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ABSTRACT

This paper presents a method for detecting people based on co-occurrence of appearance

and spatio-temporal features. In our method, Histograms of Oriented Gradients (HOG)

are used as appearance features, and the results of pixel state analysis are used as spatio-

temporal features. The pixel state analysis classifies foreground pixels as either stationary

or transient. The appearance and spatio-temporal features are projected into subspaces in

order to reduce the dimension of feature vectors by principal component analysis (PCA).

The cascade AdaBoost classifier is used to represent the co-occurrence of the appearance and

spatio-temporal features. The use of feature co-occurrence, which captures the similarity

of appearance, motion, and spatial information within the people class, makes it possible

to construct an effective detector. Experimental results show that the performance of our

method is about 29.0% better than that of the conventional method.
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1 Introduction
Automatic people detection is a key enabler for ap-

plications in robotics, visual surveillance, human com-

puter interactions, and intelligent transport systems.

In the visual surveillance, fixed cameras are generally

used to reduce costs. This has led to the development

of a number of methods [1]–[3] based on background

subtraction for detecting motion from images captured

by fixed camera. One of the successful approach to

model the background uses a Gaussian mixture model

(GMM) [2]. Since methods based on background sub-

traction use a top-down approach, object classification

at the next step becomes impossible if the object’s re-

gion is not segmented correctly. A window-scanning

approach has been proposed for solving this problem.

It was made possible by the great improvements in

computer speed in recent years. Recently, several ap-

pearance features [4]–[6] for detecting people were pro-
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posed. In particular, Dalal et al. [5] presented a people

detection algorithm that has an excellent detection abil-

ity. Each detection window is divided into cells of size

8 × 8 pixels, and each group of 2 × 2 cells is integrated

into a block in a sliding fashion, so the blocks over-

lap. Each cell consists of a 9-bin Histogram of Oriented

Gradients (HOG), and each block contains a concate-

nated vector of all its cells. This representation has been

proven to be powerful enough to classify people using a

linear Support Vector Machine (SVM). Because HOG

features are invariant to illumination and local geomet-

rical changes, many recent studies have used them to

detect people [7], [8].

Several people detection methods using appearance

and motion features have been proposed to improve

detection accuracy [9], [10]. Viola et al. proposed a

method for detecting people using patterns of motion

and appearance obtained by Haar-like features [10].

Dalal et al. proposed a method with improved detection

accuracy that uses HOG and motion features calculated

from the optical flow [9]. The availability of motion

information makes it possible to improve the detection
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Fig. 1 Flow of proposed method.

performance. One problem with these methods based

on appearance and motion is that any features besides

appearance cannot be obtained when the object is sta-

tionary, such as when people are standing still.

We have investigated the problem of detecting peo-

ple using images captured by a fixed camera and pro-

pose a method for people detection based on the co-

occurrence of appearance and spatio-temporal features.

Histograms of Oriented Gradients(HOG) are used as

appearance features, and the results of pixel state anal-

ysis are used as spatio-temporal features. The Pixel

State Analysis (PSA) classifies foreground pixels as ei-

ther stationary or transient. The appearance and spatio-

temporal features are projected into subspaces in or-

der to reduce the dimensions of the vectors by Prin-

cipal Component Analysis (PCA). The cascade Ad-

aBoost classifier is used to represent the co-occurrence

of the appearance and spatio-temporal features. The use

of spatio-temporal features reduce the number of false

object detections, i.e., detection of objects that appear

similar to people. Moreover, co-occurrence of appear-

ance and spatio-temporal features makes the detection

more effective.

2 Overview of proposed method

Our method for using the co-occurrence of ap-

pearance and spatio-temporal features is diagramed in

Fig. 1. The HOG feature vectors for the detecting win-

dow are computed as feature based on appearance.

They are projected into subspaces to reduce their di-

mensions by PCA. PSA is used to compute the spatio-

temporal features, and these feature vectors are also

projected into subspaces to reduce their dimensions by

PCA in the same way as for the HOG features. Both the

appearance and spatio-temporal features are combined

into one feature by representing their co-occurrence us-

ing the joint probability acquired from the combination

of each of the features. Finally, the cascade AdaBoost

classifier, which is trained in advance, decides whether

or not the objects are people. Feature co-occurrence,

which captures the similarity of appearance, motion,

and spatial information within the people class, makes

it possible to construct an effective detector.

3 Feature extraction
This section describes the feature extraction and

how the co-occurrence between appearance and spatio-

temporal features is represented.

