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ABSTRACT

Complex biological functions emerge through intri-

cate protein–protein interaction networks. An

important class of protein–protein interaction corres-

ponds to peptide-mediated interactions, in which a

short peptide stretch from one partner interacts with

a largeprotein surface from theotherpartner. Protein–

peptide interactions are typically of low affinity and

involved in regulatory mechanisms, dynamically

reshaping protein interaction networks. Due to the

relatively small interaction surface, modulation of

protein–peptide interactions is feasible and highly at-

tractive for therapeutic purposes. Unfortunately, the

number of available 3D structures of protein–peptide

interfaces is very limited. For typical cases where a

protein–peptide structure of interest is not available,

the PepSite web server can be used to predict

peptide-binding spots from protein surfaces alone.

The PepSite method relies on preferred peptide-

binding environments calculated from a set of

known protein–peptide 3D structures, combined with

distance constraints derived from known peptides.

We present an updated version of the web server

that is orders of magnitude faster than the original im-

plementation, returning results in seconds instead of

minutes or hours. The PepSite web server is available

at http://pepsite2.russelllab.org.

INTRODUCTION

Protein–protein interactions play a key role in the regula-
tion of all cellular functions. A subset of protein–protein
interactions of particular interest are those mediated by
short linear peptides (�3–10 amino acids), mostly
residing in intrinsically disordered regions of proteins

and often having a conserved sequence pattern, in which
case they are termed short linear motifs (SLiMs) (1).
Peptide-mediated interactions often regulate biological
processes that require dynamic and specific responses
(2). Examples of such processes include protein localiza-
tion (3), endocytosis (4), post-translational modifications
(5) and signaling pathways (6). The importance of
peptide-mediated interactions is further demonstrated by
their involvement in several human diseases, such as
cherubism (7), cancer (8) and viral infections (9,10).
Moreover, it has been shown that protein–peptide inter-
actions can be modulated by chemicals or synthetic
peptides for therapeutic purposes (11–13). Therefore, the
ability to accurately identify and describe protein–peptide
interactions in detail bears tremendous potential in fur-
thering our understanding of complex cellular regulatory
mechanisms, as well as enabling rational modulation of
protein–protein interactions for therapeutic purposes.
There are several known SLiMs deposited in public

databases [ELM (14), MnM (15), PROSITE (16)]. These
databases, however, cover only a fraction of the estimated
number of peptides and motifs actually used in the cells
(17). Methods to identify new instances of known motifs,
include ELM (14), Prosite (16), ADAN (18) and iELM
(Weatheritt et al., 2012, in this special edition), whereas
others focus on finding or providing functional context for
motifs [e.g. SLiMPred (19), SLiMFinder (20), DiLiMoT
(21), PRATT (22) and SLiMSearch (23)]. These methods
focus mainly on the peptide motif and provide little or no
information regarding the protein–peptide interface.
Docking has been successfully used to predict protein–
peptide interfaces for short peptides of up to four
residues (24). For more typical peptide lengths (5–10
residues) and unknown binding site, docking is less
feasible due to the large search space of peptide conform-
ations and binding sites to be explored. Other approaches
for predicting protein–peptide interfaces perform well with
larger peptides, but limit their predictions to interactions
involving certain well-characterized domains [e.g. SH3
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(25), WW (26) and PDZ (27)]. Finally, there are several
methods available (28) that identify functional sites on
protein structures, e.g. Rate4site (29), or predict sites for
generic or chemical ligand binding, e.g. SiteHound (30).
These methods, however, are tailored to identifying either
chemical ligand sites or general functional sites and are,
therefore, limited in their performance toward predicting
peptide-binding sites [see, e.g. ‘Discussion’ section in (31)].
To address the lack of a generic tool to predict binding of

