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Abstract: We present a method of estimating the number of people in high density crowds (hundreds to 

thousands of individuals) from still images. Unlike most existing works our method uses only still images to 

estimate the count. At this scale, we cannot rely on just one set of features for count estimation. We, 

therefore, use a fusion of multiple sources, viz. interest points (SIFT), Fourier analysis, wavelet 

decomposition, GLCM features and head detections, to estimate the counts. Each of these sources gives a 

separate estimate of the count along with confidences and other statistical measures which are then 

combined to obtain the final estimate. We tested our method on an existing dataset of fifty images 

containing over 64000 individuals. Further, we added another fifty annotated images of crowds and tested 

on the complete dataset of hundred images containing over 87000 individuals. 
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1. Introduction 

Crowd counting has several real-world applications: crowd management, safety control and urban 

planning, monitoring crowds for surveillance, modeling crowds for animation and crowd simulation. Crowd 

size may also be an indicator of comfort level in public spaces or of an imminent stampede. 

Many of the proposed automated systems for density and count estimation suffer from some limitations: 

inability to handle large crowds (thousands of people); reliance on temporal constraints; reliance on 

detecting, tracking and analysing individual persons in crowds. Another important limitation that some of 

these methods suffer from is the requirement of installed infrastructure on the site.  

Most existing people counting methods can be divided into three categories: (1) pixel-based analysis; (2) 

texture-based analysis; and (3) object-level analysis.  

Pixel based methods employ very local features such as edge information or individual pixel analysis to 

obtain counts [1]-[8]. These methods focus on estimating the density rather than count. Texture based 

methods rely on texture modelling through the analysis of image patches [1], [5], [7], [9]-[15]. Some texture 

analysis methods suggested in literature include grey-level co-occurrence matrix, Fourier analysis and 

fractal dimension. Object level methods try to locate individual persons in a scene [6], [8], [15]-[22]. But 

these methods work best only for very low density crowds. For high density crowds the evidence for the 

presence of a single person is scarce. Even for low density crowds, partial occlusions, perspective effects, 

cluttered background etc. negatively impact the performance of object-level methods. 

Brostow and Cipolla [16] and Rabaud and Belongie [19] count moving people in videos by estimating 

contiguous regions of coherent motion. Addressing concerns about preservation of privacy in tracking 

people for counting, Chen et al. propose a texture based method for counting [1].  
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Some works estimate the relationship between low-level features and the density or count by training 

regression models. Some of these methods are global, which learn a single regression function for the entire 

image/video [1], [2], [4], [23]. But these methods make an implicit assumption that the density is the same 

over the image, which is not valid for most images. Some regression methods can be local which divide the 

image into cells and perform regression for each cell [11], [3], [15]. These methods deal with the problems 

mentioned above efficiently. An alternate multi-output regression model was proposed by Chen et al. [5]. 

The aim of this paper is to develop an effective texture-based method to solve the problem of counting the 

number of people in extremely dense crowds. The method should work well for dense crowds but should be 

robust to variations in density. For very dense crowds, a single feature or detection method alone cannot 

provide an accurate count due to low resolutions, occlusions, foreshortening and perspective. We build 

upon the work of Idrees et al. [15] and propose a model that combines sources of complementary 

information extracted from the images. 

Appearance based features like SIFT descriptors are also useful to estimate the texture elements. SIFT 

features have been shown to be successful for crowd detection [9]. Idrees et al. also used SIFT as one of the 

features for estimating crowd counts. 

The main contribution of this work is the use of multiple texture analysis sources to estimate the counts 

for dense crowds. We employ Fourier analysis, GLCM features and wavelet transform to analyse the texture 

information. Wavelet features have not been used for crowd counting or density estimation before. Along 

with these, we use head-detections and SIFT descriptors for our framework. 

Most existing methods have been tested on low to medium density crowds, e.g., UCSD dataset [1] (11-46 

people per frame), Mall dataset [5] (13-53 people per frame) and PETS dataset [24] (3-40 people per 

frame). In contrast, we show the performance of our method on the UCF crowd counting dataset [15] of 50 

images containing between 96 and 4633 people per image. Further, we complement the dataset with 50 

more images to expand it to 100 images and demonstrate the robustness and accuracy of our method on 

this new combined dataset. 

2. Methodology 

Fig. 1 is an overview of our framework. We divide the image into small cells and obtain the estimate from 

each cell to counter the variations in density of the crowd. The final output is the sum of all cell counts. 

