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Abstract— In this paper we study the problem of tracking
an arbitrary number of people with multiple heterogeneous
sensors. To solve the problem, we start with a Bayesian derivation
of the multiple-hypothesis tracking (MHT), and, under certain
assumptions, we arrive to the joint probabilistic data association
filter (JPDAF). In their original derivation, both the MHT and
JPDAF assume a multiple sensor scenario which enables us to
fuse the sensors measurements by asynchronously updating the
tracking filters. To solve the data association problem, instead
of using the optimal MHT with complex hypothesis branching,
we choose the JPDAF since we are interested only in local
observations by a mobile robot for people detection, tracking, and
avoidance. However, the JPDAF assumes a constant and known
number of objects in the scene, and therefore, we propose to
extend it with an entropy based track management scheme. The
benefits of the proposed approach are that all the required data
come from a running filter, and that it can be readily utilized for
an arbitrary type of filter, as long as such a strong mathematical
principle like entropy is tractable for the underlying distribution.
The proposed algorithm is implemented for the Kalman and
particle filter, and the performance is verified by simulation and
experiment. For the simulation purposes, we analyze two generic
sensors, a location and a bearing sensor, while in the experiments
we use a laser range scanner, a microphone array and an RGB-D
camera.

Index Terms— Multi-sensor fusion, 3D sensing, JPDAF, En-
tropy

I. INTRODUCTION

The prospects of utilizing measurements from several sen-
sors to infer about a system state are manyfold. To begin with,
the use of multiple sensors results in increased sensor mea-
surement accuracy, and moreover, additional sensors should
never reduce the performance of the optimal estimator [24].
However, in order to ensure this performance, special care
must be taken when choosing the process model [29]. Fur-
thermore, system reliability increases with additional sensors,
since the system itself becomes more resilient to sensor failure
[14]. Therefore, by combining data from multiple sensors, and
perhaps related information from associated databases, we can
achieve improved accuracies and more specific inferences than
by using only a single sensor [9]. With such approach, we
increase the chances of a mobile robot to operate intelligently
in a dynamic environment.

Sensor measurements may be combined, or fused, at a
variety of levels; from the raw data level to the state vector
level, or at the decision level [9]. Raw sensor data can be
directly combined if the sensor data are commensurate (i.e.,
if the sensors are measuring the same physical phenomena),

while if the sensor data are noncommensurate, then the sensor
data, i.e. sensor information, must be fused at a feature/state
vector level or a decision level. Some sensors, like monocular
cameras and microphone arrays, can only measure the angle
and not the range of the detected objects. Moreover, some
sensors can provide measurements at higher rates, thus making
sensor fusion an even more challenging problem.

A large body of work exists on tracking moving objects with
mobile robots. As discussed in [21] two major approaches can
be identified, both defined by the sensors. The first approach
stems form the field of computer vision and implies a camera
as a major sensor, while the second utilizes laser range sensor
(LRS) whose measurements are similar to those of radars and
sonars. Since the field of tracking and surveillance (where
radars and sonars are commonly used), was well established
before the mobile robotics, a lot of results [8], [22] from that
field were applied to the problem of people tracking with an
LRS. The LRS approach can be further subdivided according
to data association techniques into deterministic and proba-
bilistic [1], [11], [12], [25] approaches. Additionally, these two
sensors can also be used conjointly. E.g., in [4], the nearest
neighbour approach and unscented Kalman filter are used for
tracking people with a laser and a camera, while in [16] the
authors used euclidean distance and covariance intersection
method for fusing laser, sonar and camera measurements.

When considering multitarget tracking, data association is
the fundamental problem. A detailed overview of probabilistic
data association techniques is given in [6]. Our previous work
[11] was heavily influenced by [1], [25], where the authors use
the joint probabilistic data association filter (JPDAF) to solve
the data association problem. In [19] the JPDAF is extended
to handle multiple data sources (sensors). Such a rigorous
approach is questioned when looking at the JPDAF seminal
paper [8, Section V, Fig. 2], since the target-sensor geometry
indicates that three sonar sensors were used to obtain the
measurements. Since in our case the data acquisition happens
asynchronously across sensors, we prefer the approach in
[8]. The idea is as follows. When the new sensory inputs
arrive, predictions about track states are made, and then the
JPDAF is used to solve the data association problem. Finally,
the track states are updated according to the association
probabilities, where the final steps use the likelihood function
of the reporting sensor, and that is the only thing required by
the JPDAF to handle the multisensor case.

