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Introduction 
An estimated 300 to 500 biomolecules have been  

successfully targeted with small-molecule agents [1,2]. 

This number is astoundingly small when compared with the 

number of human genes that have been identified, as well 
as those genes identified from bacterial or viral pathogens. 
Thus, developing new methods and molecules that allow  

the currently large collection of 'undruggable' proteins  

to be targeted pharmaceutically is an important task. 

In particular, the ability to manipulate protein-protein 

interactions would enable new therapeutic possibilities. 

Improvements in the targeting of protein-protein  

interactions are possible, although perhaps not with 

compounds that satisfy Lipinski's class rules, as it can be 

challenging for a small molecule to cover sufficient protein 
surface area to disrupt protein-protein interactions [3]. 

Screening programs to identify agents that are capable 

of disrupting certain protein-protein interactions have led 

to the discovery of several molecules [4], although the 

eventual success of most of these compounds as drugs 

remains uncertain. Peptides that bind to protein-protein 

interaction surfaces often can be identified, and a popular 
strategy among chemical biologists interested in disrupting 

protein-protein interactions is producing modified peptides 
or miniature proteins that mimic one of the native binding 

partners of a protein complex and contain some type of 

conformational constraint that induces a stable secondary 

structure, such as a helix [5-12]. However, these molecules 

often have undesirable pharmacokinetic properties,  

although some interesting exceptions are emerging [9]. 

One potential solution to the conundrum of undesirable 

pharmacokinetic properties has been to develop peptide-

like molecules that combine the favorable protein-binding 

characteristics of peptides with the cell permeability and 

in vivo stability of more drug-like molecules. Ideally, 

these peptide-like molecules would also be modular and 

simple to manufacture, thus facilitating the optimization 

of lead compounds. Peptoids, oligomers of N-substituted  

glycine units, constitute one such class of molecules [13]. 

The invention of peptoids in the context of a biotechnology 

company, their decreased popularity as possible drug 

candidates (mainly for non-scientific reasons) and their  
recent resurgence as a research focus in academic 

laboratories, particularly with respect to the discovery 

of ligands to defined molecular targets, are discussed in 
this review. In addition, advances in combinatorial library 

screening technology that, while not restricted to peptoids, 

take advantage of the many favorable properties of these 

molecules are also described.

Initial peptoid development at Protos/Chiron 
In 1988, Chiron Corp, one of the original biotechnology 

companies and now part of Novartis AG [14], spun out 

the chemistry start-up company Protos Corp to develop  

small-molecule drugs using Chiron's biopharmaceutical 

resources. Researchers at Protos employed the approach 

of mimicking the natural molecular diversity in biopolymers 

– combining a small number of chemical building blocks 

into an oligomeric sequence to generate a large number of 

distinct compounds [13]. This modular, or combinatorial, 

approach is efficient because only a single chemistry  
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requires optimization, and the same coupling chemistry 

is used to link every building block together. Given the 

favorable protein binding characteristics but unfavorable 

pharmacokinetic properties of peptides, research efforts 

were focused on developing peptidomimetic oligomers that 

retained the diversity of side chains and a polar backbone, 

yet were engineered to remove sensitivity to proteases. In 

particular, peptoids were targeted. These molecules closely 

resemble peptides, except that the side chains extend from 

the main-chain nitrogen rather than the α-carbon [13] 

(Figure 1A). Peptoids are achiral, protease resistant and 
adopt different conformations than peptides, yet still retain 

the same density of functionality and backbone polarity of 

peptides.

The initial synthetic targets were libraries of peptoid  

trimers. Side chains similar to those occurring in the natural 

amino acids were employed in the synthesis of these  

libraries. The original synthesis method was in direct 

analogy to Fmoc (9-fluorenylmethyl chloroformate) solid-

phase peptide synthesis, and the generation of samples of  

25 grams for 10 to 12 representative Fmoc-protected 

peptoid monomers was required [13]. The preparation of a  

sufficient quantity of all the monomers needed required 
almost 1 year, highlighting the practical problems that are 

inherent in large-scale combinatorial chemistry.

Researchers at Protos initially attempted to create soluble 

mixtures of compounds to feed automated HTS assays 

that had already been developed in-house. Libraries were  

created in this early period using a 'split and pool' approach 

(the solid-phase resin beads are separated into equal  

portions at the start of each coupling cycle, and then 

recombined), which was capable of generating compound 
mixtures of defined composition [15]. Automated synthesis 
equipment, built in-house, was employed to facilitate these 

efforts [16]. Equipped with this synthesis technology, 

combinatorial peptoid libraries could be created rapidly. 