any linear peptide onto any protein structure, we previ-
ously developed the PepSite method (31). Using a large
collection of protein–peptide interactions of known struc-
ture, the preferred binding environment of each peptide
residue type is calculated and encoded in a so-called
spatial position-specific scoring matrix (S-PSSM). Given a
user-provided protein structure, PepSite scans the protein
surface with the S-PSSMs and generates candidate binding
sites for peptide residues. Finally, a peptide sequence of
interest can be matched against the predicted residue
binding sites, subject to certain distance constraints, result-
ing in approximate predicted peptide structures bound to
the protein surface. Results from PepSite can be combined
with a method such as FlexPepDock (32,33), which
computes an atomic model for the peptide given an
approximate binding site. A web server providing access
to the initial version of PepSite has been available for the
last 3 years. In this article, we present a new web server
based on PepSite 2, a complete rewrite of the software in
the C programming language. PepSite 2 typically generates
results in seconds, as opposed to minutes or even hours
required by the initial implementation. The new PepSite
version opens up many possibilities, such as exploration
of entire proteomes in large scale, in silico protein–
peptide discovery experiments.

MATERIALS AND METHODS

Spatial position-specific scoring matrices

The PepSite approach leverages 3D structural information
of protein–peptide interactions to predict new instances of
peptide-binding sites given a protein surface. A data set of
405 protein–peptide complexes of known 3D structure was
previously collected and used to train and validate the
method (31). For each supported peptide residue type
(currently all 20 standard residues plus phosphorylated
Ser, Thr and Tyr), the S-PSSM capturing its preferred
binding environment is constructed. Each protein, heavy
atom is mapped to one of the 14 custom-defined atom
types, and a 3D grid is constructed for each combination
of peptide residue type and protein atom type. Examples
of atom types include oxygen from a carbonyl group,
aromatic carbon, etc. [see (31) for details]. As a first
step, relative abundances for the 14 atom types on
protein surfaces are calculated from a representative set
of 100 protein structures, thus defining a background dis-
tribution. The representative set is defined by taking a
random sample from a set of representative structures
clustered at 30% sequence identity retrieved from the
PDB via its REST web service interface (34). Protein
surface atoms are defined as those with positive solvent

accessibility scores calculated with NACCESS 2.1.1
(http://www.bioinf.manchester.ac.uk/naccess/).

For a given peptide residue type r (e.g. Pro), construc-
tion of the S-PSSM proceeds as follows. Each instance of
residue r in peptides in the training set is structurally
superposed to a reference r side chain using PINTS (35),
and the same transformation matrix is applied to the
coordinates of the corresponding interacting proteins
with STAMP (36). The result is a 3D cloud of protein
atoms around a reference r side chain that characterizes
the preferred protein environment that interacts with r
residues in peptides. For each protein atom type i
(i=1, . . ., 14), a 3D grid centered at the reference r side
chain is generated, with each voxel v defined as log-odds
score, i.e.

Sr,i,v ¼ logðni,observed=ni,expectedÞ

where ni,observed is the observed number of atoms of type i
in voxel v and ni,expected is the expected number of atoms of
type i given by the relative abundance of atom type i in the
background distribution times the total number of protein
atoms in voxel v. Each grid contains 64 voxels with a
volume of 9 Å each, as previously described (31).

Prediction of hot spots

Given a protein structure of interest, preferred sites for
amino acid binding (‘hot binding spots’ or simply
‘hot spots’) are predicted as follows. Atomic solvent
accessibility scores are calculated with NACCESS 2.1.1
and surface points are defined as the coordinates of
protein atoms with positive accessibility scores.
Approximate surface normals are calculated for each
surface point by connecting its position to the geometric
center of protein atoms within 6 Å. For each surface point
s, each set of S-PSSMs is placed along the approximate
normal. Each protein atom j of type i(j) that falls within
the S-PSSMs is assigned to a voxel v(j) and receives a score
Sr,i(j),v(j) for each supported peptide residue type r. An ag-
gregate score is computed for each peptide residue type r
as
P

j Sr,i(j),v(j), where the sum is computed over all protein
atoms that fall within the S-PSSMs. The distance and
orientation of each S-PSSM with respect to the surface
atom s are then sampled as to maximize

P
j Sr,i(j),v(j).

Thus, for peptide residue type r, a score capturing its
binding propensity is calculated for each surface point s.
Surface points are then pruned by enforcing a minimum
separating distance and avoiding clashes with the protein
structure, keeping the points with the highest score.
Finally, predicted hot spots are given by the top-scoring
surface points, with the hot spot coordinates given by the
center of the corresponding S-PSSMs.