 

  

Fig. 1. A flow chart illustrating the methodology adopted in this paper. (a) The image is first divided into 

small cells in a grid. (b) Count is estimated for each cell by fusing estimates from five different methods. 

 

2.1. Counting in a Cell 

For a given cell P, we estimate the counts and confidences from five different sources. These are 
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combined to obtain a final estimate of the person count for that cell.  

2.1.1. Interest-points based count 

Arandjelovic [9] used a statistical model based on quantized SIFT features to segment an image into 

crowd and non-crowd regions. Subsequently, Idrees et al. [15] used interest points to estimate counts and to 

get a confidence score of whether the cell represents a crowd. We follow this idea to calculate the counts. 

Given a training set, we obtain SIFT features and cluster then into a codebook of size K. We use sparse SIFT 

features to train a Support Vector Regression (SVR) model using the counts at each patch from ground truth 

and use the trained model to obtain counts for new images patches. We calculate the SIFT features using the 

VL-FEAT library [25]. 

Due to the sparse nature of SIFT features, the probability of observing ki instances of the i-th SIFT word 

can be modeled as a Poisson distribution. Suppose, for a cell containing crowd, the expected number of 

detections of the i-th SIFT word is λi
+. Then, the probability of observing ki instances of the i-th SIFT word in 

a cell containing a crowd can be written as 𝑝(𝑘𝑖|𝑐𝑟𝑜𝑤𝑑) =  𝑒−𝜆𝑖+[𝜆𝑖+]𝑘𝑖 𝑘𝑖!⁄ . We can write a similar 

expression for a non-crowd cell (λi
-). Assuming independence between counts of any two SIFT words in a 

cell, the log of the likelihood ratio of crowd and non-crowd patches is: µ = log 𝑝(𝑘1, 𝑘2, … , 𝑘𝐾|crowd) −log 𝑝(𝑘1, 𝑘2, … , 𝑘𝐾|¬crowd) =  ∑ [𝜆𝑖− − 𝜆𝑖+ + 𝑘𝑖(log 𝜆𝑖+ − log 𝜆𝑖−)]𝐾𝑖=1 , where µ can be interpreted as the 

confidence about the presence of crowd in an image cell. 

2.1.2. Counts from texture analysis methods 

We employ three different texture analysis methods which separately give an estimate of the count which 

will be used later to give a final estimate of the count in the cell. 

Fourier Analysis: Fourier analysis can be used to capture the repetitions in crowds. Since we are dealing 

with small cells and not the complete image, we can safely assume that the crowd density in a cell is 

uniform. In this case, the Fourier transform, f(ω), will show the repeated occurrence of people as peaks.  

For a given cell, P, in an image, we calculate the gradient, 𝛻(P), and apply a low pass filter to remove high 

frequency components. Then we apply inverse Fourier transform to obtain the reconstructed image patch, 

Pr. The local maxima in the reconstructed image give an estimate of the total person count in that cell. We 

also calculate the several other statistical measures, such as entropy, mean, variance, skewness and kurtosis 

for both Pr and the difference | 𝛻(P) – Pr|. We use the count and these measures as input for the next step 

(Section 2.2). 

GLCM Features: Many people have used GLCM features for density/count estimation [11-[13], [26]. We 

adapt similar features to estimate the number of people. We quantize the image and calculate the 

joint-conditional probability density function, f(i, j|d, θ), with distance, d = 1, and angles, θ ∈ {0°, 45°, 90°, 

135°}. We calculate the following texture features: 

Dissimilarity: 
,

( , ) ( , , )i jD d f i j d i j    ; Homogeneity: 2

,
( , ) ( , , ) / 1 ( )i jH d f i j d i j        ; 

Energy: E(d, θ) = ∑ 𝑓(𝑖, 𝑗|𝑑, 𝜃)2𝑖,𝑗 ; Entropy: P(d, θ) = -∑ 𝑓(𝑖, 𝑗|𝑑, 𝜃) log 𝑓(𝑖, 𝑗|𝑑, 𝜃)𝑖,𝑗 . 

So we obtain 16 (four for each θ) features for each image cell. We then train a support vector regression 

model using these features and ground truths from cells from the training images. We pass the count 

estimate and statistical measures such as variance, skewness and kurtosis of the GLCM matrices as features 

to the next stage. 

