � �yi � �i���i
�1�yi � �i�, (4)

where Ki� pi log(2�). The ML fit function for an indepen-
dent sample of observations is obtained by summing the
individual �2LL over all the number of individuals:
�2LogLS � �i�1

N (�2LogLi). The person-specific likeli-
hood allows missing data without listwise deletion. Under
the assumption of missing at random, conditional on the
observed data, the expected individual-specific means and
covariances for the variables that are missing for an indi-
vidual are equal to the corresponding means and covari-
ances for an individual with complete data. During estima-
tion, the model implied mean and covariance matrices are
computed for each unique response pattern. The variables
that are missing are simply eliminated from the individual’s
mean and covariance matrix. In other words, the dimension
of the covariance matrix varies across individuals, depend-
ing on the number of observations actually present for that
individual.

Modeling Individual-Specific Covariances: Definition
Variables

There is an equally important but little recognized by-prod-
uct of estimation based on individual likelihood. FIML offers
the possibility of fitting new types of models in which the
model-implied means and covariances are different for each
individual. The notion of modeling means in terms of the
predictors is central to ordinary multiple regression as well as
SEM; however, the notion of modeling covariance as a func-
tion of predictors is fairly novel. In SEM, multiple-group
modeling is used to account for differences in covariances
across discrete grouping variables. It is also plausible that the
covariances among dependent variables may vary as a function
of continuous-valued predictors. For example, the covariance
(and variances) between latent variables stress and symptoms
may be continuous functions of neuroticism:


�stress,symptoms�i � f�neuroticismi�.

In this case, there is no single sample covariance matrix.
Instead, there are as many covariance matrices as there

Figure 1. A: Restricted confirmatory factor analysis (CFA)
model of parallel tests. Observed scores of all p variables (Ypi) for
individual i load on a common individual-level latent variable (�i)
with all factor loadings equal to 1.0. Dashed line indicates vari-
ables not included in the figure. Residual variances for all p
observed variables are assumed to be equal (�). Latent factor mean
is not represented in the figure. B: Univariate random-intercepts
model represented as a restricted CFA model. Observed scores of
all individuals (Yij) in cluster j are allowed to load onto a common
cluster-level latent variable (�j) with all factor loadings equal to
1.0. The cluster-level latent variable represents the random effect
for the jth cluster. Dashed line indicates scores of individuals not
included in the figure. Within-cluster residual variance is assumed
to be equal for all individuals. Latent factor mean (i.e., the grand

mean of the dependent variable) is not represented in the figure. C:
Succinct representation of univariate random-intercepts model.
The figure represents the model for a single individual (i) nested in
cluster (j). The within- and between-clusters variables are identi-
fied by appropriate subscripts. The observed variable includes both
person (i) and group (j) subscripts, indicating that the observed
scores of all individuals within a given cluster load onto the
common cluster-level latent variable (�j) with all factor loadings
equal to 1.0. It is assumed that the cluster-level latent variable (�j),
and the individual-level residuals (�ij), are independently and
identically distributed with variances 
b

2 and 
w
2 , respectively. This

critical assumption allows us to represent the model succinctly.
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are distinct values of neuroticism present in the data.
Hence, it might not just be impractical but impossible to
fit a separate model for each discrete value of the pre-
dictor. The individual likelihood allows person-specific
means and covariances, so it is possible to compute the
likelihood separately for each individual, based on their
expected means and covariances, conditional on the ob-
served values of individual predictors.

Exogenous predictors used in this fashion are called “defi-
nition variables.” Variables flagged as definition variables can
be used to fix the values of any model parameter, including
factor loadings and variances. Such a facility is essential for
fitting models with heteroscedastic errors and interaction be-
tween latent and observed predictors (Muthén & Asparouhov,
2002, 2003; Neal, 1998, 2000a, 2000b). Other examples of the
use of definition variables can be found in Eaves, Neale, and
Maes (1996), Neale (2000a, 2003), and Silberg, Rutter, Neale,
and Eaves (2001). Random slopes in MLM also implies that
covariances are a function of some predictor. Hence, FIML is
central to fitting ML-SEMs with random slopes. In the next
section, we consider MLMs for a single outcome and illustrate
how the random intercepts MLM has the same form as the
model of parallel tests in classical test theory (CTT). Hence,
the random-intercepts MLM may be fitted as a restricted CFA
model.

Univariate Multilevel Models Are Really
Multivariate Unilevel Models

The notions of between-clusters and within-cluster
variability in MLM parallel those of common and unique
sources of variability, respectively, in measurement mod-
els (Skrondal & Rabe-Hesketh, 2004). In fact, the model
of parallel tests is mathematically identical to the random
intercepts model in MLM. Practically, this involves
switching subscripts of a univariate MLM (people and
clusters) with those of a CFA model (variables and peo-
ple); that is, individual scores are conceptualized as sep-
arate variables, and the unit of analysis for the SEM
model is now the cluster.

Model of Parallel Tests: Common and Unique
Sources of Variance

In CTT, the observed score Ypi for an individual i on a test
p is thought of as being composed of two components: true
score and random error.

Ypi � Ti � epi, (5)

Note that Equation 5 is identical to Equation 1 for the
general CFA model in which the intercepts and factor
loadings are fixed to 0.0 and 1.0, respectively, for all p tests:

Ypi � 0.0 � 1.0�i � epi,

where the latent variable (�i) represents the unobserved true
score. Figure 1A presents the CFA model of parallel tests.
All p tests share a common origin (i.e., equal intercepts;
�p � 0.0) and have the same unit of measurement (i.e.,
equal loadings; �p � 1.0). The true score is assumed to be
distributed independently and identically, � 	 N (�, �),
and the residual variance for all p tests is assumed to be
equal (�pp � �).4 In other words, all p tests are assumed to
be exchangeable; that is, if we select a random subset of
tests from the universe of all parallel tests, we could fit the
restricted CFA model in order to estimate the variance
attributable to the true score.

Because the factor loadings for all p observed variables
are equal to 1.0, the variance attributable to the true-score
equals the variance of the latent factor (), often referred to
as the “common variance.” The unique component (�pi) for
a given test is independent of the residuals for the remaining
tests and the true score (�i), and its variance is commonly
referred to as the “unique variance” (�). The variance of
each test is the sum of common variance () and the unique
variance (�).

V�Yp� � �p
2V��p� � V�ep� �  � �.

The reliability of a test is the ratio of the true-score variance
to the total variance:

rel�Yp� �
True-score variance

Total variance
�



 
 �
.

The covariance between any two tests is

CV�Yp,Yp�� � �pV����p� � 1**1 � .

In other words, the covariance between any two parallel
tests equals the true-score variance. For three parallel tests,
the implied covariance is

� � ���� 
 � � � 1
1
1
���� 1 1 1 �

� � �
�

�
� � �  � �

  � �
   � �

�. (7)

The structure of the covariance matrix remains the same
regardless of the number of tests: with equal off-diagonal
elements containing the true-score variance and the total
variance along the diagonals. Finally, all p means are equal
to the latent factor mean:

4 CFA allows for the possibility of specific factors in residuals,
whereas the strict CTT assumes that errors are random. For the
current purpose, the distinction is not critical, as we use CTT
merely as a metaphor rather than as a model in a strict sense.
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� � � 
 �� � � 0
0
0
� � � 1

1
1
�	 � � 	

	
	
�. (8)

Univariate MLM: Between-Clusters and Within-
Cluster Variance

Consider the case in which individuals (i � 1, 2, . . . , N)
nested within clusters (j � 1, 2, . . . , n) are measured on a
single-outcome Y. Examples of such nested or hierarchical
data structures include students within classrooms in an
educational setting and employees within workgroups in an
organizational setting. The observed score (Yij) for each
individual i in cluster j can be thought of as a sum of (a) the
respective cluster mean (�j) and (b) an individual-specific
deviation (eij):

5

Yij � �j � eij. (9)

The average outcome (�j) is also expected to vary across
clusters:

�j � 	 � uj, (10)

where 	 is the grand mean of the outcome across all
clusters, and uj is the deviation of cluster j’s mean from the
grand mean. Equations 9 and 10 represent random variabil-
ity in the outcome at the individual and the cluster level,
respectively. The reduced form of Equation 9 can be ob-
tained by substituting �j from Equation 10,

Yij � 	 � uj � eij, (11)

Because the grand mean of Yij across clusters (	) is a
constant added to the scores of all individuals, there are two
sources of variability in an individual’s score: variation that
is due to clusters (uj) and variation that is due to individuals
within clusters (eij). As the two sources of variability are
assumed to be independent, the variance of the observed
score Yij is the sum of the between-clusters and within-
cluster (i.e., individual) variance:

V�Yij� � V�uj� � V�eij� � 
b
2 � 
w

2 ,

where 
b
2 and 
w

2 represent the between-clusters and within-
cluster components of the observed variance. Equations 9
and 10 correspond to Level 1 and Level 2 equations of
conventional MLM. The between-clusters variability in the
outcome is commonly referred to as the “variance of the
random intercept.” The ratio of the between-clusters vari-
ance to the total variance is known as the intraclass corre-
lation (ICC) and is an index of the magnitude of dependency
among observations due to clustering.

� �
V�uj�

V�uj� � V�eij�
�


b
2


b
2 � 
w

2 . (12)

Random-Intercepts SEM Model: People Are
Variables Too

The parallel between a measurement model and the uni-
variate MLM is obvious and has been noted before (Rau-
denbush & Sampson, 1999; Skrondal & Rabe-Hasketh,
2004).6 The key difference between the two models is the
unit of analysis. The outcome variable in both instances
involves two subscripts. In the measurement model, for
each individual i, a single construct is assessed with p
equivalent and exchangeable tests. In MLM, a single out-
come is assessed for all individuals nested within cluster j.
In both models, the observed outcome has two independent
components: (a) variability at the level of the nesting unit
(i.e., the individual for the measurement model and the
cluster for the MLM) and (b) variability at the lowest level
of the hierarchy (i.e., the exchangeable tests for the mea-
surement level and exchangeable individuals for the MLM).
The CFA model partitions the observed variance for Ypi into
a common (between person, ) and a unique component
(within-person or test-specific variance, �). Similarly, the
MLM partitions the observed variance of Yij into between-
clusters and within-cluster components. In the measurement
model, conditional on the common latent factor, the test-
specific unique components are independent of each other
and are assumed to have equal variance. Similarly, in MLM,
conditional on the random intercept, the individual residuals
are assumed to be independently and identically distributed.
Finally, the reliability of a parallel test or the proportion of
observed variance attributable to the common factor is
identical in form and interpretation to the ICC.

