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Per-antenna Constant Envelope Precoding for Large
Multi-User MIMO Systems

Saif Khan Mohammed and Erik G. Larsson

Abstract—We consider the multi-user MIMO broadcast chan-
nel with M single-antenna users andN transmit antennas under
the constraint that each antenna emits signals having constant
envelope (CE). The motivation for this is that CE signals facilitate
the use of power-efficient RF power amplifiers. Analytical and
numerical results show that, under certain mild conditions on
the channel gains, for a fixedM , an array gain is achievable
even under the stringent per-antenna CE constraint. Essentially,
for a fixed M , at sufficiently large N the total transmitted
power can be reduced with increasingN while maintaining a
fixed information rate to each user. Simulations for the i.i.d.
Rayleigh fading channel show that the total transmit power can
be reduced linearly with increasingN (i.e., anO(N) array gain).
We also propose a precoding scheme which finds near-optimal
CE signals to be transmitted, and hasO(MN) complexity. Also,
in terms of the total transmit power required to achieve a fixed
desired information sum-rate, despite the stringent per-antenna
CE constraint, the proposed CE precoding scheme performsclose
to the sum-capacity achieving scheme for an average-only total
transmit power constrained channel.

Index Terms—Multi-user, constant envelope, per-antenna,
large MIMO, GBC.

I. I NTRODUCTION

We consider a Gaussian Broadcast Channel (GBC), wherein
a base station (BS) havingN antennas communicates withM
single-antenna users in the downlink. Large antenna arraysat
the BS has been of recent interest, due to their remarkable
ability to suppress multi-user interference (MUI) with very
simple precoding techniques [1]. Specifically, under an average
only total transmit power constraint (APC), for a fixedM , a
simple matched-filter precoder has been shown to achieve total
MUI suppression in the limit asN → ∞ [2]. Additionally, due
to the inherent array power gain property1, large antenna arrays
are also being considered as an enabler for reducing power
consumption in wireless communications, especially sincethe
operational power consumption at BS is becoming a matter of
world-wide concern [4], [5].

Despite the benefits of large antenna arrays at the BS,
practically building them would require cheap and power-
efficient RF power amplifiers (PA’s). In conventional BS,
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been studied by us in much greater detail in [16].

1 Under an APC constraint, for a fixedM and a fixed desired information
sum-rate, the required total transmit power decreases with increasingN [3].

power-inefficient PA’s account for about40-50 percent of
the total operational power consumption [5]. With current
technology, power-efficient RF components are generally non-
linear. The type of transmitted signal that facilitates theuse of
most power-efficient/non-linear RF components, is aconstant
envelope(CE) signal. In this paper, we therefore consider
a GBC, where the amplitude of the signal transmitted from
each BS antenna isconstantand independent of the channel
realization. We only consider the discrete-time complex base-
band equivalent channel model, where we aim to restrict the
discrete-time per-antenna channel input to have no amplitude
variations. Compared to precoding methods which result in
large amplitude-variations in the discrete-time channel input,
the CE precoding method proposed in this paper is expected
to result in continuous-timetransmit signals which have a
significantly improved peak-to-average-power-ratio (PAPR).
However, this does not necessarily mean that the proposed
precoding method will result in continuous-time transmit
signals having aperfectly constant envelope. Generation of
perfectly constant envelope continuous-time transmit signals
constitutes future work for us. One possible method to generate
almost constant-envelope continuous-time signals could be to
constrain the phase variation between consecutive constant
amplitude baseband symbols of the discrete-time channel
input.

Since the per-antenna CE constraint is much more restrictive
than APC, in this paper we investigate as to whether MUI
suppression and array power gain can still be achieved under
the stringent per-antenna CE constraint. To the best of our
knowledge, there is no reported work which addresses this
question. Most reported work on per-antenna communication
consider an average-only or a peak-only power constraint (see
[6], [7] and references therein). In this paper, firstly, we derive
expressions for the MUI at each user under the per-antenna CE
constraint, and then propose a low-complexity CE precoding
scheme with the objective of minimizing the MUI energy at
each user. For a given vector of information symbols to be
communicated to the users, the proposed precoding scheme
chooses per-antenna CE transmit signals in such a way that
the MUI energy at each user is small (i.e., of the same order
or less than the variance of the additive white Gaussian noise).
Throughout the paper, we assume that such large antenna
systems will not operate in a regime where the MUI energy is
significantly larger than the AWGN variance, since it is highly
power-inefficient to do so [8].

Secondly, under certain mild channel conditions (including
i.i.d. fading), using a novel probabilistic approach, we ana-
lytically show that,MUI suppression can be achieved even
under the stringent per-antenna CE constraint.Specifically,
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for a fixedM and fixed user information symbol alphabets,
an arbitrarily low MUI energy can be guaranteed at each user,
by choosing a sufficiently largeN . Our analysis further reveals
that, with a fixedM and increasingN , the total transmitted
power can bereducedwhile maintaining a constant signal-to-
interference-and-noise-ratio (SINR) level at each user.

Thirdly, through simulation, we confirm our analytical
observations for the i.i.d. Rayleigh fading channel. For the
proposed CE precoder, we numerically compute an achievable
ergodic information sum-rate, and observe that, for a fixed
M and a fixed desired ergodic sum-rate,the required total
transmit power reduces linearly with increasingN (i.e., an
O(N) array power gain is achieved under the per-antenna CE
constraint). We also observe that, to achieve a given desired
ergodic information sum-rate, compared to the optimal GBC
sum-capacity achieving scheme under APC, the extra total
transmit power required by the proposed CE precoding scheme
is small (roughly 2.0 dB for sufficiently largeN ).

Notation: C and R denote the set of complex and real
numbers. |x|, x∗ and arg(x) denote the absolute value,
complex conjugate and argument ofx ∈ C respectively.
‖h‖2 ∆

=
∑

i |hi|2 denotes the squared Euclidean-norm of
h = (h1, · · · , hN ) ∈ C

N . E[·] denotes the expectation
operator. Abbreviations: r.v. (random variable), bpcu (bits-per-
channel-use), p.d.f. (probability density function).

II. SYSTEM MODEL

Let the complex channel gain between thei-th BS antenna
and thek-th user be denoted byhk,i. The vector of channel
gains from the BS antennas to thek-th user is denoted by
hk = (hk,1, hk,2, · · · , hk,N )T . H ∈ C

M×N is the channel
gain matrix withhk,i as its(k, i)-th entry. Letxi denote the
complex symbol transmitted from thei-th BS antenna. Further,
let PT denote the average total power transmitted from all
the BS antennas. Under APC, we must haveE[

∑N
i=1 |xi|2] =

PT , whereas under the per-antenna CE constraint we have
|xi|2 = PT /N , i = 1, 2, · · · , N which is clearly a more
stringent constraint compared to APC. Further, due to the
per-antenna CE constraint, it is clear thatxi is of the form
xi =

√
PT /Nejθi , whereθi is the phase ofxi. Under CE

transmission, the symbol received by thek-th user is therefore
given by

yk =

√
PT

N

N∑

i=1

hk,ie
jθi + wk , k = 1, 2, . . . ,M (1)

where wk ∼ CN (0, σ2) is the AWGN noise at thek-th
receiver. For the sake of notation, letΘ = (θ1, · · · , θN )T

denote the vector of transmitted phase angles. Letu =
(
√
E1u1, · · · ,

√
EMuM )T be the vector of scaled information

symbols, with uk ∈ Uk denoting the information symbol
to be communicated to thek-th user. HereUk denotes the
unit average energy information alphabet of thek-th user.
Ek, k = 1, 2, . . . ,M denotes the information symbol energy
for each user. Also, letU ∆

=
√
E1U1×

√
E2U2×· · ·×√

EMUM .
Subsequently, in this paper, we are interested in scenarios

whereM is fixed andN is allowed to increase. Also, through-
out this paper, for a fixedM , the alphabetsU1, · · · ,UM are
also fixed and do not change with increasingN .

