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Abstract

Particle filters are used for hidden state estimation with
nonlinear dynamical systems. The inference of 3-d human
motion isa natural application, given the nonlinear dynam-
icsof the body and the nonlinear relation between statesand
image observations. However, the application of particle
filters has been limited to cases where the number of state
variablesisrelatively small, because the number of samples
needed with high dimensional problems can be prohibitive.
We describe afilter that uses hybrid Monte Carlo (HMC) to
obtain samples in high dimensional spaces. It uses multi-
ple Markov chainsthat use posterior gradientstorapidly ex-
plore the state space, yielding fair samples from the poste-
rior. We find that the HMC filter is several thousand times
faster than a conventional particle filter on a 28D people
tracking problem.

1 Introduction

Particlefilters[8, 11, 13, 17] have become a popular way
toinfer time-varying propertiesof ascenefromimages. Ap-
plicationsinclude tracking rigid and articulated objects[13,
14, 18], gesture recognition [1], robot localization [10], and
estimating occlusion boundaries [2]. Particle filters com-
pute a sampled representation of the posterior probability
distribution over scene propertiesof interest, conditioned on
image observations. The interpretation of 3-d human mo-
tion from video is one particularly compelling application
owing to the ease with which particle filters cope with non-
linear dynamics and nonlinear observation equations, and
the ease with which they maintain uncertainty with multi-
modal distributions[23].

Nevertheless, the successful application of particlefilters
has been limited to situationswherethe number of state vari-
ablesisrelatively small. For high dimensional state spaces
the algorithm can become computationally inefficient and
thusineffective. This paper describesamodified particlefil-
ter that uses a Markov chain Monte Carlo (MCMC) tech-
nique called hybrid Monte Carlo (HMC) [9, 19, 21] to fil-
ter more efficiently in high dimensional state spaces. Like
the particle filter, it uses a number of particles. But rather
than weighting each particle by its likelihood, each particle
producesaMarkov chain that can follow the gradient of the

posterior over large distances. This allowsit to rapidly ex-
plorethe state space, while producing fair samples from the
desired posterior distribution. We apply the HMC filter to
the problem of estimating the time-varying, 3D shape of a
moving person from a sequence of projected marker posi-
tionsin a2D image. On this 28D problem, we find that the
HMC filter is several thousand times faster than a conven-
tional particlefilter.

2 Background and Previous Work

The goal of Bayesian filtering is to compute the pos-
terior probability distribution p(s; | z;.;) over an unknown
state s; at time ¢, conditioned on image observations, z;.; =
(z1,...,2), up to time ¢t. Particle filters work by approxi-
mating the posterior distribution using adiscrete set of sam-
ples (i.e., states), where each sample corresponds to some
hypothesized set of model parameters. Each sample state is
typically weighted by itslikelihood, p(z; | s;), the probabil-
ity that the current observations were generated by the hy-
pothesized state. With high dimensional state spaces, a ma-
jor concernisthe number of samples, and hence the number
of likelihood computations that are required to adequately
approximate the posterior.

One way to minimize the required computational effort
isto reduce the effective size of the state space that must be
searched. One can do this by exploiting problem-dependent
constraints, such as conditional independence among the
state variables. MacCormick and Isard [18] partition the
state space and sampl e the partitioned variabl esin sequence,
using importance reweighting.

One can also reduce the number of particles by choos-
ing a better proposal distribution, for example by improv-
ing the dynamical model of the system or by finding a
low-dimensional subspace in which the tracking can be
performed [15, 23]. This is appropriate when such low-
dimensional representations are available. Other ways to
obtain better proposals involve importance sampling or
sampling from low-level detectorsin order to rapidly inject
good hypothesesinto the sample set [2, 14].

Deutscher et a. [7] and Cham and Rehg [4] tackle the
problem of tracking people in high dimensional spaces by
following gradients to good hypotheses. Although such
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methods produce maximal-likelihood parameter estimates,
they do not produce an approximation to the desired poste-
rior. Even with multiple hypotheses[4], the samplesare not
likely to be properly weighted samples from the posterior.
The hybrid Monte Carlo filter proposed here can be seen
as a way of following gradients of the posterior distribu-
tion to good hypotheses, but it is designed to generate sam-
plesthat are correctly distributed according to the posterior.
When properly tuned, it allows for long trajectoriesthrough
state space so that the posterior can be sampled rapidly.