The pace of synthesis resulted in Fmoc-protected peptoid 

monomers that required almost 1 year to be produced 

to be consumed in only a few days. Two bottlenecks in 

combinatorial peptoid drug discovery became apparent: 

(i) the rate of monomer consumption greatly outstripped 
the rate of monomer supply; and (ii) once activity was 
identified within a compound library, the identification of 
individual active compounds in the library (the process of 

deconvolution) would be laborious.

The submonomer method of peptoid 
synthesis 
These bottlenecks stimulated research that led to a major 

breakthrough in 1991, when the solid-phase 'submonomer' 

method of peptoid synthesis was developed [17]. This 

approach considers the peptoid structure not as a 

homopolymer of N-substituted glycine units but, rather, as 

a copolymer alternating between acetate and amine units. 

The submonomer synthesis cycle consists of two chemical 

steps starting from a resin-bound amine: an acylation step 

using a diimide-activated haloacetic acid, followed by a 

displacement step using a primary amine (Figure 1B). For 
general use, bromoacetic acid is preferred. However, in  

cases in which there are side-chain functionalities that  

contain unprotected heteroatoms, particularly those 

occurring in many heterocycles (eg, imidazoles, pyridines, 

pyrazines and indoles [18]) the use of bromoacetic acid 
results in undesired side reactions from the alkylation of  

the heteroatoms. In these cases, choloroacetic acid can 

be used [19], thereby avoiding these unwanted alkylation 

reactions because of the reduced ability of the chloride to 

act as a leaving group. 

The appeal of the submonomer approach is that side chains 

of interest require only a reactive primary amine in order 

to be incorporated into the peptoid structure. However, 

Figure 1. Synthesis of peptoids using the submonomer method. 

(A) General structures of peptides and peptoids. (B) The 'submonomer' solid-phase synthesis of peptoids. The blue sphere represents an  
amine-functionalized bead. R
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not every amine can be incorporated in high yield; poor 

nucleophiles or hindered amines are incorporated slowly, 

as are amines with poor solubility. In addition, amines with 

competing pendant nucleophilic centers in the side chain 

must be protected. The displacement reactions are typically 

slower than the acylation step, requiring high concentrations 

of amine (~ 1 M) and reaction times of 20 min to 2 h at 
room temperature. Typically, acid-removable groups are 

used, so that resin cleavage and side-chain deprotection  

can occur simultaneously using trifluoroacetic acid. 
Nonetheless, hundreds of amines are commercially available 

in gram quantities that can be used directly and efficiently 
as submonomers [20].

The submonomer method of accessing synthetic 

oligomers of defined sequence is one of the most efficient  
techniques known in terms of coupling yields and monomer 

diversity/availability. The reactions are not air sensitive nor 

particularly moisture sensitive. Thus, the entire process 

can be readily automated and even adapted to almost any 

commercial peptide synthesizer, because peptide couplings 

also use a two-step monomer addition cycle [21]. Both 

the acylation and amination steps can be accelerated by 

microwave irradiation [22], which is particularly useful 

for otherwise slow couplings [23]. The longest peptoids  

reported in reasonable yield (that were produced in 

one continuous synthesis cycle) are approximately  
50 monomers in length, suggesting that the yield for one 

coupling cycle is in excess of 99% [24]. The submonomer 

method is also unique in that no main chain-protecting 

groups are required, because reactive intermediates are 

attached to the resin. The mono-alkylation of an amine with 

an alkyl halide, for example, is difficult to achieve in solution, 
but on a solid phase can be readily achieved. The practical 

advantages of this synthetic approach are particularly well 

suited for the preparation of combinatorial libraries.

Peptoid drug discovery efforts at Chiron 
Chiron acquired Protos in 1992 and transformed the  

company into its Small Molecule Drug Discovery division. 

To initiate the integrated drug discovery program,  

combinatorial compound mixtures were used because  

of the reduced upfront synthesis and screening effort required. 

The complexity of mixture was limited to a modest level 

(typically hundreds of compounds per pool). In 2002, macro-
bead based methods were developed [25] that allowed the 

screening of smaller mixtures, or even individual compounds 

created via 'split and pool' synthesis to yield one bead, one 

compound (OBOC) libraries [26]. However, mixture screening 
only identifies active mixtures, and the identification of an 
active individual compound requires deconvolution. Library 

deconvolution was originally conducted by the iterative  

re-synthesis of successively smaller compound pools until a 

single active compound was identified [27].