We stress that CE transmission is entirely different from
equal gain transmission (EGT). We explain this difference
for the simple single-user scenario (M = 1). In EGT a unit
average energy complex information symbolu is communi-
cated to the user by transmittingxi = wi u from the i-th
transmit antenna (with|w1| = · · · = |wN | =

√
PT /N ), and

therefore the amplitude of the signal transmitted from each
antenna is not constant but varies with the amplitude ofu
(|xi| =

√
PT /N |u|). In contrast, the CE precoding method

proposed in this paper (Section III-B) transmits a constant
amplitude signal from each antenna (i.e.,

√
PT /Nejθi from

the i-th antenna), where the transmit phase anglesθ1, · · · , θN
are chosen in such a way that the noise-free received signal is
a known constant times the desired information symbolu.

III. MUI A NALYSIS AND THE PROPOSEDCE PRECODER

For any given information symbol vectoru to be commu-
nicated, withΘ as the transmitted phase angle vector, using
(1) the received signal at thek-th user can be expressed as

yk =
√
PT

√
Ekuk +

√
PT sk + wk ,

sk
∆
=

(∑N
i=1 hk,ie

jθi

√
N

−
√

Ekuk

)
(2)

where
√
PT sk is the MUI term at thek-th user. In this section

we aim to get a better understanding of the MUI energy level
at each user, for any general CE precoding scheme where
the signal transmitted from each BS antenna has constant
envelope. Towards this end, we firstly study the range of values
taken by the noise-free received signal at the users (scaled
down by

√
PT ). This range of values is given by the set

M(H)
∆
=
{
v = (v1, · · · , vM ) ∈ C

M
∣∣ vk =

∑N
i=1 hk,ie

jθi

√
N

,

θi ∈ [−π, π) , i = 1, . . . , N
}

(3)

For any vectorv = (v1, v2, · · · , vM )T ∈ M(H), from (3) it
follows that there exists aΘv = (θv1 , · · · , θvN )T such thatvk =∑N

i=1 hk,ie
jθv

i√
N

, k = 1, 2, . . . ,M . This sum can be expressed
as a sum ofN/M terms (without loss of generality let us
assume thatN/M is integral only for the argument presented
here)

vk =

N/M∑

q=1

vqk ,

vqk
∆
=

( qM∑

r=(q−1)M+1

hk,re
jθv

r

)
/
√
N , q = 1, . . . ,

N

M
.

(4)
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From (4) it follows thatM(H) can be expressed as a direct-
sum ofN/M sets, i.e.

M(H) = M
(
H

(1)
)
⊕M

(
H

(2)
)
⊕ · · · ⊕M

(
H

(N/M)
)

M
(
H

(q)
) ∆

=
{
v = (v1, · · · , vM ) ∈ C

M
∣∣

vk =

∑M
i=1 hk,(q−1)M+i e

jθi

√
N

, θi ∈ [−π, π)
}

, q = 1, . . . , N/M (5)

where H
(q) is the sub-matrix ofH containing only the

columns numbered(q − 1)M + 1, (q − 1)M + 2, · · · , qM .
M
(
H

(q)
)

⊂ C
M is the dynamic range of the received

noise-free signals when only theM BS antennas numbered
(q−1)M+1, (q−1)M+2, · · · , qM are used and the remaining
N −M antennas are inactive. If the statistical distribution of
the channel gain vector from a BS antenna to all the users is
identical for all the BS antennas (as in i.i.d. channels), then,
on an average the setsM

(
H

(q)
)
, q = 1, . . . , N/M would all

have similar topological properties. Since,M(H) is a direct-
sum ofN/M topologically similar sets, it is expected that for
a fixed M , on an average the regionM(H) expands with
increasingN . Specifically, for a fixedM and increasingN ,
the maximum Euclidean length of any vector inM(H) grows
as O(

√
N), sinceM(H) is a direct-sum ofO(N) topolog-

ically similar sets (M(H(q)) , q = 1, 2, . . . , N/M ) with the
maximum Euclidean length of any vector inM

(
H

(q)
)

being
O(1/

√
N) (note that in the definition ofM

(
H

(q)
)

in (5),
each component of any vectorv ∈ M

(
H

(q)
)

is scaled down
by

√
N ). Also, for a fixedM and increasingN , sinceM(H)

is a direct-sum ofN/M similar sets, it is expected that the
set M(H) becomes increasingly dense (i.e., the number of
elements ofM(H) in a fixed volume inCM is expected to
increase with increasingN ). The above discussion leads us to
the following results in Section III-A and III-C.

A. Diminishing MUI with increasingN , for fixedM and fixed
Ek(k = 1, . . . ,M)

For a fixedM and fixedEk, the information alphabets and
the information symbol energies are fixed. However, since
increasingN (with fixed M ) is expected to enlarge the set
M(H) and make it increasingly denser, it is highly probable
that at sufficiently largeN , for any fixed information symbol
vector u = (

√
E1u1, · · · ,

√
EMuM )T ∈ U there exists a

vector v ∈ M(H) such thatv is very close to u in terms
of Euclidean distance. This then implies that, with increasing
N and fixedM , for anyu ∈ U there exists a transmit phase
angle vectorΘ such that the sum of the MUI energy for all
users is small compared to the AWGN variance at the receiver.
Hence, for a fixedM and fixedEk, it is expected that the MUI
energy for each user decreases with increasingN .

This is in fact true, as we prove it formally for channels
satisfying the following mild conditions. Specifically fora
fixed M , we consider a sequence of channel gain matrices

{HN}∞N=M satisfying

lim
N→∞

|h(N)
k

H
h
(N)
l |

N
= 0 , k 6= l (As.1)

lim
N→∞

∑N
i=1 |h

(N)
k1,i

| |h(N)
l1,i

| |h(N)
k2,i

| |h(N)
l2,i

|
N2

= 0 , (As.2)

lim
N→∞

‖h(N)
k ‖2
N

= ck , (As.3)

k, l, k1, l1, k2, l2 ∈ (1, 2, . . . ,M) (6)

where ck are positive constants,h(N)
k denotes thek-th row

of HN andh
(N)
k,i denotes thei-th component ofh(N)

k . From
the law of large numbers, it follows that i.i.d. channels
satisfy these conditions with probability one [13]. Physical
measurements of the channel characteristics with large antenna
arrays at the BS have revealed closeness to the i.i.d. fading
model, as long as the BS antennas are sufficiently spaced apart
(usually half of the carrier wavelength) [14], [1].

Theorem 1: For a fixedM and increasingN , consider a
sequence of channel gain matrices{HN}∞N=M satisfying the
mild conditions in (6). For any given fixed finite alphabet
U (fixed Ek, k = 1, . . . ,M ) and any given∆ > 0, there
exist a corresponding integerN({HN},U ,∆) such that with
N ≥ N({HN},U ,∆) and HN as the channel gain matrix,
for any u ∈ U to be communicated, there exist a phase
angle vectorΘu

N (∆) = (θu1 (∆), · · · , θuN (∆))T which when
transmitted, results in the MUI energy at each user being upper
bounded by2∆2, i.e.

∣∣∣
∑N

i=1 h
(N)
k,i e

jθu
i (∆)

√
N

−
√

Ekuk

∣∣∣
2

≤ 2∆2 , k = 1, . . . ,M. (7)

Proof – The proof relies on technical results in Theorem 3
(stated and proved in Appendix A) and Theorem 2 (stated and
proved below). All these results assume a fixedM (number
of user terminals) and increasingN (number of BS antennas).
These results are stated for a fixed sequence of channel
matrices{HN}∞N=M , fixed information alphabetsU1, · · · ,UM

and fixed information symbol energyE1, · · · , EM . Further,
the sequence of channel matrices{HN}∞N=M is assumed to
satisfy the conditions in (6) and the information alphabets
are assumed to be finite/discrete. The proofs use a novel
probabilistic approach, treating the transmitted phase angles
as random variables. We now present the proof of Theorem 1.

