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ABSTRACT:  

 

Monitoring the behavior of people in complex environments has gained much attention over the past years. Most of the current 

approaches rely on video cameras mounted on buildings or pylons and people are detected and tracked in these video streams. The 

presented approach is intended to complement this work. The monitoring of people is based on aerial image sequences derived with 

camera systems mounted on aircrafts, helicopters or airships. This imagery is characterized by a very large coverage providing the 

opportunity to analyze the distribution of people over a large field of view. The approach shows first results on automatic detection 

and tracking of people from image sequences. In addition, the derived trajectories of the people are automatically interpreted to 

reason about the behavior and to detect exceptional events.  
 

 

1. INTRODUCTION 

Monitoring the behavior of people in crowded scenes and in 

complex environments has gained much attention over the past 

years. The increasing number of big events like concerts, 

festivals, sport events and religious meetings as the pope’s visit 

leads to a growing interest in monitoring crowded areas. In this 

paper, a new approach for detecting and tracking people from 

aerial image sequences is presented. In addition to delineating 

motion trajectories, the behavior of the people is interpreted to 

detect exceptional events such as panic situations or brawls.  

 

A typical feature of current approaches is the utilization of 

video cameras mounted on buildings to detect and track people 

in video streams. Pioneering work on tracking human 

individuals in terrestrial image sequences can be found, e.g., in 

(Rohr, 1994; Moeslund & Granum, 2001). While this work 

focuses on motion capture of an isolated human, first attempts 

to analyze more crowded scenes are described in (Rosales & 

Scarloff, 1999; McKenna et al. 2000). Such relatively early 

tracking systems have been extended by approaches integrating 

the interaction of 3D geometry, 3D trajectories or even 

intentional behavior between individuals (Zhao & Nevatia, 

2004; Yu & Wu, 2004; Nillius et al., 2006; Zhao et al., 2008). 

Advanced approaches, based on so-called sensor networks, are 

able to hand-over tracked objects to adjacent cameras in case 

they leave the current field of view achieving a quite 

comprehensive analysis on the monitored scene. The work of 

(Kang et al., 2003) exemplifies this kind of approaches. Instead 

of networks of cameras, moving platforms like unmanned 

airborne vehicles (UAVs) can be utilized, too, as e.g. presented 

in (Davis et al., 2000). An overview on the research of crowd 

modeling and analysis including all stages of a visual 

surveillance is given in (Hu et al., 2004; Zhan et al., 2008).  

 

An important aspect of tracking a large number of people, as 

e.g. shown in (Rodriguez et al., 2009), includes the potential to 

not only analyze individual trajectories but also to learn typical 

interactions between trajectories (Scovanner & Tappen, 2009). 

Hence, event detection has been an intensely investigated field 

of research in the last decade. A framework using two modular 

blocks to detect and analyze events in airborne video streams is 

presented in the work of (Medioni et al., 2001). The first 

module detects and tracks moving objects in a video stream, 

whereas the second module employs the derived trajectories to 

recognize predefined scenarios. A further event recognition 

system is based on two consecutive modules, namely a tracking 

and an event analysis step, in which complex events are 

recognized using Bayesian and logical methods (Hongeng et al., 

2004). Video streams from close range surveillance cameras are 

used to detect events focusing on interactions between few 

persons. Further methods exemplify the emphasis on research in 

surveillance issues, as the scanning of video streams for unusual 

events (Breitenstein et al., 2009; Mehran et al., 2009). 

Additional related work in the field of people tracking and 

event detection is based on seminal research in crowd analysis 

and simulation (Helbing and Molnar, 1995; Helbing et al., 

2002). Observed collective phenomena in moving crowds, like 

lane formations in corridors, have successfully been simulated 

using a social force model (SFM). The SFM considers 

interactions among pedestrians and between pedestrians and 

obstacles, resulting in a certain moving direction for each 

individual.  

