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People Helping Robots Helping People:

Crowdsourcing for Grasping Novel Objects

Alexander Sorokin Dmitry Berenson Siddhartha S. Srinivasa Martial Hebert

Abstract— For successful deployment, personal robots must
adapt to ever-changing indoor environments. While dealing
with novel objects is a largely unsolved challenge in AI, it
is easy for people. In this paper we present a framework for
robot supervision through Amazon Mechanical Turk. Unlike
traditional models of teleoperation, people provide semantic
information about the world and subjective judgements. The
robot then autonomously utilizes the additional information to
enhance its capabilities. The information can be collected on
demand in large volumes and at low cost. We demonstrate our
approach on the task of grasping unknown objects.

I. INTRODUCTION

Deploying autonomous mobile and dexterous robots in our

homes presents a number of challenges: building flexible and

inexpensive hardware, developing systems and algorithms to

control the robot to achieve planned tasks, bridging the gap

between human perception and the robot’s world models, just

to name a few.

There are numerous unsolved research challenges even for

a specific task of cleaning up a room. One key challenge is

the availability of accurate models for robustly and safely

picking up objects. The models of the environment can be

built by hand, they can be derived from CAD models or they

can be constructed automatically. To automatically build the

models, the robot must recover the geometry and find unique

features for recognition. The robot must also determine what

constitutes an object, how to call it and what to do with it.

We propose to design autonomous systems that rely on

asynchronous human computation through crowdsourcing.

In the long term, we would like to minimize human input.

In the short term, we would like to maximize human input

to go around hard AI problems like category-level object

recognition, and enable scalable deployments of personal

robots. For the cleanup task, whenever the robot encounters a

novel object or an unknown situation, it will request detailed

analysis of the situation and only take safe actions until the

situation has been explained.

Historically, the failures of robot autonomy are mitigated

through teleoperation. The operator constantly monitors one

or more robots, drives the robot when necessary or provides

high level goals. The defining characteristics of teleoperation

is real-time presence of the operator and the use of a single
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operator per robot. In contrast, crowdsourcing allows hun-

dreds of people teaching a single robot only when necessary.

We demonstrate our approach on the task of grasping novel

objects using the framework illustrated in Fig. 1. We use

state of the art modelling tools[1], [2], [3] to build the object

model: SIFT-based model for recognition and pose estima-

tion; a surface mesh for grasping. The modelling pipeline

requires human-provided segmentations of objects of interest

and provides multiple tuning parameters. We crowdsource

image labeling, object clustering and selecting the final

model to Mechanical Turk. With these tasks powered by

people, we demonstrate that our robot can build models for

novel objects and successfully manipulate them.

While the framework is conceptually simple, we encoun-

tered several research challenges.

Workers typically have limited engineering background,

and very limited attention spans. Breaking down the complex

novel object discovery problem into simpler subproblems

that were easy to describe and reliably executable was a

huge challenge. Workers often produced unusable output if

the tasks were too complex or were described imprecisely.

Constructing the correct interface for workers to use for

image annotation proved to be another challenge.

A bigger challenge was automated quality control. Pro-

ducing a 3D model of the object required good user input

and the tuning of several algorithm parameters. The quality

of the output was quite sensitive to both of those factors. We

used a combination of averaging, grading, and a hierarchy

of evaluators to automatically weed out bad user input and

to automatically tune our algorithm parameters. This proved

to be critical for grasping success.

Another challenge is system latency: the delay between

sending out an image query and obtaining a segmented result.

While it may seem at first sight that such a delay might be

unacceptable for object grasping, we were convinced after

extensive experiments that it was acceptable with proper

scheduling. A personal robot typically has a long list of tasks

it needs to perform. If it encounters an unknown object in

its first task, it could send in the images for query, and move

on to other tasks while awaiting a response. This is much

like a human shopper at any store, picking up other objects

in the list while waiting for the salesperson to show up.

This paper postulates a concept, that unlimited inexpensive

human help is available online and can be harnessed to solve

problems that are hard for robots but easy for humans. We

believe that it is a first step towards greater adoption of

crowdsourcing in mobile manipulation.



Fig. 1. Modeling pipeline starts with autonomous image acquisition. Blurry images are removed. The sparse 3D cloud is reconstructed using Bundler and
valid images are selected for annotation. Workers provide object outlines and group the objects by type. Each object group generates several watertight
models depending on the modelling parameters. Workers compare resulting models and only the best models are selected. The resulting models are evaluated
on object manipulation task. A demo video of our system is available at http://peopleforrobotsforpeople.com/video/iros2010 movie.mov

II. MECHANICAL TURK

Amazon Mechanical Turk [4] is a marketplace for micro-

tasks. Each task requires human judgment and provides some

monetary reward. Each task defines what needs to be done,

the user interaction, the quality requirements and who can

work on it. Common tasks include content filtering, audio

transcription and online inventory categorization. Most tasks

require very short amounts of time to complete and provide

payments in the range US $0.01-US $0.2.