Several chemically diverse peptoid libraries were  

synthesized at Chiron. Each library was constructed from 

a set of 15 to 20 monomers and was typically trimeric in  

order to limit the molecular mass. Sophisticated 

computational tools were also developed to help design  

the libraries [28]. By 1994, synthesis and screening efforts  

had yielded several potent (nanomolar) peptoid trimer  
ligands for G-protein coupled receptors [27] and the 

urokinase receptor [29]. The reports of an α-adrenergic 

receptor antagonist and a µ-opiate receptor antagonist 

were significant because these were the first reported 
demonstrations that a diverse combinatorial library of 

synthetic compounds could provide high-affinity ligands for 
pharmaceutically relevant receptors [27]. 

The critical question then became whether these peptoids 

possessed the appropriate pharmacokinetic properties  

to be considered as drug candidates. In 1996, an 

approximately one-nanomolar α
1
-adrenergic receptor 

ligand was demonstrated to be soluble and metabolically 

stable in vitro and to have receptor antagonist activity in 

animals [30]. The intravenous administration of CHIR-2279, 

a peptoid trimer, to dogs antagonized the epinephrine- 

induced increase in intraurethal pressure (pA
2
 = 6.86, 

compared with pA
2
 = 7.71 for the standard anti-hypertensive 

drug prazosin). In both rats and guinea pigs, CHIR-2279 
antagonized the epinephrine-induced increase in mean 

arterial blood pressure in a dose-dependent manner.  

These data suggested a good correlation between the  

in vitro and in vivo potencies of the compound. The rates 

of systemic clearance of CHIR-2279 following intravenous 

administration were 60 and 104 ml/min/kg in rats and  

guinea pigs, respectively.

More recently, another peptoid trimer, CHIR-5585, an  

inhibitor of the urokinase plasminogen activator receptor 

(uPAR) with activity in the sub-micromolar range in vitro,  

was also demonstrated to be an antagonist in vivo. The 

compound was administered to rats intranasally and 

observed to be delivered with high efficiency to the CNS 
[29]. Micromolar concentrations of the compound were 

detected in the olfactory bulbs, cortex, trigeminal nerve 

and deep cervical lymph nodes. These results suggest  

that intranasal delivery of peptoids is efficient and may 
deliver these compounds directly to the CNS, bypassing the 

blood-brain barrier.

A benzoylated peptoid trimer was evaluated by a group 

of researchers at Novartis Pharmaceuticals Corp [31]. 

The compound was administered to rats both orally 

and intravenously to study absorption and disposition  

properties. The extent of oral absorption was low (3 to 8%), 
which was consistent with the low absorptive clearance 

rate of the trimer (6.7 x 10-4 ml/min/cm) [31]. The peptoid 
was demonstrated to have good metabolic stability in vivo 

and was excreted intact in the feces. A quick clearance 

of the compound suggested rapid biliary excretion, which  

the investigators considered might be attributed to the 

overall high hydrophobicity of the compound [31].

These three animal studies of three different peptoid  

trimers do not provide sufficient data to make broad 
conclusions regarding the in vivo properties of peptoid drug 

candidates, particularly with regard to oral bioavailability,  

but do suggest some desirable attributes (eg, metabolic 
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stability) and some less-desirable attributes (eg, rapid 
clearance). Clearly, the choice of side chain must 
have a significant impact on the pharmacokinetic and 
pharmacodynamic properties of specific peptoids. 

The peptoid program at Chiron had demonstrated that 

combinatorial library screening technologies could rapidly 

deliver hits to pharmaceutically relevant targets. Chiron 

decided not to pursue the development of peptoids as  

drugs, and instead chose to leverage its leadership position 

in the combinatorial technology arena. It is instructive to 

examine the apparent reasons behind this decision, as most 

were non-scientific.