Fitting a random-intercepts MLM as a restricted CFA
model of parallel tests. Given that the two models are
identical, parameters of a random-intercept MLM can be
estimated as a restricted CFA model. The only shift that
needs to occur is the recognition that the unit of analysis is
the cluster rather than the individual. Figure 1B presents the
model of random intercepts as a restricted CFA model for
parallel tests. The first and second subscripts in Figure 1A
represent the test p and person i; whereas, in Figure 1B, the
corresponding subscripts represent individual i and cluster j,
respectively. With this shift in the unit of analysis, the

5 Notation used for MLM is generally consistent with the
mixed-effects formulation of the corresponding models. At the
same time, we have tried to use notation that makes it easy to map
MLM into SEM formulation.

6 Although, the current article deals with the case of continuous
variables, the ideas presented are equally applicable for the case of
latent variable models for discrete outcome including the item
response theory (IRT). The relation between IRT models and
corresponding MEMs for discrete outcomes has been recognized
(Fox & Glas, 2001; Rabe-Hesketh, Skrondal, & Pickles, 2004;
Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003; Skrondal &
Rabe-Hesketh, 2004).
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model-implied means and covariances for the restricted
CFA model are directly applicable to the model of random
intercepts.7 However, unlike the model of parallel tests, the
number of participants is likely to vary across clusters.
Hence, FIML estimation is essential for fitting a MLM as a
CFA model. Representation of MLM for clustered data in
Figure 1B follows directly from the representation of
growth curves for repeated-measures data (Willett & Sayer,
1994). Such a graphical representation has been used for
conceptualizing univariate and multivariate random-inter-
cepts as well as random-slopes models for clustered data
(Bauer, 2003; Curran, 2003). The differences between the
two classes of model allow for the possibility of simplifying
the representation. We now present a set of principles that
allow a translation of algebraic and distributional implica-
tions of an MLM to a succinct but complete graphical
representation.

Graphical representation of a univariate random-inter-
cepts model. In conventional SEM, individuals are assumed
to be sampled randomly and are thus assumed to be exchange-
able. Hence, the graphical representation depicts the model for
a single individual only. In Figure 1B, the latent variable
represents the cluster level outcome �j, and each observed
outcome represents individual scores (Yij) for each individual i
within cluster j. For this model, sampling units at both levels
(i.e., clusters and individuals) are exchangeable. As a result, it
is necessary to represent a single cluster and a single individual
within that cluster. Figure 1C presents such a succinct graph-
ical representation of a random-intercepts model for an indi-
vidual i within cluster j. All three hypothesized parameters of
the random-intercepts model are represented in Figure 1C, and
the diagram accurately and completely captures the underlying
mathematical model.8,9

So far we have shown that the equations for a mea-
surement model and a random-intercepts model are iden-
tical in form and interpretation. The presentation was
primarily conceptual and used the hierarchical linear
modeling (HLM; Bryk & Raudenbush, 1987) specifica-
tion. The next section presents an MEM formulation of a
multivariate MLM. MEM allows us to draw direct par-
allel among the matrices used in MLM and ML-SEM as
well as the corresponding likelihood equations. Although
the equivalence of MEM and SEM is rather trivial in the
case of the univariate random-intercepts model, demon-
stration of a formal equivalence between MEM and CFA
models in the general case allows us to represent complex
MEMs as special cases of restricted CFA models.

The next section extends the equivalence of MEM and
CFA models to the multivariate case. In this context, we
generalize the extended RAM notation to incorporate mul-
tivariate covariance structure at the within- and between-
clusters level. The resulting within- and between-clusters
covariances form the basis of fitting SEM models at each
level. We demonstrate how latent variable measurement
models may be fitted at both levels. In addition, we describe

the set of assumptions necessary for defining random inter-
cepts of the individual-level latent variables.

Multivariate Multilevel Models Are Also
Multivariate Unilevel Models

The key insight presented so far was that SEM could be
used to analyze univariate outcomes for clustered data:
(a) by treating clusters as the unit of analysis and (b) by
treating the outcome for each individual as a separate
indicator of a cluster-level latent variable (i.e., random
effect). For a single outcome, the focus was on partition-
ing the observed variance into between-clusters and with-
in-cluster variance (i.e., 
b

2 and 
w
2 ). With multivariate

outcomes and clustered data, we must consider the be-
tween-clusters and within-cluster covariance matrices
(i.e., �b and �w; see also Goldstein, 2003; Hox, 2002;
Raudenbush, 1995; Raudenbush, Rowan, & Kang, 1991;
Thum, 1997; Yang, Goldstein, Browne, & Woodehouse,
2001). A multivariate extension of the random intercepts
model can also be conceptualized as a restricted CFA
model. The SEM representation of a bivariate MLM for
Pij and Qij is presented next.

Bivariate MLM: Between-Clusters and Within-
Cluster Covariance

The univariate random-intercepts model may be extended
for two outcome variables as

Yij
P � 	P � uj

P � eij
P and Yij

Q � 	Q � uj
Q � eij

Q (13A & 13B)

where 	P and 	Q are the grand means of P and Q, respectively,
uj

P and uj
Q are deviations of cluster j’s means of P and Q from

their respective grand means, and eij
P and eij

Q are individual i’s
deviation scores on the two outcomes from their respective
cluster means. The between-clusters random effects (uj

P and

7 Additional materials, including annotated scripts in SAS Proc
Mixed, Mplus, and Mx, as well as various datasets, are on the Web
at http://dx.doi.org/10.1037/1082-989X.10.3.259.supp

8 Note that when the assumption of independent clusters or
exchangeable individuals is not justified, the graphical representa-
tion must be modified accordingly. Such instances may arise, for
example, with data from multiple siblings in which birth order is
important, or for dyadic couples data, or when the same teacher
teaches multiple classrooms in school data.

9 Similar notion of exchangeability has been used for graphi-
cally representing general multilevel linear and nonlinear models
in GLLAMM (Rabe-Hesketh, Pickles, & Skrondal, 2004; Rabe-
Hesketh, Skrondalet al., 2004; Skrondal & Rabe-Hesketh, 2004)
and WinBugs (Spiegelhalter, Thomas, & Best, 2000). Both of
these are very general software allowing estimation of complex
models including models with noncontinuous outcomes. The latter
software uses Bayesian estimation and includes symbols for rep-
resenting distributions of the unknown parameters.
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uj
Q) are assumed to be distributed multivariate normally with

covariance (�b). The individual-level residuals (eij
P and eij

Q) are
also assumed to be distributed multivariate normally with
covariance (�i

w). Additionally, the assumption of homoscedas-
ticity implies that the residual covariance is identical for all
individuals (�i

w � �w). The variances are allowed to be dif-
ferent for each outcome at each level.

Although the scalar part of the previous equation is
easy to understand, the covariance structure of the ran-
dom effects is easily misunderstood. Because SEM was
explicitly designed to model covariances, it is easy to
understand the notions of between and within covari-
ances within the SEM framework. Understanding how
between-clusters and within-cluster covariance is repre-
sented in MLM and correspondingly in ML-SEM is crit-
ical for understanding and fitting complex models. To
demonstrate the mapping between MLM and SEM, the
graphical SEM formulation and the model matrices for
the bivariate random-intercepts MLM model are pre-
sented next followed by the general MEM formulation
demonstrating complete correspondence between the ma-
trices used in the two representations.

SEM Representation of the Bivariate Random-
Intercepts Model

Following the univariate model, the bivariate SEM treats the
cluster as the unit of analysis. Figure 2A presents the core
bivariate ML-SEM for the jth cluster. Each observed variable
represents an outcome for an individual within the cluster. For
Nj individuals with data on both outcomes, there would be
2*Nj observed variables representing the scores of each of the
Nj individuals on the two variables. Corresponding to the scalar
expression of the bivariate MLM, each observed variable is
influenced by the corresponding cluster-level latent variables
as well as the person-specific residual. The model for each
outcome is identical to the univariate model presented earlier.
The new elements are the covariances among the cluster-level
latent variables and the person-level residuals.

The between-clusters model: Linking individuals within
cluster to cluster-level latent variables. The latent vari-
ables (�j

P and �j
Q) represent the between-clusters components

of the observed variables (i.e., the random intercepts). There
are as many between-clusters latent variables as the number of
distinct outcomes (ny). The effect of between-clusters latent
variables on the observed outcomes is the same for all indi-
viduals within a cluster. For each individual, the link between
each of the two observed variables and the corresponding
latent variables is an (ny � ny) identity matrix: ij

� �1 0
0 1�. Because the number of individuals is likely to vary

across clusters, the size of the factor-loading matrix will vary
as well. For Nj individuals, the factor-loading matrix linking
bivariate outcomes for all individuals to the cluster-level latent
variables is obtained by vertically stacking the ny � ny identity

matrix for each person or by computing its Kronecker product

with a unit vector of length Nj: �j � 1Nj
� �1 0

0 1�. For a

cluster with 2 individuals, the factor-loading matrix is

�j � �
1 0
0 1
1 0
0 1

�.
As in ordinary CFA, latent variables are assumed to be
distributed multivariate normally, 	 	 N (�, �). The �
matrix describes the covariance among the cluster-level
latent variables as

� � �b � �V��j
P�

CV��j
Q,�j

P�V��j
Q��

and is also referred to as the “between-clusters covari-
ance.” The interpretation of the variance of the between-
clusters latent variables �j

P and �j
Q is identical to that of

the random intercept in the univariate case. The covari-
ance between the between-clusters latent variables
(CV��j

Q,�j
P�) is the new element and represents the rela-

tion between the cluster means of YP and YQ.
The within-cluster model: residual covariance. The ob-

served variables for each individual are assumed to have a
unique, person-specific, within-cluster source of variance.
These are represented by separate within-cluster latent vari-
ables10 (eij

P and eij
Q) for each individual. The covariance

among individual residuals is called the “within-cluster
covariance”:

�i
w � �V�eij

P�
CV�eij

Q,eij
P� V�eij

Q��.