The tasks are created by requesters, who request the

services from workers. Workers are free to choose any task

and complete it. Once the task is submitted by the worker, it

becomes the responsibility of the requester to validate it. If

the requester accepts the work, Amazon gives the payment

to the worker on behalf of the requester. The requester

has the option of rejecting the submission. In this case the

worker receives no payment and the rejection is counted in

the worker’s statistics. Requesters are expected to accept all

work performed in good faith and reject only malicious and

negligent work.

The requester has additional control over who can work on

their tasks. Mechanical Turk maintains a set of metrics for

each worker: their task approval rate, how many tasks they

have submitted, their location, etc. It is common to require

that the approval rate be above 90%.

Mechanical Turk has very limited tools for quality as-

surance. The most powerful of them are qualification tests.

The worker takes a test and receives a score of his or

her performance. Unless the workers obtain a minimum

score, they are blocked from performing the work. Even

simple tests reduce the amount of spam and improve the

quality of submissions. Finally, there are companies (e.g.

CrowdFlower [5], HitBuilder [6], CastingWords [7]) who

provide commercial services to control quality on a large

range on tasks. Their services charge a small fee over

labor costs in exchange for quality guarantees. Robotics

is currently too narrow of a domain to have commercial

crowdsourcing solutions. We hope that as application of

crowdsourcing becomes more established in robotics, it will

be fully-supported by commercial vendors.

The main advantage of Mechanical Turk is the availability

of a highly scalable on-demand workforce. There are thou-

sands of people participating on the web site and hundreds

of thousands of tasks are posted and get done daily.

A. Design constraints

Mechanical Turk has a number of limiting factors, that

constrain what can be done and where it will be effective.

First, all interactions on Mechanical Turk happen over the

Internet. This delays any communication between the robot

and the supervisor. These delays make very accurate real-

time teleoperation impossible, which suggests that Mechan-

ical Turk is more suitable for higher level tasks rather than

low-level control.

Second, the system works particularly well for large

volumes of simple tasks. Complex tasks must be split into

simpler sub-problems that can be solved independently and

in short time spans. Such structure however has an advan-

tage, because each simple task presents a good target for

automation. If an algorithmic solution becomes available, it

can be used directly instead of human input. At the same

time the human-powered application will generate necessary

volumes of training and benchmark data. The small time-

span of the tasks also requires the instructions to be short

and easy to understand. As each worker will spend little time

doing the tasks, they will also spend little time reading the

instructions.

Third, workers on Mechanical Turk generally have no

engineering background. They have varying command of

English and varying levels of education. The tasks must

thus be designed for the general public and rely only on

a basic level of human abilities. Whenever specific skills

are necessary, appropriate instructions must be given and the

skills must be verified. For example, if strong command of
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English is required, a language test is appropriate. Alterna-

tively, worker location may be constrained to only English-

speaking countries.

Fourth, Mechanical Turk is an open service with minimal

bounds between the requester and the worker. The financial

motivation of the workers is low. As a result, it is virtually

impossible to guarantee that the data posted on Mechanical

Turk will be kept private. At present, most tasks are open

to any public observer. This requires special attention if

Mechanical Turk is used in sensitive domains, such as

outdoor surveillance. In the context of personal robotics, this

will be a minor issue. We believe that advantages of effective

autonomy will outweigh the privacy risks.

B. Task definition

To obtain human supervision, it is necessary to formalize

the interaction with the user and build appropriate user

interfaces. Building a new user interface for every new

task is very expensive. An alternative solution is to use a

general-purpose configurable tools that will accept formal

specification of the interaction and generate the appropriate

user interface automatically. Such tools are then used as

building blocks to define specific human intelligence tasks.

Mechanical Turk [4] and Crowdflower [5] both provide

task design interface and markup languages. They cover

standard form-like user inputs: text boxes, multiple-choice

and checkbox questions. However, these interfaces are not

sufficient for annotation of objects in images.

We developed a general purpose annotation toolkit [8]

that allows to obtain annotation of images with commonly

used primitives: bounding boxes, object outlines, object

segmentation masks, object attributes and text labels.

