
1

PEPPHER: Efficient and Productive Usage of

Hybrid Computing Systems

Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff, Philippas Tsigas, Uwe

Dolinsky, Cédric Augonnet, Beverly Bachmayer, Christoph Kessler, David

Moloney and Vitaly Osipov

Abstract

The 3-year European FP7 project PEPPHER addresses efficient utilization and usage of hybrid (het-

erogeneous) computer systems consisting of multi-core CPUs with GPU-type accelerators. PEPPHER is

concerned with two major aspects: programmability and efficiency on given heterogeneous systems, and

code and performance portability between different heterogeneous systems. The PEPPHER approach is

pluralistic and parallelization agnostic, aiming to support different parallel languages and frameworks

at different levels of parallelism. The central idea of PEPPHER is to maintain multiple, tailored imple-

mentation variants of performance-critical components of the application and schedule these efficiently

either dynamically or statically across the available CPU and GPU resources. Implementation variants

are supplied incrementally by hand, by compilation, by component composition, by auto-tuning, or

taken from expert-written, adaptive libraries.

This paper outlines the PEPPHER performance aware component model, its means for performance

prediction, the PEPPHER run-time system, and other major aspects of the project concerned with algo-

rithm and data structure support, compilation, and hardware feedback. A larger example demonstrating

performance portability with the PEPPHER approach across hybrid systems with one to four GPUs is

discussed: each GPU that is added to the system brings a linear performance increase, and performance

aware scheduling provides for more efficient utilization of the combined CPU-GPU resources.

Benkner, Pllana and Träff (Contact author, email: traff@par.univie.ac.at) are with University of Vienna, Tsigas with

Chalmers University, Dolinsky with Codeplay, Augonnet with INRIA, Bachmayer with Intel GmbH, Kessler with University of

Linköping, Moloney with Movidius Ltd., and Osipov with Karlsruhe Insitute of Technology.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

Author manuscript, published in "IEEE Micro 31, 5 (2011) 28-41"
 DOI : 10.1109/MM.2011.67

http://dx.doi.org/10.1109/MM.2011.67
http://hal.inria.fr/hal-00648480/fr/
http://hal.archives-ouvertes.fr

2

I. INTRODUCTION

With the proliferation of radically different computer architectures (many-core CPUs, embed-

ded CPUs, SIMD instruction sets, Cell Broadband Engine Architecture, Intel MIC and SCC

architectures, etc.), the fusion of different architectures into hybrid systems, as well as the

rapid succession of architecture generations (e.g., NVidia GPUs) ensuring both a reasonable

level of performance and a sufficient degree of functional and performance portability between

different hybrid systems are vital and pressing challenges to current computer science research

and engineering. Due to the large architectural parameter space it is also clear that ensuring

programmability and portability for such heterogeneous systems cannot be tackled manually,

but must be handled or assisted by automatic means [12]. A large number of current research

projects are addressing these problems, and the European FP7 project PEPPHER1 is one of

them. The PEPPHER project attacks the problems of performance portability and efficient use

of heterogeneous systems at several levels at the same time. PEPPHER proposes solutions

that involve a combination of static and dynamic scheduling, automatic adaptation of (library)

components, compilation and transformation techniques, and a resource aware run-time that is

aided by performance information with feedback monitoring for gathering empirical performance

information. Specific PEPPHER contributions that will be discussed in this paper include:

• making (legacy) code written in existing programming languages and parallel APIs perfor-

mance aware and portable through stepwise componentization,

• a component model with meta-data for performance awareness and adaptivity,

• algorithms and data structures for hybrid, parallel architectures, library based performance

portability through algorithmic auto-tuning and compositional techniques,

• performance aware, heterogeneous run-time scheduling,

• hardware feedback mechanisms through a tailored simulator, and finally

• source-to-source transformation and OpenCL compilation.

The paper explains the vision and basic premises of PEPPHER, and highlights some concrete

results to substantiate our approach. In particular, we show how a numerical kernel algorithm

built from available component variants can achieve a linear performance improvement with each

1An acronym for “PErformance Portability and Programmability for HEterogeneous many-core aRchitectures”. See also www.

peppher.eu

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

3

extra GPU added to a hybrid CPU-GPU system, and at the same time more efficiently exploit the

CPU. The example demonstrates performance portability across hybrid systems with different

numbers of attached GPUs. Best overall performance is achieved, not by fixed, static offloading

of tasks to the GPUs, but by dynamically scheduling of component tasks on either CPU or GPUs

based on availability of resources and relative efficiency of the component variants.

II. THE PEPPHER APPROACH

The fundamental premise of PEPPHER for enabling performance portability is to provide

performance-critical parts of the applications in multiple variants that are suitable for different

types of cores, usage contexts and performance criteria. For this PEPPHER provides a flexible and

powerful component model. Preselection and specialization of variants for a given heterogeneous

architecture are performed statically as far as possible by component composition techniques,

while the final selection of the most appropriate variants is delegated to a resource aware

run-time system. Run-time selection is based on optimization objective, resource availability,

data availability and placement, and available performance information for the variants, while

respecting data dependencies between components. Component variants can be generated in

part by compilation and auto-tuning mechanisms provided or enabled by the PEPPHER frame-

work, or supplied directly by the more skilled (“expert”) programmer, for instance as part

of a performance portable library of algorithms and data structures. Component variants can

themselves be parallel, and in that case make explicit requirements for specific, parallel resources.

Preselection, composition, and run-time selection is guided by performance information that can

be incrementally provided by the application developer, and that is evaluated in the context of

an explicit platform model. The PEPPHER framework and methodology in this way makes it

possible to gradually make an existing application more efficient for a given, heterogeneous

parallel system, as well as more performance portable across different types of heterogeneous

systems, namely by progressively supplying more suitable and efficient component variants, and

by componentizing more and more parts of the application.