Within a given cluster, but across individuals, the residuals
are assumed to be independently and identically distributed.
As a result, the residual covariance matrix for the entire
cluster is block-diagonal with as many independent (�w

��i
w) blocks along the diagonal as the number of indi-

viduals (Nj) within the cluster. With a cluster size of Nj,
the residual covariance matrix is �j � INj

� �w. For a
cluster with 2 individuals, the residual-covariance matrix
is simply

�j � ��w 0
0 �w�.

10 For a multivariate multilevel model, individual-level residu-
als of different outcome are allowed to covary. Subsequently, the
within-cluster SEM model is fitted to the within-cluster covariance
among residuals. As a result, in ML-SEM, although not strictly
necessary, it is conceptually convenient to treat the individual-
level residuals as latent variables.
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The SEM measurement model (Figure 2A) completely and
accurately captures the scalar representation of the MLM
(Equations 13A & 13B). In addition, the SEM representa-
tion clarifies the meaning of within- and between-clusters
covariances that are central to multivariate MLM. The follow-
ing sections demonstrate the correspondence between the SEM
matrices described previously and the MEM representation of

the multivariate MLM. The most critical distinction between
the SEM and MEM formulation of MLM is the fact that in
SEM, the model and its likelihood are specified at the level of
a cluster, whereas, in MEM, these are defined for the entire
sample data vector. This difference is essentially representa-
tional as the cluster-level subset of MEM is identical to the
SEM model. Identical parameters are estimated in both models

Figure 2. A: Bivariate random-intercepts model represented as a restricted confirmatory factor analysis
model. Observed scores for the multivariate outcome P and Q for all individuals (i) within cluster (j) load
on the corresponding between-level latent factors (�j

P and �j
Q). �b is the covariance among the between

latent factors. Within-cluster residuals (eij
P and eij

Q) for each individual are represented by corresponding
latent variables. �w is the covariance among the within-latent factors. The fixed-effects vector � (i.e.,
means of the cluster-level latent variables) is represented as regression paths from a triangle representing
constant 1 for all individuals. Dashed line indicates the observed scores of individuals not depicted in the
figure. B: Succinct representation of the bivariate random-intercepts model. The figure represents the
model for a single individual (i) nested in cluster (j). The observed and latent variables as well as
observed residuals include person and cluster subscripts, indicating that the level of each variable
interpretation of parameters is identical to that in Figure 2A.
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by maximizing the same likelihood. Finally, it is important to
note that the size of the factor-loading and residual-covariance
matrix varies across clusters, depending on the number of
individuals present in the cluster. As a result, unlike conven-
tional SEM models, these matrices have a cluster subscript.
More generally, in order to correctly identify the level of a
given variable, path diagrams also retain appropriate
subscripts.

MEM Formulation of the Bivariate Random-
Intercepts Model

The MLM equations for the two outcomes can be com-
bined into a single equation as

Yij
V � Dij

P	P � Dij
Q	Q � Dij

Puij
P � Dij

Qu
ij
Q � eij

V , (14)

where the multivariate outcomes are identified by defining two
dummy variables DP and DQ for each individual, such that
Dij

P � 1 and Dij
Q � 0, if the given row of observations for

individual i contains YP and Dij
P � 0 and Dij

Q � 1, if the given
row of observation contains YQ. The dummy variables DP and
DQ serve to select appropriate fixed and random effects for
each outcome variable. 11 The individual residual (eij

V) contin-
ues to have a variable superscript. For two outcome variables
YP and YQ, the above equation for two clusters each with two
individuals can be written as

Y � �
Y11

P

Y11
Q

Y21
P

Y21
Q

Y12
P

Y12
Q

Y22
P

Y22
Q

� � �
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1

�� 	P

	Q � � �
1 0
0 1

0
1 0
0 1

1 0

0
0 1
1 0
0 1

�� u1
P

u1
Q

u2
P

u2
Q
�

� �
e11

P

e11
Q

e21
P

e21
Q

e12
P

e12
Q

e22
P

e22
Q

� . (15)

Note that Equation 15 links the unobserved person and
cluster-level random effects for all individuals with their
respective observed scores. The SEM model in contrast
represents a single generic cluster. This equation corre-
sponds to the following general MEM formulation:

y � X� � Zu � e, (16)

where y is a vector of the dependent variable, X is the
matrix of independent predictors, � is the unknown vector

of regression parameters or the fixed effects coefficients, Z
is a known design matrix used to specify the dependency
structure of the observations, u is the vector of unobserved
random effects coefficients, and e is the unobserved vector
of random errors. The MEM explicitly incorporates random
effects (u), effectively allowing nonindependent errors. The
random effects (i.e., u and e) are assumed to be distributed
normally and independently:

E�u
e � � �0

0� and var �u
e � � �G 0

0 R�.

The fixed-effects design matrix: The X matrix. With two
outcome variables, the fixed-effects vector has two elements
(	P and 	Q) and the corresponding X matrix has two col-
umns containing the two dummy variables (DP and DQ). For
a given individual i with observations on both YP and YQ,

the Xij submatrix is �1 0
0 1� and is identical to the �ij

submatrix for a given individual. Not surprisingly, the Xj

submatrix for cluster j is identical to the cluster-level factor-
loading matrix (Xj � �j).

The random-effects design matrix: The Z matrix. The Z
matrix in the bivariate case links the random effects (uj

P and
uj

Q) for a given cluster j to appropriate rows of observations
(YP or YQ) for all individuals in that cluster. In SEM, this
link matrix for a generic cluster j was defined by the
factor-loading matrix. In MEM, however, the link must be
explicitly defined between every cluster-level random vari-
able and every individual observed score. As a result, the
number of columns in Z equals the number of clusters times
the number of outcome variables (Nj * ny). With two out-
come variables and two clusters, there are a total of four
random effects. Hence, the Z matrix has four columns: the
first two columns link the two random effects (u1

P and u1
Q) for

Cluster 1 with the first four rows of observations, and the
last two columns link the two random effects (u2

P and u2
Q) for

Cluster 2 with the last four rows of observations. Hence, the
Z matrix has as many nonzero blocks as the number of
clusters. For each cluster, the Z matrix has a nonzero block
for observations from that cluster. Each of these blocks
contains the values of the two dummy variables (DP and
DQ) for individuals within that cluster. In the parlance of
MEMs, the effects of the two dummy variables are assumed
to be random at the cluster level. Note that the Zj submatrix
for any cluster j has two columns for the random effect of
each outcome variable and is identical to the corresponding
SEM factor-loading matrix j � Zj � Xj. Note that both Xj

and Zj submatrices are equal to the factor-loading matrix j.

11 Equation 14 or Equation 15 do not appear to have an “inter-
cept” term. This is because we now have two outcomes and
therefore need an intercept term for each outcome. The grand
means of the two dummy variables or their fixed effects represent
outcome specific intercepts.
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This is because, in SEM, the factor-loading matrix links the
latent variable (�) to the observed variables for each clus-
ters: Yj � j�j. However, �j � � 
 uj, hence Yj � j (�

 uj) � j� 
 juj. In other words, at the cluster level, the
factor-loading matrix serves as the fixed-effects design ma-
trix (Xj), as well as the random-effects design matrix (Zj).

We have shown the correspondence between SEM and
MEM for all matrices except the latent factor and residual
covariance (i.e., the within- and between-clusters covari-
ances). Recall that in SEM, the model is defined for a single
generic cluster j, whereas in MEM, the model is defined for
all clusters and individuals. Hence, the covariance matrices
for the cluster-level random effects and individual-level
residuals must be defined for all n clusters and for all N
individuals. These covariances are specified as the G and R
matrices, respectively.

Covariance among cluster-level random effects: The G
matrix. Continuing with the bivariate example, for n clus-
ters there are 2*n cluster-level random effects. Hence, the
size of the covariance matrix among u is (2n � 2n). For a
given cluster, the between-clusters covariance is �b. This is
obviously identical to the between-clusters covariance in
SEM (i.e., �). Clusters are assumed to be sampled ran-
domly from the population of all clusters, leading to the
assumption of independently and identically distributed ran-
dom effects (uj

P and uj
Q). As a result, across-clusters covari-

ance among the random effects is zero (CV�uk, uj� � 0),
leading to a block-diagonal G matrix. The G matrix has as
many symmetric blocks as the number of clusters, with
each block equal to the between-clusters covariance ma-
trix (�b). With two clusters, the G matrix has two sym-
metric blocks:

G � � �b 0
0 �b 	. (17)

In general, with a total of n clusters, the G matrix is G
� In � �b, where In is an (n � n) identity matrix. Note that
the cluster-level submatrix of G is identical to the SEM
latent variable covariance matrix (�).

Covariance among individual residuals: The R matrix.
For a total sample size of N, there are 2*N individual-level
residuals. Hence, the size of the residual covariance matrix
is (2N � 2N). For a given individual, the within-cluster
covariance (eij

P and eij
Q) is �w. Within clusters, individuals

are assumed to be sampled randomly, leading to the as-
sumption of independently and identically distributed resid-
uals. As a result, residual covariance across individuals is
zero (CV�emj, enj� � 0), leading to a block-diagonal R
matrix. The R matrix has as many symmetric blocks as the
total sample size (N), with each block equal to the within
covariance (�w). With two clusters and two individuals
within each cluster, the R matrix has four symmetric blocks:

R � 

�w 0

�w

�w

0 �w
�.

In general, for a sample size of N, the R matrix can be
succinctly represented as R � IN � �w where IN is an
(N � N) identity matrix. The within-cluster submatrix of R
is identical to SEM residual covariance matrix (�).

Likelihood Equations in SEM and MEM

Given that SEM and MEM define the model at the level
of clusters and the entire sample data vector, respectively,
the corresponding likelihoods are also computed at the
cluster and sample level, respectively. For the multivariate
MEM, the mean vector is

M � X�,

and the covariance matrix among all observations is

V � ZGZ� 
 R.