Another approach to probabilistic data association is the
multiple hypothesis tracking (MHT) developed in a seminal
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paper [22] by Reid. It is an optimal solution to the data
association problem, unlike the JPDAF. As discussed by Reid
himself [22, Section I], the JPDAF is a special case of
the MHT, in which only one hypothesis remains after data
processing. To be clear, Reid is referring to [3], which is the
initial derivation of the JPDAF.

Reid already solves the multisensor problem for two di-
fferent generic types of sensors. He accomplishes that by
describing sensors with their detection and false-alarm statis-
tics. Thanks to such approach, we can use any type of a
sensor, provided we have its probabilistic description. The
downside of the MHT is in its high memory and processing
requirements (which grow exponentially with the number of
tracks). However, an efficient implementation of the MHT is
discussed in [7] and some recent applications are presented in
[2], [13].

Instead of using the optimal MHT with complex hypoth-
esis branching, we choose the simpler, although not optimal
JPDAF, as it is a very convenient solution for people tracking
by a mobile robot for its local navigation [26]. However, the
JPDAF assumes a constant and known number of objects in the
scene, and therefore we propose to extend it with an entropy
based track management algorithm. The proposed approach
is tested for, but not limited to, the Kalman and particle
filter. Furthermore, both trackers were tested in simulation and
experiment.

II. PROBLEM STATEMENT

We consider initialized tracks at time k described by a set of
continuous random variables Xk =

{
x̂k1 , x̂

k
2 , . . . , x̂

k
Tk

}
, where

Tk denotes the number of tracks. At time k we receive a set
Zsk =

{
zsk1 , z

sk
2 , . . . , z

sk
mk

}
of measurements from sensor sk,

where mk denotes the number of measurements. A set of all
measurements received until and including k is denoted as
Zk = {Zs0 , . . . ,Zsk}.

Let Θk−1 denote a set of hypotheses about measurement
to track assignments at time k − 1. Considering a specific
hypothesis Θk−1

p(h) at time k−1, we can construct legal assign-
ment θh(k) for the set of measurements Zsk . The resulting
hypothesis at time k is denoted as Θk

h = {Θk−1
p(h), θh(k)},

where Θk−1
p(h) denotes the parent of the Θk

h hypothesis.
We can now consider the probability of a hypothesis given

the sensors measurements P
(
Θk
h

∣∣Zk ) and calculate it using
Bayes’ theorem

P
(
Θk
h

∣∣Zk ) =
P
(

Θk−1
p(h), θh(k),Zsk ,Z

k−1
)

P (Zsk ,Z
k−1)

= P
(
Zsk

∣∣∣Θk−1
p(h), θh(k),Zk−1

)
· P
(
θh(k)

∣∣∣Θk−1
p(h),Z

k−1
)

·
P
(

Θk−1
p(h)

∣∣Zk−1
)

P (Zsk |Zk−1 )
.

(1)

The JPDAF can be viewed as a special case of the MHT,
where after each iteration all the considered hypotheses are
reduced to a single hypothesis. We denote that hypothesis

at time k as θ(k). Again, the JPDAF considers a possible
data assignment hypothesis relative to the hypothesis in the
previous time instant k− 1. Calculation of the probability for
such hypothesis reduces to

P
(
Θk
h

∣∣Zk ) =
1

c
P
(
Zsk

∣∣θh(k), θ(k − 1),Zk−1
)

· P
(
θh(k)

∣∣θ(k − 1),Zk−1
)

· P
(
θ(k − 1)

∣∣Zk−1
)
,

(2)

where c is a normalizing constant. Since we stated that the
JPDAF is a zero scan data association algorithm (only one
hypothesis is left after the measurements processing), the
probability of the previous hypothesis P

(
θ(k − 1)

∣∣Zk−1
)

is
equal to one. If no new track hypotheses are considered, then
this formulation coincides with the one in [8].

Each hypothesis Θk
h contains track states Xk updated using

considered association θh(k). Since the JPDAF flattens the
hypothesis tree to a single branch θ(k), it contains track states
Xk updated using all the measurements, given their association
probabilities

βtj =
∑
θ∈Θk

jt

P
(
θ
∣∣Zk ) , (3)

where Θk
jt denotes all the hypotheses that associate measure-

ment j with track t.