Concretely, PEPPHER introduces a flexible and extensible component model for encapsulating

and annotating performance critical parts of the application. In particular, components are made

performance aware by association of performance models or regressions based on performance

history for predicting a desired aspect of performance (execution time, power consumption, or

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

4

other). Performance aspects are parameterized and evaluated relative to an abstract platform

description [16]. The component model also provides for specification of resource constraints

and requirements, as well as other non-functional properties of components that are neverthe-

less essential for the efficient execution in given contexts. The capability to maintain suitable

implementation variants of components for different platforms under different circumstances

and for different optimization objectives is essential. Variants can be generated automatically by

compilation to different platforms and by auto-tuning techniques. For the latter, the component

model makes it possible to expose tunable component parameters for which good (“optimal”)

values can be found by suitable auto-tuning tools. Such auto-tuning tools will, however, not be

specifically developed in PEPPHER. Implementation variants can also be supplied manually by

the expert programmer, e.g., targeted to different platforms. PEPPHER components may already

have been parallelized using conventional parallel models and languages (OpenMP, OpenCL,

Pthreads, etc.).

At run-time the components form a directed acyclic graph of component tasks. A component

task variant can be scheduled when all data dependencies are resolved. Performance information,

input information, optimization criteria, resource requirements and availability, data placement

in the system, e.g., in main CPU or in GPU memory, are all used to determine which of the

ready component task variants are scheduled on which part of the system. The execution model

is parallel at multiple levels: ready component tasks can be executed in parallel on different

parts of the system, and component tasks can themselves be parallel, e.g., OpenCL or CUDA

variants for the GPU and multi-core parallel variants for the CPU.

Figure 1 gives an overview of the PEPPHER architecture and software stack, indicating how

the elements of the approach fit together. The figure illustrates the PEPPHER approach to assist

in development and generation of efficient, performance portable applications for heterogeneous

many-core systems.

A. Performance Guidelines and Portability

Performance portability is an elusive notion. An application could be said to be performance

portable if it executes with the same efficiency (fraction of theoretical peak performance) across

different heterogeneous multi-core systems. This is a strong, absolute requirement. A different

conception of performance portability is that no application restructuring be necessary when

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

5

C/C++ source code with annotated
components

Component implementation.
Variants for different cores,
architectures, algorithms,..

Component glue code generation.
Static variant selection, composition

Component task graph
with explicit data dependencies

Performance-aware, data-aware
dynamic scheduling of „best“

component variants onto available
execution units

Single-node heterogeneous manycore
systems

Applications

Embedded General Purpose HPC

PEPPHER Run-time

Drivers (CUDA, OpenCL, OpenMP)

CPU&
GPU

APU
Peppher

Sim

PEPPHER
Task graph

Transformation & Composition

PePU

Scheduling Strategy 1 Scheduling Strategy N

Performance
Models

Components

C/C++, OpenMP, CUDA, OpenCL, Offload

Autotuned Algorithms Data Structures

Fig. 1. The PEPPHER architecture and software stack. Applications written in C/C++ are annotated by the application

programmer to enable generation of component variants. The more skilled, “expert” programmer or library writer can

provide additional, highly performant component variant implementations for specific hardware, optimization criteria, or input

configurations. Static composition performs component pruning and preselection and generates necessary glue code, while the

final selection is done dynamically by the performance aware PEPPHER run-time system.

porting code from one architecture to another. In a library-based approach to performance

portability this would be ensured by having implementations of the library routines targeted to

different types of architectures, input configurations, and performance criteria. At each call the

library would be responsible for invoking the best implementation for the given situation using

an efficient lookup and selection procedure. In PEPPHER the components of the application,

instead of only fixed library functionalities, are the units at which performance portability is

enabled. Performance portability is supported and enforced by guidelines and requirements that

application components and library routines must fulfill. An example guideline would prescribe

that no library functionality can be improved just by expressing the same functionality by

means of other, related or specialized library components. Such a guideline would ensure that

no performance gain on a different system would be possible by the application programmer

by simply reimplementing a library or component functionality in terms of other, related library

functionality. For the PEPPHER framework this is an obligation to the library implementation that

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

6

efficient implementation variants for different architectures are in place, and that general library

functionalities select the most efficient special case implementations as appropriate. The guideline

would further imply that the PEPPHER framework does the best possible selection among

different available implementations of a library component. This is a non-trivial requirement

in a heterogeneous and dynamic setting. By enforcing such requirements the user would be

relieved from the temptation to try to do better and write the selection code himself. Other

rules govern the use of component annotations: the more information is provided, the better the

PEPPHER framework can do at selecting the most suited component variant. If no information

is provided for the components, the PEPPHER framework produces default code. In this way

PEPPHER provides an incremental approach to making applications performance portable.

B. Related work

A large number of projects are currently concerned with aspects of multi-core programma-

bility as mentioned above. In contrast to many other European projects, e.g., HyVM, SARC,

AppleCore, PEPPHER is not focusing on providing a common programming model or virtual

machine type portability layer. In PEPPHER the application programmer provides performance

information by annotating components and describing characteristics of the actual environ-

ment/architecture, using the most convenient API for implementation variants that are tailored

to different types of CPU, GPU and other cores. Likewise PEPPHER is not concerned with

automatic parallelization per se. PEPPHER is not an auto-tuning project, but enables auto-tuning

techniques to be used by exposing tunable parameters of both components and parameterized,

adaptive library algorithms. PEPPHER is taking a general-purpose approach in contrast to implicit

parallelization and performance portability via domain specific languages, as in, e.g., [5].