3 Basic ParticleFilter

The particlefilter isdescribed elsewhere[11, 13, 17], but
we include it here for completeness. If we model the time-
varying, d-dimensional state s; as afirst-order Markov pro-
cess, and assume that observations z; areindependent given
St, then we can factor the posterior p(s;|z;.;) to obtain

p(Silz1e) = np@d&)/b@Aﬁfﬂziafﬂajfﬂd&flKﬂ

where & is a constant that is independent of s;, p(z:|s:) is
the likelihood function, and the integral is often referred to
as the temporal prior over s; given past observations.

The particle filter uses the temporal prior to bound the
search for high likelihood states by drawing proposal states
directly from it. Importance weights are then used to prop-
erly weight these states so they represent the posterior rather
than the prior from which they were drawn. Thisyields a
weighted set of samples, S; = {si, wi}& |, whichis said to
be properly weighted when summation over the particles ap-
proximates expectation under the posterior P, [17]; i.e.,

N
Eslf(8)] = D wif(s) =F Enlf®)], @

for sufficiently smooth functions f.
Beginning with a sample set {si_,,w!_;}¥, that ap-
proximates p(s;_1|z;.:—1), the computation at time ¢ is:

1. Treating the weights as probabilities, draw N particles
withreplacement from {si_; } ¥, toobtainauniformly
weighted sample set {u?_, } V.

2. For each particle u:_, draw a sample from transition
density (the model dynamics) p(s;|s—1 = ui_,),
yielding aproposal set {si}¥ ;.

3. Compute the importance weights w from the normal-
ized likelihoods, i.e, wi; = cp(z|s = si) where
cl= > p(ze| st =g/) isthe normalization constant.

The success of a particle filter depends on its ability to
maintain an good approximationto the posterior. Following
(2), one natural way to assess the quality of the filter is to
examine the variability of sample expectations, Es, [f(st)].
as compared to expectations under P, that is:

Var[Es[f(s)]] = E [Esf&)]-Erl/&)’], @

where expectation istaken over different runsof the particle
filter. Not surprisingly, small variances are preferred.

The variance in (3) depends on the sample set. If one
had NV independent samples, {vi}Y , , fromthe posterior P;,
then the sample mean and its variance are

1,
Evlf(s)] = §> /) (4
VarlEn [f(s)] = Varn[f&)]. ©

The variancein (3) will generaly be larger than that in (5).
It is sometimes approximated by
N

Var [Es,[f(s)] ~ (Z<wz’>2) Varp, [f(s)] . (6)

i=1

where 1/ >~ (wf)? is called the effective number of samples
[3, 16, 18].

In practice, random variability can be problematic for
particle filters. Some regions of state space may receive
fewer than the expected number of samples, while sam-
ples in other regions may occur closer together than nec-
essary given the smoothness of the posterior. One can get
a rough estimate of the minimum number of particles re-
quired by comparing the effective volumes (variances) of
the search space (the temporal prior density) and the target
(the posterior). For example, if the prior and posterior be
constant in d-dimensional hyperellipses with radii {A j}gzl
and {\; };?:1, and zero el sewhere, then asimple calculation
shows that

d
Var[Es,[f(s)]] ~ %Varp

[f(s)] (7)
where A = [TA}/ and A = [T}/, Thisimplies that the
minimum number of particles, approximately N (A/A) 4, is
exponential in the state dimension. Random variability will
lead to poor tracking when d is high, or when A <« A.

To cope with sampling inefficiency in high dimensional
spaces, we propose the use of a MCMC method called hy-
brid Monte Carlo (HMC) for filtering [9, 21]. After review-
ing the relevant aspects of MCM C methods, we discuss the
HMC filter below.