The first issue was one of risk. Because almost all known 
successful small-molecule drugs have typically been 

conformationally constrained heterocyclic structures, there 

was no precedent for a compound resembling a peptoid 

oligomer that exhibited drug-like properties. The second  

issue was financial. The Small Molecule Drug Discovery 
division of Chiron was expected to be financially  
self-sufficient; gaining revenue from partnerships with  
other companies in the form of technology transfer deals 

was therefore necessary. Because there was a large  

demand from pharmaceutical companies to establish 

combinatorial synthesis efforts in-house, technology  

transfer deals were an obvious choice for Chiron to enable 

the company to become financially self-sufficient. The 
company provided a variety of solid-phase synthesis  

tools (synthesizers, devices and machines), protocols to 
make a wide variety of compound classes, computational 

tools to design compound libraries, analytical tools 

for identifying hit compounds, HTS strategies and,  

significantly, information on how these diverse efforts  
could be integrated into an efficient workflow. Several 
technology transfer deals were executed (eg, Jannsen-

Cilag [32] and Ciba-Geigy Ltd [33]), which helped 
to not only disseminate the use of these techniques 

throughout the industry, but also to provide essential 

funding for Chiron's internal drug discovery program. 

This strategy was demonstrated to be successful,  

as many important small-molecule heterocyclic hit  

compounds were identified from Chiron's internal 
combinatorial drug discovery program. However, despite 

progression in the development of combinatorial library 

screening technologies, the development of peptoids 

remained limited.

Thus, in the early days of peptoid development, these 

compounds played a critical role in the development of 

combinatorial drug discovery techniques, primarily because 

of the efficiency demonstrated by submonomer chemistry. 
Peptoids are one of the fastest ways to 'prototype' new 

combinatorial approaches with synthetic molecules.  

However, the actual value of peptoids as therapeutic  

agents remains unclear and deserves further exploration; 

this is particularly true in the current pharmaceutical  

climate in which company pipelines are becoming 

smaller, and as important targets that function through  

protein-protein interactions are being identified.

The second generation of research: 
Demonstrating the generality of peptoids
The pioneering studies at Chiron demonstrated that peptoids 

could be effective pharmacological agents with which 

to target cell surface receptors. Following these efforts,  

Montoliu et al created libraries of several thousand  

tripeptoids and pentapeptoids using the positional scanning 

format. Peptoid mixtures were screened successfully 

for several interesting activities. Among the molecules 

identified were peptoids that were capable of the prevention 
of neuronal excitoxicity [34], the attenuation of vanilloid 

receptor function [35], the inhibition of the proliferation of 

human neoplastic cells [36] and the blockade of multidrug  

resistance pumps [37,38]. The findings suggested that 
peptoid libraries were likely to be a general source of  

bioactive receptor ligands. The investigators also 

demonstrated that a highly diverse, but modestly sized, 

library (in most of these studies, 5000 to 10,000 compounds 

made from 22 different amines were screened) was  
sufficient to provide high-quality ligands. Most of the 
compounds isolated in these efforts were discovered to  

have potency in the low-micromolar range. 

The third generation of research: 
Advances in screening technology 
In 1991, a group at UT Southwestern Medical Center 

embarked on an effort that was initially focused on 

the discovery of large numbers of peptoid ligands for 

proteins, with the intention of using these ligands for the  

construction of protein-detecting microarrays [39,40]. The 

approach was modeled on the powerful OBOC screening 

methods that had been invented for synthetic peptide 

libraries [26], and differed in several ways from the  

strategies used previously [24,27,34-38]. First, and 

most importantly, screening was conducted by binding a 

fluorescently-labeled target protein to the bead-displayed 
peptoid library. After trial and error to optimize the  

system, including the type of beads used and the nature 

of the dye used to label the protein, a reasonably effective 

screening protocol was developed that involved exposing a 

Texas Red-labeled protein to a library of tens to hundreds 

of thousands of peptoids displayed on TentaGel beads [41]. 

Peptoids that bound the Texas Red-labeled target protein 

were identified by a visual examination of the beads under 
a fluorescent microscope, and were isolated manually using 
a micropipette. The visual contrast between 'hits' and  

'non-hits' (the beads themselves emit an inconvenient  

level of autofluorescence) was later improved by employing 
a biotinylated protein and detecting its binding to the bead 

by subsequent hybridization with a streptavidin-coated red 

quantum dot (QD). When observed under a fluorescence 
(non-confocal) microscope, emission from the surface- 
bound QD is visible as an intense red halo around the  

blue-green autofluorescence of the bead, enabling 
straightforward visual identification (Figure 2). The second 
distinguishing feature of this screening protocol was the 

sequencing of peptoids by Edman degradation [41]. Thus, 

a protocol was developed in which the bound proteins were 

stripped from the bead with 1% SDS and the bead was 
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placed in the cavity of an automated Edman sequencer  

and characterized. Alternatively, if the peptoid was 

released from the bead, the sequence could be deduced by 

tandem mass spectrometry (MS) [42] or by partial Edman 
degradation/MS [43]. 