Many other projects also take the provision of implementation variants of functions, methods,

or components tailored to different architectures as basic premise for addressing performance

and performance portability issues. Three recent such projects are PetaBricks [2], Merge [15],

and Elastic computing [22]. PetaBricks [2] is an auto-tuning project that addresses performance

portability mostly across homogeneous multi-core architectures by focusing on auto-tuning meth-

ods for different types of optimization criteria. Parallelism is implicit. Merge [15] also provides

variants, but focuses on MapReduce [8] as a unified, high-level programming model. Elastic

computing [22] focuses on provision of large number of variants, so called elastic functions,

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

7

Component Variant

Variant Meta-Data

execution target platform

performance aspect models,
prediction functions

deployment information

tunable parameters

Component Interface
Interface Meta-Data

supported performance aspects

...

abstract function interface

Abstract Interface - Functional Definition

Concrete Implementation for Interface

Component Variant

Variant Meta-Data

execution target platform

performance aspect models,
prediction functions

source codes references

...

Concrete Implementation for Interface

source codes references

compilation information compilation information

resource requirements

Fig. 2. A PEPPHER component consists of an abstract interface describing the functionality of the component, and a number of

implementation variants targeted for different architectures and with different performance characteristics. Interface and variant

meta-data descriptions are described in XML documents.

among which the best combination is composed mostly by static means. Selection is guided

by performance profiles and models. Use of algorithmic variants has previously been studied

extensively in the STAPL project [18]. Other work that has influenced PEPPHER is the Sequoia

programming model for heterogeneous architectures based on a tree abstraction of the memory

system [9].

In contrast to some of these works PEPPHER is distinguished by a holistic approach, which

attacks performance portability at multiple layers from high-level component based programming,

compilation, library and run-time support, to hardware mechanisms for performance monitoring

and feedback. Ultimately, PEPPHER aims to become language and parallelization agnostic and

support different implementation languages and parallelization interfaces. Thus, the programmer

can choose the most convenient language and API for implementing the components.

III. TECHNICAL ASPECTS OF PEPPHER

In this section we discuss in more detail the technical ingredients of the PEPPHER framework.

A. The PEPPHER component model

As a starting point PEPPHER has developed a comprehensive and flexible component model

for specification of performance aware components, implementation variants, and tunable pa-

rameters of components. Applications for PEPPHER are currently assumed to be written in

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

8

C++. PEPPHER components are identified by language external means (e.g., pragmas) rather

than language extensions and employ XML schemata for their specification. In this sense the

PEPPHER framework is non-intrusive, requiring little direct application modification, for instance

in legacy source code.

A PEPPHER component is an annotated software module that implements a specific func-

tionality declared in a PEPPHER interface. A PEPPHER interface is defined by an interface

descriptor, an XML document that specifies the name, parameter types and the access types

(read, write or both) of a function to be implemented, and in addition which performance aspects

(such as mean execution time or energy consumption) the prediction functions of component

implementations must provide. The component model is illustrated in Figure 2. Interfaces can

be generic in static entities such as parameter types or code; genericity is resolved statically

by expansion as with C++ templates. From the interface descriptor, header files in the various

component implementations’ source languages can be generated.

Several component variants may implement the functionality defined in a PEPPHER interface

by different algorithms or for different execution platforms; also, further component implemen-

tation variants may be generated automatically from a common source module, e.g., by special

compiler transformations or by instantiation of tunable parameters. The latter would be the

task of auto-tuning tools. These variants differ by their resource requirements and performance

behavior, and thereby become alternative choices for composition or run-time selection whenever

the interface function is called. In order to prepare and guide variant selection, component

implementations need to expose their relevant properties explicitly to composition tool and run-

time as will be briefly described later. Each PEPPHER component implementation variant thus

provides its own component descriptor, an XML document that contains information (meta-data)

about the following properties:

• The implemented PEPPHER interface.

• The required PEPPHER interfaces, i.e., other component functionality called from this

component, if any.

• The source file(s) of this component implementation.

• Deployment information such as compilation commands and options and required software

modules.

• A reference to the platform consisting of the programming model/language used for the

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

9

component implementation and of the target architecture.

• Type and amount of resources required for execution at the given platform.

• A reference to a performance prediction function. whose parameters are given by a context

descriptor data structure.

• The structure of the context descriptor consisting of call parameter context and current

resource availability information.

• Tunable parameters of the component implementation, such as buffer sizes, loop blocking

factors, cut-off values and so on.

• Additional constraints for component selectability such as parameter ranges.

Performance prediction functions are usually supplied by the component developer. These

can be either purely analytical, use performance data tables determined by micro-benchmarking

for the target platform, or be based on historic performance data. The latter are maintained

in a performance data repository. The PEPPHER run-time is able to automatically generate

performance models from historic data.

The actual platform properties are defined separately in another XML document and aim at

describing hardware- and software characteristics of the heterogeneous target environment. Such

platform descriptions can be used at multiple levels of the PEPPHER framework [16]. Lookup

of specific platform properties is done by the composition tool, the run-time, or by component

developers themselves.

At run-time component invocations result in tasks that are managed by the PEPPHER run-

time system and executed non-preemptively. PEPPHER components and tasks are stateless, and

by default so are input/output parameters which determine the dependencies among component

tasks. Parameter data placement in CPU or GPU memory is tracked by the run-time system and

taken into account during variant scheduling. However, parameters can have state themselves,

implemented by wrapping into STL-like container data structures, and keep track of, e.g., in

which memory modules of the target system which parts of the data are currently located or

mirrored. The container state then becomes part of the call context information since it is relevant

for performance prediction.

The PEPPHER framework keeps track of the different component implementation variants by

storing descriptors in repositories that can be explored by the composition tool and the run-time.

Composition performs preselection of a subset of appropriate implementation variants based

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

10

on statically available parameter and resource information. Parameter information can be either

concrete or abstract values given by constraints. Composition can in the extreme case prune

the number of available variants to only one, but in general several component variants will

be available for selection by the run-time system. Part of the variant selection code may also

be generated by the composition tool. Executable component variants are finally generated by

compilation for the platforms described in the component variant descriptions.