4 Markov Chain Monte Carlo

Central to MCMC methods is the Markov chain (MC),
a sequence of random variables Xy, Xy, ..., that satisfy
p(X;| X1, Xi—a, ..., Xo) = p(X;|Xi_1). Forfiltering, the
utility of Markov chainslies in the fact that, by choosing a
suitable transition distribution p(X ;| X;_1), aMarkov chain
can be made to converge to the posterior, P. That is, re-
gardless of starting state, as the number of samples in the
MC grows sufficiently large, they becomefair samplesfrom
P. For thisto happen, thetransition p(X ;| X;_1 ) must leave
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P invariant; i.e., if X; ; isafair sample from P, then X
drawn from p(X;| X;_1) must also beafair samplefromP.
MCMC methods often use Metropolis tests to achieve in-
variance through detailed balance [21]. The transition must
also beirreducible and aperiodic in order to ensure conver-
gence[22].

In this paper, we use an MCM C techniqueto obtain sam-
ples M, = {si}¥, fromthe posterior P; = p(s;|z1.¢). Ex-
pectations of functions f(s;) under P, are then computed
by averaging asin (4). However, because samples from a
Markov chain are not independent in general, the variances
of such statistics converge more slowly than 1/N:

VarEa [f(&)]] = Varpf&)], @

Here, the inefficiency factor, 7, depends on the autocorrela
tion of the MC samples. Comparing (8) to (7), we see that
the particle filter, in effect, has an inefficiency factor that
rises exponentially with dimensionality.

5 Hybrid Monte Carlo (HMC) Filter

The particle filter outlined in Sec. 3 produces weighted
samples. In contrast, the algorithm we propose uses
M Markov chains, each with R + 1 samples; let
(s s ..., i) denote the samples from the i " Markov
chain. The HMC filter is like a particle filter as it begins
each time step with A particles. But each particle then
spawns a MC that converges to the posterior. Although a
single MC will eventualy explore the entire state space,
it often requires many samples to move between different
modes of the posterior. We use multiple, independent
chains to explore multiple modes more efficiently.

The algorithm beginswith atemporal prior. Likethe par-
ticle filter, we take this to be a linear mixture of transition
densities, conditioned on samples from the posterior at the
previoustime. Here we use only the final sample from each
MC, {s"® 1M from which we obtain

1 & :
p(St|Zie—1) = i ZP(St |st—1 :st;Rl) . 9)
i=1

Combining this with the likelihood function yields the pos-
terior at time ¢:

p(St|z1:e) = kp(Ze|S) p(St | Z1:e—1) - (20

The HMC filter then proceeds as follows:

1. For each particle in {s}, draw proposal states
u ~ p(s|s 1 = s, and evaluate the weights
wi = cp(z;| s, =u}), where ¢! =Y. p(z¢|s; =usi).

2. Treatingthe weights as probabilities, draw M particles
with replacement from the proposal set {ui}}, to ob-
tain {s;°}M , theinitial Markov chain states.

3. Set the unnormalized target posterior as P, =
p(z¢|st) p(st | z1:4—1) . (The normalization constant is
not significant for the hybrid Monte Carlo updates.)

4. For each particle, use HM C updatesto computeitsMC

statess;” = U(s)"™"; P;) forr = 1,..., R. Thetran-
sitionU(s)"~'; P;) isdesigned to leave P; invariant.

In practice, MCMC methods require some burn-in time
before the samples reach equilibrium; only those samples
that are drawn after the chain has reached equilibrium are
representative of the posterior. It is therefore common to
discard the early samples of each chain. The initial MC
states computed in step (2) are drawn from a rough approx-
imation to P; in order to minimize the number of burn-in
samples. However, as there is no universally good way to
determine when one reaches equilibrium [6], we currently
set by hand the number of burn-in samples to be the same
across dl chains.

Each particleisupdated to keep thetarget posterior P in-
variant. As explained below, the hybrid Monte Carlo algo-
rithm requires that we are able to evaluate both the density
and the gradient of the target distribution. In practice, we
use Gaussian distributions for the transition density, so this
is not a significant restriction on the prior. Many likelihood
functionsused in vision are a so differentiable, so thisis not
asevere restriction either.

6 How Hybrid Monte Carlo Works

To produce samples from the target posterior distribution
P(s), hybrid Monte Carlo performsaphysical simulation of
an energy-conserving system with a potential energy bowl
equal to —log P(s) [9, 21]. Theintuition isthat if you ob-
servethestate of the system at regular intervals, then the col -
lection of observed states formsaMarkov chain that comes
from P, provided that you replace the system’s momentum
after every observation by a sample from a unit Gaussian.
These momentum resamplings ensure that the system can
acquire enough energy to visit unlikely states with nonzero
probability.