 

The approach presented in this paper is aimed to complement 

the above work. The monitoring of people is based on aerial 

camera systems mounted on aircrafts, UAVs, helicopters or 

airships. The provided image sequences cover a large area of 

view allowing for the analysis of density, distribution and 

motion behavior of people. Yet, as the frame rate of such image 

sequences is usually much lower compared to video streams 

(only some Hz), more sophisticated tracking approaches need to 

be employed. Moreover, the interpretation of scenarios in such 

large scale image sequences needs to comprise an exceeding 

number of moving objects compared to existing event detection 

systems. Thus, the intention of the approach is to define a 

broader spectrum of identifiable scenarios instead of simply 

alerting a general abnormal event within a monitored area.  
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The paper is organized as follows: Section 2 sketches the 

concept underlying the new approach. Section 3 outlines 

algorithmic aspects and shows results of people tracking and 

trajectory interpretation including a performance evaluation, 

exemplified by a test scenario of a crowded entrance area of a 

soccer stadium. Section 4 gives concluding remarks and 

discusses possible future investigations.  

 

 

2. APPROACH OF PEOPLE TRACKING AND 

TRAJECTORY INTERPRETATION 

2.1 System 

The underlying concept of the presented approach can be 

logically separated into two parts, as e.g. also (Medioni et al., 

2001; Hongeng et al., 2004) do. The first part detects people 

and delineates their trajectories from a sequence of ortho-

images and external geospatial information (Section 2.2). 

Additionally, macroscopic parameters describing typical 

patterns of a crowd scene like density, activity and systematic 

motion are calculated. The second part utilizes the obtained 

trajectories, the macroscopic parameters and model knowledge 

about the scene to analyze the people's behavior and to detect a 

certain instance of predefined scenarios (Section 2.3). The 

general overview of the system is shown in Figure 1.  
 

 
Figure 1. System overview. 

 

2.2 Tracking of people in aerial image sequences 

The detection and tracking scheme involves three different 

steps. First, macroscopic information about the imaged scene is 

determined. This is followed by detecting single people in each 

image and, finally, these detections are tracked by linking them 

iteratively over three images at the same time.  

 

Often, geospatial information can be expected providing 

additional data about the application scene in advance. The 

combination with the georeferenced ortho-images reduces the 

region of interest in every image of the sequence. Further 

preprocessing is done by decreasing the number of image 

channels. For efficiency reasons, currently only the first 

principal component of every color image is utilized, although 

the additional channels might contain some supplementary 

information. Future investigations will be carried out to 

evaluate the benefit of using color data.  

 

Estimation of macroscopic parameters: As shown in (Hinz, 

2009), aerial image sequences can be used to estimate density, 

activity and motion of people in crowded environments. These 

parameters give coarse information about the behavior of 

people at a macroscopic level. They can also be used to 

improve detection and tracking of individuals and for trajectory 

analysis. The image analysis begins with the computation of a 

general density map for each image. A simple region-growing 

algorithm is applied to detect large homogeneous regions which 

belong to the background. To exclude also small buildings and 

other man-made structures from the foreground, edge directions 

are calculated and analysed. The remaining foreground pixels 

are further denoised morphologically with a circular structure 

element.  

 

The next processing step comprises dot detection in the 

foreground region, which is done by convolving and 

thresholding the image with a filter enhancing dark and light 

circular dots. The residual foreground pixels are likely to 

belong to a person or dot-like clutter. Afterwards the local 

object density is calculated by applying a medium filter to the 

resulting binary image. Finally the density image is divided into 

three regions of high. Medium and low object density. Although 

this measure might still include some clutter, it is nonetheless 

helpful in further processing and to judge the results of 

detection and tracking correctly.  

 

Detection of individuals: At a resolution of few decimeters per 

pixel a single person is hardly visible. The body of one person 

covers a region of about 10 to 20 pixels and has the shape of a 

near circular dot. The proposed detection system is a cascade of 

image processing algorithms that is designed to find the circular 

dots in every image. In contrast to many other object detection 

problems, no search has to be accomplished through the scale 

space because the size of the objects is known and stays fixed 

over time.  