The final selection among the remaining component variants is done by the run-time system

(see Section III-B). This is the default mechanism in PEPPHER. In the special case where

sufficient meta-data for performance prediction is available for all selectable component variants,

composition can be done completely statically and co-optimized with the required resource

allocation [13].

To enhance programmability and provide for more variant selection and auto-tuning possi-

bilities, portable higher-level coordination strategies for expressing computations in terms of

structured execution of PEPPHER components are being added to the framework, e.g., pipeline

pattern, wave-front pattern, task farming, standard skeletons, and others. First steps have been

taken in SkePU [7], an auto-tunable C++ template library of data-parallel generic skeleton

components such as map, reduce, or scan, each with multiple implementation variants including

CUDA, OpenCL, and OpenMP, for multi-GPU based systems. By micro-benchmarking SkePU

can be automatically tuned to select, depending on the call context, the expected fastest back-end

and values for tunable parameters such as number of GPU threads and thread block size.

B. The PEPPHER run-time system

Execution of a PEPPHER application that consists of compiled component variants together

with the parts of the application that have not been componentized is delegated to a flexible,

performance and resource aware, heterogeneous run-time system. The executable forms a directed

acyclic graph of component tasks with data dependencies, where each task is a set of one

or more variants together with performance and other information to trigger selection. Based

on system availability, resource requirements, estimated performance, execution history, and

input availability the run-time system schedules the most promising component variant on

the best available resource. The further development of such a performance, resource and

architecture/memory aware run-time system, that can also handle scheduling of parallelized

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

11

component variants over different parts of the heterogeneous system is an important aspect of

the project [3].

For CPU-GPU based systems with separate memory spaces, the run-time system implements a

directory based virtual shared memory system. The application registers its input and output data

with the system. Scheduling of the ready component tasks is done in a centralized fashion from

a CPU. At run-time the actual placement of data in either main CPU memory or GPU device

memory is used together with the component performance models to decide where to launch

the next component variant that uses these data. To this end, a data transfer cost model is used

together with the cost estimation for the component execution. Actual data transfers between

different types of memory are handled automatically by the run-time. Through so called filters

structured non-consecutive as well as block distributed data can be handled.

The actual scheduling policy used by the run-time system can be modified by the PEPPHER

user. The current default strategy is HEFT [20], but alternate, less centralized scheduling policies

that would use more hints on processor resource requirements in order to execute parallel tasks

on the multi-core CPU are being developed [21].

The multi-level parallel framework providing for concurrency between component variants and

intra-component-variant parallelism, the static, resource and architecture aware compositional

techniques, and the dynamic, flexible run-time scheduling together enable the PEPPHER frame-

work to both efficiently utilize given, heterogeneous resources, as well as to provide performance

portability (by recompilation, recomposition, re-tuning relative to a different platform description)

to entirely different architectures.

C. Tunable algorithms and data structures for parallel architectures

The static compositional and dynamic run-time supported approach to performance portability

is complemented by expert-written auto-tuned, architecture and context adaptive algorithmic

components for further enhancing performance portability. Algorithms written by specialists

with a detailed understanding of the underlying architecture and its range of tunable architecture-

dependent parameters can more flexibly and efficiently adapt to architectural changes, and provide

for more detailed control over performance. Through libraries such highly performance portable

algorithms are made available as components to the application programmer. The highly non-

trivial, auto-tunable GPU sorting algorithm developed in [14] is an example of the level of

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

12

 100

 120

 140

 160

 180

 200

 220

 240

 260

220 221 222 223 224 225 226 227

so
rt

ed
 e

le
m

en
ts

 /
tim

e
[µ

s]

number of elements

Uniform
Improved Fermi

Original Fermi
Improved Tesla

Original Tesla

Fig. 3. Comparison of original and improved GPU sorting algorithm on Tesla and Fermi GPUs, number of sorted elements

per time unit as function of number of elements to be sorted.

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

220 221 222 223 224 225 226 227

so
rt

ed
 e

le
m

en
ts

 /
tim

e
[µ

s]

number of elements

tuned k
fixed k=128

doubled tuned k
halved tuned k

 120

 140

 160

 180

 200

 220

 240

 260

220 221 222 223 224 225 226 227

so
rt

ed
 e

le
m

en
ts

 /
tim

e
[µ

s]

number of elements

tuned p=75
doubled p=150

halved p=36

 120

 140

 160

 180

 200

 220

 240

 260

220 221 222 223 224 225 226 227

so
rt

ed
 e

le
m

en
ts

 /
tim

e
[µ

s]

number of elements

tuned t=1024
t=512
t=256

 120

 140

 160

 180

 200

 220

 240

 260

220 221 222 223 224 225 226 227

so
rt

ed
 e

le
m

en
ts

 /
tim

e
[µ

s]

number of elements

tuned M’’=2048
doubled M’’=4096

halved M’’=1024

Fig. 4. Comparison of the effects of alternative parameter values against the “best”, auto-tuned values for the Fermi GPU.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

13

hardware parameter Tesla/Fermi value

o thread overload factor 5/5

T hardware limit on threads per block 512/1024

S number of streaming multiprocessors 15/30

E size of shared memory 16 KB/48 KB

TABLE I

BASIC HARDWARE PARAMETERS AND RECOMMENDED SETTINGS FOR TWO CURRENT GPU ARCHITECTURES, NVIDIA

TESLA AND FERMI.

parameter constraint Tesla/Fermi value Tesla/Fermi value

Original Improved

k distribution degree, k ≤ E/(ro) 128/128 variable/variable

t threads per block, t ≤ T 256 / 256 512 / 1024

` elements per thread, ` := n/(t · p) 8 / 8 n/(t · p) / n/(t · p)

p thread blocks, p := oS n/(t · `) / n/(t · `) 150/75

M fallback to small case sorter, determined experimentally 217 / 217 216 / 216

M ′′ fallback to odd-even merge sort, M ′′ ≤ E/o,M ′′ ∈ 2N 210 / 210 210 / 211

r histogram replication factor, determined experimentally 8 / 8 8 / 8

TABLE II

THE TUNING PARAMETERS FOR THE TWO ALGORITHM VARIANTS OF THE GPU SAMPLE SORT ON NVIDIA TESLA AND

FERMI GPUS.

adaptable, portable performance that can be achieved by the algorithm engineering expert.