The likelihood of a given vector of observations y is

�2LogL � K � log|V| � �y � M��V�1�y � M�,

where K � N*log(2�). For the corresponding SEM model
at the cluster level, the cluster-level means and covariance
are

uj � �j� and �j � �j � �j� 
 �j. (18)

The likelihood of a vector of observations for cluster j, yj is

�2LogLj � Kj � log|�j| � �yi � �j���j
�1�yj � �j�,

where Kj � Nj*log�2��. Because the clusters are assumed
to be sampled independently, the log likelihood for the
entire sample can be obtained as the sum of cluster �2LogLj

across all n clusters: �2LogL��j�1
n (�2LogLj). In other

words, the two likelihoods are identical. Note that in prac-
tice, all mixed-effects modeling software packages recog-
nize the block diagonal structure of the G matrix and
compute the likelihood using the second approach (Verbeke
& Molenberghs, 2000). Hence, although the model repre-
sentation stacks data for all individuals and variables into a
single column, and the model specification requires the
inclusion of “dummy” intercepts for accommodating the
multivariate data structure, the specification and computa-
tion of the likelihood is done in a computationally efficient
fashion. By corollary, the data-handling capability for spec-
ifying models with nested data structures and full-informa-
tion likelihood in SEM is in and of itself inadequate for
efficient estimation. Efficient algorithms similar to those
used in MEM for computing the likelihood at the cluster
level are necessary in ML-SEM (du Toit & du Toit, 2003).
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Graphical Representation of Bivariate Random-
Intercepts Model

The bivariate random-intercepts model can also be rep-
resented succinctly using the notion of exchangeability. As
in the case of the univariate random-intercepts model, clus-
ters and individuals are both considered exchangeable.
Hence, it is necessary to represent the model for a single
cluster (j) and a single individual (i) within that cluster.
However, the two outcome variables (YP and YQ) are not
exchangeable. Therefore, we need to represent the two
variables and their between and within covariances sepa-
rately. Figure 2B succinctly depicts a bivariate random-
intercepts model. The figure shows all model parameters
and is an accurate representation of a bivariate random-
intercepts model. As in the univariate case, it is assumed
that (a) clusters and individuals are sampled randomly and
independently; (b) multiple observed repeated measures for
all individuals belonging to cluster j load onto the common
corresponding between-clusters variables; (c) conditional
on the common between-clusters latent factors, the residuals
for each outcome (eij

P and eij
Q) are independent across indi-

viduals; and (d) within-cluster covariance among residuals
(�w) is equal for all individuals.

Multilevel Measurement and Structural Models

Once the within and between-clusters covariances have
been estimated, separate model-based restrictions may be
imposed on these covariances to estimate within- and be-
tween-clusters measurement and structural parameters (see
also Goldstein & Browne, 2002; Heck, 2001; Kaplan &
Elliot, 1997; Snijders & Bosker, 1999). This is accom-
plished by defining additional within and between latent
variables that impose restrictions on the core within- and
between-clusters covariance matrices (Longford & Muthén,
1992; Muthén, 1991). For example, we can fit a measure-
ment model at the between and within cluster level. This
involves defining measurement model at the two levels and
imposing constraints on the corresponding matrices:

�b � �b�b�b� � �b and �w � �w�w�w� � �w. (19)

The covariance for the entire cluster is

�j � �1Nj
� Iny

��b�1Nj
� Iny

�� � INj
� �w.

The above equations define conventional measurement
models at the within- and between-clusters levels, respec-
tively. The measurement models may be different at the two
levels. The parameters of the new measurement or structural
model may be estimated by maximizing the same likelihood
function. So long as the model is identified, 12 any mean-
ingful SEM may be used for imposing restrictions on the
between-clusters and within-cluster covariances. The differ-
ence in �2LogL for the unconstrained model and the con-

strained model may be used to evaluate the appropriateness
of the restrictions imposed by the within- and between-
clusters SEMs.

The multivariate, multilevel latent variable model im-
plied by the previous specification uses the general-specific
factor model as a template as opposed to the hierarchical
factor model (Gustafsson, 2002; Gustafsson & Balke,
1993). The cluster-level specification represents the general
part of the model, whereas the individual-level model cor-
responds to the specific part of the model. From this per-
spective, the base model (i.e., the multivariate MEM) also
uses the general-specific factor model template. Bauer
(2003) and Curran (2003) used a conceptually appealing but
restrictive alternative, the hierarchical factor model as a
template for conceptualizing multilevel latent variable mod-
els. However, the hierarchical model specification implies a
specific set of constraints on the less restrictive general-
specific model. The first restriction is the restriction im-
posed by the within- and between-clusters factor models on
the within- and between-clusters covariances (Equation 19).
The second set of restrictions is related to (a) the assumption
of invariant factor loadings across levels and (b) the as-
sumption of zero variances of observed indicators at the
cluster level. These restrictions are illustrated next in the
context of an empirical example. It should be noted that the
notion of hierarchical factor models can also be used as the
measurement model for the clustered data (see Harnqvist,
Gustafsson, Muthén, & Nelson, 1994).

Multilevel CFA: Empirical Example

We illustrate estimation of within- and between-clusters
covariances as well as fitting a measurement model at the
two levels with an example from reading research. The data
come from a larger longitudinal study of early reading
development involving 1,052 third graders nested within
115 classrooms (Mehta, Foorman, Branum-Martin, & Tay-
lor, 2005). The sample was primarily African American
(94.58%) with Hispanics being the second largest group
(4.66%). These data come from end-of-the-year assessment
of literacy skills and include the following broad measures
of literacy: phonemic awareness (PA), word reading (WR),
spelling (S), vocabulary (V), and writing (WT). The details
of the psychometric properties of these measures can be
found elsewhere (Foorman et al., 2003). We consider the
possibility that these diverse measures of English literacy
are indicators of a single factor, both at the individual and at
the classroom level. Initial univariate and multivariate
MEMs were fitted using SAS Proc Mixed, and the ML-CFA

12 The multivariate MEM is identified so long as there are
enough clusters to meaningfully estimate covariances at the be-
tween-clusters level and enough individuals to estimate within-
cluster covariance. Conventional rules of identification apply for
fitting SEM models at each level.
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model was fitted using Mplus (Version 3; Muthén & Mu-
thén, 2004).

Univariate Random-Intercepts Model

As a first step, a univariate random-intercepts model was
fitted to the data, with classroom as the Level 2 nesting unit
(see Table 1). The between-classroom variability was sig-
nificant for each of the five measures with ICCs (proportion
of variance attributable to between-clusters variability)
ranging from 0.10 to 0.24. The means of each measure are
also reported in Table 1. Grand means are not particularly
interesting in a single-group model and are ignored in
subsequent analyses. It is obvious that univariate analyses
do not provide any information regarding covariance among
outcomes at the within- and between-clusters levels.

Multivariate Random-Intercepts Model

A multivariate random-intercepts model (see Figure 3)
was fitted in Proc Mixed to obtain between-clusters (�b)
and within-cluster (�w) covariance among the outcome
measures. Table 2 presents these between-clusters and with-
in-cluster covariances (below the diagonal) along with the
corresponding correlations (above the diagonal). Note that
the estimated within- and between-clusters variances (diag-
onal elements) were almost identical to those reported in
Table 1 for the univariate random-intercepts model. The
correlations among the outcome variables are different at
the two levels (see Figure 3). Eight out of 10 correlations at
the between-clusters level are larger than the corresponding
within-cluster correlations. The patterns of within- and be-
tween-clusters correlations are consistent with a unidimen-
sional model at each level. A single-factor model asserts
that a single latent factor explains the between-clusters (�b)
and within-cluster (�w) covariances; that is, conditional on
the latent factors at each level, the within- and between-
clusters residuals are independent.

Multilevel CFA

Table 3 presents the unstandardized parameter estimates
for the ML-CFA fitted in Mplus 3.11. All five observed
variables were allowed to load onto a single literacy factor

at both the within- and between-clusters level. The latent
factor scales at each level were identified by fixing the WR
factor loading to 1.0. The remaining factor loadings, latent
factor variances, and residual variances were freely esti-
mated at both levels. Measurement intercepts were esti-
mated for all five outcome variables, and the mean of the
between-clusters literacy factor was fixed to 0.0. Because no
restrictions were imposed on the mean structure, the esti-
mated intercepts were almost identical to the corresponding
grand means in the univariate MEM. Standardized param-
eter estimates for the ML-CFA are presented in Figure 4.

Mplus reports within- and between-clusters estimated

Table 1
Univariate Random-Intercepts Mixed-Effects Models: Fixed and Random Effects

Outcome Grand mean SE
Between-clusters

variance SE
Within-cluster

variance SE ICC

Spelling 91.38 0.65 29.23 6.39 158.99 7.41 0.15
Word reading 2.27 0.04 0.08 0.02 0.70 0.03 0.10
Phonemic awareness 0.93 0.03 0.05 0.01 0.21 0.01 0.18
Writing �0.08 0.05a 0.18 0.03 0.55 0.03 0.24
Vocabulary 78.67 0.70 28.87 7.47 229.24 10.79 0.11

Note. ICC � intraclass correlation.
a Not significant.

Figure 3. Multivariate random-intercepts model of literacy. The
observed variables (uppercase) include person and cluster sub-
scripts. Individual-level residuals (eij) for each outcome are rep-
resented as latent variables. Superscripts b and w indicate between-
clusters and within-cluster latent variables (lower case). Between-
level latent variables have a cluster subscript, whereas the within-
level latent variables have both individual and cluster subscripts.
The five outcome variables are spelling (S), word reading (WR),
phonemic awareness (PA), writing (WT), and Vocabulary (V). The
grand means of the between-level latent variables are not included
for clarity. Numbers represent correlations among latent variables.

271MULTILEVEL STRUCTURAL EQUATIONS MODELING



sample statistics. These estimates are obtained by fitting an
unrestricted model (referred to as the H1 model). The H1
model is in fact identical to the multivariate MEM presented
previously (see Figure 3). Explicitly fitting MEM clarifies
the source and the meaning of the sample statistics reported
by Mplus. Mplus parameter estimates and the fit statistics
for the H1 model were identical to those reported by Proc
Mixed for the corresponding multivariate random-intercepts
model (see Table 2).