 

The detection algorithm utilises the results of the previous 

processing step as input. A single person points out as a local 

maxima in the dot-filtered image. Hence a pouring-based 

segmentation algorithm is applyed to find these maxima and to 

generate segments around them. These segments are further 

classified into clutter and possible individuals by examine shape 

features like area, convexity and compactness.  

 

Tracking of people: Tracking of hundreds or thousands of 

people in a crowded environment from an airborne platform is a 

challenging task. If the density of people becomes too high, it is 

hardly possible to visually differentiate individuals. 

Additionally, the spectral signature of a single person in an 

aerial image has not many features to discriminate between 

neighboring persons. The appearance features can change 

significantly in a short period of time due to the movement of 

the airborne platform and the varying influence of shadows, 

clouds, or neighboring persons. For these reasons, a semi-global 

optical-flow tracking algorithm is employed which balances 

local features with global smoothness constraints to link 

detected regions in consecutive images.  

 

Input data for the tracking algorithm are the segments from the 

previous detection phase. These segments are fed into an optical 

flow algorithm to compute the displacement vectors between 

two consecutive images. Typical maximum motion parameters 

of humans are involved to reduce the search space for flow 

calculation. If there is a segment in the second image at the 

predicted position and the estimated movement is realistic 

regarding the local object density, both segments are linked to 

represent the motion of one person. Because the results of the 

optical flow computation are affected not only by object motion 

but also changing lighting conditions, they can only serve as an 

approximate cue for the motion of a person through the 

sequence. Therefore, the same procedure is repeated in the 
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opposite direction and only those links that appear in both ways 

are kept.  

 

The global smoothness constraint of optical flow allows to link 

object regions without an explicit matching of their unstable 

appearance. However the drawback of the proposed method is 

its dependency on a good and complete object detection result 

in each picture. To overcome situations when a single person 

could not be detected in one image of the sequence or when a 

link could not be established, images are processed additionally 

being two frames apart. These links are used to establish 

missing connections between the three consecutive images 

while the person’s location in the bridged image is interpolated.  

 

The introduced procedure is applied to the entire sequence. The 

output of the tracking algorithm consists of trajectories which 

reflect the motion of individuals through the image sequence. 

They are used for further processing in the second module of 

the proposed system.  

 

2.3 Interpretation of trajectories of people 

The derived trajectories of moving people within the observed 

scene are used to initialize the second module analyzing the 

trajectories with regard to motion patterns. The trajectory 

interpretation system aims at bridging the gap between low 

level representation of single trajectories and high level people 

behavior analysis from image sequences. To achieve this goal, 

microscopic motion parameters of single trajectories as well as 

mesoscopic motion parameters of several trajectories have to be 

extracted. A graph is constructed containing microscopic and 

mesoscopic motion parameters to represent a neighborhood of 

trajectories. Additionally, GIS data and macroscopic parameters 

are utilized to recognize predefined scenarios. A hierarchical 

modeling of scenarios is feasible, as the interpretation of 

trajectories is based on the analysis of simple motion 

parameters of one or more trajectories. In the following, the 

module for trajectory analysis is presented in more detail.  

 

Microscopic and mesoscopic parameters: Microscopic 

motion parameters concern the motion characteristics of one 

single moving person. Hence, the most important microscopic 

motion parameters to exploit are speed and motion direction. In 

addition, further parameters can be calculated from these two 

basic microscopic motion parameters. Figure 2 shows a single 

trajectory depicting some features which are used to calculate 

the following parameters.  

 

The average speed v of a moving object is calculated using the 

relative distance drel of a trajectory which is given as the 

Euclidian distance between the points x_1 and x_n. Using this 

approach, v is the speed for the effectively covered distance for 

this object within the observed time frame, disregarding any 

multi-directional movements. In contrast, the absolute distance 

dabs is derived from adding the segments d_i of one trajectory 

over all time steps i. The acceleration a of a moving object is 

computed by differencing the speeds of two consecutive line 

segments. A further microscopic parameter is straightness, 

calculated from the two different distances mentioned before by 

s = drel/dabs. As dabs always receives a bigger number than drel, s 

takes a value near 1 when the trajectory is very straight and a 

much smaller value towards 0 when the trajectory is very 

twisting or even self-overlapping.  