Some of the basic, performance determining parameters of the NVidia GPU Tesla and Fermi

architectures are summarized in Table I. Based on these, tunable, algorithmic parameters related

to these architectural features are inferred by the algorithm developer as shown in Table II. These

parameters are partially interrelated through an analytical performance model of the algorithm,

and must partly be determined experimentally or through auto-tuning. By finding the right settings

for the free parameters, superior performance of the algorithm is achieved on both architectures

as shown in Figure 3. The figure compares a previous (original) [14] to a current, improved

version version of the algorithm. The “best possible” values of the tunable parameters are taken

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

14

from Table II, and the impact of changes to the four basic parameters k, t, p,M ′′ can be seen

in Figure 4. Some of these parameters are determined analytically, others have been found by

auto-tuning experiments. In PEPPHER concrete values for architectural parameters are looked up

in the PEPPHER platform descriptors. At application deployment time Tesla and Fermi sample

sort variants can thus be generated, partly through auto-tuning for determining best values for

the non-determinate tuning parameters, and added to the PEPPHER component repository. The

algorithm has furthermore been implemented in both CUDA and OpenCL, but only the CUDA

results are shown here. We note that the CUDA and OpenCL interfaces by themselves only

ensure code portability, but do not provide performance portability: this is achieved by the

parameterized algorithm.

A larger selection of similarly tunable algorithms for many-core CPU architectures is in-

corporated in the Multi-Core STL library (MCSTL) [17] and some contributed to the Thrust

GPU library. Also here, algorithms are parameterized with typical architectural features, and

can thus be tuned to achieve a high degree of performance portability for the class of target

architectures. Not mentioned here, algorithms and data structures for lock-free programming on

CPUs and GPUs are needed and being developed in PEPPHER, both as application programmer

components and for supporting the implementation of the run-time system, see, e.g., [10].

Choice between CPU and GPU variants for such library components is done either by special-

ized glue-code that takes the resource availability into account, that is by the library framework

itself, or is delegated to the PEPPHER run-time. Thus, variant selection in PEPPHER is always

external to the implementation of the variant.

D. Compilation techniques in PEPPHER

OpenCL is a possible portability layer for current heterogeneous systems, especially such

that employ GPUs, but of a low abstraction level and not in itself solving the performance

portability problem. Therefore, efficient compilation from C++ to OpenCL can support both the

component model and the run-time system. Specifically, PEPPHER develops a C++ extension

termed OffloadCL that allows for explicit compilation and offloading to GPUs but also to Cell

SPEs with the compiler taking care of the necessary call graph duplication, functional duplication,

and replication of host data. The Offload compiler interfaces directly with the PEPPHER run-time

system by encapsulating offloadable code as PEPPHER component tasks [6].

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

15

E. Hardware support and feedback

In order to provide a larger spectrum of heterogeneous target architectures and to be able

to investigate possibilities for hardware support for performance monitoring and portability,

PEPPHER develops the highly configurable hardware simulator PeppherSim. This simulator

makes it possible to run benchmarks/kernels on architecture configurations that are not physically

available, and experiment in a controlled way with the performance portability that can be

achieved through the PEPPHER framework. The simulator enables “what if” types of experiments

to determine performance bottlenecks, as well as to investigate new mechanisms for more

detailed performance monitoring and feedback, especially energy consumption feedback. Also,

new synchronization primitives, e.g., [11], and other architecture support for algorithms and

run-time can be investigated with the simulator.

F. Application benchmarks

A small set of larger application benchmarks has been selected to experiment with and validate

the performance portability that can be achieved with the PEPPHER framework. The benchmarks

are intended to cover relevant application areas ranging from embedded, server/enterprise/general-

purpose, to high-performance computing domains. In addition, important numerical kernels have

been included as manageable test cases, that will also be useful as library components. Table III

summarizes the benchmarks and kernels and the target architectures for which component variants

already exist.

IV. A LARGER EXAMPLE

A final example illustrates how PEPPHER can provide efficient utilization of heterogeneous

compute resources and performance portability across systems with varying numbers of GPU

type accelerators.

The application is a standard Tile-QR factorization algorithm based on BLAS components

that has been implemented on top of the PEPPHER run-time [1]. The application is constructed

from BLAS kernel functions as shown in Figure 5, and these kernels are turned into PEPPHER

components by giving suitable XML interface specifications. Expert implementation variants

of the BLAS kernels for CPUs and GPUs are already available through existing GPU and

CPU libraries, namely PLASMA [4] and MAGMA [19], and are added as component variants

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

16

Application x86 multi-core CPU NVidia GPU Cell PeppherSim

Enterprise/General-purpose

Suffix array construction X X

Games Physics Simulation X X X

High-Performance Computing

GROMACS X X

Embedded/Multi-media

BZIP2 X X

Computational photography X X X

(Numerical) kernels

MAGMA/PLASMA X X X

RODINIA X X X

FFTW X X X

STL Algorithms X X

TABLE III

THE PEPPHER BENCHMARKS.

for (step = 0; step < min(MT, NT); step++){

for (p = proot; p < P; p++) {

SGEQRT(step, step, ...);

for (j = step+1; j < NT; j++)