Let us consider a probability space with the transmitted
phase anglesθi, i = 1, 2, . . . , N being i.i.d. r.v’s uniformly
distributed in [−π , π). For a given sequence of channel
matrices{HN}, we define a corresponding sequence of r.v’s

{zN}, with zN
∆
= (zI

(N)

1 , zQ
(N)

1 , . . . , zI
(N)

M , zQ
(N)

M ) ∈ R
2M ,

where we have

zI
(N)

k
∆
= Re

(

∑N

i=1 h
(N)
k,i e

jθi

√
N

)

, zQ
(N)

k

∆
= Im

(

∑N

i=1 h
(N)
k,i e

jθi

√
N

)

, k = 1, . . . ,M. (8)

From Theorem 3 it follows that, for any channel sequence
{HN} satisfying the conditions in (6), asN → ∞ (with
fixedM ), the corresponding sequence of r.v’s{zN} converges
in distribution to a2M -dimensional real Gaussian random
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B∆(u)
∆
=

{
b = (bI1, b

Q
1 , · · · , bIM , bQM )T ∈ R

2M
∣∣∣ |bIk −

√
Eku

I
k| ≤ ∆ , |bQk −

√
Eku

Q
k | ≤ ∆ , k = 1, 2, . . . ,M

}
(9)

vector X = (XI
1 , X

Q
1 , · · · , XI

M , XQ
M )T with independent

zero-mean components and var(XI
k) = var(XQ

k ) = ck/2 , k =
1, 2, . . . ,M . For a givenu = (

√
E1u1, · · · ,

√
EMuM )T ∈ U ,

and∆ > 0, we next consider the boxB
∆
(u) defined in (9) (at

the top of this page), whereuI
k

∆
= Re(uk) , u

Q
k

∆
= Im(uk).

The box B
∆
(u) contains all those vectors inR2M whose

component-wise displacement fromu is upper bounded by∆.
Using the fact thatzN converges in distribution to a Gaussian
r.v. with R

2M as its range space, in Theorem 2 it is shown
that, for any∆ > 0, there exist an integerN({HN},U ,∆),
such that for allN ≥ N({HN},U ,∆)

Prob(zN ∈ B
∆
(u)) > 0 , ∀u ∈ U . (10)

Since the probability thatzN lies in the boxB
∆
(u) is strictly

positive for all u ∈ U , from the definitions ofB∆(u) in (9)
andzN in (8) it follows that, for anyu ∈ U there exist a phase
angle vectorΘu

N (∆) = (θu1 (∆), · · · , θuN (∆))T such that

∣∣∣Re
(∑N

i=1 h
(N)
k,i e

jθu
i (∆)

√
N

)
−
√

Eku
I
k

∣∣∣ ≤ ∆ ,

∣∣∣Im
(∑N

i=1 h
(N)
k,i e

jθu
i (∆)

√
N

)
−
√
Eku

Q
k

∣∣∣ ≤ ∆ (11)

for all k = 1, 2, · · · ,M , which then implies (7). �

Since Theorem 1 is valid for any∆ > 0 and (7) holds
for all N ≥ N({HN},U ,∆), we can satisfy (7) for any
arbitrarily small ∆ > 0 by having N ≥ N({HN},U ,∆)
i.e., a sufficiently largeN . Hence, theMUI energy at each
user can be guaranteed to be arbitrarily small by having
a sufficiently largeN . Theorem 1 therefore motivates us to
propose precoding techniques which can achieve small MUI
energy levels.

An essential part of the proof for Theorem 1 was the
positivity of the box event probability Prob(zN ∈ B

∆
(u)),

when N is sufficiently large. In the following theorem, we
formally state and prove the positivity of the box event
probability.

Theorem 2: For a given channel sequence{HN}∞N=M

satisfying (6) and a given fixed finite alphabet setU , for any
∆ > 0, there exist a corresponding integerN({HN},U ,∆),
such that for allN ≥ N({HN},U ,∆) (with fixed M )

Prob(zN ∈ B∆(u)) > 0 , ∀u ∈ U . (12)

whereB
∆
(u) is defined in (9).

Proof – We consider the probability that an-dimensional
real r.v. X = (X1, X2, · · · , Xn) lies in a n-dimensional
box centered atα = (α1, . . . , αn) ∈ R

n and denoted by
C(∆,α) =

{
(x1, x2, · · · , xn) ∈ R

n |αk − ∆ ≤ xk ≤
αk + ∆ , k = 1, 2, . . . , n

}
. For notational convenience, we

refer toαk+∆ andαk−∆ as the corresponding “upper” and
“lower” limits for the k-th coordinate. The probability thatX

lies in the boxC(∆,α) is given by the expansion

Prob(X ∈ C(∆,α)) =
n
∑

k=0

(−1)kTk(∆,α) (13)

where Tk(∆,α) is the probability that the r.v.
(X1, X2, · · · , Xn) belongs to a sub-region of{
(x1, · · · , xn) ∈ R

n | xl ≤ αl + ∆ , l = 1, 2, . . . , n
}

,
where exactlyk coordinates are less than their corresponding
“lower” limit and the remainingn − k coordinates are less
than their corresponding “upper” limit. Specifically,Tk(∆,α)
is given by2

Tk(∆,α) =

n
∑

i1=1

n
∑

i2=i1+1

· · ·
n
∑

ik=ik−1+1

Prob
(

Xr ≤ αr −∆

∀r ∈ {i1, i2, · · · , ik} ,

Xr ≤ αr +∆ ∀r /∈ {i1, i2, · · · , ik}
)

(14)

Using the expansion in (13), the probability of the box event{
zN ∈ B

∆
(u)
}

can be expressed as

Prob
(

zN ∈ B∆(u)
)

=

Prob
(

(
√
Eku

I
k −∆) ≤ zIk

(N) ≤ (
√
Eku

I
k +∆) ,

(
√
Eku

Q

k −∆) ≤ zQk
(N) ≤ (

√
Eku

Q

k +∆) , k = 1, 2, . . . ,M
)

=
2M
∑

k=0

(−1)k
2M
∑

i1=1

2M
∑

i2=i1+1

· · ·
2M
∑

ik=ik−1+1

Prob
(

z
(N)
l ≤

√
Elul −∆

∀l ∈ {i1, i2, · · · , ik} ,

z
(N)
l ≤

√
Elul +∆ ∀l /∈ {i1, i2, · · · , ik}

)

(15)

wherez(N)
l is the l-th component ofzN (i.e., z(N)

l = zQ
(N)

l/2

for even l, andz(N)
l = zI

(N)

(l+1)/2 for odd l) andul is the l-th

component of the vector(uI
1, u

Q
1 , u

I
2, u

Q
2 , · · · , uI

M , uQ
M )T . For

notational convenience we define

T
(N)

(k, i1, i2, · · · , ik,u,∆)
∆
=

Prob
(

z
(N)
l ≤

√
Elul −∆ ∀l ∈ {i1, i2, · · · , ik} ,

z
(N)
l ≤

√
Elul +∆ ∀l /∈ {i1, i2, · · · , ik}

)

1 ≤ i1 < i2 < · · · < ik ≤ 2M , 0 ≤ k ≤ 2M. (16)

Let Y = (Y1, Y2, · · · , Y2M ) denote a multivariate2M -
dimensional real Gaussian r.v. with independent zero mean
components and var(Y2k−1) = var(Y2k) = ck/2 , k =
1, 2, . . . ,M . From Theorem 3 (Appendix A) it follows
that the c.d.f. of zN converges to the c.d.f. ofY
as N → ∞. This convergence in distribution implies
that, for any given arbitraryδ > 0, for each term

2 As an example, forn = 2, we have Prob
(
α1 − ∆ ≤ X1 ≤ α1 +

∆ , α2 − ∆ ≤ X2 ≤ α2 + ∆
)

= T0(∆,α) − T1(∆,α) + T2(∆,α),

whereT0(∆,α)
∆
= Prob(X1 ≤ α1 + ∆ , X2 ≤ α2 + ∆), T2(∆,α)

∆
=

Prob(X1 ≤ α1 − ∆ , X2 ≤ α2 − ∆), and T1(∆,α)
∆
= Prob(X1 ≤

α1 +∆ , X2 ≤ α2 −∆) + Prob(X1 ≤ α1 −∆ , X2 ≤ α2 +∆).
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∣∣∣T
(N)

(k, i1, i2, · · · , ik,u,∆) − Prob
(
Yl ≤

√
Elul −∆ ∀l ∈ {i1, i2, · · · , ik} ,

Yl ≤
√
Elul +∆ ∀l /∈ {i1, i2, · · · , ik}

) ∣∣∣ ≤ δ. (17)

g
(
{HN},u,∆, δ

) ∆
= max

k=0,1,··· ,2M
max

1≤i1<i2<···<ik≤2M
N(k, i1, i2, · · · , ik, δ,u,∆) (18)

∣∣∣Prob
(
zN ∈ B

∆
(u)
)
− Prob

(
Y ∈ B

∆
(u)
)∣∣∣

=

∣∣∣∣∣

2M∑

k=0

2M∑

i1=1

2M∑

i2=i1+1

...