 

Motion direction is the second basic microscopic motion 

parameter: the direction z(x_i) at a point x_i is the direction of 

the tangent at this point defined by the points x_(i-1) and 

x_(i+1). The motion direction is specified counterclockwise 

with reference to a horizontal line. Similar to straightness, the 

standard deviation σz of the motion directions indicates the 

degree of the twists and turnarounds within one trajectory.  
 

 

Figure 2. Features of a trajectory to calculate microscopic 

motion parameters: points x_i and line segments d_i (black), 

direction at point with reference to horizontal line z(x_i) (blue). 

 

Mesoscopic motion parameters represent the interaction 

between several individuals. Therefore, it is necessary to 

evaluate the proximity of a trajectory with respect to the 

number of neighboring trajectories, their motion directions and 

potential interferences. Figure 3 shows an example of two 

neighboring trajectories. The detection of neighbors is 

accomplished by scanning the surrounding area of existing 

trajectory points at every time step i. For each detected 

neighbor, the offset o_i of each pair of points x_i und y_i is 

stored. Comparing length and direction of these offsets during 

the entire image sequence, robust information can be derived if 

neighbors come closer or even touch each other. In addition, the 

motion direction at each point is inspected to detect 

intersections of trajectories.  
 

 

Figure 3. Two neighboring trajectories with offsets o_i (green) 

between pairs of points x_i and y_i (black). 

 

Scenario modeling and scenario recognition: Scenarios are 

modeled hierarchically to recognize complex motion patterns 

based on the extraction of simple microscopic and mesoscopic 

motion parameters, similar to the event detection systems 

mentioned in Section 1. Hence, predefined scenarios consist of 

trajectories and local GIS information in the lower level which 

represent simple image features by coordinates (Figure 4). 

Microscopic motion parameters follow in the next level of 

motion parameters which give a more abstract representation of 

the trajectories. Additionally, mesoscopic motion parameters 

are embedded in this level because they are closely linked to 

microscopic motion parameters and directly derived from the 

trajectories. In the subsequent level, simple events are modeled 

resulting from beforehand defined parameters. These events 

concern single trajectories or try to model information from 

mesoscopic motion parameters. In the highest level of the 

hierarchical scenario modeling, simple events are combined 

with GIS data to complex scenarios representing complex 

motion patterns within the observed scene.  

 

The goal of the proposed system is to recognize scenarios 

which are predefined as described before. Based on the tracking 

in the first module of the system, motion parameters are 

extracted. These parameters are evaluated to compute 

probabilities of simple occurring events. The combination of 

several simple events leads to the recognition of a predefined 

scenario.  
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Figure 4. Example for the scenario “waiting for another 

person” consisting of four hierarchical layers. 

 

 

3. EXPERIMENTAL RESULTS 

3.1 Test scenario 

For developing and testing the presented new approach, aerial 

image sequences provided by DLR’s 3K multi-head camera 

system are used (Kurz et al., 2007). This system consists of 

three non-metric off-the-shelf cameras, with one camera 

pointing in nadir direction and two in oblique direction. The 

basis for near-realtime mapping is provided with a coupled 

realtime GPS/IMU navigation system which enables accurate 

direct georeferencing.  

 

The aerial image sequence used in the experiments was 

captured at a soccer match with a few thousand people heading 

for the gates of the stadium. The height of flight was 1500m 

resulting in a ground sampling distance of about 20cm. In spite 

of the low resolution, people can be recognized clearly by their 

long shadow. The camera system has been operating in 

continuous mode which resulted in image sequences with a 

length of 40 frames at a sampling rate of 2 Hz. Every image 

covers an area of approximately 1000m × 600m and with an in-

track overlap of about 90%. For the evaluation a smaller area 

has been selected, completely visible in 16 consecutive frames. 

Figure 6 shows the test area in every third frame of the image 

sequence.  