The Mplus log likelihood for the H1 model was
�10,753.615. The corresponding Proc Mixed �2LL for the
multivariate MEM was 21,507.2 ( � �2*�10,753.615).
The Mplus log likelihood for the restricted (H0) model was
10,761.576. Given certain regularity conditions, the differ-
ence in �2LL between the H0 and H1 model is distributed
as a chi-square with degrees of freedom equal to the differ-
ence in the number of parameters estimated by the two
models. In this case, the overall fit statistic was �10

2 � 15.92
(p � .10), suggesting that the restriction imposed by the
ML-CFA model on the within- and between-clusters covari-
ances did not result in a worse fitting model. Standardized
root mean squared residual for the between and within
models were 0.043 and 0.019, respectively, suggesting that
the multilevel model did an adequate job in reproducing
covariances at both levels.

The estimated variance of the latent literacy factor at the
within- and between-clusters level was 0.52 and 0.10, re-
spectively. However, in the absence of a common scale, the
magnitude of these variances is not directly comparable.
The issue of establishing common across-level scale is
discussed in the next section. The proportion of variance
explained by the latent literacy factor at the within level
ranged from .16 to .72. The corresponding proportions at the

between level ranged from .15 to .96. The relatively low
proportion of variance explained at the within level suggests
that after controlling for classroom variability in literacy,
there is considerable heterogeneity in the within-individual
variability in literacy. At the between level, PA and WT had
the lowest R2. It is generally acknowledged that PA may be
a less important indicator of literacy beyond second grade.
This could explain the low R2 for PA at both within- and
between-clusters level. On the other hand, low R2 for WT at

Table 2
Multivariate Random-Intercepts Mixed-Effects Model: Fixed and Random Effects

Outcome Spelling Word reading Phonemic awareness Writing Vocabulary

Grand mean 91.29 (0.65) 2.31 (0.04) 0.95 (0.03) �0.10 (0.05) 78.57 (0.70)

Between-clusters covariance/correlation (Gj)
a,b

Spelling 29.26 (6.41) 0.86 0.41 0.58 0.78
Word reading 1.49 (0.36) 0.10 (0.02) 0.36 0.57 0.92
Phonemic awareness 0.51 (0.20) 0.03 (0.01) 0.05 (0.01) 0.10 0.36
Writing 1.31 (0.37) 0.08 (0.02) 0.01 (0.01) 0.18 (0.03) 0.53
Vocabulary 22.82 (5.71) 1.60 (0.36) 0.45 (0.21) 1.21 (0.38) 29.33 (7.47)

Within-cluster covariance/correlation (Rij)
a,b

Spelling 158.42 (7.36) 0.68 0.32 0.51 0.31
Word reading 7.28 (0.43) 0.72 (0.03) 0.40 0.53 0.33
Phonemic awareness 1.85 (0.21) 0.16 (0.01) 0.21 (0.01) 0.25 0.18
Writing 4.83 (0.35) 0.33 (0.02) 0.09 (0.01) 0.55 (0.03) 0.31
Vocabulary 59.74 (6.63) 4.27 (0.46) 1.23 (0.25) 3.47 (0.40) 228.69 (10.73)

Note. Numbers in parentheses represent the standard error. �2LL for the model is 21,507.200
a Covariances are presented below the diagonal, and correlations are above the diagonal.
b Diagonals elements are the variances.

Table 3
Multilevel Confirmatory Factor Analysis: Unstandardized
Parameter Estimates

Measure Factor loading Residual variance R2

Within clustera

Spelling 13.91 (0.65) 57.32 (4.55) 0.64
Word reading 1.00 0.20 (0.02) 0.72
Phonemic awareness 0.28 (0.02) 0.17 (0.01) 0.19
Writing 0.65 (0.04) 0.33 (0.02) 0.40
Vocabulary 8.47 (0.75) 191.20 (9.33) 0.16

Between clustersb

Spelling 15.16 (1.91) 6.28 (2.63) 0.78
Word reading 1.00 0.00 (0.01)c 0.96
Phonemic awareness 0.28 (0.10) 0.04 (0.01) 0.15
Writing 0.81 (0.17) 0.11 (0.02) 0.36
Vocabulary 15.72 (2.50) 5.02 (4.40) 0.83

Note. Numbers in parentheses represent the standard error. �2LL for the
model was 21,523.152.
a Variance of the literacy factor at the within level was 0.52
(0.04). b Variance of the literacy factor at the between level was 0.10
(0.02). c Residual variance for word reading at the between level was
practically estimated at zero.
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the between level may indicate that there may be some other
factor influencing classroom level variability in WT.

Random Intercepts for a Latent Variable

So far we have described latent literacy factor at both the
within- and between-clusters level. This raises two related
questions: (a) If there can be random intercepts (i.e., vari-
ability in the cluster means for individual-level observed
variables), can we have a random intercept for the individ-
ual-level literacy factor? (b) Alternatively, does the cluster-
level literacy factor mean the same thing as the literacy
factor at the individual level? Technically these are ques-
tions of across-level invariance of the measurement model.

Consider a two-level measurement model with p observed
variables and q latent variables at each level. Each of the p
observed variables may be expressed in terms of within- and
between-clusters deviations:

Yij
P � 	P � yj

P�b� � yij
P�w�.

These within- and between-clusters deviations serve as in-
dicators of qth within and between latent variables:

yij
P�w� � �pq

�w��ij
Q�w� � eij

P�w� and yj
P�b� � �pq

�b��j
Q�b� � �j

P�b�.

If the factor loadings are invariant across levels ��pq
�b�

� �pq
�w� � �pq�, then the above expression may be simpli-

fied as

Yij
P � 	P � �pq�j

Q�b� � �j
P�b� � �pq�ij

Q�w� � eij
P�w� � 	P

� �pq��ij
Q�w� � �j

Q�b�� � �j
P�b� � eij

P�w�

� 	P � �pq�ij
Q � �j

P�b� � eij
P�w�

where �ij
Q is an individual-level latent variable that is itself

composed of within- and between-clusters deviations: �ij
Q

� �ij
Q�w� � �j

Q�b�. In other words, we now have an indi-
vidual-level latent variable with a random intercept at the
between-clusters level. Conceptually, invariance of across-
level factor loading equates the scales of the latent common
factor across levels, thus making latent factor variances to
be directly comparable. Also note that the observed indica-
tor continues to have variability at the between level (�j

P�b�).
This is the residual for the second-level factor model.

For the literacy data, the hypothesized model with invari-
ant factor loadings is presented in Figure 5. The literacy
factor at the individual level now has a cluster-level random
intercept. In addition, the observed variables continue to
have cluster-level random intercepts. These are actually, the
residual variances for the between-level random intercepts.
As such, the random intercepts for Level 2 observed resid-
uals are independent of the between latent literacy factor.
The Mplus log likelihood for the model with invariant
across-level factor loadings was �10,753.615. The differ-
ence in �2LL between the model with and without invariant
factor loadings was �4

2 � 8.618 (p � .071), indicating that
the hypothesis of invariant factor loadings cannot be re-
jected. The parameter estimates of the model with invariant
factor loadings are presented in Table 4 and are generally
very similar to the unconstrained model. Invariant factor
loadings make common-factor variances to be directly com-
parable across levels. The variance of the random intercept
for the literacy factor was 0.111, and the corresponding
residual within-cluster variance was 0.507. The proportion
of variance in the individual-level literacy factor explained
by its random intercept or ICC for the latent literacy factor
was .18.

The model presented in Figure 4 uses the general-specific
factor model as a template, with the between-level model
representing the general factor, and factor models for each
individual representing the specific factors. In contrast,
model in Figure 5 is analogous to the hierarchical factor
model, in which latent variables at the individual-level (i.e.,
the first-order factors) define the latent factor at the higher
level. However, note that individual observed indicators

Figure 4. Multilevel confirmatory factor analytic model of liter-
acy: completely standardized solution. The between- and within-
level latent variables are allowed to load onto the corresponding
between- and within-level literacy factors (lit). The five outcome
variables are spelling (S), word reading (WR), phonemic aware-
ness (PA), writing (WT), and Vocabulary (V). Note that the factor
model includes residual variances at each level. The measurement
intercepts of the between-level residuals are not included for
clarity.
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continue to retain variability at the higher level (�j
P�b�). In

summary, invariance of across-level factor loadings in the
general-specific model and zero variability for the observed
indicators at the second level are necessary prerequisites for
the use of the parsimonious hierarchical factor model
(Bauer, 2003; Curran, 2003).

Random Slopes in SEM and MLM

The notion of random slopes is novel in general SEM for
clustered data. Hence, we present this idea conceptually
within its native MLM framework and demonstrate how the
random slope may be represented as a latent variable within
the familiar CFA model. The random-intercepts model can
be extended to include the random effect of an individual
predictor (Xij):

Yij � �1j1 � �2jXij � eij, (20)

where �2j is the effect of X on Y for the jth cluster, and �1j

is the intercept (i.e., the level of Yij when Xij � 0). The
presence of subscript j in �2j indicates that the regression
coefficient is assumed to vary across clusters, hence the
term random slopes. The random regression coefficients can
be expressed in deviation form as

�1j � 	1 � u1j and �2j � 	2 � u2j, (21A & 21B)

Figure 5. Random intercept for a latent variable: multilevel confirmatory factor analytic model
with invariant across-level factor loadings. The factor loadings and residual variances at each
level are standardized estimates. Numbers in italics are the standardized between-factor
loadings. The variance of the literacy factor (lit; in bold) at each level is unstandardized. The
five outcome variables are spelling (S), word reading (WR), phonemic awareness (PA), writing
(WT), and Vocabulary (V). Note that the unstandardized factor loadings are invariant as shown
in Table 4.