Wavelet Decomposition: For each cell, P, we calculate the three-step pyramid-structured wavelet 

transform to obtain the 10 lower resolution sub-images, then calculate the energies in each of them as: e = 1𝑀×𝑁 ∑ ∑ |𝐼(𝑖, 𝑗)|𝑁𝑗=1𝑀𝑖=1 , where I is a sub-image with resolution M×N. Thus, we obtain a ten-dimensional 

feature vector for each image cell. Texture energies are distributed differently for different texture patterns. 

Thus the energy features calculated above can be used for discriminating crowds and estimating crowd 
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counts. We train an SVR with these feature vectors using ground truth counts from the training data as 

outputs. We also calculate statistical measures such as variance, skewness and kurtosis of the 10 lower 

resolution sub-images and pass these measures along with the count to the next step. 

2.1.3. Count from head detection 

Detecting humans is not possible in dense crowds due to severe occlusions. Only the heads may be visible 

at this scale. So we estimate the count by detecting heads in the image. We used a Deformable Part Model 

[21] trained on the INRIA Person dataset and applied only the filter corresponding to heads with a low 

threshold. This is because heads are often very small and partially occluded in such images. 

We find that there are many false positives and negatives in the detection results. However, we perform a 

lot better for nearby/larger heads. Since the texture analysis methods are crowd-blind and work well 

mostly for very dense crowds, we need SIFT-based analysis and head detections for adding robustness to 

the system such that we can perform accurately in relatively low-density environments too. 

Each detection is accompanied by the scale and confidence associated with it. For each cell we return the 

number of detection, ηH, and means and variances of the scales and confidences. 

2.2. Total Count in a Cell 

We densely sample cells from the training images and obtain counts and other features from all the above 

methods. We then use the annotations to train a ε-SVR with the counts and other features from above as 

inputs and the final estimate of the count as output. This SVR combines the information obtained from the 

five different sources to give an estimate of the patch count. 

The total person count of the image is finally obtained by summing the counts obtained from all cells in 

the grid. Here we are assuming that the cell counts are independent. This is a reasonable assumption 

because we are dealing with widely varying viewpoints, perspective effects and crowd densities. We believe 

that putting neighborhood constraints, as done in [15], limits the efficacy of multi-source count estimation 

to crowds with mostly uniform densities. 

3. Experiments 

3.1. Dataset 

We first use the publicly available UCF crowd counting dataset to compare our results to past work. This 

dataset contains 50 images having 96 to 4633 people with an average of 1280 people per image. The 

authors of [15] provide the ground truth dot-annotations with the images, i.e., each person is marked with a 

dot. There are 63974 annotations in the 50 images. 

We, then, collected 50 more images from various sources and added annotations to extend the above 

dataset to 100 images. We included a wide variety of viewpoints and perspectives in these images. This was 

done to ensure that we have an estimate of the robustness of this system. We finally had 100 images with 

87135 annotations containing, on average, 871 persons per image; the number varying from 81 to 4633. 

3.2. Evaluation Metrics 

We use absolute error (AE), 𝜇𝐴𝐸 =  1𝑁 ∑ |𝜂𝑖 − η̂𝑖|𝑁𝑖=1 , and normalized absolute error (NAE), 𝜇𝑁𝐴𝐸 = 1𝑁 ∑ |𝜂𝑖− η̂𝑖|𝜂𝑖𝑁𝑖=1 ,  for evaluating the performance. Here η̂i is the estimated count, ηi is the actual ground truth 

count, and N is the number of cells/images. We report the mean and deviations of both AE and NAE for both 

the UCF dataset and our extended dataset. We report the per-cell performances too. 

3.3. Evaluation 

We randomly divided the UCF dataset into groups of 10 and ran 5-fold cross validation. We compare the 
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performance of our model with the models presented in [15], [27], and [3] in Table 1. These methods are 

among the very few suited for this problem because most other methods rely either on videos or on human 

detection, and cannot be used with the UCF dataset. 

 

Table 1. Comparison of the Proposed Method with [3] ,[15], and [27] Using the Means and Standard 

Deviations of Absolute Error (AE) and Normalized Absolute Error (NAE) for UCF Crowd Counting Dataset 

Method AE NAE 

Rodriguez et al. 655.7±697.8 0.706±1.02 

Lempitsky et al. 493.4±487.1 0.612±0.916 

Proposed 514.1±526.4 0.542±0.484 

Idrees et al. 419.5±541.6 0.313±0.271 

 

The method presented by in [27] used head detections for counting while Lempitsky et al. [3] used SIFT 

features to learn a regression function for counting. The authors of [15] found that [27] performs best 

around counts of 1000, but as we move away on either side, its error increases. This is because the 

estimated counts are fairly steady across the dataset and do not respond well to change in crowd density. It 

overestimates the counts in the low count images and underestimates in the high count images leading to 

high absolute error for both these cases. However, [3] performs well at higher counts but poorly in terms of 

NAE for lower counts. The MESA-distance in [3] is designed to minimize the maximum AE across image 

during training. Images with higher counts tend to have higher AE, and thus, the algorithm focusses mainly 

on these images. The model gets biased towards high density images. From Fig. 2, we see that the proposed 

method too performs poorly for some low-count images. However, the method performs quite well in the 

middle and high count range (>1000 individuals per image). 