SOMQR(j, step, ...);

for (i = i_beg+1; i < MT; i++){

STSQRT(i, step, ...);

for (j = step+1; j < NT; j++)

SSSMQR(i, j, step, ...);

}

}

}

Fig. 5. QR factorization code fragment for matrices of size NT× MT using BLAS routines.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

17

BLAS kernel CPU performance GPU performance Speed-up ratio

(GFlops) (GFlops)

SGEQRT 9 30 3

STSQRT 12 37 3

SOMQR 8.5 227 27

SSSMQR 10 285 28

TABLE IV

KERNEL COMPONENTS OF THE QR APPLICATION. THE TABLE SHOWS THE PERFORMANCE OF THE KERNELS ON CPU AND

GPU, RESPECTIVELY.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
e
rf

o
rm

a
n
c
e
 [
G

F
L
O

P
S

]

Matrix Size

1GPU
2GPUs
3GPUs
4GPUs

All

Fig. 6. QR factorization on a 16-core AMD system with up to 4 NVidia GPUs (C1060).

in the PEPPHER implementation. Figure 6 shows the results of running the QR factorization

application on CPU-GPU system with one to four GPUs. The test platform is composed of four

quad-core AMD Opteron 8358 SE CPU cores (16 cores total) running at 2.4 GHz with 32 GB

of memory divided into four NUMA nodes. It is accelerated with four NVIDIA Tesla C1060

GPUs of 240 cores each (960 GPU cores total) running at 1.3 GHz with 4 GB of GDDR3

memory (102 GB/s) per GPU. One CPU is reserved for each GPU, leaving 12 CPUs available

for computational work. The performance of the kernels of the QR application is shown in

Table IV, which also shows the speed-up achievable on the GPU relative to a single CPU core.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

18

As can be seen, the SOMQR and SSSMQR kernels are particularly efficient on the GPU, and the

GPU variants are therefore likely to be selected by the PEPPHER run-time.

The plot shows that the PEPPHER run-time is able to exploit the GPUs efficiently in that

each additional GPU brings a linear increase in performance of about 200GFlops. In addition,

the run-time is able to exploit the remaining 12 CPUs for execution of the most suitable BLAS

components. The latter is interesting; by automatically avoiding to waste GPU processing power

with GPU-unfriendly BLAS kernels (that are scheduled on CPUs instead), more performance can

be achieved from the 12 CPUs (about 200 GFlops) than would have been possible by running

the whole QR application on these 12 CPUs (only 150 GFlops) alone. In the experiment 20%

of the SGQRT tasks are scheduled on the GPUs, whereas for the SSSMQR tasks over 90% are

executed on the GPUs, see again the speed-up ratios in Table IV.

The experiment demonstrates efficiency and performance portability of this particular appli-

cation across systems with one to four GPUs. It is important to note that it relied on existing

expert written components, so no extra implementation effort was needed for the kernels.

V. CONCLUSION

This paper outlined the PEPPHER approach to achieving performance portability and pro-

grammability for hybrid (heterogeneous) many-core architectures, particularly CPU-GPU type

systems, and described the current state the project. PEPPHER combines a compositional,

performance aware software framework, auto-tunable, adaptive algorithmic libraries, specific

compilation techniques and an efficient run-time, and is thereby independent of specific pro-

gramming models, virtual machines and architectures. The combination of component based

adaptation with a performance and resource aware run-time system provides for the necessary

degrees of freedom, possibly not found in many auto-tuning projects, where scheduling decisions

may be hard-coded at an early stage. We contend that neither best performance nor performance

portability can be achieved by fixed, static offloading of promising tasks of the component based

application onto preselected cores. Instead, component tasks must be scheduled dynamically on

available cores for which a variant giving the best performance exists, and we aim to substantiate

this with the PEPPHER project.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

19

A. Project facts

PEPPHER is a European Union funded (FP7) project that started in January 2010. PEPPHER

will last until the end of 2012. The PEPPHER partners are the Universities of Vienna (Austria),

Chalmers (Sweden), Linköping (Sweden), and Karlsruhe (Germany), the French research center

INRIA in Bordeaux, the European SMEs Codeplay (United Kingdom) and Movidius (Ireland),

and Intel Labs Europe. More information can be found on the project web-site www.peppher.eu.

Acknowledgment

This work was supported by the EU as part of the FP7 Project PEPPHER under grant 248481.

We gratefully acknowledge the contributions of all people involved in the PEPPHER project to

the work presented in this paper. The authors also thank the anonymous reviewers for constructive

feedback.

REFERENCES

[1] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and S. Tomov. QR Factorization on a Multicore

Node Enhanced with Multiple GPU Accelerators. In 25th IEEE International Parallel & Distributed Processing Symposium

(IEEE IPDPS 2011), Anchorage, Alaska, USA, May 2011.

[2] J. Ansel, C. P. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. P. Amarasinghe. PetaBricks: A language

and compiler for algorithmic choice. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2009, pages 38–49. ACM, 2009.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A unified platform for task scheduling on heterogeneous

multicore architectures. Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

[4] A. Buttari, L. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear algebra algorithms for multicore

architectures. Parallel Computing, 35(1):38 – 53, 2009.

[5] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A domain-specific approach to heterogeneous

parallelism. In 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 35–

46, 2011.

[6] P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards, C. Riley, and G. Russell. Offload - automating code migration

to heterogeneous multicore systems. In High Performance Embedded Architectures and Compilers, 5th International

Conference (HiPEAC 2010), volume 5952 of Lecture Notes in Computer Science, pages 337–352. Springer, 2010.

[7] U. Dastgeer, J. Enmyren, and C. Kessler. Auto-tuning SkePU: A multi-backend skeleton programming framework for multi-

GPU systems. In 4th International Workshop on Multicore Software Engineering (IWMSE11) at International Conference

on Software Engineering, 2011.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Communications of the ACM,

51(1):107–113, 2008.