C. Quality control

Quality control on Mechanical Turk is an area of active

research. The naive method to ensure quality annotations is

to obtain multiple annotation and average. This methodology

is necessary where subjective human judgment is required

and where no definitive answer is possible. It has been

shown [9], that very few workers can outperform an expert

annotator at a fraction of the cost. In our tasks, we use

multiple judgments in grouping and model evaluation to

ensure completeness of coverage and robustness to individual

errors. Averaging the annotations is not a universal tool.

First, not all annotations can be averaged. Second, averaging

requires at least 3 judgments to be collected. If all are correct,

then much work is wasted.

One alternative to averaging is to use grading [7]. In

grading, a worker looks at a small number of submissions

(4-10) and assigns a numeric grade to each. In majority

of tasks, grading is much simpler than the task itself. The

amount of extra work is only a fraction of the actual work.

Unfortunately, grading requires verified and trusted worker

base. At a small scale of a few thousand tasks it will be

difficult to establish.

At low volumes of tasks, it is possible to use a supervisor

- a single dedicated and trusted grader. This approach would

work for a few thousands of tasks per day. At higher volumes

the grading will become a bottleneck. In such case the

grading must be delegated to the Turk and the supervisor

will only adjudicate the cases where grades disagree.

There is a relatively large number of spammers who

intentionally violate the required protocol. They submit blank

annotations or do random things in hope of receiving the

payment. These workers are spotted automatically by looking

at the metadata associated with the submissions. In particular,

submissions with absolutely no work are rejected. Spammers

are identified by multiple incorrect submissions. Once a

worker is declared a spammer, all their submissions are

automatically rejected and they are blocked from performing

any future work.

Finally, some systems(e.g. Crowdflower [5]) use gold

standard data to automatically evaluate workers performance.

Such automated Q/A allows the system to determine how

much a particular worker can be trusted.

III. SYSTEM COMPONENTS

We used HERB [10] - a personal robotics platform. It is

built on a Segway RMP200 platform. It has Barrett WAM

arm, Barrett Arm, two onboard computers, multiple cameras

and laser scanners. The robot is capable of autonomous

navigation, obstacle and people avoidance, safe arm motion

planning and grasping.

A. Image acquisition

To build the models of unknown objects, the robot collects

data from 4 base locations around the table. At each location,

arm motion is planned and safely executed to reach several

requested views of the object. The images collected in each

run are filtered by information content. We measure the

amount of gradient energy and take a local maximum. This

selection removes blurry images that significantly confuse

the reconstruction algorithm.

B. Sparse 3D reconstruction

To build the models, we use MOPED modelling system [2]

based on Bundler [1]. It creates an accurate reconstruction

of SIFT feature 3D positions and 6 DOF camera poses. We

provide camera calibration parameters to the reconstruction

engine. The reconstruction obtained from a single camera

has a single unknown - scale. When a large known object

is present (such as a poster in figure 3), we use it to

recover the scale. Once the calibration object is detected, we

know the correspondence between reconstructed points in the

scene and the model. This gives us the scaling factor of the

reconstruction. When the calibration object is not available,

we can use approximate camera locations measured from

the robot arm configuration. Although the camera locations

are not accurate enough for 3D modelling, the error in

distance between the arm positions is sufficiently low to

obtain accurate scaling of the 3D reconstruction.

The sparse reconstruction provides us with the list of

images that were correctly registered. These images are

submitted for annotation on Mechanical Turk.



Fig. 2. Annotation user interfaces: outlines, object grouping, model evaluation. Task costs and volumes used.

C. Image annotation and grouping

To obtain annotations on Mechanical Turk, we use open

source annotation toolkit [8]. All annotation tasks were

submitted to the server with a fixed cost per task(fig. 2).

After the tasks were completed, worker submissions were

manually validated.

To get object outlines, we require each worker to draw at

least one outline in an image and type the name of that object.

When no further outlines are possible, the worker marks the

“all done” flag and the image is not considered for further

annotation. The annotation interface and example results is

shown in figure 2. Object labels are collected for future

analysis. We currently use only object outlines to create 3D

models.

As there are multiple objects in each view, we need to

distinguish between different objects. Object labels provided

by the workers are not consistent across different workers,

so we need to associate the exemplar objects more directly.

We use image grouping tasks to obtain explicit judgments

about which objects are the same and which are different.