Prediction of peptide-binding sites

Provided a list of predicted hot spots, obtained as
described above, and a query sequence, PepSite employs
a recursive backtracking algorithm to find all partial
matches conforming to defined distance constraints.
Concretely, if a peptide query is PLWPR, PepSite will
exhaustively explore all possible combinations of the pre-
dicted hot spots for Pro, Leu, Trp and Arg, building an
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approximate 3D model of the peptide bound to the
protein surface of interest, allowing for partial matches.
For instance, a match could consist of PL-P-, in which
three residues were assigned coordinates and scores of pre-
dicted hot spots, and the distance between all the pairs of
matched residues lie within ranges usually seen in peptide
structures.

The distance constraints are defined as follows. For
each supported peptide residue type r, a distribution of
the distance between its ‘active center’ (a subset of the
side chain) and its Ca atom is calculated from the
training set, with mean denoted by 5 d

act

r 4 :

Furthermore, Ca–Ca distance distributions are also
calculated for peptide residue pairs (k, k+1), (k, k+2),
etc. with mean denoted by <d

ca

i,j>: Matches calculated by
PepSite have the property that for every pair of matched
residues (i,j), with residue types r(i) and r(j), the distance
between their corresponding hot spot coordinates d

hs

i,j

satisfies

<d
ca

i,j
>� �ð<d

act

rðiÞ
>+<d

act

rðjÞ
>Þ

< d
hs

i,j < <d
ca

i,j
>+�ð<d

act

rðiÞ
>+<d

act

rðjÞ
>Þ,

where � is a free parameter. Minimum and maximum
number of residues to be matched are also imposed
based on known protein–peptide complexes; the
minimum number of matched residues is currently set to
2, whereas the maximum is currently set to minimum
(6, 1+0.67 L), where L is the query length (L=5 for
the PLWPR example above).

The overall raw score of a match is obtained by
summing the hot spot score for each matched peptide
residue (hot spot scores are described in the previous
section). Considering the example above of a PL-P-
match, the raw score corresponds to the first matched
Pro hot spot score, plus the matched Leu hot spot score,
plus the second matched Pro hot spot score. With the aim
to make the scores of matches with different size
comparable, P-values are calculated as follows. For each
peptide length, raw scores are calculated by running
PepSite on random peptide sequences against
representative protein structures, obtained as described
earlier in the text. The raw score distribution for each

peptide length is then fitted to a Gumbel distribution.
When matches are generated by PepSite in response to a
query of interest, raw scores are converted to P-values
using the corresponding fitted Gumbel distribution.
Extensive benchmarks can be found in the original
publication (31).

THE PEPSITE WEB SERVER

The PepSite web server can be accessed at http://pepsite2
.russelllab.org. It is free and open to all and there is no
login requirement. In a typical use of the server, a user
queries for a peptide sequence and a protein structure,
specified either via a protein data bank (PDB) code and
chain or by uploading a structure in PDB format. The
calculated peptide-binding spots are displayed both as a
table, ordered by statistical significance, and through an
interactive molecular visualization. Predicted peptide-
binding sites can also be downloaded in PDB format.
Molecular visualizations are generated by default using
Jmol (http://www.jmol.org/), a popular Java viewer. In
addition, experimental support for WebGL-based
visualizations generated using VMD (37) and X3DOM
(http://www.x3dom.org/) will be added in the near future.

Example application

To illustrate the use of the PepSite server, let us consider a
protein–peptide interaction of interest without an available
structure. Menin is a ubiquitously expressed protein with
many interacting partners, thus implicated in a range of
biological processes (38). In particular, menin is a critical
oncogenic cofactor of mixed lineage leukemia (MLL)
fusion proteins, required for their leukemogenic activity
and loss of the highly specific menin–MLL interaction
disrupts the oncogenic potential (39,40). Thus, modulation
of this interaction is an attractive target for acute leukemias
with MLL rearrangements (38). It has been determined
that two short fragments of MLL interact with menin,
with the first (MBM1, residues 4–15) representing the
high-affinity binding motif (41). As the structure of the
menin–MBM1 interface is not available, one can use
PepSite to predict the MBM1-binding site using as inputs
the MBM1 peptide sequence and the recently solved