2M∑

ik=ik−1+1

(−1)k

{
T

(N)

(k, i1, i2, · · · , ik,u,∆) − Prob
(
Yl ≤

√
Elul −∆ ∀l ∈ {i1, i2, · · · , ik} ,

Yl ≤
√
Elul +∆ ∀l /∈ {i1, i2, · · · , ik}

)}∣∣∣∣∣

≤
2M∑

k=0

2M∑

i1=1

2M∑

i2=i1+1

...
2M∑

ik=ik−1+1

∣∣∣∣∣

{
T

(N)

(k, i1, i2, · · · , ik,u,∆) − Prob
(
Yl ≤

√
Elul −∆ ∀l ∈ {i1, i2, · · · , ik} ,

Yl ≤
√
Elul +∆ ∀l /∈ {i1, i2, · · · , ik}

)}∣∣∣∣∣

≤ ∑2M
k=0

∑2M
i1=1

∑2M
i2=i1+1 · · ·

∑2M
ik=ik−1+1 δ = 22Mδ. (19)

T
(N)

(k, i1, i2, · · · , ik,u,∆), there exists a corresponding pos-
itive integer N(k, i1, i2, · · · , ik, δ,u,∆) such that (17) is
satisfied for allN ≥ N(k, i1, i2, · · · , ik, δ,u,∆). We then
choose a positive integerg

(
{HN},u,∆, δ

)
given by (18).

Combining (15), (16) and (17), for allN ≥ g
(
{HN},u,∆, δ

)
we have (19). Since the range space (support) ofY is the
entire spaceR2M , it follows that Prob

(
Y ∈ B

∆
(u)
)
> 0

(i.e., strictly positive) for any∆ > 0 and allu ∈ U . For the
given information symbol vectoru and∆ > 0, we choose a
correspondingδ given by

δ(u,∆)
∆
=

1

2

Prob
(

Y ∈ B∆(u)
)

22M
> 0 (20)

From (19) and (20) it now follows that, for allN >
g
(
{HN},u,∆, δ(u,∆)

)
we have

∣

∣

∣
Prob

(

zN ∈ B∆(u)
)

− Prob
(

Y ∈ B∆(u)
)

∣

∣

∣
≤ 22Mδ(u,∆)

=
Prob

(

Y ∈ B∆(u)
)

2
(21)

which then implies that

Prob
(

zN ∈ B∆(u)
)

≥ Prob
(

Y ∈ B∆(u)
)

2
> 0 (22)

i.e., Prob
(
zN ∈ B

∆
(u)
)

is strictly positive for N >
g
(
{HN},u,∆, δ(u,∆)

)
. For a given channel sequence

{HN}, a finiteU and∆ > 0, we define the integer

N({HN},U ,∆)
∆
= max

u∈U
g
(

{HN},u,∆, δ(u,∆)
)

. (23)

Combining this definition with the result in (22) proves the
theorem. �

B. Proposed CE Precoding Scheme

For reliable communication to each user, the precoder at
the BS must choose aΘ such that the MUI energy is as small
as possible for eachk = 1, 2, . . . ,M . This motivates us to
consider the following non-linear least squares (NLS) problem,
which for a givenu to be communicated, finds the transmit
phase angles that minimize the sum of the MUI energy for all
users:

Θu = (θu1 , · · · , θuN ) = arg min
θi∈[−π,π) , i=1,...,N

g(Θ,u)

g(Θ,u)
∆
=

M∑

k=1

∣∣∣sk
∣∣∣
2

=

M∑

k=1

∣∣∣
∑N

i=1 hk,ie
jθi

√
N

−
√

Ekuk

∣∣∣
2

.

(24)

This NLS problem is non-convex and has multiple local
minima. However, as the ratioN/M becomes large, due to
the large number of extra degrees of freedom (N − M ), the
value of the objective functiong(Θ,u) at most local minima
has been observed to be small, enabling gradient descent based
methods to be used.3 However, due to the slow convergence
of gradient descent based methods, we propose a novel it-
erative method, which has been experimentally observed to
achieve similar performance but with a significantly faster
convergence.

3 This observation is expected, since the strict positivity of the box event
probability in (10) (proof of Theorem 1), implies that there are many distinct
transmit phase anglesΘ such that the received noise-free vector lies in a small
2M -dimensional cube (box) centered at the desired information symbol vector
u, i.e., the MUI energy at each user is small for many differentΘ.
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In the proposed iterative method to solve (24), we start
with the p = 0-th iteration, where we initialize all the
angles to0. Each iteration consists ofN sub-iterations. Let
Θ(p,q) = (θ

(p,q)
1 , · · · , θ(p,q)N )T denote the phase angle vector

after the q-th sub-iteration (q = 1, 2, . . . , N ) of the p-th
iteration (subsequently we shall refer to theq-th sub-iteration
of thep-th iteration as the(p, q)-th iteration). After the(p, q)-
th iteration, the algorithm moves either to the(p, q + 1)-th
iteration (if q < N ), or else it moves to the(p + 1, 1)-th
iteration. In general, in the(p, q+1)-th iteration, the algorithm
attempts to reduce the current value of the objective function
i.e., g(Θ(p,q),u) by only modifying the(q+1)-th phase angle
(i.e.,θ(p,q)q+1 ) while keeping the other phase angles fixed to their
values from the previous iteration. The new phase angles after
the (p, q + 1)-th iteration, are therefore given by

θ
(p,q+1)
q+1 = arg min

Θ=

(

θ
(p,q)
1 ,··· ,θ

(p,q)
q ,φ,θ

(p,q)
q+2

,··· ,θ
(p,q)
N

)T
, φ∈[−π,π)

g(Θ,u)

= π + arg

(

M
∑

k=1

h∗
k,q+1√
N

[ ( 1√
N

N
∑

i=1, 6=(q+1)

hk,i e
jθ

(p,q)
i

)

−
√
Ekuk

]

)

θ
(p,q+1)
i = θ

(p,q)
i , i = 1, 2, . . . , N , i 6= q + 1. (25)

The algorithm is terminated after a pre-defined number of
iterations. We denote the phase angle vector after the last
iteration by Θ̂u = (θ̂u1 , · · · , θ̂uN )T . Experimentally, we have
observed that, for the i.i.d. Rayleigh fading channel, witha
sufficiently largeN/M ratio, beyond thep = L-th iteration
(whereL is some constant integer), the incremental reduction
in the value of the objective function is minimal. Therefore,
we terminate at theL-th iteration. Since there are totallyLN
sub-iterations, from the phase angle update equation in (25), it
follows that the complexity of the proposed iterative algorithm
is O(MN).

With Θ̂u as the transmitted phase angle vector, the received
signal and the MUI term are given by

yk =
√

PT

√
Ekuk +

√
PT ŝk + wk ,

ŝk
∆
=

(∑N
i=1 hk,ie

jθ̂u
i

√
N

−
√

Ekuk

)
(26)

The received signal-to-noise-and-interference-ratio (SINR) at
the k-th user is therefore given by

γk(H, E,
PT

σ2
) =

Ek

E
u1,··· ,uM

[
|ŝk|2

]
+ σ2

PT

(27)

whereE
∆
= (E1, E2, · · · , EM )T is the vector of information

symbol energies. Note that the above SINR expression is for
a given channel realizationH. For each user, we would be
ideally interested to have a low value of the MUI energy
E[|ŝk|2], since this would imply a larger SINR.

To illustrate the result of Theorem 1, in Fig. 1, for the
i.i.d. CN (0, 1) Rayleigh fading channel, with fixed information
alphabetsU1 = U2 = · · · = UM = (16-QAM and Gaussian)
and fixed information symbol energyEk = 1, k = 1, . . . ,M ,
we plot the ergodic (averaged over channel statistics) MUI
energyEH[|ŝk|2] with the proposed CE precoding scheme
(using the discussed iterative method for solving (24)) as a
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Fig. 1. Reduction in the ergodic per-user MUI energyEH

[
|ŝk|

2
]

with
increasingN . Fixed M , fixed U1 = · · · = UM = 16-QAM,Gaussian and
fixed Ek = 1 , k = 1, 2, . . . ,M . IID CN (0, 1) Rayleigh fading.

function of increasingN (ŝk is given by (26)).4 It is observed
that, for a fixedM , fixed information alphabets and fixed
information symbol energy, the ergodic per-user MUI energy
decreases with increasingN . This is observed to be true,
not only for a finite/discrete16-QAM information symbol
alphabet, but also for the non-discrete Gaussian information
alphabet.