 

3.2 Detection and tracking of people 

The detection and tracking algorithms are evaluated comparing 

the achieved results with reference trajectories, collected 

manually using the same image sequence. This reference data is 

not complete in regions where the density of people is too high 

to differentiate between individuals. Therefore, the evaluation is 

limited to a region of about 40m × 50m south of the entrance  
 

Figure 5. Comparison of manually tracked persons with the 

results of the algorithm over a sequence of 15 aerial images 

with about 130 persons visible. 

 

which is not too crowded. Here, 130 persons could be marked 

manually in average through a sequence of 15 frames. It is 

important to know for a correct interpretation of the evaluation 

that the reference data might not be free of errors. Occasionally, 

manually tracked persons merged with others so that their 

position had to be estimated for some frames. In other 

situations, the contrast became too low to define the accurate 

position of a person due to clouds passing by.  

 

The evaluation results of the detection and tracking algorithms 

are shown in Figure 5. An automatically generated segment is 

considered as a correct detection if the distance between its 

center and the next reference position is within a tolerance 

radius of 3 pixels corresponding to 45cm on the ground. The 

same criterion is applied to evaluate the tracking results. 

Though, in this case every point of a generated trajectory has to 

be close enough to one of the reference trajectories. For the 

evaluation of the tracking results all possible links between two 

up to 15 consecutive frames are compared. Figure 7 visualizes a 

result of detection and tracking in comparison to the reference.  

 

Averaging the results over all 15 images, the detection module 

has achieved a completeness of 61% and a correctness of 66% 

(cf. Figure 5, length 1). The completeness of the generated 

trajectories increases almost linearly with growing length while 

the completeness drops down quickly. Several reasons are 

possible: one effect still to investigate is the influence of the 

tolerance radius during evaluation. The center of the detected 

segments could be more than 3 pixels away from the manually 

marked position of the head of a person. This can happen when 

the body of one person merges with its shadow to a uniform dot 

due to low contrast, cf. Figure 7 (left). Another effect stems 

Figure 6. Test area in the aerial image sequence used for evaluation of the tracking and interpretation system; frames no. 1, 4, 7, 10, 

13 and 16 out of 16 consecutive images are shown [3K-images are provided by the German Aerospace Center (DLR)]. 
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Figure 7. Detection results (left): black circles show the position 

of manually marked persons, white regions were generated by 

the algorithm; tracking result (right): reference trajectories are 

black, automatically generated trajectories are white. 

 

from the optical flow which can occasionally lead to a wrong 

displacement vector. Although the limitations of the reference 

data and the low contrast of the image sequence corrupt the 

results to a certain amount, the numerical evaluation shows 

clearly the potential for further improvements of the detection 

and tracking system. A more sophisticated detection algorithm 

based on a machine learning approach will certainly reduce the 

effect of clutter and improve the results significantly.  

 

3.3 Interpretation of trajectories 

Experimental results for the computation of microscopic motion 

parameters in the trajectory analysis module are presented in 

this section. The computation is performed on manual reference 

data used in the image analysis module to focus at this point to 

the new approach of trajectory interpretation. Two example 

scenes of the image sequence are used for event detection, both 

with eight trajectories visualized on the last image of the 

sequence, respectively (Figure 8, Figure 9).  

 

Figure 8 shows a scene nearby the queue. Table 1 lists the 

related microscopic parameters of the eight trajectories. The 

microscopic parameters are meaningful with regard to the 

characterization of the trajectories. Trajectories 1 and 2 turn out 

to cover the longest distance and to have the smoothest and the 

least twisting path. This facts are clearly depicted by the 

parameters drel and dabs , which result in a high value for 

s ≈ 0,98, as well as by the small deviation σz ≈ 10°. Caused by 

the turn, trajectories 3 and 4 receive a smaller s ≈ 0,75 and a 

higher deviation σz ≈ 50°. The shorter trajectories 7 and 8 are 

characterized by small values for s as the paths are very 

twisting. Modeling the motion patterns of trajectories 1-4 result 

in a complex event called “waiting for other person”, because 

the persons 3 and 4 obviously accelerate their motion when 

persons 1 and 2 are next to them, afterwards walking alongside 

each other. Additionally to the shown microscopic parameters, 

evidence for parallelism can be given by mesoscopic 

parameters and, thus, result in the complex event similar 

described in Figure 4. Parallelism is visualized by the 

chronologically colored crosses of frames no. 1, 4, 7, 10, 13 and 

16 in Figure 8.  