Figure 1. Top prediction of an MLL peptide (residues 4–15, RWRFPARP according to UniProt accession Q9Y6P1) bound to a menin structure
from N. vectensis (PDB 3RE2, chain A) (38). The menin structure is displayed either as a cartoon (A) or as a surface (B). Image generated with
VMD (37).
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Nematostella vectensis crystal structure (38). The predicted
binding site lies in a large hydrophobic pocket from menin
(Figure 1). Indeed, this pocket has been previously
hypothesized to be the binding site for the MLL peptide,
a hypothesis further supported by a series of mutagenesis
experiments (38). The coarse-grained model of the menin–
MBM1 binding interface generated by PepSite could be
further refined using, e.g. FlexPepDock (32,33), and the
resulting atomic model could then be used to rationally
design a competitive inhibitor of the menin–MLL
interaction for therapeutic purposes.

The PepSite API

PepSite can also be run programmatically via a simple
REST web service interface. The peptide sequence and
PDB code and chain are encoded in the URL request,
and results may be retrieved in plain text or PDB format.
Protein structures may also be specified by way of a
UniProt accession or identifier, in which case PepSite will
attempt to map the request to a suitable PDB structure
(see online documentation for details). The iELM web
server (http://i.elm.eu.org; Weatheritt et al., 2012, in this
special edition), which predicts protein–peptide
interactions involving linear motifs annotated in ELM
(14), makes use of the PepSite API.

CONCLUSION

The PepSite web server allows users to predict peptide-
binding sites, given a peptide sequence and a 3D structure
of the receptor protein. The new version is orders of
magnitude faster, with results visualized typically in a few
seconds, thus allowing users to explore a range of
hypothesis interactively, such as progressively mutating
the peptide sequence and determining the effect on the
predictions. The PepSite API allows the server to be
accessed programmatically, which means PepSite can
now be easily integrated into bioinformatics pipelines, in
particular as part of large-scale in silico interaction
discovery experiments. Several improvements are being
implemented in order to increase the input flexibility,
such as allowing users to enter linear motifs instead of
complete peptide sequences, or restrict the search to a
subset of the protein structure. Improvements to molecular
visualizations are also being implemented, including a
WebGL-based option for modern web browsers. Another
feature under development is the ability to scan
overlapping windows of a protein sequence to determine
the most likely peptide stretch responsible for an
interaction of interest, as previously suggested (31).
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Travé,G. and Gibson,T.J. (2008) Understanding eukaryotic linear
motifs and their role in cell signaling and regulation. Front.
Biosci., 13, 6580–6603.

3. Wen,W., Meinkotht,J.L., Tsien,R.Y. and Taylor,S.S. (1995)
Identification of a signal for rapid export of proteins from the
nucleus. Cell, 82, 463–473.

4. Boll,W., Rapoport,I., Brunner,C., Modis,Y., Prehn,S. and
Kirchhausen,T. (2002) The m2 subunit of the clathrin adaptor
AP-2 binds to FDNPVY and YppØ sorting signals at distinct
sites. Traffic, 3, 590–600.

5. Miller,M.L., Jensen,L.J., Diella,F., Jørgensen,C., Tinti,M., Li,L.,
Hsiung,M., Parker,S.A., Bordeaux,J., Sicheritz-Ponten,T. et al.
(2008) Linear motif atlas for phosphorylation-dependent signaling.
Sci. Signal., 1, ra2.

6. Scott,J.D. and Pawson,T. (2009) Cell signaling in space and time:
where proteins come together and when they’re apart. Science,
326, 1220–1224.

7. Guettler,S., LaRose,J., Petsalaki,E., Gish,G., Scotter,A.,
Pawson,T., Rottapel,R. and Sicheri,F. (2011) Structural basis and
sequence rules for substrate recognition by Tankyrase explain the
basis for cherubism disease. Cell, 147, 1340–1354.