C. IncreasingEk with increasingN , for a fixedM , fixed
U1, · · · ,UM and fixed desired MUI energy level

It is clear that, for a fixedM andN , increasingEk, k =
1, . . . ,M would enlargeU which could then increase MUI
energy level at each user (enlargingU might result inU /∈
M(H)). However, since an increase inN (with fixed M and
Ek) results in a reduction of MUI (Theorem 1), it can be
argued that for a fixedM , with increasingN the information
symbol energy of each user can be increased while maintaining
a fixed MUI energy level at each user. Further, from (2),
it is clear that for a fixedPT the effective SINR at thek-
th user (i.e.,Ek/(Eu[|sk|2] + σ2/PT )) will increase with
increasingN , sinceEk can be increased while maintaining
a constant MUI energy. Finally, sinceσ2/PT increases with
decreasingPT and the MUI energy|sk|2 is independent
of PT , by appropriatelydecreasingPT and increasingEk

with increasingN (fixed M ), a constant SINR level can be
maintained at each user.

This observation is based entirely on Theorem 1 (which
holds for a broad class of fading channels satisfying the
conditions in (6), including i.i.d. fading channels).5 The above

4 We have observed thatEH[|ŝk|
2] is the same for allk = 1, . . . ,M .

5 Since Theorem 1 holds for all finite information alphabets, the above
observation is valid even for the special case when the information alphabet
itself has constant amplitude symbols, e.g. PSK. However, with the proposed
CE transmission scheme the per-antenna transmit signals have aconstant
envelope irrespective of the information alphabet used, andtherefore using
PSK type information alphabet offers no extra advantage in terms of the
PAPR of the transmitted signals.
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observation implies that as long as the channel satisfies the
conditions in (6), the total transmit power can be reduced
without affecting user information rates, by using a sufficiently
large antenna array at the BS (i.e.,an achievable array gain
greater than one). We illustrate this through the following
example using the proposed CE precoding scheme. Let the
fixed desired ergodic MUI energy level for thek-th user be
denoted byIk , k = 1, 2, · · · ,M . For the sake of simplicity
we considerU1 = U2 = · · · = UM . Consider

E⋆ ∆
= max

p>0
∣∣ Ek=p ,EH

[
Eu1,··· ,uM

[
|ŝk|2

]]
= Ik , k=1,··· ,M

p (28)

which finds the highest possible equal energy of the infor-
mation symbols under the constraint that the ergodic MUI
energy level is fixed atIk , k = 1, 2, · · · ,M . In (28), ŝk
is given by (26). In Fig. 2, for the i.i.d. Rayleigh fading
channel, for a fixedM = 12 and a fixedU1 = · · · =
UM = (16-QAM and Gaussian), we plot E⋆ as a function
of increasingN , for two different fixed desired MUI energy
levels, Ik = 0.1 and Ik = 0.01 (sameIk for each user6).
From Fig. 2, it can be observed that for a fixedM and fixed
U1, · · · ,UM , E⋆ increases linearly with increasingN , while
still maintaining a fixed MUI energy level at each user. At low
MUI energy levels, from (27) it follows thatγk ≈ PTEk/σ

2.
SinceEk (k = 1, 2, · · · ,M ) can be increased linearly with
N (while still maintaining a low MUI level), it can be argued
that a desired fixed SINR level can be maintained at each
user by simplyreducingPT linearly with increasingN . This
suggests the achievability of anO(N) array power gain for
the i.i.d. Rayleigh fading channel. In the next section we
derive an achievable sum-rate for the proposed CE precoding
scheme, using which (in Section V), for an i.i.d. Rayleigh
fading channel, through simulations we show that indeed an
O(N) array power gain can be achieved.

6 Due to same channel gain distribution and information alphabet for each
user, it is observed that the ergodic MUI energy level at eachuser is also
same if the users have equal information symbol energy.

IV. A CHIEVABLE INFORMATION SUM RATE

In this section we study the ergodic information sum-rate
achieved by the CE precoding scheme proposed in Section
III-B. For a given channel realizationH, Gaussian informa-
tion alphabets7,8 U1, · · · ,UM , information symbol energies
E1, · · · , EM and total transmit power to receiver noise ratio
PT /σ

2, the mutual information betweenyk and uk is given
by

I(yk;uk) = h(uk)− h(uk | yk)
= h(uk)− h

(
uk − yk√

PT

√
Ek

∣∣∣ yk
)

≥ h(uk)− h
(
uk − yk√

PT

√
Ek

)
(29)

whereh(z) denotes the differential entropy of a continuous
valued r.v.z. The inequality in (29) follows from the fact that
conditioning of a r.v. reduces its entropy. Further, using (26)
in (29) we have

I(yk;uk) ≥ h(uk)− h
( ŝk√

Ek

+
wk√

PT

√
Ek

)

= log2(πe)− h
( ŝk√

Ek

+
wk√

PT

√
Ek

)

≥ log2(πe)− log2

(
πe var

[ ŝk√
Ek

+
wk√

PT

√
Ek

])

≥ log2(πe)− log2

(
πeE

[ ∣∣∣ ŝk√
Ek

+
wk√

PT

√
Ek

∣∣∣
2 ]
)

= log2(πe)− log2

(
πe
[
E[|ŝk|2]
Ek

+
σ2

PTEk

])

= log2

(
γk(H, E,

PT

σ2
)
)

= Rk

(
H, E,

PT

σ2

)
(30)

whereRk

(
H, E, PT

σ2

)
∆
= log2

(
γk(H, E, PT

σ2 )
)

is an achiev-
able information rate for thek-th user, with the proposed CE
precoding scheme. In (30), we have used the fact that the
differential entropy of a complex Gaussian circular symmetric
r.v. z having varianceσ2

z is log2(πeσ
2
z). Further, for any

complex scalar r.v.z, var[z]
∆
= E[|z − E[z]|2]. The second

inequality in (30) follows from the fact that, for a complex
scalar r.v., among all possible probability distributionshaving
the same variance, the complex circular symmetric Gaussian
distribution is the entropy maximizer [9]. The third inequality

7We restrict the discussion to Gaussian information alphabets, due to the
difficulty in analyzing the information rate achieved with discrete alphabets.
This is not a concern since, through Figs. 1 and 2, we have already observed
that the two important results in Section III-A and III-C holdtrue for Gaussian
alphabets as well.

8Gaussian information alphabets need not be optimal w.r.t. achieving the
maximum sum-rate of a per-antenna CE constrained GBC. As an example, in
[16], we have considered the capacity of asingle-userMISO channel with per-
antenna CE constraints at the transmitter. Due to the scenario in [16] being
much simpler compared to the multi-user scenario discussed here, in [16]
we were able to show that the optimal capacity achieving complex alphabet
is discrete-in-amplitude and uniform-in-phase (DAUIP) (i.e., non-Gaussian).
However, since it appears that the analytical tools and techniques in [16]
cannot be used to derive the optimal alphabet for the multiuserscenario, we
restrict ourselves to Gaussian alphabets here.
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N=60 N=80 N=100 N=120 N=160 N=200 N=240 N = 320 N = 400
GBC Sum Capacity Upper Bound (M = 10) -2.8 -4.0 -5.1 -5.8 -7.2 -8.2 -8.9 -10.2 -11.2

Proposed CE Precoder (M = 10) -0.8 -2.1 -3.3 -4.1 -5.5 -6.5 -7.2 -8.6 -9.6
Power Gap (M = 10) 2.0 1.9 1.8 1.7 1.7 1.7 1.7 1.6 1.6

GBC Sum Capacity Upper Bound (M = 40) 3.8 2.4 1.3 0.6 -0.9 -2.0 -2.7 -4.1 -5.1
Proposed CE Precoder (M = 40) 9.2 6.0 4.1 3.2 1.4 -0.1 -0.9 -2.3 -3.5