3.1 Histograms of oriented gradients
HOG representation [5] has several advantages. It

captures the gradient structure that is characteristic of

the human shape. First, magnitude m and orientation θ

of the gradients are computed using

m(x, y) =

√

fx(x, y)2
+ fy(x, y)2, (1)

θ(x, y) = tan−1
fy(x, y)

fx(x, y)
, (2)

where fx(x, y) = L(x + 1, y) − L(x − 1, y), fy(x, y) =

L(x, y + 1) − L(x, y − 1), and L(x, y) is the brightness

of pixel. Each detection window is divided into cells

of size 5 × 5 pixels and each group of 3 × 3 cells is

integrated into a block in a sliding fashion, as shown

in Fig. 2, so that the blocks overlap with each other.

Each cell consists of a 9-bin histogram of HOG features

represented by Fi j = [ f1, f2, · · · , f9]. Each block con-

tains a concatenated vector of all its cells. Each block

is thus represented by Vk = [Fi j, Fi+1 j, Fi+2 j, Fi j+1,

Fi+1 j+1, Fi+2 j+1, Fi j+2, Fi+1 j+2, Fi+2 j+2]. The feature of

one block of the k th block represents 81 feature vectors

that are normalized to an L2-norm using the following

equation, which is the sum of the Euclidean distance in

the block.

v =
f

√

||V||2
2
+ ǫ2

(ǫ = 1). (3)

Each detection window (30 × 60 pixels) is represented

by 4 × 10 blocks, giving a total of 3, 240 features per

detection window.

3.2 Pixel state analysis
Objects similar to human are done false detection

when only appearance feature is used. Therefore, we

use feature vectors obtained from the result of pixel

state analysis (PSA) [11] that represent object motion
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Fig. 2 Cells and blocks.

Fig. 3 Diagram of state transition for a pixel.

and spatial information. This analysis is used to deter-

mine whether a pixel is stationary or transient by ob-

serving its intensity value over time, as shown in Fig. 3.

To capture the nature of changes in pixel intensity pro-

files, two factors are important: the existence of a sig-

nificant step change in intensity, and the intensity value

to which the profile stabilizes after passing through a

period of instability.

Let It be some pixel’s intensity at a time t occurring

k frames in the past. Two functions are computed: a

motion trigger T just prior to the frame of interest t,

and a stability measure S computed over k frames from

time t to the present. The motion trigger T is simply

the maximum absolute difference between the pixel’s

intensity It and its value in the previous five frames:

T = max{|It − I(t− j)|,∀ j ∈ [1, 5]}. (4)

The stability measure S 1) is the variance of the inten-

sity profile from time t to the present:

S =

K

K
∑

j=1

I2
(t+ j) −

(

K
∑

j=1

I(t+ j)

)2

K(K − 1)
. (5)

1) Development of variance equation was described in appendix.

Fig. 4 Algorithm for pixel state analysis.

Fig. 5 Examples of pixel state analysis.

Transient map M is defined by the algorithm be-

low (Fig. 4) for each pixel, using three possible values

: background = (bg); transient = (tr) and stationary =

(st). The background intensity is prepared in advance

as a background image. The background is updated by

an Infinite Impulse Response(running average) filter to

accommodate slow lighting changes and noise in the

imagery [1].

Fig. 5 shows an example of the pixel state analysis.

We see that most pixels of people walking on the left

are transient pixels and that most pixels on the right are

stationary ones because the people have stopped. Thus,

spatio-temporal feature is extracted from the result of

PSA.

For each detection window, a 3-bin histogram (back-

ground/stationary/transient) is computed by counting

the number of each state. This histogram is normal-

ized by the same procedure of HOG. If the detection

window is 30×60 pixels, the dimension of PSA feature

is 1,080 feature vectors.

3.3 Principal component analysis
Appearance features (3,240 dimensions) and spatio-

temporal features (1,080 dimensions) have very high

dimensionality. Because the histogram for a cell is used

many times for the normalization, the correlation be-

tween feature vectors is strong. We need to identify a

valid subspace in order to obtain a compact and low-

dimensional representation of the feature vectors. The
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Fig. 6 Projection into subspaces.

PCA is thus performed on a training database. Given

N-dimensional feature vectors, xn = (x1, x2, · · · , xN),

mean vector M and covariance matrix CV are given by

CV =
1

N

N
∑

n=1

(xn − M)(xn − M), (6)

and
M =

1

N

N
∑

n=1

xn. (7)

The principal components assume the first P significant

eigenvectors of CV; that is, v = (v1, v2, · · · , vP). Con-

struction of eigen matrix Un = (v1, v2, · · · , vP) with a

d × P dimension enables an arbitrary N-dimensional

original feature vector x to be represented as a new P-

dimensional compact vector. The projection matrix for

the positive class and negative class of each feature is

computed using training images. Number of the dimen-

sions to reduce is decided by cumulative contribution

rate. In this paper, we use the dimension where the cu-

mulative contribution rate will be 99%.