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

20

[9] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and

P. Hanrahan. Sequoia: Programming the memory hierarchy. In ACM/IEEE Supercomputing, page 83, 2006.

[10] A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-free queues for multiple producers/consumers and weak

memory consistency. In Proceedings of the 14th International Conference on Principle of Distributed Systems (OPODIS

2010), volume 6490 of Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

[11] P. H. Ha, P. Tsigas, and O. J. Anshus. NB-FEB: A universal scalable easy-to-use synchronization primitive for manycore

architectures. In Principles of Distributed Systems, 13th International Conference (OPODIS 2009), volume 5923 of Lecture

Notes in Computer Science, pages 189–203. Springer, 2009.

[12] M. W. Hall, Y. Gil, and R. F. Lucas. Self-configuring applications for heterogeneous systems: Program composition and

optimization using cognitive techniques. Proceedings of the IEEE, 96(5):849–862, 2008.

[13] C. W. Kessler and W. Löwe. A framework for performance-aware composition of explicitly parallel components. In Parallel

Computing: Architectures, Algorithms and Applications, (ParCo 2007), volume 15 of Advances in Parallel Computing,

pages 227–234. IOS Press, 2007.

[14] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In 24th IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2010.

[15] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Y. Meng. Merge: A programming model for heterogeneous multi-core

systems. In Proceedings of the 13th International Conference on Architectural Support for Programming Languages and

Operating Systems, (ASPLOS 2008), pages 287–296. ACM, 2008.

[16] M. Sandrieser, S. Benkner, and S. Pllana. Explicit platform descriptions for heterogeneous many-core architectures. In 16th

International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS), International

Parallel and Distributed Processing Symposium (IPDPS 2011), 2011.

[17] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library. In Euro-Par 2007, Parallel

Processing, 13th International Euro-Par Conference, volume 4641 of Lecture Notes in Computer Science, pages 682–694.

Springer, 2007.

[18] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A framework for adaptive algorithm

selection in STAPL. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 277–288. ACM, 2005.

[19] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra solvers for multicore with gpu accelerators. In Parallel

Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1 –8, april

2010.

[20] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-complexity task scheduling for heterogeneous

computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, 2002.

[21] J. L. Träff and M. Wimmer. Work-stealing for mixed-mode parallelism by deterministic team-building. In 23rd ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA 2011), pages 105–115, 2011.

[22] J. R. Wernsing and G. Stitt. Elastic computing: A framework for transparent, portable, and adaptive multi-core

heterogeneous computing. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages, compilers,

and tools for embedded systems (LCTES), pages 115–124. ACM, 2010.

Siegfried Benkner is full professor at the Faculty of Computer Science at the University of

Vienna where he heads the Research Group of Scientific Computing. He received M.Sc. and

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

21

Ph.D. degrees in Computer Science from the Vienna University of Technology in 1988 and 1994,

respectively. His research interests include languages, compilers and runtime systems for parallel

and distributed systems, Service-oriented software architectures, as well as Grid and Cloud

computing. Siegfried Benkner contributed to several EU projects, including PPPE, PREPARE,

HPF+, GEMSS, @neurIST, and was the Technical Director of the LTR project HPF+. Currently

Benkner’s group coordinates the EU Project PEPPHER with a focus on higher-level support

for programming heterogeneous many-core architectures. Siegfried Benkner has published some

100 peer-reviewed publications and is a member of the ACM and the IEEE.

Contact Information:

University of Vienna

Faculty of Computer Science

Research Group of Scientific Computing

Nordbergstrasse 15/3C

1090 Vienna

Austria

Phone: 0043 1 4277 39417

Fax: 43 1 4277 9394

Email: sigi@par.univie.ac.at

Sabri Pllana is a senior research scientist at the Research Group of Scientific Computing,

University of Vienna. His research is currently focused on performance-oriented software engi-

neering for parallel and distributed systems. He holds a Ph.D. degree in computer science from

the Vienna University of Technology. Sabri Pllana has contributed to several EU-funded projects

and is currently serving as project coordinator for the FP7-project PEPPHER. He is member

of the IEEE, member of the HiPEAC network of excellence, and member of the PlanetHPC

network.

Contact Information:

University of Vienna

Faculty of Computer Science

Research Group of Scientific Computing

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

22

Nordbergstrasse 15/C3

1090 Vienna

Austria

Phone: +43 1 4277 39411

Fax: +43 1 4277 9394

Email: pllana@par.univie.ac.at

Jesper Larsson Träff received an M.Sc. in computer science in 1989, and, after two years at

the industrial research center ECRC in Munich, a Ph.D. in 1995, both from the University

of Copenhagen. He spent four years as a Research Associate in the Algorithms Group of

the Max-Planck Institute for Computer Science in Saarbrücken, and the Efficient Algorithms

Group at the Technical University of Munich. From 1998 until late 2009 he was working at the

NEC Laboratories Europe in Sankt Augustin, Germany on efficient implementations of MPI for

NEC vector supercomputers. This work led to a doctorate (Dr. Scient.) from the University of

Copenhagen in 2009. Since 2010 he is Professor for Scientific Computing at the University

of Vienna. His research interests are broadly in parallel processing and include interfaces,

algorithms, and architectures. He is currently scientific coordinator for the European FP7 project

PEPPHER. With Martti Forsell he organizes the annual Euro-Par Workshop on Highly Parallel

Processing on a Chip (HPPC).