Power Gap (M = 40) 5.4 3.6 2.8 2.6 2.3 1.9 1.8 1.8 1.6

Fig. 3. MinimumPT /σ2 (DB) required to achieve a per-user ergodic rate of2 bpcu.

follows from the fact that, for any complex scalar r.v.z,
var[z] ≤ E[|z|2]. From (30) it follows that an achievable
ergodic information sum-rate for the GBC under the per-
antenna CE constraint, is given by

RCE
(
E,

PT

σ2

)
∆
=

M∑

k=1

EH

[
Rk

(
H, E,

PT

σ2

) ]
. (31)

Subsequently, we consider the scenario where all users have
the same unit energy Gaussian information alphabet and the
same information symbol energy.9 Further optimization of
RCE

(
E, PT

σ2

)
over E subject toE1 = · · · = EM , results

in an achievable ergodic information sum-rate which is given
by

RCE
(PT

σ2

)
∆
= max

E |E1=E2=···=EM>0
RCE

(
E,

PT

σ2

)
(32)

Since it is difficult to analyze the sum-rate expression in (32),
we have studied it through exhaustive numerical simulations
for an i.i.d.CN (0, 1) Rayleigh fading channel. In the following
section, we present some important observations based on
these numerical experiments.

V. SIMULATION RESULTS ON THE ACHIEVABLE ERGODIC

INFORMATION SUM-RATE RCE
(

PT

σ2

)

All reported results are for the i.i.d.CN (0, 1) Rayleigh
fading channel. In Fig. 4, for a fixedM we plot the minimum
PT /σ

2 required by the proposed CE precoder, to achieve an
ergodic per-user information rate ofRCE(PT /σ

2)/M = 2
bpcu as a function of increasingN (Due to the same channel
distribution for each user, we have observed that the ergodic
information rate achieved by each user is1/M of the ergodic
sum-rate). The minimum requiredPT /σ

2 is also tabulated in
Fig. 3. It is observed that, for a fixedM , at sufficiently large
N , the requiredPT /σ

2 reduces by roughly3 dB for every
doubling inN . This shows that, for a fixedM , an array power
gain ofO(N) can indeed be achieved even under the stringent
per-antenna CE constraint. For the sake of comparison, we
have also plotted a lower bound on thePT /σ

2 required to
achieve a per-user ergodic rate of2 bpcu under the APC
constraint (we have used the cooperative upper bound on the
GBC sum-capacity [10]).10 We observe that, for largeN and

9We impose this constraint so as to reduce the number of parameters
involved, thereby simplifying the study of achievable ratesin a multi-user
GBC with per-antenna CE transmission. Nevertheless, for thei.i.d. Rayleigh
fading channel with each user having the same Gaussian information alphabet,
it is expected that the optimalE which maximizes the ergodic sum-rate in
(31), has equal components.

10 The cooperative upper bound on the GBC sum capacity gives a lower
bound on thePT /σ2 required by a GBC sum-capacity achieving scheme to
achieve a given desired ergodic information sum-rate.

0 50 100 150 200 250 300
−12

−9

−6

−3

0

3

6

9

12

15

No. of Base Station Antennas (N) 

 M
in

. r
eq

d.
 P

T/σ
2  (

dB
) 

to
 a

ch
ie

ve
 a

 p
er

−u
se

r 
ra

te
 o

f 2
 b

pc
u

 

 

M = 10, Proposed CE Precoder (CE)
M = 10, ZF Phase−only Precoder (CE)
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Fig. 4. RequiredPT /σ2 vs. N , to achieve a fixed desired ergodic per-
user rate= 2 bpcu. Gaussian information alphabetsU1 = · · · = UM . IID
CN (0, 1) Rayleigh fading.

a fixed per-user desired ergodic information rate of2 bpcu,
compared to the APC only constrained GBC, the extra total
transmit power (power gap) required under the per-antenna CE
constraint issmall (1.7 dB).

In Fig. 4, we also consider another CE precoding scheme,
where, for a given information symbol vectoru, the precoder
firstly computes the zero-forcing (ZF) vectorx = H

†
u,

(H† ∆
= H

H
(
HH

H
)−1

is the pseudo-inverse ofH). Prior
to transmission, each component ofx is normalized to have a
modulus equal to

√
PT /N , i.e., the signal transmitted from

the i-th BS antenna is
√
PT /N xi/|xi|. At each user, the

received signal is scaled by a fixed constant.11 We shall hence-
forth refer to this precoder as the ZF phase-only precoder. In
Fig. 4, we observe that thePT /σ

2 required by the proposed CE
precoder is always less than that required by the ZF phase-only
precoder. In fact, for moderate values ofN/M , the proposed
CE precoder requires significantly lessPT /σ

2 as compared to
the ZF phase-only precoder (e.g. withN = 100,M = 40, the
requiredPT /σ

2 with the proposed CE precoder is roughly3
dB less than that required with the ZF phase-only precoder).
At very large values ofN/M , the ZF phase-only precoder has
similar performance as the proposed CE precoder. However,
in terms of complexity the ZF phase-only precoder does not
necessarily have a lower complexity than the proposed CE
precoder. This is because, the ZF phase-only precoder needs
to compute the pseudo-inverse of the channel gain matrix

11This constant is chosen in such a way that the ergodic per-user informa-
tion rate is maximized. It is therefore fixed for all channel realizations and
depends only upon the statistics of the channel,PT /σ2, N andM .
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Fig. 5. The extraPT /σ2 (in dB) required (vertical axis) by the proposed
CE precoder and by the ZF phase-only precoder, respectively, to achieve
the same ergodic per-user information rate as predicted by theGBC sum-
capacity cooperative upper bound (horizontal axis). Here the number of base
station antennas isN = 48 and the number of users isM = 12. All users
use Gaussian information alphabetsU1 = · · · = UM = Gaussian and all
channels are i.i.d.CN (0, 1) Rayleigh fading.

(a M × N matrix) and also the matrix vector product of
the pseudo-inverse times the information symbol vectoru.
Computing the pseudo-inverse has a complexity ofO(M2N)
and that for the matrix vector product isO(MN), resulting in
a total complexity ofO(M2N). In contrast, the proposed CE
precoder does not need to compute the pseudo-inverse, and
has a complexity ofO(MN) (see Section III-B).

To gain a better understanding of the power-efficiency of the
considered CE precoders, in Fig. 5, for a fixedN = 48,M =
12 we plot an upper bound on the extraPT /σ

2 required by the
considered CE precoding schemes when compared to a GBC
sum-capacity achieving scheme under APC,12 as a function
of the desired per-user ergodic information rate (note thatin
Fig. 4, the desired per-user rate was fixed to2 bpcu). It is
observed that, for a desired ergodic per-user information rate
below 2 bpcu, the ZF phase-only precoder requires roughly
1− 1.5 dB more transmit power as compared to the proposed
CE precoder. For rates higher than2 bpcu, this gap increases
very rapidly (at 3 bpcu, this power gap is roughly6 dB).
In Fig. 6, we plot the results of a similar experiment but
with N = 480,M = 12 (a very large ratio ofN/M ).
It is observed that, the ZF phase-only precoder has similar
performance as the proposed CE precoder for per-user ergodic
information rates below3 bpcu. For rates higher than3 bpcu,
the performance of the ZF phase-only precoder deteriorates
rapidly, just as it did in Fig. 5. In Figs. 5 and 6, we also note
that the extra total transmit power required by the proposed
CE precoder (Section III-B) increases slowly w.r.t. increasing
rate, and is less than2.5 dB for a wide range of desired per-
user information rates. From exhaustive experiments, we have
concluded that, for moderate values ofN/M , the proposed

12 Since we use the cooperative upper bound to predict thePT /σ2 required
by a GBC sum-capacity achieving scheme, the reported values ofthe extra
PT /σ2 required by the considered CE precoders are infact an upper bound
on the minimum extraPT /σ2 required.
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Fig. 6. Same as Fig. 5, but forN = 480 base station antennas.

CE precoder is significantly more power efficient than the
ZF phase-only precoder, whereas for very largeN/M both
precoders have similar performance when the desired per-user
ergodic information rate is below a certain threshold (beyond
this threshold, the performance of the ZF phase-only precoder
deteriorates).