This on-bead screening method obviates the need for the 

tedious deconvolution step that had been used in earlier 

research, as well as the need for library encoding [44] that 

is necessary for libraries of compounds that cannot be 

characterized directly from a single bead [45,46]. These 

bead-based screens are also cheaper than high-throughput 

functional screens. However, hits from a binding screen  

may not be agonists or antagonists; they could simply 

be innocent ligands. The nature of the interaction can be 

determined easily and cheaply by functional testing of the 

few hits that arise from a binding screen. In addition, the 

conditions of a binding screen can be altered in almost any 

way desired, the most important consequence of which is 

that heavy demands can be placed on binding specificity 
for a compound to score as a hit. Indeed, the inclusion 

of a large excess of a highly heterogeneous mixture of 

unlabeled competitor proteins (eg, Escherichia coli cell 

lysate) increased the specificity of the ligands isolated in 
these screens, presumably by suppressing the tendency of 

relatively 'greasy', non-specific molecules from sequestering 
the target protein [41]. Such greasy compounds are a major 

challenge of common functional screening assays and 

consume substantial research time and effort in subsequent 

validation efforts; however, crude extracts cannot be  

added to most enzyme assays.

Using this on-bead screening approach, peptoid ligands for 

several soluble proteins, some never before targeted with 

a synthetic molecule, were isolated [41,47-52]. In general,  

all of the molecules isolated were ligands with excellent 

specificity for their target protein (ie, in the micromolar 
range). Using more rational methods, other researchers 
have also designed protein-binding peptoids or peptoid-

containing compounds [53-55]. Some of these peptoids 

have been validated as being active in cell-based assays, 

demonstrating the cell permeability of peptoids [56], but 

their activities in vivo and pharmacokinetic properties have 

not been studied.

An advance in the bead screening technology was reported 

recently that may represent a general method for the 

isolation of a peptoid ligand for any cell surface receptor 

[57]. Integral membrane receptors are difficult to handle 
biochemically (because of their poor solubility) and thus 
could not be easily employed in the standard assay used  

for soluble proteins, but previous research had  

demonstrated the feasibility of conducting bead binding 

assays with living cells carrying the target receptor  

[58-60]. The novel feature of this new screen was the use 

of a two-color method that required the peptoids isolated 

as hits to display extremely high specificity for the target 
receptor, in this case VEGFR-2. Cells lacking VEGFR-2 were 

labeled with a green QD, and cells that carried VEGFR-2, but 

were otherwise identical, were labeled with a red QD. The 

QDs were taken up by endocytosis and therefore did not 

contaminate the cell surface. The cells were then suspended, 

mixed in an approximately 1:1 ratio, and incubated with 

The binding of a biotin-labeled protein to a 'hit' bead is visualized by subsequent incubation with streptavidin-coated quantum dots (SA-QDs).  
A fluorescence micrograph of an actual screening result is shown. The sequence of the peptoid on the bead is then determined by  
Edman degradation or mass spectrometry.

Figure 2. Screen of a one bead, one compound (OBOC) peptoid library against a biotinylated protein doped into a complex mixture of 
unlabeled proteins. 

+ Unlabeled competitor 

proteins, then wash and 

add SA-QDs

Thousands of peptoid-displaying 

beads (OBOC library)

Biotin

Sequence from single bead
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approximately 300,000 beads displaying nonameric  

peptoids in which the six N-terminal residues had been 

randomized using eight different amines (Figure 3). After 
incubation under carefully controlled conditions to minimize 

non-specific adhesion of cells to the beads, the collection 
of beads was washed and inspected under a fluorescent 
microscope (Figure 3). Hundreds of beads that bound both 
red and green cells were observed. These beads presumably 

displayed a peptoid that recognized a molecule other than 

VEGFR-2. Five beads bound only red cells, suggesting that 

these beads were specific VEGFR-2 ligands. Subsequent 
in vitro binding studies confirmed that all five beads were 
ligands for the VEGFR-2 extracellular domain (ECD) at 
concentrations in the low-micromolar range [57] and that 

all bound a common site of the ECD that was distinct  

from the hormone-binding pocket [61]. 