8. Maclaine,N.J. and Hupp,T.R. (2011) How phosphorylation
controls p53. Cell Cycle, 10, 916–921.

9. Soni,V., Cahir-McFarland,E. and Kieff,E. (2007) LMP1
TRAFficking activates growth and survival pathways. Adv. Exp.
Med. Biol., 597, 173–187.

10. Dahiya,A., Gavin,M.R., Luo,R.X. and Dean,D.C. (2000)
Role of the LXCXE binding site in Rb function. Mol. Cell Biol.,
20, 6799–6805.

11. Vassilev,L.T., Vu,B.T., Graves,B., Carvajal,D., Podlaski,F.,
Filipovic,Z., Kong,N., Kammlott,U., Lukacs,C., Klein,C. et al.
(2004) In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science, 303, 844–848.

12. Yang,Y., Ludwig,R.L., Jensen,J.P., Pierre,S.A., Medaglia,M.V.,
Davydov,I.V., Safiran,Y.J., Oberoi,P., Kenten,J.H., Phillips,A.C.
et al. (2005) Small molecule inhibitors of HDM2 ubiquitin ligase
activity stabilize and activate p53 in cells. Cancer Cell, 7,
547–559.

13. Kadaveru,K., Vyas,J. and Schiller,M.R. (2008) Viral infection and
human disease–insights from minimotifs. Front. Biosci., 13,
6455–6471.

14. Dinkel,H., Michael,S., Weatheritt,R.J., Davey,N.E., Van Roey,K.,
Altenberg,B., Toedt,G., Uyar,B., Seiler,M., Budd,A. et al. (2012)
ELM–the database of eukaryotic linear motifs. Nucleic Acids
Res., 40, D242–D251.

15. Rajasekaran,S., Balla,S., Gradie,P., Gryk,M.R., Kadaveru,K.,
Kundeti,V., Maciejewski,M.W., Mi,T., Rubino,N., Vyas,J. et al.
(2009) Minimotif miner 2nd release: a database and web system
for motif search. Nucleic Acids Res., 37, D185–D190.

16. Sigrist,C.J.A., Cerutti,L., de Castro,E., Langendijk-Genevaux,P.S.,
Bulliard,V., Bairoch,A. and Hulo,N. (2010) PROSITE, a protein
domain database for functional characterization and annotation.
Nucleic Acids Res., 38, D161–D166.

17. Neduva,V., Linding,R., Su-Angrand,I., Stark,A., de Masi,F.,
Gibson,T.J., Lewis,J., Serrano,L. and Russell,R.B. (2005)
Systematic discovery of new recognition peptides mediating
protein interaction networks. PLoS Biol., 3, e405.

18. Encinar,J.A., Fernandez-Ballester,G., Sánchez,I.E., Hurtado-
Gomez,E., Stricher,F., Beltrao,P. and Serrano,L. (2009)

W426 Nucleic Acids Research, 2012, Vol. 40, Web Server issue

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
0
/W

1
/W

4
2
3
/1

0
7
3
5
1
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://i.elm.eu.org


ADAN: a database for prediction of protein–protein interaction
of modular domains mediated by linear motifs. Bioinformatics,
25, 2418–2424.

19. Mooney,C., Pollastri,G., Shields,D.C. and Haslam,N.J. (2012)
Prediction of short linear protein binding regions. J. Mol. Biol.,
415, 193–204.

20. Davey,N.E., Edwards,R.J. and Shields,D.C. (2010) Estimation
and efficient computation of the true probability of recurrence of
short linear protein sequence motifs in unrelated proteins. BMC
Bioinformatics, 11, 14.

21. Neduva,V. and Russell,R.B. (2006) DILIMOT: discovery of linear
motifs in proteins. Nucleic Acids Res., 34, W350–W355.

22. Jonassen,I., Collins,J.F. and Higgins,D.G. (1995) Finding flexible
patterns in unaligned protein sequences. Protein Sci., 4,
1587–1595.

23. Davey,N.E., Haslam,N.J., Shields,D.C. and Edwards,R.J. (2011)
SLiMSearch 2.0: biological context for short linear motifs in
proteins. Nucleic Acids Res., 39, W56–W60.
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