In Fig. 4, for the proposed CE precoder, we had observed
that for a fixedM and fixed desired per-user information rate,
with “sufficiently large” N , the total transmit power can be
reduced linearly with increasingN . We next try to understand
as to how “large” mustN be. In Fig. 7, for a fixedM = 12
users, we plot the achievable per-user ergodic information
rate under per-antenna CE transmission (i.e.,RCE

(
PT

σ2

)
/M )

as a function of increasingN and PT = P0/N (i.e., we
linearly decreasePT with increasingN , P0 = 38.4). It is
observed that, the per-user ergodic information rate increases
and approaches a limiting information rate asN → ∞ (shown
by the dashed curve in the figure).P0 = 38.4 corresponds
to a limiting per-user information rate of roughly1.7 bpcu.
This then suggests that, in the limit asN → ∞, the per-user
information rate remains fixed as long asPT is scaled down
linearly with increasingN . A similar behaviour is observed
under APC (see the GBC sum capacity upper bound curve in
the figure). In Fig. 8, similar results have been illustratedfor
M = 24 users andPT = P1/N (P1 = 72.3, corresponding
to a limiting per-user information rate of roughly1.7 bpcu).
With regards to the question on how “large” mustN be, it is
now clear thatN must at least be so large that the achievable
per-user ergodic information rate is sufficiently close to its
limiting information rate (i.e., in the flat region of the curve).
In general, for a desired closeness to the limiting information
rate, the minimum number of BS antennas required depends
on M . Our numerical experiments suggest that, to achieve
a fixed desired ratio of the per-user ergodic information rate
to the limiting information rate, a channel with a largeM
requires a largeN also. As an example, for a fixed ratio of
0.95 between the achievable per-user ergodic information rate
and the limiting information rate, a channel withM = 12
users requires a BS with at leastN = 96 antennas, whereas
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Fig. 7. Ergodic per-user information rate for a fixedM = 12, with the total
transmit power scaled down linearly with increasingN . Gaussian information
alphabetsU1 = · · · = UM . IID CN (0, 1) Rayleigh fading.
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information rate within 95% of the limit.
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P
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Fig. 8. Same as Fig. 7, but with a fixedM = 24 andPT = 72.3/N .

a channel withM = 24 users requires a BS with at least
N = 192 antennas.

VI. CONCLUSION

We have considered per-antenna constant envelope (CE)
transmission in the downlink of multi-user MIMO systems
(GBC) employing a large number of BS antennas. Under
certain mild conditions on the channel, even with a strin-
gent per-antenna CE constraint, array power gain can still
be achieved. We have also proposed a low-complexity CE
precoding scheme. For the proposed CE precoding scheme,
through exhaustive simulations for the i.i.d. Rayleigh fad-
ing channel, we showed that, compared to an APC only
constrained GBC, the extra total transmit power required
by the proposed CE precoder to achieve a given per-user
ergodic information rate is small (less than2 dB for the
scenarios of interest). Typically, a non-linear power-efficient
amplifier is about4 − 6 times more power-efficient than a
highly linear amplifier [11]. Combining this fact with the fact

that per-antenna CE signals require an extra2 dB transmit
power, we arrive at the conclusion that, for a given desired
achievable information sum-rate, with sufficiently largeN , a
base station having power-efficient amplifiers with CE inputs
would require10 log10(4) − 2.0 = 4.0 dB less total transmit
power compared to a base station having highly linear power-
inefficient amplifiers with high PAPR inputs.
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APPENDIX A
CONVERGENCE(IN DISTRIBUTION) OF THE SEQUENCE{

zN

}

The convergence in distribution of the sequence of random
variables

{
zN

}
(as N → ∞ with fixed M ) is stated and

proved in Theorem 3. Its proof relies on three known results
which have been stated below.

Result 1: (Multivariate Central Limit Theorem (CLT)) Let
Fn denote the joint cumulative distribution function (c.d.f.)
of the k-dimensional real random variable(X(1)

n , · · · , X(k)
n ),

n = 1, 2, . . . and for each real vectorΛ = (λ1, λ2, · · · , λk)
T ,
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letFΛn be the c.d.f. of the random variableλ1X
(1)
n +λ2X

(2)
n +

· · ·+ λkX
(k)
n . A necessary and sufficient condition forFn to

converge to a limiting distribution (asn → ∞) is thatFΛn

converges to a limit foreachvectorΛ.
Proof – For details please refer to [12] . �

This result basically states that, ifF is the joint c.d.f. of a
k-dimensional real random variable(X(1), X(2), · · · , X(k)),
and if FΛn → FΛ for13 each vectorΛ, then Fn → F as
n → ∞.

Result 2: (Lyapunov-CLT) Let{Xn}, n = 1, 2, . . . be a
sequence of independent real-valued scalar random variables.
Let E[Xn] = µn, E[(Xn − µn)

2] = σ2
n, and for some fixed

ξ > 0, E[|Xn − µn|2+ξ] = βn exists for alln. Furthermore
let

Bn
∆
=
(

n
∑

i=1

βi

) 1
2+ξ

, Cn
∆
=
(

n
∑

i=1

σ2
i

) 1
2
. (33)

Then if
lim

n→∞

Bn

Cn

= 0, (34)

the c.d.f. ofYn =
∑n

i=1(Xi−µi)

Cn
converges (in the limit as

n → ∞) to the c.d.f. of a real Gaussian random variable with
mean zero and unit variance.

Proof – For details please refer to [13] . �

Result 3: (Slutsky’s Theorem) Let{Xn} and {Yn} be a
sequence of scalar random variables. If{Xn} converges in
distribution (asn → ∞) to some random variableX, and
{Yn} converges in probability to some constantc, then the
product sequence{XnYn} converges in distribution to the
random variablecX.

Proof – For details please refer to [17] . �

Theorem 3: For any channel sequence{HN} satisfying
the conditions in (6), the associated sequence of random
vectors{zN} (defined in (8)) converges (asN → ∞ with
fixed M ) in distribution to a multivariate2M -dimensional
real Gaussian random vectorX = (XI

1 , X
Q
1 , · · · , XI

M , XQ
M )T

with independent zero-mean components and var(XI
k) =

var(XQ
k ) = ck/2 , k = 1, 2, . . . ,M (note that ck , k =

1, 2, . . . ,M is defined in (6)).
Proof – Consider a multivariate2M -dimensional real ran-

dom variable(XI
1 , X

Q
1 , · · · , XI

M , XQ
M ), whose components

are i.i.d. real Gaussian with mean zero and var(XI
k) =

var(XQ
k ) = ck/2 , k = 1, 2, . . . ,M . Then, for any vector

Λ = (λI
1, λ

Q
1 , · · · , λI

M , λQ
M )T ∈ R

2M , the scalar random vari-
able(λI

1X
I
1+λQ

1 X
Q
1 +· · ·+λI

MXI
M+λQ

MXQ
M ) is real Gaussian

with mean zero and variance
∑M

k=1 ck
(
(λI

k)
2

+ (λQ
k )

2)
/2.

If we can show that for any arbitrary vectorΛ ∈ R
2M , the

limiting distribution of zTNΛ is also real Gaussian with mean
zero and the same variance

∑M
k=1 ck

(
(λI

k)
2

+ (λQ
k )

2)
/2, then

using Result 1 it will follow that the c.d.f. ofzN converges to
the c.d.f. of(XI

1 , X
Q
1 , · · · , XI

M , XQ
M ) asN → ∞. This would

then complete the proof. In the following we show that this is
indeed true.