We present 20 masked object images to a worker and ask

them to place the objects in bins. Each masked image is

automatically generated from the object outlines obtained at

the previous round of annotations. Images placed into the

same bin are considered the same object. When two images

are placed into different bins, they are considered different

objects. The output of this annotation is an object similarity

graph: positive links connect similar instances, negative links

connect dissimilar instances. We cluster objects using this

sparse affinity graph and discard clusters with less than 5

members. Each cluster contains object masks that are used

for dense 3D reconstruction.

D. Dense 3D reconstruction

MOPED models give us only 3D pose of the object and

a sparse collection of 3D visual features associated with

the object. For grasping, we need a surface model with

normal information. We refine the sparse reconstruction into

a dense model using Patch-Based Multi-View Stereo (PMVS)

package [3]. The algorithm works like conventional stereo,

except for the camera positions are arbitrary. The algorithm

requires masks of the regions of interest and reconstructs

only respective parts of the world. These were obtained from

Mechanical Turk in Sec. III-C.

PMVS reconstructs a single oriented 3D patch at every K-

th pixel in the image by minimizing photo-consistency errors

between different camera views that would see that 3D patch.

The photo-consistency is measured via correlation of re-

projected patches. Each patch has size MxM pixels, which

needs to be chosen appropriately. The algorithm performs

multiple reconstruction passes relaxing the photo-consistency

requirement at each pass. First, the most consistent patches

are placed in 3D. Second, their neighbors are placed nearby

if they satisfy less stringent consistency requirement. On

the third pass, the consistency is relaxed once again and

more patches are added. There are several parameters for

to tune: K - the density of the reconstruction, σ - the

scaling of images before the reconstruction occurs, M - the

size of the patch for photo-consistency measurement, τ -

the most stringent photo-consistency threshold. As no single

combination of parameters always produces the best model,

we use 16 different parameter settings to generate multiple

models. Each model will be later judged and only the best

model will be selected for the robot to use.

E. Meshing

The model obtained on the previous stage consists of a set

of oriented patches. For grasp planning it needs to be con-

verted into a trimesh. We use Poisson surface reconstruction

algorithm [11], which we briefly summarize here. Oriented

3D patches form the vector field ~V . This vector field can

be seen as a gradient field for the indicator function χ of

the surface. As shown in [11], the surface indicator function

can be efficiently recovered as the solution of the Poisson

problem: ∆~χ = ∇· ~V . The water-tight triangular mesh is

then extracted from the solution. The implicit representation

of the surface efficiently handles the noise inherent to vision-

based measurements of 3D point locations and normals.

F. Model evaluation

Each object has multiple models corresponding to differ-

ent reconstruction parameters. Each model is textured and



rendered using Blender [12]. The videos of different models

of one object are randomly shuffled and grouped in sets of 4.

Each group is presented to the worker. The task is to assign a

grade from 1(bad) to 10(perfect) to each model. The workers

are explicitly instructed that the better-looking model must

have higher score. All models of the object are randomly

shuffled and presented 3 times. After all models are graded,

the best model for each object is selected as the final model.

As we will see in the experiments, the model evaluation step

currently produces many errors.

G. Object recognition and pose estimation

We use MOPED system [2] for object recognition. The

recognition module requires only a single calibrated camera

and provides full 6DOF pose of detected object. MOPED

extracts SIFT features in the image and matches them

against the 3D models in the database. Once the feature

correspondence is established, full 6DOF pose is recovered

using RANSAC and verified. The recovered pose is highly

accurate and GPU-based feature extraction gives real-time

recognition with hundreds of models [2].

H. Grasping and manipulation

Once we obtain a model for the object and its pose in

the environment we compute grasps for the object using the

algorithm presented in [13]. This algorithm first samples the

surface of the object and computes distances from surface

points to the obstacles in the environment. These distances

are used to inform the cost function of an optimizer, which

quickly generates a set of grasps that are likely to be in force-

closure and collision-free. The grasp set is then checked for

collision and whether or not the grasp is reachable by the

arm.

We then compute the force-closure score for all reachable

and collision-free grasps and pick the highest-scoring grasp.

We compute Inverse Kinematic (IK) for this grasp, which

gives us the joint values of the arm that place the end-

effector in the proper pose. These joint values are passed

to a planning algorithm based on Rapidly-Exploring Random

Trees (RRT) [14], which computes a collision-free path from

the current configuration of the arm to the configuration

given by IK. Once this path is executed, we close the fingers

to grasp the object.

IV. EXPERIMENTS

To validate the presented approach to grasping novel

objects, we performed 6 rounds of reconstruction with vary-

ing difficulty: with and without a calibration target, single

and multiple objects, with and without clutter. The ideal

model must provide reliable recognition, accurate 6DOF pose

estimation and successful grasping.