III. JOINT PROBABILISTIC DATA ASSOCIATION FILTER

As stated before, the JPDAF considers possible data assign-
ment hypothesis θh(k) relative to the singular hypothesis from
the previous time instant k − 1, which has unit probability.
Probability of a specific hypothesis is given in (2) (with
P
(
θ(k − 1)

∣∣Zk−1
)

= 1). This leaves us to describe the other
two terms in (2). The second term, P

(
θh(k)

∣∣θ(k − 1),Zk−1
)

can be modeled as a constant, as in [11], [25]. A more precise
derivation of this term can be found in [7], [8], [22]. Now, we
only need to develop the first term

P
(
Zsk

∣∣θh(k), θ(k − 1),Zk−1
)

= P (Zsk |θh(k) )

=

mk∏
j=1

P
(
zskj |θh(k)

)
,

(4)

where P
(
zskj |θh(k)

)
depends on the measurement to track

associations made by hypothesis θh(k)

P
(
zskj |θh(k)

)
=

{
P skF , zskj false alarm

P skD P
(
zskj
∣∣x̂kt ) , zskj existing track

(5)
where P skD is the detection and P skF the false alarm probability
for sensor sk.

By inserting (5) in (2) and then inserting the result in (3),
we get an expression for measurements to tracked objects
association probabilities

βtj =
1

c

∑
θ∈Θk

jt

mk∏
j=1

P
(
zskj |θ

)
. (6)

Aforementioned association probabilities are used to update
the track states (the filtering part). Since the track states are
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updated with all the measurements (weighted by their respec-
tive probabilities) from their cluster, this is what essentially
flattens the hypothesis tree. In other words, after the update,
only one hypothesis remains, the one about the current track
states.

The actual track state update and implementation of (6)
depends on the used state estimator (filter). In this paper, we
present a particle filter, used in our previous work [11], and a
Kalman filter, used in the original JPDAF formulation [8].

A. Kalman JPDAF

Given any state estimator, a process model is required. We
use a quite general constant velocity model for motion in 2D
plane, where state

x = [x ẋ y ẏ]T (7)

is described by position (x, y) and velocity (ẋ, ẏ) in the xy–
plane. The model itself is given by

xk+1 = Fxk + Gwk

=


1 ∆Tk 0 0
0 1 0 0
0 0 1 ∆Tk
0 0 0 1

xk +


∆T 2

k

2 0
∆Tk 0

0
∆T 2

k

2
0 ∆Tk

wk, (8)

where wk is the process noise and ∆Tk is the update interval.
Prediction is calculated using standard Kalman filter equa-

tions

x̂k−t = Fx̂k−1
t ,

Pk−t = FPk−1
t FT + GQGT .

(9)

Given the innovation vector

νtj = zskj −Hx̂k−t , (10)

and its covariance matrix

St = HPk−t HT + Rsk , (11)

we can define (5) in the case of an existing track association
as P

(
zskj
∣∣xkt ) = N (νtj ; 0,St).

The innovation vector and covariance matrix can be used
for measurement gating. Since νtj

T
S−1
t νtj has χ2 distribution,

by using tables we can select upper limit which includes valid
measurements with, e.g., 99% probability.

Update is done by using all the validated measurements, i.e.
weighted innovation is used for the state update

νt =

mk∑
j=1

βtjν
t
j ,

x̂kt = x̂k−t + Kkν
t .

(12)

Given βt = 1−
∑mk

j=1 β
t
j and Pνt =

∑mk

j=1 β
t
jν
t
jν
t
j
T − νtνtT

the covariance update is calculated as in [5]

Pkt = βtPk−t +(1−βt) [I−KkH]Pk−t +KkPνtKT
k . (13)

An important implementation note is that instead of the
standard Kalman filter covariance update [I−KkH]Pk−t we
use Joseph’s stabilized form [I−KkH]Pk−t [I−KkH]

T
+

KkRskK
T
k , since the standard form caused numerical prob-

lems.

B. Particle JPDAF

If a particle filter is to be used as a state estimator, besides
the prediction and update of the filter, we also have to modify
gating and hypotheses probability calculation procedures. We
model the estimated state as a set of tuples (x̂kt (i), wt(i))
where x̂kt (i) is a particle containing a possible track state,
and wt(i) is its associated weight. If a particle falls within the
valid measurement region (based on the squared Mahalanobis
distance νtj

T
(i)R−1

sk
νtj(i)), then we consider the association

of measurement j to track t when generating the hypothesis.
As for the hypothesis probability calculation, we use average
likelihood of the particles

P
(
zskj
∣∣xkt ) =

1

N

N∑
i=1

N (νtj(i); 0,Rsk) (14)

where νtj(i) is the individual particle’s innovation. After
obtaining association probabilities, we update the particle
weights according to wt(i) =

∑mk

j=1 β
t
jN (νtj(i); 0,Rsk). After

the weights calculation, and only if there are measurements in
the current time step, we resample the particles.