For a given 2M -dimensional real vector Λ =
(λI

1, λ
Q
1 , · · · , λI

M , λQ
M )T , let

ζN
∆
= z

T
NΛ =

M
∑

k=1

(λI
kz

I
k

(N)
+ λQ

k z
Q

k

(N)
). (35)

13 FΛ is the c.d.f. ofλ1X(1) + · · ·+ λkX
(k).

From the above definition and (8), it follows that r.v.ζN can
be expressed as14

ζN =
N
∑

i=1

(ai cos(θi) + bi sin(θi))

=
N
∑

i=1

√

a2
i + b2i cos(θi − tan−1 bi

ai

)

ai
∆
=

∑M

k=1(λ
I
kh

I(N)

k,i + λQ

k h
Q(N)

k,i )
√
N

,

bi
∆
=

∑M

k=1(λ
Q

k h
I(N)

k,i − λI
kh

Q(N)

k,i )
√
N

(36)

wherehI(N)

k,i
∆
= Re(h(N)

k,i ) , hQ(N)

k,i
∆
= Im(h

(N)
k,i ). We further

define

ηi
∆
=

√

a2
i + b2i cos(θi − tan−1 bi

ai

) (37)

Since, the phase anglesθi, i = 1, 2, . . . , N are independent
of each other,ηi, i = 1, 2, · · · , N are also independent.
Therefore, ζN is nothing but the sum ofN independent
random variables. We can therefore apply the Lyapunov-CLT
(Result 2) to study the convergence of the c.d.f. ofζN as
N → ∞.

We firstly see thatµi
∆
= E[ηi] = 0 and σ2

i
∆
= E[η2i ] =

(a2i + b2i )/2 sinceθi is uniformly distributed in[−π, π). We
next show that the conditions of the Lyapunov-CLT ((34) in
Result 2) are satisfied withξ = 2. We see that

βi
∆
= E[η4

i ]

= (a2
i + b2i )

2
E[cos4(θi − tan−1 bi

ai

)]

=
3

8
(a2

i + b2i )
2 (38)

exists for alli. In order that the condition in (34) is satisfied,
we must show that

lim
N→∞

BN

CN

= 0 (39)

where

BN
∆
=

(

N
∑

i=1

βi

) 1
4
=
(3

8

N
∑

i=1

(a2
i + b2i )

2
) 1

4
,

CN
∆
=

(

N
∑

i=1

σ2
i

) 1
2
=
(

N
∑

i=1

(a2
i + b2i )/2

) 1
2

(40)

As a note, from (36) it follows that bothBN and CN are
strictly positive for allN ≥ M . SinceM is fixed, proving
(39) is equivalent to proving that

lim
N→∞

B4
N

C4
N

= 0 (41)

Using (6) we firstly show that

lim
N→∞

C2
N =

1

2

M
∑

k=1

ck
(

(λI
k)

2 + (λQ

k )
2) (42)

i.e., C2
N converges to a constant asN → ∞. We then show

that, again under (6),

lim
N→∞

B4
N = 0 (43)

14Note that the randomness inzN is only due to the random variables
θi , i = 1, 2, . . . , N .
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8

3
B4

N =
N
∑

i=1

(a2
i + b2i )

2

=
N
∑

i=1

{

M
∑

k=1

|λk|2|h(N)
k,i |2

N
+ 2

M
∑

k=1

M
∑

l=k+1

(

Re(λ∗
kλl)Re(h(N)∗

k,i h
(N)
l,i ) + Im(λ∗

kλl)Im(h
(N)∗

k,i h
(N)
l,i )

)

N

}2

=

{

N
∑

i=1

(

M
∑

k=1

|λk|2|h(N)
k,i |2

N

)2
}

+ 4

[

M
∑

k1=1

M
∑

k2=1

M
∑

l2=k2+1

(

|λk1 |2Re(λ∗
k2
λl2)

∑N

i=1 |h
(N)
k1,i

|2Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2

+|λk1 |2Im(λ∗
k2
λl2)

∑N

i=1 |h
(N)
k1,i

|2Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2

)]

+4
M
∑

k1=1

M
∑

k2=1

M
∑

l1=k1+1

M
∑

l2=k2+1

{

Re(λ∗
k1
λl1)Re(λ∗

k2
λl2)

∑N

i=1 Re(h(N)∗

k1,i
h
(N)
l1,i

)Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2
+

Re(λ∗
k1
λl1)Im(λ∗

k2
λl2)

∑N

i=1 Re(h(N)∗

k1,i
h
(N)
l1,i

)Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2
+

Im(λ∗
k1
λl1)Re(λ∗

k2
λl2)

∑N

i=1 Im(h
(N)∗

k1,i
h
(N)
l1,i

)Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2
+

Im(λ∗
k1
λl1)Im(λ∗

k2
λl2)

∑N

i=1 Im(h
(N)∗

k1,i
h
(N)
l1,i

)Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2

}

. (44)

Equation (41) would then follow from (42) and (43). We
next show (42). Using (40) we have2C2

N =
∑N

i=1(a
2
i + b2i ).

Expanding the expressions forai and bi in
∑N

i=1(a
2
i + b2i )

using (36), we have

2C2
N =

M
∑

k=1

((λI
k)

2 + (λQ

k )
2)
‖h(N)

k ‖2
N

+2

M
∑

k=1

M
∑

l=k+1

{

(λI
kλ

I
l + λQ

k λ
Q

l )

∑N

i=1(h
I(N)

k,i hI(N)

l,i + hQ(N)

k,i hQ(N)

l,i )

N

+(λI
kλ

Q

l − λQ

k λ
I
l )

∑N

i=1(h
I(N)

k,i hQ(N)

l,i − hQ(N)

k,i hI(N)

l,i )

N

}

.

(45)

From As.1 and As.3 in (6) it follows that

lim
N→∞

∑N

i=1(h
I(N)

k,i hI(N)

l,i + hQ(N)

k,i hQ(N)

l,i )

N
= 0 ,

lim
N→∞

∑N

i=1(h
I(N)

k,i hQ(N)

l,i − hQ(N)

k,i hI(N)

l,i )

N
= 0 ,

lim
N→∞

‖h(N)
k ‖2
N

= ck. (46)

Using (46) in (45) and taking the limit asN → ∞ we get (42)
(note thatM is fixed). We now show (43). Before proceeding
further, we define the complex numbersλk

∆
= (λI

k+jλQ
k ), k =

1, 2, . . . ,M . Expanding the expressions forai and bi inside
the summation inB4

N (see (40)) we get (44). From (As.2) in

(6) it follows that for allk1, k2, l1, l2 ∈ (1, 2, . . . ,M)

lim
N→∞

∑N

i=1 Re(h(N)∗

k1,i
h
(N)
l1,i

)Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0 ,

lim
N→∞

∑N

i=1 Re(h(N)∗

k1,i
h
(N)
l1,i

)Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0

lim
N→∞

∑N

i=1 Im(h
(N)∗

k1,i
h
(N)
l1,i

)Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0 ,

lim
N→∞

∑N

i=1 Im(h
(N)∗

k1,i
h
(N)
l1,i

)Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0

lim
N→∞

∑N

i=1 |h
(N)
k1,i

|2Re(h(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0 ,

lim
N→∞

∑N

i=1 |h
(N)
k1,i

|2Im(h
(N)∗

k2,i
h
(N)
l2,i

)

N2
= 0. (47)

Substituting (47) into (44) and taking the limit, we have

lim
N→∞

8

3
B4

N = lim
N→∞

{

N
∑

i=1

(

M
∑

k=1

|λk|2|h(N)
k,i |2

N

)2
}

(48)

Further,

lim
N→∞

{

N
∑

i=1

(

M
∑

k=1

|λk|2|h(N)
k,i |2

N

)2
}

=

M
∑

k1=1

M
∑

k2=1

(

|λk1 |2|λk2 |2 lim
N→∞

(

∑N

i=1 |h
(N)
k1,i

|2|h(N)
k2,i

|2

N2

)

)

(49)

From (As.2) in (6) it follows that

limN→∞
(∑N

i=1 |h(N)
k1,i

|2|h(N)
k2,i

|2

N2

)
= 0 and therefore using

this result in (49) and (48) we get (43). From (42) it follows
that C4

N converges to a positive constant asN → ∞. Hence
we have now shown (41), and therefore the Lyapunov-CLT
conditions for the convergence of the c.d.f. of the random
variableζN are indeed satisfied.

Therefore invoking Result 2 (Lyapunov-CLT), it follows that
the c.d.f. ofζN/CN converges to the c.d.f. of a zero mean real
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Gaussian random variable with unit variance. Further, since

CN converges to the constant
√

1
2

∑M
k=1 ck

(
(λI

k)
2 + (λQ

k )
2
)

(see (42)), using Result 3 (Slutsky’s Theorem) it follows that
the c.d.f. ofζN converges to the c.d.f. of a zero mean real
Gaussian random variable with variance1

2

∑M
k=1 ck

(
(λI

k)
2 +

(λQ
k )

2
)
. �
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