Table 4
ML-CFA With Invariant Across-Level Factor Loadings:
Unstandardized Parameter Estimates

Measure Factor loading

Residual
variance/standard

deviation R2

Within clustera

Spelling 14.16 (0.58) 56.74 (4.37) 0.64
Word reading 1.00 0.20 (0.02) 0.71
Phonemic awareness 0.28 (0.02) 0.17 (0.01) 0.19
Writing 0.67 (0.04) 0.33 (0.02) 0.41
Vocabulary 9.49 (0.69) 190.43 (9.35) 0.19

Between clustersb,c

Spelling 14.16 (0.58) 2.58 (0.45) 0.77
Word reading 1.00 0.00 (0.17)c 1.00
Phonemic awareness 0.28 (0.02) 0.21 (0.02) 0.17
Writing 0.67 (0.04) 0.34 (0.03) 0.30
Vocabulary 9.49 (0.69) 2.977 (0.711) 0.53

Note. Numbers in parentheses represent the standard error. �2LL for the
model was 21,531.800.
a Variance of the literacy factor at the within level was 0.51
(0.04). b Variance of the literacy factor at the between level was 0.11
(0.02). c At the between-level, residual standard deviations were esti-
mated to avoid negative residuals. d Residual variance for word reading
at the between level was practically estimated at zero. ML � multilevel;
CFA � confirmatory factor analysis.
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where 	1 and 	2 are the mean intercepts and slopes, respec-
tively, and u1j and u2j are the corresponding cluster devia-
tions. Note that the intercept is defined at Xij � 0. If Xij is
centered at the grand mean, then 	1 and u1j are defined at
the grand mean of Xij.

Formulating Random Slope as an SEM Latent
Variable: The Notion of a Definition Variable

For the random-intercept model, the observed variables
(Yij) were the scores for an individual i nested within class-
room j. The latent variable (�1j) represented the random
intercept. Because individuals within classrooms are inter-
changeable, the factor loading (�i,1) for each individual was
fixed to 1.0. Similarly, intercluster variability in the effect of
X on Y (�2j) may be represented as a random variable. To do
so, the factor loadings for �2j must be fixed to the observed
value of Xij for each individual (�i,2 � Xij), which may in
fact be different for every individual in the sample. Until
very recently, most popular SEM software did not support
any mechanism for fixing model parameters to an individ-
ual’s data values. Currently, Mx (Neale et al., 2004) and
Mplus13 (Muthén & Muthén, 2004) offer such a capability,
and the variable that is used for fixing model parameters is
called a “definition variable.”

Graphical representation of a random-slopes model.
Figure 6A presents a CFA formulation of the random-slopes
model. Xij is used as a definition variable in which individ-
ual-specific values of Xij are used to fix model parameters
(i.e., the slope factor loadings of Yij on �2j). Definition
variables are represented by placing the variable (Xij) inside
a diamond symbol ({). As in the case of a random-inter-
cepts model, because individuals are assumed to be ex-
changeable, it is necessary to represent the model for a
single individual only. Figure 6B illustrates a CFA formu-
lation of the random-slopes model using the succinct graph-
ical representation introduced earlier. Two extensions to the
RAM notation (McArdle & Boker, 1990) are necessary for
representing a random-slopes model: (a) the inclusion of
individual and cluster subscripts to incorporate multilevel
information and (b) the use of diamonds to represent defi-
nition variables.

An alternate graphical representation of a random-slopes
model. Random slopes are graphically represented in a
somewhat different fashion in Mplus (Figure 6C). This
approach does not use individual and cluster subscripts to
indicate the level of each variable, instead the within and
between parts of the model are represented by using explicit
labels and by a line separating the two models. The outcome
variable is assumed to have variability at the cluster level.
The fact that the effect of Xij on Yij is random at the cluster
level is represented by a dot on the line representing the
regression effect of X on Y (in the within part of the
diagram). Within the script, the corresponding random re-

gression is specified as: S | Y on X. The label of the random
effect so defined (s) is placed next to the dot to indicate the
name of the random variable at the cluster level. The ran-
dom intercept at the between level is referred to by the
variable label of the dependent variable. The between part
of the diagram has two latent variables y (intercept) and s
(slope) for the two random effects.

We prefer the extended RAM notation for representing
multilevel SEM models for several reasons. First, the path
diagram is a direct, complete, and mathematically accurate
representation of the underlying model, and may be used for
representing random slopes of any type at both levels (in-
dividual and cluster), including random slopes in the con-
text of longitudinal data with continuously varying values of
time and possibly time-varying covariates. Second, conven-
tional rules of a path diagram may be used without any
modifications to derive the implied means and covariances.
Third, the extended RAM notation reformulates the notion
of random slopes into the familiar concept of a restricted
CFA model, yet the meaning of the diagram is readily
interpretable in terms of both the multilevel random-slopes
model and the restricted CFA model. For example, both
intercept and slope factors are defined as conventional latent
variables, with factor loadings fixed to 1.0 and the person-
specific Xij, respectively. Fourth, the diagram makes an
explicit distinction between a modeled dependent variable
(Yij) and an exogenous observed variable Xij used as a
definition variable.

Correspondence Between the SEM and MEM
Formulation of Random Slopes

It is clear from Figures 6A and 6B that the random-slopes
model can be represented as a cluster-level restricted CFA
model in which the factor loadings for the slope are fixed to
individual specific values of the predictors Xij. For cluster j
with three individuals, the factor-loading matrix is

�j � � 1 X1j

1 X2j

1 X3j

�.

In general, for a cluster with Nj individuals, the factor-
loading matrix is �j � �1Nj

|Xj� where 1Nj
is a unit vector, Xj

is the predictor vector for all individuals in cluster j, and |
represents horizontal concatenation of the two column vec-
tors. The two latent factors (�1j and �2j) represent the
random intercept and random slope, respectively. The latent
factor means represent the fixed effects:

���	1

	2
�,

13 Mplus does not use the term definition variable, although
such a functionality is implicitly available to a certain extent.
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and the latent factor covariances represent the cluster-level
covariance between the intercept and slope factors:

�j � �V�u1j�
CV�u2j,u1j� V�u2j�

�.

Finally, the residual covariance matrix contains variances of
residuals for all individuals in cluster j.

�j � �
w
2


w
2


w
2
�.

Because individuals within a cluster are assumed to be
interchangeable, residual variances are equal. For a cluster
with Nj individuals, the residual covariance matrix is
� � INj

� 
w
2 , where INj

is an identity matrix, and 
w
2 is the

common residual variance. As in the case of the random-
intercepts model, the above matrices for the CFA formula-
tion of the random-slopes model correspond to matrices of
the corresponding MEM matrices: the factor-loading matrix
(�j) corresponds to Xj and Zj matrices, the factor covari-
ance matrix (�) corresponds to the Gj matrix, the residual-
covariance matrix (�j) corresponds to the Rj matrix, and the
latent factor mean vector is identical to the fixed-effects
vector (�).

Model-Implied Covariance: Person-Specific
Covariances

Given the previous formulation of a random-slopes model
as a CFA model, the model-implied covariances and means
are identical to the corresponding equations for the CFA
formulation of the general MEM. Although the restricted
CFA is used for modeling both random-intercepts and ran-
dom-slopes model, the model-implied covariance matrix
for the random-slopes model is very different from that
for the random-intercepts model. This difference is due to
the presence of Xij as a definition variable and necessi-
tates certain modifications to the underlying software
before FIML estimation can be used to fit models with
random slopes.

Recall that the model-implied covariance matrix for the
random-intercepts model has a very simple structure with
within-cluster covariance among any two Yij equal to the
variance of the random intercept, and the variance for each
individual is equal to the sum of the between-clusters and
within-cluster variances. This is no longer true for the
random-slopes model. The variance of Ymj for individual m
is

regression of Y on X is random at the between level. The within-
level dependent variable is assumed to be random at the between
level, which now becomes the random intercept. Between-level
random intercept and slope are represented as latent variables.

Figure 6. A: Univariate random-slopes model represented as a
restricted CFA model. Observed scores of all individuals (Yij) in
cluster j are allowed to load onto two latent factors: intercept (�1j)
and slope (�2j). The factor loadings for all observed variables on
the intercept factor are fixed to 1.0. The factor loading for each
individual on the slope factor is fixed to individual’s observed
score on Xij (definition variables). Definition variables are repre-
sented by a diamond symbol. Dashed line indicates scores of
individuals not included in the figure. The within-cluster residual
variance is assumed to be equal for all individuals (�). B: Succinct
representation of univariate random-intercepts model. The figure
represents the model for a single generic individual (i) nested in
cluster (j). The observed variable includes both person (i) and
group (j) subscripts, whereas the cluster-level latent intercept and
slope factors include the cluster subscript. Definition variables (Xij)
are represented by a diamond symbol. All model parameters are
explicitly represented in the figure. C: Mplus representation of a
random-slope model. Within and between levels are separated by
a dashed line. A dot on the within-regression indicates that the
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V�Ymj� � V�I� � 2Xmj*C�S,I� � �Xmj�
2V�S� � V�yw�,

and the covariance between scores of any two individuals
Ymj and Ynj is

C�Ymj,Ynj� � V�I� � V�S�XmjXnj � C�S,I�Xmj � C�S,I�Xnj.

It is clear that for the random-slopes model, the co-
variance among individuals within a cluster is a function
of person-specific values of Xij. More simply, there is no
single covariance matrix for the entire sample as in the
case of conventional SEM. Instead, in order to fit a
random-slopes model as an SEM model, covariances
must be modeled as a function of predictors. As a result,
conventional sample means- and covariance-based ML
estimation is not suitable for modeling a random-slopes
model. In principle, FIML estimation allows the covari-
ance for each unit (in this case, the cluster) to be modeled
as a function of an individual’s values on predictors (in
this case, Xij). To do so, a special data-handling mecha-
nism is needed that allows model parameters to be fixed
to person-specific data values. Although FIML estimation
has been available in popular SEM software for some
time, the value of modeling covariances as a function of
observed data values has not been widely recognized and
hence incorporation of random slopes within SEM soft-
ware has been slow in coming.