Inthe physical simulation, each statevariable s ; is paired
withamomentum variablep ;. On this extended state space,
the Hamiltonian, or total energy, is defined as H(s,p) =
E(s)+ K(p), where E(s) = — log P(s) isthe potential en-
ergy and K (p) = Lp?p isthekinetic energy for a system

2
with a unit mass matrix. The new target distribution is

P'(s,p) = Cexp(—H(s,p)) (11)

where C' is a normalizing constant. By construction P’ is
separable, so the marginal distribution of sunder P’ issim-
ply the desired posterior 2. Thus, if we can get a sample
(s,p) fromP’, then sisaso afair ssmple from P.

Hybrid Monte Carlo produces MC samples with a tran-
sition (s7,p") — (s"1, pr*L) that leaves P’ invariant. (In
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what follows, we drop the superscript 7 and the subscript ¢
with the understanding the discussion applies to chain i at
timet.) TheHMC transition is composed of two steps, each
of which leaves P’ invariant. First, p” is replaced by p",
which is sampled from a unit Gaussian. Thisleaves P’ in-
variant as p is independent of s, and we have not changed
p’s distribution.

The second step, (s™,p") — (s, prtl), involves
the physical simulation. Starting from (s™,p"), the system
evolves according to Hamiltonian dynamics:

dp _ ds

i = _VE(S) y a = (pla b2, - pd) . (12)

Because Hamiltonian dynamics conserves H, isreversible,
and preserves the phase space volume, it leaves P’ invari-
ant [21]. In practice, we use a discretized simulation made
up of L deterministic leapfrog steps, called a leapfrog tra-
jectory. With the initial state (8°,p°) = (s",p"), the "
leapfrog step, with stepsize ¢, is specified component-wise
by

-1
Al—1/2 Al—1 E aE(S ) 13
p; = b 2 0s; (13)
sho= 574 epm? (14)

ol

0 .1-1/2 €O0E(§)
pj - pj B 5 aSj (15)

whereeachlineiscomputedfor j = 1...d beforemovingon
to the next.

Because the simulationis discrete, it is not guaranteed to
conserve H, nor to leave P’ invariant as a consequence. We
therefore perform a Metropolisrejection test [20] at theend
of each leapfrog trajectory. That is, we accept the proposal
(8", p™) with probability

min{1,exp[-H(8",p") + H(S",p")]} . (16)

If the proposal is accepted, we set (71, p*1) to (8%, p*).
If rejected, ("1, pm*1) is set to (s",p"). High rejection
rates should be avoided asthey usually lead to inefficient ex-
ploration of the state space.

The Metropolisrejection test is guaranteed toyieldaMC
updatethat keepsthetarget distributioninvariant if itisused
with deterministic proposalsthat are self-inverting and have
Jacobian 1 [5]. Theleapfrog trajectory has both these prop-
erties. Inprinciple, other typesof proposal scan beused with
Metropolistests to obtain samplesfrom P’. The key attrac-
tion of the leapfrog physical simulation is that, becauseit is
a simulation of Hamilton's equations, it leaves H roughly
constant even for long trgjectoriessolong as e isnot solarge
that the simulation becomes unstable. As can be seen from
(16), keeping H roughly constant keeps rejection rates, and
thus MC autocorrelations, low. Furthermore, long trajecto-
riesavoid randomwalks, and thereby produce samplesfrom
distributions efficiently.

In (13)-(15), the stepsize e isidentical for each state com-
ponent, 5 = 1...d. Thisisfine for isotropic energy bowls.
Otherwise, the stepsizein each direction shouldideally scale
with the width of the energy bowl in that direction. Thus,
one might use a separate stepsize ¢; for each state compo-
nent, j = 1...d; following [21], we set the stepsizes as fol-

lows:
2\~
Ej ~ €<a E) (17)

2
asj

where € is called the stepsize adjustment factor. The sec-
ond derivative of E must be estimated using a heuristic so
that it does not depend on s (with the articulated model be-
low, variables high in the kinematic tree have larger second
derivatives than ones lower in the treeg).