To evaluate if the models we build are useful for grasping,

we validated whether the robot can detect the object, grasp

it, lift it and drop it into the recycling bin. The objects

were placed one at a time on the table and the robot arm

was positioned so that the palm camera can see the object.

The reconstructed object models were used for detection,

grasp and motion planning. The grasps were generated using

the method described in Section III-H, arm motions were

planned using using RRTs. We measured two metrics: the

overall task completion rate and the flawless execution rate.

In the first case only the fact that the robot places the object

in the bin is counted. In the second case, failure is declared

if the robot grasps the object incorrectly or if the robot or

the object touches any stationary objects in the environment.

We used common housed items found in any grocery store:

horizon chocolate milk box, soy on the go cappuccino drink

box, box of pop tarts, salt, Progresso clam chowder can,

bottle of Fuze, Sprite can and a medicine bottle.

To measure the efficiency of the qualification requirement,

we run a smaller subsets of 140 grouping and 100 outline

tasks. The qualification requirements are simple multiple

choice tests measuring that the workers understand the

instructions. The workers must take the test before they can

work on the tasks.

A. Experimental results

Of the 6 rounds of reconstruction, 5 rounds were success-

fully reconstructed and produced 13 models (figure 3). One

round of reconstruction failed, because the scene contained

too little visual information with our current choice of

features. Of the 13 models 2 were rated unusable (best

model scored below 6) by Mechanical Turk. Most models

posses visible defects on the surface, however they all closely

follow the actual object surface. As a result they were

sufficient for the grasp planning and successful grasping.

A short video clip demonstrating our system in action is

available at http://peopleforrobotsforpeople.

com/video/iros2010_movie.mov.

We manually verified all Mechanical Turk submissions

and only good submissions were used in the subsequent

stages of the pipeline. The results of the evaluation are given

in table I. Our findings are consistent with the literature

[9], [15]: a single average worker produces rather poor

results. By averaging 3-5 of them, we can obtain desired

high accuracy (after filtering out trivial spam) at the price of

higher annotation cost. We found that qualification require-

ments significantly improve the results (Table. I). Although

100% performance on the outlines seems too high to us, it

corroborates our findings on a different task unrelated to this

paper. On a simple task of providing boxes around people,

we observed 10 errors out of 4000 tasks. In general we don’t

expect such high accuracy. We expect average good workers

to produce 90%-95% of correct submissions once they fully

understand the task requirements. The qualification-based

model evaluation task is still work in progress. We are

actively working towards for a completely automatic and

verifiable quality assurance strategy.

Our main test was the success rate of the grasping and

manipulation task. In 61.9% of the runs, the robot executed

the tasked flawlessly: detection, grasp planning, grasping,

lifting the object and placing it in the recycling bin. This rate

excludes any errors: executing different grasp, touching the

table with the object, dropping the object due to insufficient

http://peopleforrobotsforpeople.com/video/iros2010_movie.mov
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Fig. 3. Reconstructed models follow the shapes of the objects well. Visible defects are caused by (1) low camera resolution (640x480) (2) limited visibility
at contacts with the table (3) featureless regions (peptco, duck tape), (4) non-planar and specular surfaces (e.g. sprite can)

TABLE I

MECHANICAL TURK SUBMISSION ACCURACY.

Task Good Minor errors Bad Requirements

Outlines 76.98% 2.44% 20.58% none
100.00% 0.00% 0.00% qualification

Grouping 77.95% 11.81% 10.24% none
93.30% 6.67% 0.00% qualification

Evaluation 46.99% 9.04% 43.98% none

force. In 85.7% of the runs, the robot succeeded in placing

the object in the recycling bin despite minor errors, such

as sliding the object along the table. The smaller and more

rounded objects were harder to grasp and manipulate. The

worst object was the sprite can. It’s rounded, metallic and

reflective surface violated assumptions of the reconstruction

algorithm resulting in a noisy model. Smaller models had

more minor failures than bigger models. We believe the

smoothing in Poisson reconstruction generates slightly bigger

surface models than they should be. This would cause more

problems for smaller objects than for bigger ones. We are

looking into calibrating the reconstruction pipeline with

known ground truth models.

V. CONCLUSION

Virtually unlimited amounts of human supervision are

available through online work marketplaces. This supervision

will greatly improve the robustness of deployed systems

and allow us to sidestep hard AI problems on our way

to autonomous robots. Rather than building a completely

automatic system, we engineer our system to rely on mas-

sive human feedback. This shift in thinking opens up new

challenges in algorithm design, user interface design, quality

assurance policies and learning.
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