Random Slopes in ML-SEM: Empirical Example

We now illustrate a bivariate random-slopes model
from a ML-SEM perspective. The data used in this ex-
ample come from a bilingual (Spanish and English) re-
search study involving 1,418 kindergartners clustered
within 134 classrooms. Students were in one of two
different types of language instructional programs: (a)
immersion with an exclusive focus on instruction in
English and (b) nonimmersion, including various levels
and types of bilingual instruction. The dependent vari-
ables of interest include reading ability in English (RAE)
and Spanish (RAS), and the independent variable is the
level of blending words/Spanish (BWS). Blending words/
Spanish is a component of phonological awareness and
involves the ability to blend separate sounds to produce a
word. It is hypothesized that the effect of BWS on RAE
and RAS will vary across classrooms. In addition, the
cluster-level variable, language instructional program, is
hypothesized to predict the level of classroom RAE and
RAS as well as the classroom variability in the effect of
BWS on RAE and RAS, respectively. Within classrooms,
the RAE and RAS residuals are expected to be correlated.

Table 5 and Figure 7 present the hypothesized model
along with the parameter estimates. For each outcome (RAE
and RAS), there are two classroom-level latent variables: (a)
the random-intercept or the average level of the outcome at

Table 5
Bivariate Random-Slopes Model: Parameter Estimates

Between-clusters model

English Spanish

English intercept English slope Spanish intercept Spanish slope

Latent variable covarianceb

Random factor
English intercept 0.515 (.108) .355 �.416 �.498
English slope 0.018 (0.011) 0.005 (0.002) .210 .316
Spanish intercept �0.242 (0.081) 0.012 (0.012) 0.656 (0.108) .607
Spanish slope �0.016 (0.009) 0.001 (0.001) 0.022 (0.011) 0.002 (0.001)

Fixed effects

Predictor
Intercept �0.251 (0.085) 0.195 (0.013) 0.119 (0.097) 0.211 (0.010)
Immersion 1.332 (0.169) 0.049 (0.028) �1.234 (0.167) �0.076 (0.024)

Residuals

Within-cluster model
(residual covarianceb)

English Spanish

English 1.593 (0.122) .565
Spanish 0.800 (0.070) 1.259 (0.092)

Note. Correlations are above the diagonal. Model log likelihood � �4,350.045.
a Within- and between-clusters covariances are conditional or residual covariance matrices.
b Numbers in parentheses represent the standard error.
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the grand mean of BWS and (b) the classroom-level vari-
ability in the effect of BWS on each outcome. For both
outcomes, the factor loadings for the respective intercept
factors are fixed to 1.0, and those for the slope factor are
fixed to the person-specific values of BWS, represented
within a diamond. The person-specific residuals for RAS
and RAE are allowed to correlate. All four cluster-level
latent variables are regressed on the dummy language pro-
gram variable (coded: 1 � immersion; 0 � nonimmersion).
As a result, the average Level 2 regression intercept for all
four variables is defined for the nonimmersion group. The
effect of the dummy language program variable on each
latent factor represents the mean difference between the two
program types.

Fixed Effects: Effect of Language Program on RAE
and RAS Intercepts and Slopes

For the nonimmersion group, the expected levels of
RAE intercept and slopes were �0.251 and 0.195, re-
spectively, and the expected levels of RAS intercept and
slopes were 0.119 and 0.211, respectively. The average
intercept is determined entirely by the origin of the
dependent variable and has little substantive meaning.
Significant slopes for the nonimmersion group mean that

there was significant effect of BWS on both RAE and
RAS for the nonimmersion group. The effect of the
dummy language instruction variable on both RAE inter-
cept (1.332) and RAS intercept (�1.234) was significant,
suggesting that the two language programs were signifi-
cantly different in the level of English and Spanish read-
ing ability at the grand mean of BWS. As would be
expected, the immersion group was significantly higher
on the English intercept as compared with the nonimmer-
sion group, whereas the nonimmersion was higher on the
level of Spanish intercept. The effect of instructional
language on RAE slope was nonsignificant (0.049, ns),
whereas the effect on the RAS slope was significant and
negative (�0.076), suggesting that the average effect of
BWS on Spanish reading ability was lower for the im-
mersion group as compared with the nonimmersion
group. In other words, the effect of BWS on Spanish
reading ability is stronger for the group receiving some
Spanish instruction as compared with the group receiving
no Spanish instruction. On the other hand, BWS does not
differentially influence English reading ability depending
on the language program.

Between-Clusters Residual Covariance Among RAE
and RAS Intercepts and Slopes

After controlling for the language of instruction, there
was significant residual variability in RAE intercept (0.515)
and RAS intercept (0.656) as well as RAS Slope factor
(0.002). In addition, residual covariance between RAE and
RAS intercepts was significant and negative (�0.242), sug-
gesting that at the grand mean of BWS, classrooms higher
in average English reading ability were lower in average
Spanish reading ability. The remaining covariances among
the cluster-level latent variables were not significantly dif-
ferent from zero. It was assumed that the covariance among
the classroom-level random effects was the same across the
two language program groups.

Within-Cluster Covariance Between RAE and RAS
Residuals

At the individual level, there was significant residual
variability in English and Spanish reading ability. In addi-
tion, English and Spanish language residuals were signifi-
cantly and positively correlated (.565). The pattern of cor-
relation between the reading abilities for individual
residuals was the exact opposite of what was observed at the
classroom level, in which the average reading ability inter-
cepts were negatively correlated (�.416). This pattern of
finding is appropriate in bilingual education and reflects the
fact that the same outcome has a different meaning at the
individual and classroom levels. At the individual level, the
language abilities are expected to be positively correlated,
reflecting the influence of individual-level factors such as
intelligence and socioeconomic status; whereas at the class-

Figure 7. Parameter estimates for the bivariate random-slopes
model for English (Eng) and Spanish (Spa) reading. Each outcome
is represented as a separate random-slopes model as in Figure 6B.
Intercept (Int) and slope (Slp) factors for each outcome (English &
Spanish) are allowed to be correlated. Individual residuals for each
outcome are also allowed to correlate. Parameter estimates are
unstandardized except for interrelationships among variables at
each level that are correlations. Imm � immersion; BWS �
blending words/Spanish.
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room level, the negative correlation between the average
levels of reading ability reflects differences in the pattern of
English and Spanish instruction across classrooms. Gener-
ally speaking, in the current sample, classrooms with higher
levels of English instruction tended to have lower levels of
Spanish instruction, and vice versa, explaining the negative
correlation between the two abilities at the classroom levels.

Random Slopes Versus Cross-Level Latent Variable
by Observed Variable Interaction

The empirical example presented above for illustrating
the use of random slopes in SEM was rather trivial. How-
ever, the latent variable approach to modeling random ef-
fects offers an interesting alternative substantive interpreta-
tion more in line with the latent variable modeling
perspective. From a MEM perspective, the effect of BWS
on RAS and RAE is assumed to vary randomly across
classrooms. This interpretation is implicit in the graphical
representation used by Mplus (Figure 6C). From a latent
variable perspective, we have classroom-level latent vari-
ables (random slope for RAS and RAE), perhaps indicative
of an unobserved classroom-level construct, whose effect is
moderated by the level of individual-level BWS. Both per-
spectives are consistent with the underlying mathematical
model. However, the cross-level interaction between an
observed and a latent variable is closer in spirit to the latent
variable modeling perspective. This is clearly evident in the
graphical representation of the model using the extended
RAM notation (see Figure 7).

Discussion

The current article extended Mehta and West’s (2000)
approach of fitting LGC models for continuous time to the
general case of ML-SEMs with random slopes. The article
demonstrates the equivalence of the general multivariate
MEM and ML-SEM with definition variables. MEMs are
conceptualized as a special case of the restricted CFA
model. The article also provides an extended RAM notation
for graphical representation of ML-SEMs with random
slopes. The extended graphical notation is a concise and
mathematically complete representation of the model as
well as its assumptions. The graphical notation should assist
in conceptualizing complex ML-SEMs and also facilitate
communication among researchers. The most important
question from a practitioner’s perspective is the following:
How applicable are ML-SEM models for answering sub-
stantive questions of interest? In addition, in applied set-
tings, methodological issues regarding the estimation and
evaluation of ML-SEMs are critical. These issues are high-
lighted next.

Applicability of ML-SEM Models

MLM is generally thought of as multiple regression for
clustered data. In the same way that SEM improves on
multiple regression, ML-SEM brings the advantages of la-
tent variable modeling to MLM for clustered data. There-
fore, ML-SEM models are well suited to the kinds of
questions for which SEM is best known.

Multilevel measurement models. The multilevel mea-
surement model is perhaps the most important class of
ML-SEM application. It is possible to estimate individual-
level measurement models using observed or latent individ-
ual-level indicators. Similarly, it is possible to define clus-
ter-level measurement models using the cluster-level
random intercepts for the individual-level variables as well
as cluster-level observed indicators. As in the context of
conventional SEM, measurement modeling at each level of
nesting opens up the possibility of investigations of mea-
surement invariance. As illustrated in this article, we may be
interested in the invariance of measurement model across
levels of nesting. If across-level measurement invariance is
justified, then an individual-level latent variable may be
thought as having random variability at the cluster level. We
may also be interested in across-group equivalence of mea-
surement models. With clustered data, the grouping variable
can be at the level of the individual (e.g., gender; see
Curran, 2003) or at the level of the cluster (e.g., treatment
administered at the level of the cluster). While a cluster-
level grouping variable can be treated just as it would be in
the conventional multiple group modeling, albeit for multi-
level data, an individual-level grouping variable poses a bit
of a challenge, as individuals belonging to different levels of
the grouping variables are no longer independent within the
same cluster. In such cases, we must now consider across-
cluster variance and covariance across observed and latent
variables for each grouping variable, in addition to the
independent within-cluster variability for each group.

Multilevel mediation. The ML-SEM is well suited to
evaluate the hypothesis of direct and mediated effects
among latent variables at each level of nesting. ML-SEMs
for latent mediation impose additional hypothesized restric-
tions on SEM models at each level of nesting. From a
practitioner’s perspective, this involves specifying addi-
tional directed relations among latent variables at each level
(Kaplan & Elliot, 1997). At the level of the cluster, a model
of mediation may involve latent variables that are defined
using cluster-level indicators as well as those defined using
individual-level indicators. For example, the latent variable
of teacher quality may influence classroom-level teacher
behavior, which in turn influences classroom variability in
student-level outcome (e.g., student-level achievement at
the classroom level).