In general, leapfrog updates are valid for any nonzero
setting of €; so long as their choice does not depend on s.
The self-inverting property of the mapping would be vio-
lated otherwise. Our formulation here with different step-
sizesfor each componentis still equivalent to aHamiltonian
formulation, but with a diagonal mass matrix instead of the
unit mass matrix used above. In particular, the different step
sizesgivenin (17) would be equivalent to amass matrix with
diagonal elements given by €7 /¢*.

7 Experiments

To evauate the hybrid Monte Carlo (HMC) filter, we
used it to infer the 3D motion of people walking and danc-
ing, from 2D moving light displays obtained from a com-
merical motion capture system. Inference of 3D structure
from motion capture datais interesting in its own right, but
we selected this problem rather than inference from video
[23] to ssmplify the likelihood function, allowing usto focus
our analysis on the filtering algorithm. Below we compare
the HMC filter to the particle filter on problems of different
dimensions, and show that the HMC filter is far superior in
high dimensions.

7.1 ObservationsUsed for Tracking

The observations are labeled 2D positions that corre-
spond to 3D joint locations on a human subject. Figure 1A
shows the 3D marker locations on the body. The obser-
vations are given by the perspective projection of the 3D
points onto the image plane plus additive noise. With the
cameracentered at (X, Y., Z.) anditsoptical axis aligned
with the Y"-axis, the 2D location of the 1*" marker located at
(XL, vl Zl)isgivenby

m? - m?

Xt —x, 7zt —7
d = (2mToeZmT) L n (8
l (m_yc,m_yc)+ (18)

where n is mean-zero Gaussian noise with variance o 2.
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Figure 1. (A) 3D positions of 17 markers on a human sub-
ject. (B) The kinematic tree used in our model.

7.2 Likeihood and Temporal Prior

The person is modeled as a hierarchical articulated
model. The hierarchy forms a kinematic tree rooted in the
spine as shown in Fig. 1B. Each body part has alocal ref-
erence frame with its z axis running through what is natu-
rally thought of as the longest axis of that part. The pose of
abody part’sreferenceframeis specified using 3D rotations
and trandlations that map its frame to its parent’s. Angles
(a, B,7y) denote angles of rotation about the X, Y and Z
axes. These angles, with the translations between part co-
ordinate origins, define the homogeneous transformations,
Rx(a), Ry(8) and Rz (v). Taken in succession, they de-
fine the transformation matrix that maps apoint X . in some
child frameto X, in its parent’'s frame:

Xp = Rz(7)Ry (B)Rx () X (19)

Given a state, s, one can traverse the kinematic tree to
generate the 3D marker locations. These are then projected
into theimageto obtain predicted 2D locations. Let d;(s) be
the 2D location for the 1" marker that is predicted by state
s. With this, we can write the likelihood function for state s
and image observationsz = {d,(s)};7, as

17 17 - 2
ol = () "exp |- TG GOIET

202

The state spaceis 28-dimensional: Thereare 6 degrees of
freedom (DOF) for spine position and orientation, 3 DOFs
for thehead and for each hip and arm/shoul der joint, 2 DOFs
for the pelvis, and 1 DOF joints for the shoulder/spine, the
elbows and the knees. For atemporal prior over these state

d # Particle filter #HMC R . I
samples (1000's) chains
IR HIRE
0| o iacess | ° | e | 40| @
2| etz | © | masmesw | 30| ©

Table 1. Particle filter and HMC settings for single frame
experiments. Each row gives settings used for dimension d.
Numbers of samples used for the particlefilter arein column
2. Remaining columns show HMC settings (only R wasvar-
ied to equate computation times of the two filters).

variables, we simply assume that states change slowly over
time. As mentioned above, the temporal prior for states s;
given s, _; is a Gaussian centered at s, ; with variances
o3 and o2 for translation and angular variables. This prior,
along with (20), definesthe unnormalized posterior whichis
straightforwardto differentiate, asisrequired for HMC tran-
sitions.

In practice one could exploit the Markov tree model of
the body to sample the structure more efficiently, asin [12,
18]. Here, while we do examine the tracking of the entire
body as well as its parts, our main concern is the relative
performance of HMC filters and particle filters. Also, note
that our human model isweak in that we do not model limits
on how far joints can rotate in reality. It is therefore possi-
blefor thetracker to recover anatomically impossible poses.
Similarly, limb lengths are determined from the dimensions
of the particular human subject before tracking begins, and
are then fixed during tracking. Thisis a source of error be-
causereal jointsare more complicated than our model, caus-
ing some parts such as the shoulder to vary in length over
time.