 

 

 

Fig. 2. (Best viewed digitally) NAE vs. ground truth counts for (left) UCF 50; and (right) complete dataset. 
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We observe that, unlike our method, all the other three methods tend to underestimate the counts in the 

high density range. Note here that most images in this category have a very high-resolution. They have a low 

chance of having individuals missed during annotation. Also, the per cell density increases super-linearly 

for this group, which is linear for other categories. Since, there are very few of such images, they could have 

been taken as outliers during training. Our method mostly gives average or better performances on such 

images. It relies heavily on the texture information from the images to estimate the counts. So it performs 

well on the higher density crowds, since the texture approximation is best applicable to such crowds. 

We also evaluated the performance of our proposed method on the extended dataset of 100 images. This 

dataset has much more diversity than the original dataset because it has crowds present in varying 

densities and visible from various viewpoints. This is useful for testing the robustness of the algorithm. For 

this case, we divided the dataset into sets of 25 and ran 4-fold cross validation.  

 

Table 2. Per-patch and Per-image Results for the Complete Dataset of 100 Images 

 AE NAE 

Per-patch 9.5±14.682 - 

Per-image 377.7±480.8 0.666±1.123 

 

Table 2 gives the performance of the algorithm on the final dataset at both the patch level and the image 

level. We obtained a mean absolute error of 377.7 with standard deviation 480.8 and a mean normalized 

error of 0.666 with standard deviation 1.123. The reason for a seemingly higher NAE is evident from Fig. 2. 

There are a very small number of images in the low crowd-density category which drive the mean NAE up. 

Our method does not work quite well for some low density images. Fig. 3 shows some images with the 

lowest and highest absolute errors. 

 

    

Est: 641.5, GT: 644 Est: 1668.1, GT: 1674 Est: 1012.3, GT: 3406 Est: 1557.9, GT: 4633 

Fig. 3. Estimated counts for images with lowest (first two) and highest (last two) absolute errors (AE).  

 

We observe that most of the images for which we get high absolute errors are very high density crowds. 

These images mostly contain extreme perspective variations. Also, some of the images have lens distortions 

which may be a reason for poor estimates. We also note that the NAE is very high for some of the images in 

the low density region. We believe that texture methods do not perform very well for such images. Further 

research in this area could focus on finding ways to pre-determine the density of crowds in different image 

regions so that methods like head detections and interest-point analysis could be given more importance 

for regions with low crowd density. Also, only a few images are driving the average absolute error and NAE 

up. Removing just the worst 10% performing images from the final dataset and considering the rest 90 

images reduces the absolute error to 256.3 ± 217.7 and the NAE to a very low 0.407 ± 0.328. 

Fig. 4 shows the per patch performance of the algorithm. We observe that, for higher density crowds, the 

mean absolute error per patch increase with increase in actual count. The absolute error per patch is almost 

constant, and very small, till around image 90, i.e., for images with counts less than about 2000. This is a 

demonstration of the efficacy of algorithm presented. 
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Fig. 4. (Best viewed digitally) Analysis of patch estimates in terms of absolute error per patch. The image 

numbers have been sorted with respect to the actual counts. Black dots are the mean absolute errors, red 

bars represent the standard deviations and blue diamonds are the ground truths. 

 

4. Conclusion 

We considered a method for estimating the number of people in extremely dense crowds from still 

images. The counting problem at this scale has barely been tackled before. We presented a method that uses 

information from multiple sources of information (head detections, interest points based counting and 

texture analysis methods) to estimate the count in an image. Each of these constituent parts gives an 

independent estimate of the count, along with confidences and other features, which are then fused to give 

a final estimate. We presented results of extensive tests and experiments we performed. We also introduced 

a new dataset of still images along with annotations which can complement the existing UCF dataset. The 

results are very promising and, since the model is extremely simple, it can be applied for real-time counting 

in critical areas like pilgrimage sites. 
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