Contact Information:

University of Vienna

Faculty of Computer Science

Research Group of Scientific Computing

Nordbergstrasse 15/3C

1090 Vienna

Austria

Phone: 0043 1 4277 39432

Fax: 43 1 4277 9394

Email: traff@par.univie.ac.at

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

23

Philippas Tsigas’s research interests include concurrent data structures for multiprocessor sys-

tems, communication and coordination in parallel systems, fault-tolerant computing, mobile

computing and information visualization. He received a BSc. in Mathematics from the University

of Patras, Greece and a Ph.D. in Computer Engineering and Informatics from the same University.

Philippas Tsigas was at the National Research Institute for Mathematics and Computer Science,

Amsterdam, the Netherlands (CWI), and at the Max-Planck Institute for Computer Science,

Saarbrücken, Germany, before. At present he is a professor at the Department of Computing

Science at Chalmers University of Technology, Sweden.

Contact Information:

Chalmers Tekniska Högskola AB

Department of Computer Science and Engineering

41296 Göteborg

Sweden

Phone: 0046 31 7725409

Fax: 0046 31 772 3663

Email: tsigas@chalmers.se

Uwe Dolinsky completed his Dipl.Inform. (FH) at the University of Wismar in 1997 and

received his Ph.D. in Engineering/Computer Science from John Moores University Liverpool

in 2001. Since 2001 Uwe Dolinsky has been working for Codeplay where he is currently

CTO and in charge of researching and developing novel compiler and software optimisation

technologies (e.g., Offload C++) for multicore processors. Besides leading compiler projects for

various customers, he has worked on programming models and compiler implementations to

ease the offloading of complex code onto heterogeneous accelerator cores for performance (e.g.,

PS3/SPU, GPU). He has authored and co-authored papers on software engineering and other

subjects published by ACM, IEEE and others. He also contributed as inventor to a number of

patents for Codeplay.

Contact Information:

Codeplay Software Ltd.

York Place 45

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

24

EH1 3HP Edinburgh

United Kingdom

Phone: 0044 131 466 0503

Fax: 0044 131 557 6600

Email: uwe@codeplay.com

Cédric Augonnet is a PhD student at the University of Bordeaux. He is part of the RUNTIME

team at INRIA Bordeaux. His interests include task scheduling and hybrid accelerator-based

machines. He is one of the developers of the StarPU runtime system. He holds an MSc. in

computer science from the University of Bordeaux and a BSc. in computer science from the

ENS Lyon.

Contact Information:

Institut National de Recherche en Informatique et en Automatique

INRIA Bordeaux Sud-Ouest

Cours de la Liberation 351

33405 Talence Cedex

France

Email: cedric.augonnet@inria.fr

Bev Bachmayer holds a Bachelor’s degree in Computer Science from the University of Oregon

(1983) and an MBA from Portland State University (1992). She is a member of the IEEE, ACM

and the European Professional Women’s Association (EPWN). Bev Bachmayer has worked in

diverse software engineering, program management and engineering management positions in the

US and Europe during her more than 28 years at Intel. Currently a technical consulting engineer,

working in the Software & Solutions Group at Intel GmbH, her key area of interest is performance

analysis and optimization of software on new computer architectures. Additionally, Bev supports

increasing the number of professional females entering computer science/engineering programs

worldwide through multiple projects.

Contact Information:

Intel GmbH

Software and Solutions Group

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

25

Dornacher Strasse 1

85622 Feldkirchen

Germany

Phone: 0049 89 99143 482

Fax: 0049 89 99143 924

Email: bev.bachmayer@intel.com

Christoph Kessler is a professor at the Department of Computer and Information Science of

Linköping University, Sweden, where he leads the research group on compiler technology and

parallel computing at the Programming Environments Laboratory (PELAB). He holds a PhD

degree in Computer Science from Saarbrücken University, Germany, and a Habilitation degree

in computer science from the University of Trier, Germany. His research interests include parallel

programming, compilers, and software composition. He is a member of the ACM and the IEEE

Computer Society.

Contact Information:

Linköpings Universitet

Department of Computer and Information Science (IDA)

Linköping University

S-58183 Linköping

Sweden

Phone: 0046 13 282406

Fax: 0046 13 285899

Email: christoph.kessler@liu.se

David Moloney received a B.Eng. from Dublin City University in 1985, and Ph.D. in Engineering

from Trinity College Dublin in 2010. Since 1985 he worked for Siemens Halbleiter AG (Infineon)

in Munich and ST Microelectronics in Milan as a DSP IC designer, before returning to Ireland

1994 to co-found a series of start-up technology companies including Parthus (CEVA) and

Silansys (Frontier-Silicon). David Moloney is currently co-founder (2005) and CTO of Movidius

Ltd., a fabless semiconductor company headquartered in Dublin and focused on the design of

software programmable multimedia accelerator SoCs. He holds 18 US patents with many others

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

26

in process as well as authoring conference and journal papers on DSP and computer architecture.

David Moloney is a member of the IEEE.

Contact Information:

Movidius Ltd.

Mountjoy Square East 19

D1 Dublin

Ireland

Phone: 00353 872837494

Fax: 00353 1 8559592

Email: david.moloney@movidius.com

Vitaly Osipov received his M.Sc. in mathematics from Ural State University (Yekaterinburg,

Russia) in 2006, his M.Sc. in Computer Science from Saarland University (Germany) in 2007.

Currently he is a Ph.D. student in Karlsruhe Institute of Technology (Germany) under the

supervision of Prof. Peter Sanders. Vitaly Osipov does research in the field of graph algorithms

for modern architectures such as external memory algorithms and parallel algorithms. He is a

co-author of a number of papers published in IPDPS, ESA and ALENEX.

Contact Information:

Karlsruher Institut für Technologie

Am Fasanengarten 5

76128 Karlsruhe

Germany

Phone: 0049 721 608 4232

Fax: 0049 721 608 3088

Email: osipov@kit.edu

ha
l-0

06
48

48
0,

 v
er

si
on

 1
 -

5
D

ec
 2

01
1