7.3 Single Frame Experiments

Becausefiltering isrecursive, it is useful to examine per-
formance for asingle time step. For both HMC and particle
filters we implemented three trackers: a 4D arm tracker, a
10D lower body tracker and the 28D full body tracker. Each
was applied to three different, wide-spaced frames from se-
guencesof peopledancingandwalking. Whentrackingare-
stricted subset of the states, asin the arm and the lower body
trackers, we clamp the untracked state variablesto their true
values (obtained from the motion capture system).

In al cases the standard deviation of the observation
noisein (18) was set to o = 0.003 (about 3% the length of
an upright spine projected onto theimage). The standard de-
viations used for the Gaussian dynamics in temporal prior
wereoy = 15.0mmand o, = 0.15 radians for the trans-
lational and angular state variables. The HMC and particle
filters have the same prior and the samelikelihood and hence
they are both aiming to approximate the same posterior.

As suggested in Sec. 3, we assess the two filters on how
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Figure 2. Estimator variances for the mean state for individual state variables in single frame experiments. Error bars show one
standard error. As computation time increases, estimator variances decrease. In each case one can fix the variance, and compare the
compute times required to acheive that variance. In thisway, notice that the particle filter about 8 timesfaster in the 4D case. Butin
10D the HMC filter is about 50 times faster than the particle filter. In the 28D case, the same analysis requires that we extrapolate
the data for the particle filter, which we did assuming optimal statistical efficiency of each subsequent sample drawn by the particle
filter. But even with this optimistic extrapolant, the HMC filter remains over 2000 times faster than the particlefilter.

well they estimate the posterior mean. The mean estimated
by the particle filter is simply the weighted mean state as
suggested by (2). For the HMC filter, the mean is given by
(4), for which we use al samples from all Markov chains,
except for thefirst 6 (the burn-in samples) along each chain.
To get the true posterior mean for the arm and lower body
experiments, we ran the particle filter with orders of mag-
nitude more particles than used in the tests below. For the
full body tracker, we approximated the true posterior mean
using an extremely long HMC run to obtain many samples.

From 50 runs of the two filters, with random sampling
and noiseon each trial, we computed the estimator variance.
The marginal variances of each state component are given
by (3) with f equal to a projection operator fromsto s;. Of
course, these variancesare only comparableif thetwo filters
usethe sameamount of computationtime. Table 1 showsthe
parameters used to equate computation time; for the particle
filter the computation time depends on the number of parti-
cles, whilefor the HM C filter wevary the number of samples
R produced by each Markov chain.

Figure 2 shows marginal variances for single state vari-
ables as a function of computation time. For the 4D arm
tracker the particle filter outperforms. For the 10D lower
body tracker the situation reversed, with the HM C filter out-
performing. For the 28D full-body tracker the HMC filter is
vastly superior; the particlefilter showslittle variancereduc-
tion as the number of particles increases, and the effective
number of particles stays closeto 1. By fixing the estimator
variance, one can also use these plots to compare computa-
tion times. For the arm tracker the particlefitler is approxi-
mately 8timesfaster. But for the 10D tracker the HM C filter
is about 50 times faster, and as explained in the figure cap-
tion, for the 28D full body tracker the HM C method is more
than 2000 times faster.

To put thisin perspective, asdiscussed in Sec. 3, onecan

use the effective volumes of the prior and the posterior to
estimate a lower bound on number of particles needed for
these problems. Using more than enough particles for the
arm and lower body trackers we measured the covariances
of the prior and the posterior. Following Sec. 3, the geomet-
rical means of the marginal variances measure the volumes
contained within 1-standard deviation hyperellipses, thera-
tios of which bound the number of particles. For the 4D
tracker we find a lower bound of about 10?2 particles, while
for the 10D tracker the boundincreasesto 10° particles. We
areunableto performthistest in 28D duetothelargenumber
of particles required, but an extrapolation from the smaller
cases yields abound of about 1013 particles.