Next, the vectors are projected into subspaces, and

the features are extracted. Here we consider four pro-

jection matrixes, CVHOG
p ,CVHOG

n ,CVPS A
p and CVPS A

n ,

as shown in Fig. 6.

For each detection window, HOG features xHOG

and PSA features xPS A are computed. Next, xHOG

and xPS A are projected using the projection matri-

ces, CVHOG
p ,CVHOG

n ,CVPS A
p , and CVPS A

n , for the peo-

ple class (positive class) and the non-people class (neg-

ative class). Finally, the features for the classifier are

computed using

[vHOG
1 , · · · , vHOG

m1 ] = xHOGT

CVHOG
p , (8)

[vHOG
m1+1, · · · , v

HOG
m1+m2] = xHOGT

CVHOG
n ,

[vPS A
1 , · · · , vPS A

m3 ] = xPS AT

CVPS A
p ,

[vPS A
m3+1, · · · , v

PS A
m3+m4] = xPS AT

CVPS A
n .

3.4 Co-occurrence of features

The features that are newly obtained from PCA

are expressed as the co-occurrence of appearance and

spatio-temporal features. Our method uses the repre-

sentation method proposed by Mita et al. [12] to express

the co-occurrence between different kinds of features.

To improve the generalization performance, we use the

weak classifiers that observe multiple features. Fea-

ture co-occurrence makes it possible to classify difficult

examples that are misclassified by the weak classifiers

using a single feature. We represent the statistics of

feature co-occurrence using their joint probability. To

calculate the joint probability, we binarize the feature

value vi. As a result, each feature value is represented

by a binary variable, s, which takes 1 or 0, specifying

people or non-people respectively. The variable s for

an example vi is calculated using

s =

{

1 P(Cp|vi) > P(Cn |vi)

0 otherwise ,
(9)

where s is classified by Bayes theorem:

P(Ck |vi) =
P(vi|Ck)P(Ck)

P(vi)
(k = p, n), (10)

where P(vi|Ck) is the probability obtained from the

probability density function, P(Ck) is the prior proba-

bility, P(vi) is the existence probability, and C is the

class. It is assumed that P(Ck) is equal to 0.5. The

probability density function, P(vi|Ck), is approximated

using a smoothed 1D histogram of the ith subspace co-

efficients that were obtained from the training images.

Feature c is represented by combining the binary

variables computed from appearance feature vHOG and

spatio-temporal feature vPS A described in 3.3. Feature c

representing the co-occurrence between the appearance

and spatio-temporal features is described by feature s

using each feature one by one. As a result, the fea-

ture is described by a value of a total of four patterns.

For example, if the appearance feature is 1, and if the

spatio-temporal feature is 0, feature c is computed by

C(x) = (10)2 = 2. (11)

When C(x) = c, the cascade AdaBoost classifier is

trained, computed feature c is selected automatically as

if the error is minimum.

4 Construction of classifier
This section describes the construction of the classi-

fier for people detection.
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4.1 Cascade AdaBoost
The final strong classifier, H(x), is a linear combina-

tion of L weak classifiers, hl(x):

H(x) = sign

( L
∑

l=1

αlhl(x)

)

, (12)

where x is the input data, αl is the weight of the training

data, and l is number of round.

We use superior cascade classifier [13] of calculation

efficiency. False detection rate is restrained without de-

creasing detection rate by constructing classifier to cas-

cade. For each level of the cascade, we construct a

strong classifier consisting of several weak classifiers.

In each level of the cascade, we keep adding weak clas-

sifiers until the predefined quality requirements are met.

In our case we require the minimum detection rate to be

0.9975 and the maximum false positive to be 0.3 in each

stage.

4.2 Weak classifier
A weak classifier, hl(x), is described in the follow-

ing equation for the discriminate function based on the

conditional probability.

hl(x)

{

+1 Pl(y = +1|c) > Pl(y = −1|c)

−1 otherwise,
(13)

where Pl(y = +1|c) and Pl(y = −1|c) are the joint prob-

abilities of feature co-occurrence represented by feature

c and class label yi ∈ {+1,−1}. Joint probabilities are

computed by the following equations,

Pl(y = +1|c) =
∑

i:Cl(xi)=c∧yi=+1

Dl(i), (14)

Pl(y = −1|c) =
∑

i:Cl(xi)=c∧yi=−1

Dl(i), (15)

where Cl(x) is the function used to observe feature

c, which is used to represent the co-occurrence be-

tween feature vectors, and Dl(i) is the weight of training

data. An example of the probabilities Pl(y = +1|c) and

Pl(y = −1|c) obtained from HOG and PSA features are

shown in Fig. 7. The two features yield four combina-

tions of binary variables, which are from (00)2 to (11)2.