Random slopes. As illustrated in this article, ML-SEM
can also be used for estimating cluster-level variability in
the effect of an individual-level variable on an individual
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outcome. The dependent variable in this case may be an
individual-level observed or latent variable. As in MLM and
SEM, no distributional assumptions are made with respect
to the strictly exogenous predictor other than the assumption
of no measurement error.14 The cluster-level variable rep-
resenting the random effect is in fact a latent variable and
may be included as an independent or dependent variable in
any cluster-level structural model. It is important to note
that a model with a cluster-level random effect as a depen-
dent variable of a cluster-level predictor (observed or latent)
implies a hypothesis of an individual by cluster-level inter-
action between the cluster-level predictor and the individu-
al-level variable whose effect is assumed to vary randomly
at the higher level. In other words, an ordinary directional or
mediational hypothesis involving a cluster-level predictor
and a random effect for an individual-level predictor is
actually a hypothesis of across-level moderation effect.

For naturally multivariate data, such as longitudinal or
family research, it is possible to have random effects for
individual-level variables that may also vary across clusters.
For example, in individual growth curve models of students
nested within classrooms, the effect of time on an outcome
(observed or latent) is assumed to vary across individuals
and also across classrooms. For univariate outcomes, within
the MLM perspective, such models are conceptualized as
three-level models (repeated measures within individuals
and individuals within clusters). From a SEM perspective,
such models may be treated as two-level models for multi-
variate data, provided that the data are time structured. If the
time intervals between measurement occasions vary consid-
erably, then it is no longer possible to use conventional
missing data approach for fitting such models. Instead, it
becomes necessary to model random effects of time using
the definition variable approach (Mehta & West, 2000).
This can be easily accomplished in software such as Mx.15

Evaluation of Model Fit

There is extensive methodological literature discussing
evaluation of model fit in conventional SEM (e.g., Ander-
son & Gerbing, 1984; Browne & Cudeck, 1993), with
simulation-based studies of alternative fit indices providing
the bulk of the practical evidence (Bollen, 1986; Curran,
West, & Finch, 1996; Gerbing & Anderson, 1993; Paxton,
Curran, & Bollen, 2001). At a practical level, various fit
indices attempt to answer two general types of questions: (a)
Can we reject an ill-fitting and presumably incorrect model?
and (b) Can we identify the “best” model from a set of
competing and perhaps well-fitting models? The answer to
these questions involves a reasoned argument regarding the
power to detect a certain magnitude of disparity given the
sample size, number of variables, and number of estimated
parameters. Given the fact that ML-SEM is a variant of
restricted CFA, the collective wisdom regarding evaluation
of model fit in conventional SEM ought to be directly

generalizable to the case of ML-SEM. The nested data
structure, however, adds an additional layer of complexity
making the task a bit more challenging. Currently, very little
is known regarding the properties of various fit indices in
the context of ML-SEM. In some cases, even the definition
of the fit index is in question. The following discussion
attempts to identify relevant issues fully recognizing that the
resolution of these issues will depend on future theoretical
work and simulation studies.

Sample size(s) in ML-SEM. With nested data, there are
at least two different sample sizes of interest: number of
clusters (n) and total number of participants (N). Given the
fact that ML-SEMs are really restricted CFA models fit to
cluster-level covariances rather than the individual-level
covariances, the appropriate sample size comparable to the
conventional SEM sample size is the total number of clus-
ters (n). The individual likelihood maximized in conven-
tional SEM as well as in ML-SEM allows missing data. In
ML-SEM, missing data includes both an unequal number of
observations per individual and an unequal number of in-
dividuals per cluster (Nj), in which the maximum number of
possible observation for a given cluster is Nj*ny. The avail-
ability of different sample sizes raises questions regarding
the appropriate sample size for computing various fit
indices.

Likelihood ratio test (LRT) for nested-model fit. The fit
of the base ML-CFA model is evaluated relative to the
multivariate MEM by using an LRT comparing the differ-
ence in the fit functions (�2LL) given the difference in
number of estimated parameters. In ML-SEM, the model is
fit simultaneously to the between-clusters and within-cluster
covariance. However, the likelihood is maximized with
respect to the covariance defined at the level of the cluster.
This has two implications: (a) The sample size in ML-SEM
should refer to the total number of clusters (n) instead of the
total number of individuals (N). (b) The fit of the model to
the within-cluster covariance cannot be completely sepa-
rated from the model fit to the between-clusters covariance.

The chi-square test of nested model fit is known to be
sensitive to sample size (Bollen, 1986, 1990; Marsh et al.,
1988). For the between-clusters CFA, this would be the total
number of clusters. However, the effective number of ob-
servations may vary considerably across clusters. Hence,
the between-level fit would also be a function of number of
individuals per cluster (Nj). Similarly, the within-level
model is not fit to individual data, but instead to the indi-

14 Models in which the random effect of a latent variable is of
interest, alternative estimation methods involving integration are
necessary (Skrondal & Rabe-Hesketh, 2004). Such methods are
computationally intensive and are currently available in Mplus and
GLLAMM.

15 At the time of writing this article, Mplus can fit such models
using computationally intensive integration.
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vidual-level residuals. As a result, it is likely that the chi-
square test of fit for the within-cluster model would be
influenced by the total number of individuals (N), the total
number of clusters (n), and possibly the average number of
individuals per cluster (N� j) as well as the variability in the
number of individuals per cluster.

Alternative fit indices. Recognizing that a large sample
size can lead to rejection of trivially ill-fitting models, fit
indices based on the principles of parsimony and informa-
tion are becoming increasingly popular in SEM to identify
appropriate models and to make decisions among compet-
ing models (root mean square error of approximation;
Browne & Cudeck, 1993). Information-theoretic criteria
(Akaike, 1973, 1987) are particularly useful in ML-SEM
models with random slopes because the covariance-based fit
indices are no longer meaningful. The definition and the role
of these indices in ML-SEM is not clear, particularly with
respect to the sample size to be used for computing these
indices (i.e., N vs. n). This is most clearly seen with respect
to the Bayesian information criterion (BIC; Schwarz, 1978)
for which the role of the sample size and the number of
estimated parameters (i.e., parsimony) is easy to understand.
BIC is defined as

BIC � � 2LL � rln N

where r is the number of free parameters and N is the
sample size. The BIC is used for choosing the best model
among a set of competing, non-nested models with different
numbers of parameters with close but different values of the
fit function. In such a situation, the LRT test is not suitable
and the notion of information is invoked for comparing
models. It is expected that a model with greater number of
parameters will have a lower �2LL. The question then
becomes the following: Are the additional degrees of free-
dom well spent? For the previous definition of BIC, a model
with a smaller BIC is preferred on the grounds of parsi-
mony. BIC penalizes a model with a greater number of
estimated parameters. For two competing models, the model
with more parameters will likely have a smaller value of
�2LL but will also have a larger value of rlnN. Hence, a
model with a slightly larger �2LL may be selected if it has
a sufficiently small number of parameters.

The value of N in the definition of BIC is a constant for
any given sample and serves as an amplifier for the penalty.
Everything else remaining the same, a larger sample size
would result in a greater penalty (rlnN) for the same number
of parameters. For ML-SEM the question then becomes the
following: What sample size (N or n) is appropriate for
computing BIC? The choice of the sample size will have a
nontrivial impact on the computed value of BIC, as the use
of total sample size (N) would result in a far greater penalty
as compared with the use of the number of clusters (n).16

Conceptually, the likelihood value for ML-SEM is com-
puted by fitting the model at the level of the cluster and not

at the level of an individual; hence, the total number of
Level 2 nesting units (n) would seem like an appropriate
sample size. SAS Proc Mixed (SAS Institute, 1996) does in
fact use n for computing BIC for multivariate-mixed effects
model. In contrast, Mplus uses the total sample size (N) for
computing BIC for an identical model. The two different
formulas can result in different rank ordering of models and
thus lead to different decisions regarding the preferred
model. We expect that future theoretical and simulation
work will clarify the issues involved in the choice of sample
size for computing various fit indices as well as the utility of
different fit indices for evaluating model fit in ML-SEM.

Estimation, Computation, and Software
Implementation

Computational aspects of estimation, implementation of
an algorithm in a specific software, and choice of model
representation in scripts are related but distinct issues. In
practice, however, these are often intertwined for the end
user. There has been an almost exponential growth in the
sophistication of software for fitting complex statistical
models. This trend is likely to continue in the near future,
and we expect that the specific issues discussed here are
likely to be resolved before the current article reaches its
intended audience.

The FIML estimation necessary for fitting ML-SEM mod-
els is currently available in other SEM software packages
such as Mx (Neale et al., 2004) and Mplus 3.11 (Muthén &
Muthén, 2004). At the current time, Mx has two major
limitations: (a) Although Mx has the necessary feature set
and the underlying optimizer is exceptionally fast, it is
highly inefficient in the manner in which the multilevel
likelihood is computed, limiting its use to models with a
small number of individuals per cluster and a small number
of variables. (b) Mx requires that the models are specified in
terms of matrices and model-implied means and covari-
ances. This places an undue burden on an end user whose
sole interest is to estimate parameters as easily as possible.
Mplus scripting language is easy to learn even for fitting
complex ML-SEM models. However, at the time of writing,
Mplus uses numerical integration for computing the likeli-
hood for ML-SEM with random slopes at both levels. This

16 There are two parts to the BIC equation: �2LL, which is a
constant, and rlnC, in which C � n or C � N. For a single model,
the use of n or N does not change the rank order. For two
competing models with different values of �2LL (such that LL is
a constant) and unequal number of free parameters, the choice of
C can alter the rank order of the preferred model based on the
value of BIC. This is because the different values of C differen-
tially penalize or amplify lack of parsimony. For a sample with
n � 100 and N � 1,000, amplification factors for n and N are 4.605
and 6.908, respectively. For the same absolute values of �2LL and
difference in �2LL, between two models, the BIC values for the
two models may be different.
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is inefficient and unnecessary for models with continuous
outcomes as the likelihood can be computed analytically.
As mentioned earlier, it is likely that these issues will be
resolved in the near future.
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