IV. TRACK MANAGEMENT

When tracking multiple targets, track management is pra-
ctically as important as the association itself. A solution for
the Kalman filter, described in [5], is based on a logarithmic
hypothesis ratio and innovation matrix. In [25] a Bayesian
estimator of the number of objects for an LRS is proposed.
This approach requires learning the probability of how many
features are observed under a presumed number of objects in
the perceptual field of the sensor, while the tracking perfor-
mance is monitored by an average of the sum of unnormalized
sample weights of the particle filter.

We propose to use an entropy measure as a feature in
track management. If such a strong mathematical principle is
tractable for the underlying probability distribution, then it can
be readily utilized for track management independently of the
filtering approach. Furthermore, all the information required
for the entropy calculation is already available in the running
filter and sensor model, and as it will be presented, threshold
setting is quite convenient.

A practical entropy measure for this task is the quadratic
Rényi entropy [23]

H2(x̂t) = − log

∫
p (x̂t)

2
dx̂t. (15)

For the Kalman filter, i.e. Gaussian distributions, an analytical
solution exists and is given by H2(x̂t) = n

2 log 4π+ 1
2 log |Pt|,

where n is the state dimension.
Entropy calculation of continuous random variables is based

on the probability density functions (pdfs) of these variables.
In order to calculate entropy of a particle filter, which rather
represents the density and not the function, we need a non-
parametric method to estimate the pdf. One such method is the
Parzen window method [20] which involves placing a kernel
function on top of each sample and then evaluating the density
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Fig. 1. Simulation results for the KF with modeled detection probability, false alarms and silent periods – true (dashed) and estimated (solid) track states,
and tentative but not confirmed tracks (red + marker). The first two objects were detected and a KF was initialized for each one at 0 s. At 5.9 s they went
out the range of the sensors and the entropy of their KF kept rising until they were deleted at 6.3 s. The third object was detected at 3.6 s, and at 9.4 it went
behind the robot thus causing a rise in entropy. At 11 s it was detected again by the bearing sensor causing an effective drop in entropy. At 15.1 s it moved
in front of the robot again and was detected by the location sensor which significantly lowered the entropy.

as a sum of the kernels. We continue this approach as proposed
in [17], [18], and convert each sample to a kernel

Kh(x̂t) = hnK(x̂t), (16)

where K(.) is the particle set covariance, and h > 0 is the scal-
ing parameter. For the kernel, we choose h =

(
4

n+2

)e
N−e,

where e = 1
n+4 , and N is the number of particles. At this

point, each track is described as a sum of Gaussian kernels,
p (x̂t) =

∑N
i=1N (x̂t(i), 2Kh(x̂t)), for which an analytical

solution for the quadratic Rényi entropy exists [27]

H2(xt) = − log
1

N2

N∑
i=1

N∑
j=1

N (x̂t(i)− x̂t(j); 0, 2Kh(x̂t)).

(17)
Due to symmetry, only half of these kernels need to be
evaluated in practice.

The track management logic is as follows. When the tracks
are initialized, they are considered tentative and the initial
entropy is stored. When the entropy of a tentative track drops
for 50% – it is a confirmed track. If and when the entropy
gets 20% larger than the initial entropy – the track is deleted.
This logic reflect the fact that if the entropy is rising, we are
becoming less and less confident that the track is informative.
Furthermore, since no entropy should be greater than the one
calculated at the point of the track initialization, we can use
this initialization entropy as an appropriate deletion threshold.

V. SIMULATIONS

In order to test the performance of the algorithm, we
generated three intersecting circular trajectories. The robot
was at (0, 0, 90◦) m, the first object started at (2, 1) m and
finished at (−0.8, 10) m, the second object started at (−2, 1)
m and finished at (0.8, 10) m, while the third object started at
(3, 0) m and finished at (−1.6, 2.5) thus making more than one

revolution around the mobile robot (Fig. 1a). Each object was
tracked in an alternating manner by the location and bearing
sensor, while the maximum range for both was kept at 6 m.
The location sensor can only track objects in front of the
mobile robot, i.e. from 0 to π, and was corrupted with white
Gaussian noise given by N ([x y]T ;0, 0.03 · I). The bearing
sensor, on the other hand, can only measure the bearing angle
θ of the object, but in the full range around the mobile robot,
i.e. from 0 to ±π, and was also corrupted with white Gaussian
noise given by N (θ; 0, 3◦).

Furthermore, for both sensors each measurement had the
detection probability of PD = 0.9, and the probability of a
false alarm was PF = 0.01. Since the bearing sensor models
a microphone array, it is logical to assume that the speaker will
have pauses while talking, thus resulting in longer periods of
absent measurements. This was modeled by placing a random
number of pauses of maximum length of 2 seconds at random
time instances. Although the assumption about the talking
speaker might not be realistic for every-day scenarios, we find
it important to analyze performance of a bearing-only sensor
in such a multisensor system.