If c = (01)2 or (11)2 is measured from an input data, it

is classified as positive class.

5 Experimental results
Proposed method is evaluated through two compara-

tive experiments of people classification using test im-

ages.

1. Effectiveness of using co-occurrence of appearance

and spatio-temporal features comparing to the con-

ventional method [5].

Fig. 7 Joint probability of each class.

Table 1 Reduction of dimensionality of feature vectors by
PCA.

Feature Before reduction After reduction

HOG(Pos.) 3,240 678

HOG(Neg.) 3,240 1,231

PSA(Pos.) 1,080 124

PSA(Neg.) 1,080 109

2. Effectiveness of using spatio-temporal feature ob-

tained by PSA comparing to general motion de-

tection such as the background subtraction and the

temporal differencing.

The results were evaluated by the detection error trade-

off (DET) curve expressed using a double logarithmic

chart. The horizontal axis represents the false positive

rate, and the vertical axis represents the false negative

rate.

5.1 Database
We collected nine video sequences of street scenes.

Each sequence consists of 2,000 to 10,000 frames. We

used five of the sequences for training. The other four

were used for testing. The training data consist of 2,053

positive images and 6,253 negative images, and the test

data consist of 1,023 positive images and 1,233 nega-

tive images. Fig. 8 shows some examples of each fea-

ture in the training data.

5.2 Dimensionality reduction of vectors by PCA
The feature vectors was reduced by PCA. Table 1

shows the extent of the reduction for each feature and

class.

The reduction for HOG (negative class) was lower

than that for the positive one. This is why the negative

class was more complex than the positive class. The

reduction for PSA (negative class) was larger than that

for the positive one due to the background clutter. The

variance in the negative data for the training was thus

lower because there were mostly static objects in the
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Fig. 8 Some examples of HOG and PSA in the training data.

Fig. 9 DET of experiment 1.

training data for the negative class.

5.3 Experiment 1: Effectiveness of using co-occu-
rrence

We compare four feature pattern methods, “HOG”

(the conventional method) [5], “PSA”, “HOG + PSA”,

and “co-occurrence of HOG + PSA” (our method). As

shown in Fig. 9, our method had better accuracy than

the “HOG” method. With a false positive rate of 10%,

“co-occurrence of HOG + PSA” had a 29.3% lower

false negative rate. Compared to the “HOG + PSA”

method, our method had 2.8% better detection perfor-

mance. The conventional “HOG” method, which uses

only appearance features, is more likely to falsely de-

tect objects similar in appearance to people and objects

with a complex texture. Our method had a lower false

detection rate due to the use of co-occurrence of appear-

ance and spatio-temporal features.

Fig. 10 Examples of background subtraction, temporal
differencing and pixel state analysis.

5.4 Experiment 2: Effectiveness of using spatio-
temporal feature

We compare four pattern methods of features,

“HOG” , representing appearance only, “HOG + BS”

(BS means background subtraction) representing ap-

pearance and spatial information, “HOG + TD” (TD

means temporal differencing) representing appearance

and motion information, and “HOG + PSA” represent-

ing appearance and spatio-temporal information. “Co-

occurrence of HOG+PSA” gave the best performance in

experiment 1. Therefore, except for “HOG” represents

the co-occurrence. Fig. 10 shows examples of BS, TD

and PSA.

Background subtraction detects the whole object re-

gion (Fig. 10 (c)), while the temporal differencing de-

tects moving regions of the object (Fig. 10 (d)). Both

extract the moving object region of cell as with PSA as

feature vector.

As shown in Fig. 11, the “HOG+BS” method had a

false positive rate of 10.0%, 28.7% lower than that of

the “HOG” method. The “HOG + TD” had a 27.0%

lower rate than the ”HOG” method. These results indi-

cate that using spatial information obtained by BS and

using motion information obtained by TD are effective

for the people detection.

Next, we verity the difference of quality of BS and

TD. To determine the difference in quality between us-

ing BS and using TD, we defined a set of positive-class
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test images (1,023 images) as universal set S . The im-

ages correctly classified by the “HOG + PSA” method

were defined as subset P. Those correctly classified

by the “HOG + BS” method were defined as subset B.