Finally, to get a feeling for the estimator variances of
other state variables, we show the geometric mean variance,
computed over al variables. Fig. 3 shows the geometric
mean variance as a function of computation time at three
randomly selected frames in a walking sequence. These
mean variances behavelikethe marginal variancesin Fig. 2.

7.4 Multiple Frame Experiments

It is also useful to compare the two filters over multiple
time steps. We applied the 10D lower-body and the 28D
full-body trackers to a 25-frame walking sequence. All pa-
rameters and initialization were identical to thesingle frame
case. Using Table 1, for the lower body tracker we used
R = 32 for HMC, and N = 23,000 for the particle filter.
For the full body, we used R = 32 and N = 108, 000.

Tracking was performed 50 times using different obser-
vation noise instantiations each time. We average the log
likelihood of the mean state over the 50 runs, and do the
samefor thelog prior density of thetrue state. Both of these
quantities are expected to be larger if thetracker is perform-
ing well. As expected from the single frame experiments,
Fig. 4 and 5 show the superiority of the HMC filter.
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Figure 4. The log likelihood of the mean state over 25
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Finally, Fig. 6 showssix poses recovered by each method
at frame 10, compared to the true pose. HMC estimates are
closer to thetrue pose and produce consistently higher likeli-
hoods. Because we only have monocular observations, and
our human model is weak, there are insufficient constraints
to recover the exact pose at each frame. For instance, the
mean arms found by the HMC filter appear consistent with
the observations, but are clearly variablein 3D.

7.5 Tuning Hybrid MonteCarlo

Wetuned the parametersfor our runscarefully but not ob-
sessively. The HMC filter has 5 tuning parameters, namely,
the number of chains M, the stepsize adjustment ¢, the
leapfrog trajectory length L, the number of HMC updates
R, and the number of burn-in samples . Here, M should
be chosen to be the number of independent samples from
which one hopes to form the temporal prior. The stepsize
adjustment ¢ is best set to give roughly 15% rejection rate.
For tracking over multiple frames, good €'s will differ from
frame to frame, so it may be desirable to adapt € for each
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Figure 5. Thelog prior of thetrue state over 25 frames. Error
bars are 1 standard error.

frame; in this paper, € was fixed.

The number of leapfrog steps L governshow rapidly you
sample from the posterior. Chains with small L may reach
equilibriumfaster, but oftenlead to inefficient randomwalks
if too small. For multiple frame tracking, we fixed L by ex-
amining the behaviour of afew MCsfor thefirst frameonly;
i.e., welooked for avalue of L that yieldslow MC autocor-
relations, with rejection rates close to 15%.

Finally, b should be chosen so that each chain hasreached
equilibrium after b updates. Thereis no guarantee that equi-
librium will be reached, but available diagnostics [6] can
help to adaptively determine b for each chain.

8 Discussion and Future Work

In summary, we have seen how the hybrid Monte Carlo
filter samples high dimensional distributions more effi-
ciently than the particle filter. Unlike the particle filter,
for which the number of particles grows exponentially with
state space dimensionality, the HMC filter scales so much
better that it offers speedups of several orders of magnitude
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Figure 6. Posterior mean poses recovered by each method at
frame 10, from 6 random trials of the 28D tracker. Thetrue
3D data (top) and the 2D observations (bottom) are shown
with thick black lines. The estimates from thetwo filtersare
drawn with thin red lines. 108,000 particles were used for
the particlefilter, and equivalent computation time was used
by the HMC filter.

in our 10D and 28D people tracking experiments. We be-
lieve that the hybrid Monte Carlo filter represents a promis-
ing new class of MCM C-based filters.

For future work, more sophisticated versions of the
HMC filter are possible. HMC particles can have a hard
time moving between modes, which is why we use multi-
ple chains; for strongly multimodal distributions, multiple
Markov chains should be started in different parts of state
space to capture all the modes. One can also use more than
just the final state of the Markov chains to form the tempo-
ral prior in the next frame; states from earlier in each chain
can be used as well. Methods for diagnosing equilibrium
would also be helpful. As mentioned however, there is no
foolproof way of diagnosing equilibrium, and thisistruefor
any MCMC-based technique. But it does not matter if we
use chains that have not fully reached equilibrium; so long
as a method provides a better approximation to the desired
posterior in agiven amount of time, it is preferable.
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