The tracks can only be initialized by the location sensor,
but the existing tracks should be kept by the bearing sensor
when the object moves behind the robot. Since in this case
the entropy is substantially larger, it requires calculation of
bearing-only initialization entropy, in order to efficiently man-
age the case when the object is behind the robot.

In Fig. 1 we show KF simulation results with added detec-
tion probability, false alarms, and silent speaker periods, from
which we can see that there were several false tracks initiated
but never confirmed. Furthermore, we made 100 Monte Carlo
(MC) runs for the Kalman filter – on average there were 11.43
initialized, 7.95 tentative tracks, and 3.48 confirmed tracks. In
an ideal situation we would have had three confirmed tracks,
but taking the scenario into account we can conclude that the
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Fig. 2. Simulation results for the PF with modeled detection probability, false alarms and silent periods – true (dashed) and estimated (solid) track states,
and tentative but not confirmed tracks (red + marker). The objects trajectories were the same as in the case of the KF. The main difference is in the third
object’s estimated trajectory: when the object moved behind the robot, there were bearing measurements up to 13.8 seconds when a silent period started. The
entropy kept rising and the object was deleted before new measurements appeared. The object moved in front of the robot at 15.1 and consequently a new
filter was initialized.

algorithm performs well when it comes to tracking, association
and track management.

The results of the simulation for the PF with added detection
probability, false alarms, and silent speaker periods are shown
in Fig. 2. Furthermore, we also made 100 Monte Carlo (MC)
runs for the particle filter – on average there were 8.17
initialized, 3.22 tentative, and 4.95 confirmed tracks. Although
the average number of confirmed tracks was larger than in the
case of the Kalman filter, we still find it to be of acceptable
performance.

Simulations were performed on a machine running at 2.33
GHz with an unoptimized Matlab implementation. The av-
erage computational time of each iteration was 1.9 ms and
137.2 ms for the KF and PF, respectively. Time spent on the
entropy calculation was 0.02 ms and 88.6 ms for the KF and
PF, respectively.

VI. EXPERIMENTS

To further test the proposed approach, we conducted experi-
ments with our Pioneer 3-DX robot. The laser sensor was the
Sick LMS 200 model, while the microphone array is of our
design. Furthermore, since the proposed framework is easily
extended to multiple sensors, we also used the Kinect time-of-
flight camera with a face recognition algorithm based on [28]
to yield a set of measurements in 3D. In the experiment two
people were walking in an intersecting trajectory in front of
the robot (a snapshot of the experiment is shown in Fig. 3).
The results are shown in Fig. 4 from which we can see that the
first person (blue line) started at (−1.2, 2.3) m and finished
at (0.9, 2.3) m, while the second person (green line) started
at (0.7, 0) m and finished at (0.6, 0) m. The first person was
in the field-of-view (FOV) of all the three sensors and was
talking throughout the experiment, while the second person
entered LRS FOV at a later time, kept quiet and was facing
the robot only in the second half of the trajectory. Tracks were

Fig. 3. A snapshot of the data acquisition and signal processing for the
experiments. The measurements were classified and collected based on our
previous work [10], [11], [15], with only the signal processing stage done,
i.e. no tracking was performed on the sensor level.

correctly initialized and maintained, despite the large number
of false alarms. The second track was deleted short-after the
second person left the LRS FOV.

VII. CONCLUSION

In the present work we addressed the problem of tracking
multiple objects with multiple heterogeneous sensors – specifi-
cally an LRS, a microphone array, and an RGB-D camera. The
integration of multiple sensors is solved by asynchronously
updating the tracking filters as new data arrives. We solved
the data association problem by applying the JPDAF, which is
a suboptimal zero-scan derivation of the MHT, but which in
effect assumes a known number of objects. To circumvent this
assumption, we proposed an entropy based track management
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Fig. 4. Experimental results for the KF – estimated (solid) track states, and tentative but not confirmed tracks (red + marker). The first object was in the
scene from the beginning, while the second object entered the scene at 7.5 s. At 15 s the second object got occluded by the first, which caused an increase
in entropy, while at 30 s the second object occluded the first shortly before exiting the scene. The false alarms were caused by tiles on the wall and leg-like
features in the room (chairs and tables).

scheme, and demonstrated its performance for the Kalman and
particle filter both in simulation and experiment. The results
showed that the proposed algorithm is capable of maintaining
a viable number of filters with correct association and accurate
tracking.
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