 

Figure 9 shows another more crowded scene 2 representing a 

different event. Table 2 lists the microscopic parameters of 

eight trajectories. This scene is located at the right boundary of 

the queue, depicted by a macroscopic border of high density 

(red), next to a wall derived from GIS data (blue), cf. Figure 9. 

Resulting from the trajectory’s characteristics, microscopic 

motion parameters again receive values as expected. In this 

scene, the motion pattern shows a possibly dangerous 

“bottleneck” event, because the faster walking persons are 

pushed aside by the queue. These faster persons have to 

sidestep to a small gap between the queue and the wall. 
 

 

Figure 8. Results of the trajectory analysis module of scene 1: 

high density borders depicted in red; the color bar shows the 

time steps within the sequence. 
 

ID dabs 

(m) 

drel 

(m) 

v 

(km/h) 

s zmean 

(°) 
σz 

(°) 

1 11,22 10,91 5,24 0,972 13,27 10,95 

2 11,17 10,94 5,25 0,980 13,95 9,97 

3 7,05 5,05 2,42 0,715 51,30 57,31 

4 6,55 5,05 2,42 0,771 42,88 44,67 

5 2,50 1,60 0,76 0,641 29,66 92,03 

6 2,14 1,52 0,72 0,710 67,99 50,63 

7 1,71 0,78 0,37 0,454 56,72 35,34 

8 1,67 0,43 0,21 0,257 31,47 84,53 

Table 1. Microscopic parameters for trajectories in Figure 8. 

Results of the trajectory analysis module of scene 1. 

 

 

Figure 9. Results of the trajectory analysis module of scene 2: 

high density border depicted in red, GIS data depicted in blue; 

the color bar shows the time steps within the sequence. 
 

ID dabs 

(m) 

drel 

(m) 

v 

(km/h) 

s zmean 

(°) 
σz 

(°) 

1 8,73 8,17 3,92 0,936 72,99 18,31 

2 8,27 7,78 3,74 0,941 81,11 20,75 

3 3,29 2,86 1,38 0,871 82,03 60,34 

4 9,77 9,72 4,66 0,994 72,19 3,84 

5 2,31 1,15 0,55 0,500 67,68 85,22 

6 1,78 0,56 0,27 0,315 34,84  112,24 

7 2,01 1,10 0,52 0,549 89,24 86,78 

8 1,66 0,54 0,26 0,324 36,12  102,24 

Table 2. Microscopic parameters for trajectories in Figure 9. 
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4. CONCLUSIONS 

The presented new approach for detecting and tracking people 

from aerial image sequences shows very promising first results. 

In addition, the achievements interpreting the trajectories 

demonstrate the potential of event detection. Several further 

developments and investigations are of interest: Haar-like 

features and AdaBoost classification (Smal et al., 2010) is 

planned to be used in the future to improve the object detection 

component. Besides detection also tracking can be improved: 

although the algorithm can handle situations of a person being 

missed in a single frame, it fails completely when it happens in 

two or more consecutive frames. This drawback cannot be 

dissolved with the proposed optical-flow algorithm. Bridging 

more than one image would allow to construct longer 

trajectories, whose completeness increases significantly as the 

currently derived results. The trajectory interpretation module is 

exemplarily shown by two different events: obviously, the 

modeling of further scenarios is aimed to get a more overall 

monitoring of possible occurring events. The automatic 

detection of predefined events using statistical methods, similar 

to (Hongeng et al., 2004), is intended to be accomplished in the 

near future. In addition, a backward-loop is strived to be 

integrated in the system: results derived from the interpretation 

of the trajectories could be integrated in the strategies to 

improve the tracking model. Obviously, the dependent 

interpretation module will benefit afterwards from more reliable 

tracking results.  
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