Those correctly classified by the “HOG + TD” method

were defined as subset T . We then calculated the non-

common class ratio:

RB−T = 1 −
N(B ∩ T )

N(B ∪ T )
= 1 −

642

865
= 0.26, (16)

where N(X) represents the number of elements x con-

stituting set X. The ratios for B and T were both about

26% (223 images). This means that classification us-

ing either the “HOG + BS” or “HOG + TD” method

Fig. 11 DET of experiment 2.

worked well. Therefore, the feature obtained using BS

(spatial information) and TD (motion information) rep-

resent the different quality feature.

To determine the effectiveness of the “HOG + PSA”

method, we defined the union of sets B and T as

C(B ∪ T ). The non-common class ratios for P and C,

calculated using

RP−C = 1 −
N((P ∩ C) ∪ P)

N(P ∪ C)
= 1 −

961

974
= 0.02

(17)

were about 2% (13 images). This means that success-

ful images by the “HOG + BS” and “HOG + TD” meth-

ods are also approximately possible by using the “HOG

+ PSA” method. It seems reasonable to think that

the spatio-temporal feature obtained by PSA includes

both spatial and motion information. Furthermore, as

shown in Fig. 11, the performance of the “HOG + PSA”

method was better than those of the “HOG + BS” and

“HOG + TD” methods. The use of spatio-temporal fea-

ture is thus effective for detecting people either walking

or standing.

5.5 People detection examples
When detecting people from an image, a raster scan

of the detection window is performed over and over as

the scale of detection window is changed. Therefore,

our method can accommodate for a change of size of

human as in other human detection methods. This re-

sulted for about 10,000 detected windows in each im-

Fig. 12 Examples of people detection.
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Fig. 13 Detection examples on PETS2001 dataset.

age, and each one possibility contained images of peo-

ple. Mean shift clustering [14] was used to make the

final decision on people detection by placing a box

around each detected human.

Some example detections are shown in Fig. 12 and

Fig. 13. Fig. 12 shows the comparison examples of peo-

ple detection method using videos taken in multiple lo-

cations. Our method clearly had better detection accu-

racy, even when people overlapped with the complex

backgrounds. The conventional method had several

false detections due to the complicated background and

objects with a shape resembling that of a human. The

HOG method alone is unable to extract shape informa-

tion with sufficient accuracy for reliable people detec-

tion. Because PSA can output more accurate spatial

information for people, including motion information,

our method works better for the cluttered backgrounds

including occlusion situations.

In addition, Fig. 13 shows examples of people de-

tection using PETS2001 dataset2). PETS2001 dataset

includes images in which people and cars are passing

through streets, tree leaves are flickering, and the illu-

mination conditions are varying rapidly. In this hard

environment, proposed method using co-occurrence of

HOG and PSA features was able to improve the accu-

racy of detecting people.

6 Conclusion
We have developed and tested a method for detecting

people that is based on the co-occurrence of appearance

and spatio-temporal features. It uses pixel state analysis

to obtain spatio-temporal information, which enables

it to accurately detect people when there is a compli-

2) http://www.cvg.rdg.ac.uk/PETS2001/

cated background. Future work involves creating a cor-

responding method for active cameras and camera mo-

tion.
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Appendix Development of variance
equation

Variance S is defined by the following equation.

S =
1

K

K
∑

i=1

(I(t+i) − I)2 (18)

Here, the important point to note is that equation (18)

need to calculate the average intensity that is a high

calculation cost in each frame. Therefore, we develop

equation (18) as following

1

K

K
∑

i=1

(I(t+i) − Ī)2

=

1

K

K
∑

i=1

(I2
(t+i) − 2I(t+i) Ī + Ī2)

=

1

K

K
∑

i=1

I2
(t+i) − 2

K
∑

i=1

I(t−i) Ī + Ī2

=

1

K

K
∑

i=1

I2
(t+i) − 2Ī2

+ Ī2

=

1

K

K
∑

i=1

I2
(t+i) − Ī2

=

1

K

K
∑

i=1

I2
(t+i) −

( 1

K

K
∑

i=1

I(t+i)

)2

=

K

K
∑

j=1

I2
(t+ j) −

(

K
∑

j=1

I(t+ j)

)2

K2
. (19)

In the case of unbiased variance, equation (19) repre-

sents

S =

K

K
∑

j=1

I2
(t+ j) −

(

K
∑

j=1

I(t+ j)

)2

K(K − 1)
. (20)

In this way, equation (20) takes advantage that there is

no need to calculate the average intensity, thus it can

enable fast calculation of the variance.
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