One of the VEGFR-2-binding peptoids, GU40C4, was  

elaborated into a high-affinity ligand (K
d
~ 25 nM) by 

dimerization, taking advantage of the knowledge that 

VEGFR-2 acts as a dimer (Figure 4) [57]. As anticipated, 
from the extreme stringency of the screen, subsequent 

staining experiments revealed that the dimeric peptoid only 

recognized cells that expressed VEGFR-2 (Figure 4C) [57]. 

This high-affinity dimer was demonstrated to be an 
antagonist of VEGFR-2-mediated angiogenesis in cell culture 

assays as well as in a mouse tumor model. In the animal 

experiment, the peptoid was delivered slowly over 20 days 

via an implanted Alzet pump [57]. A detailed pharmacokinetic 

evaluation of the study was in progress at the time of 

publication; according to the functional data available, the 

peptoid inhibited tumor growth for several days following 

Figure 3. A two-color method to screen a one bead, one compound (OBOC) peptoid library against an integral membrane receptor for highly 
specific ligands. 

(A) The library used in a screen against VEGFR-2 and the amines employed in the construction of the library (shown in box). The diverse portion  
of the library consists of 8 monomers randomized at each of 6 positions, resulting in 86 or 262,144 possible compounds. (B) A schematic  
diagram of the screening protocol in which peptoid-displaying beads are exposed to cells that do or do not contain the target receptor. The  
green quantum dots (QDs) label cells lacking VEGFR-2 and the red QDs label cells carrying VEGFR-2. Beads that bind only the receptor- 
containing cells are collected. (C) Fluorescence micrographs of some of the beads after incubation with green-stained cells lacking VEGFR-2 
and red-stained cells containing VEGFR-2. The left micrograph shows a field containing two beads that bound both cells lacking and  
containing VEGFR-2. The right fluorescence micrograph (one of the five hits obtained in this screen) shows beads that bound cells containing 
VEGFR-2. 
(Adapted from from the American Chemical Society and Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T: A peptoid 'antibody surrogate' 

that antagonizes VEGF receptor 2 activity. J Am Chem Soc (2008) 130(17):5744-5752. © 2008 American Chemical Society)
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the end of the 20-day administration period. Similar to 

the early research from Chiron, this study suggests the  

potential pharmacological utility of receptor-targeted 

peptoids.

Conclusion: Prospects for the next 
generation of research 
The currently available technology for creating and  

screening peptoid libraries is powerful. The question 

remains, however, as to whether peptoids will eventually 

be developed into useful pharmaceutical compounds or  

whether these molecules can, at least, be employed as 

potent 'tool compounds' with which to explore biological 

mechanisms [62]. Both possibilities appear to be feasible, 

but considerable further research remains to be completed.

Molecules that arise from primary screening efforts are 

usually ligands with activities in the low-micromolar 

range; peptoids are no exception. Thus, a key goal is the  

Figure 4. A high-affinity VEGFR-2-binding peptoid, GU40C4. 

(A) Structure of GU4OC4, a peptoid dimer that binds the dimeric VEGFR-2 with high affinity. (B) Data obtained from an in vitro binding assay 
that monitored binding of fluorescently labeled GU40C4 to immobilized VEGFR-2 extracellular domain with an approximate dissociation 
constant (K

d
) value of 25 nM [52]. (C) Fluorescence micrographs of cells incubated with biotinylated GU40C4 and streptavidin-coated 

red quantum dots. The cells in the left panel are MCF-7 breast cancer cells that are known to express VEGFR-2. The cells in the right panel 
are HeLa cells, which do not express VEGFR-2. The nuclei of the cells were stained blue with 4',6-diamidino-2-phenylindole (DAPI).  
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development of a rapid and efficient method with which 
to develop these hits into more potent lead compounds, 

by first identifying the critical residues that are important 
for protein binding [63,64], and then optimizing these 

leads. Peptoids appear to be ideally suited to becoming 

lead compounds, given their regular structure and the  

availability of structurally diverse amine building blocks; 

however, a clear demonstration that the development of  

potent leads can be performed quickly and effectively 

has not yet been reported in the literature. Another  

outstanding question will be whether peptoids have 

appropriate pharmacokinetic properties to be useful 

therapeutics. As described above, only a small amount 

of investigation has been completed at Chiron and in  

the academic arena. The next 5 years should be  

instructive regarding the demonstration of peptoids as 

pharmacological agents. 
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