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Abstract—DDoS attacks plague the availability of online ser-
vices today, yet like many cybersecurity problems are evolving
and non-stationary. Normal and attack patterns shift as new
protocols and applications are introduced, further compounded
by burstiness and seasonal variation. Accordingly, it is difficult
to apply machine learning-based techniques and defences in
practice.

Reinforcement learning (RL) may overcome this detection prob-
lem for DDoS attacks by managing and monitoring consequences;
an agent’s role is to learn to optimise performance criteria (which
are always available) in an online manner. We advance the state-
of-the-art in RL-based DDoS mitigation by introducing two agent
classes designed to act on a per-flow basis, in a protocol-agnostic
manner for any network topology. This is supported by an in-
depth investigation of feature suitability and empirical evaluation.

Our results show the existence of flow features with high
predictive power for different traffic classes, when used as a basis
for feedback-loop-like control. We show that the new RL agent
models can offer a significant increase in goodput of legitimate
TCP traffic for many choices of host density.

Index Terms—Security services, distributed denial-of-service,
software-defined networking, machine learning, reinforcement
learning.

I . I N T R O D U C T I O N

Network anomaly detection and intrusion detection/prevention

are continually evolving problems, compounded by the partial,

non-independent and identically distributed (IID) view of data

at each point in the network. Attacks and anomalous behaviours

evolve, becoming more sophisticated or employing new vectors

to harm a network or system’s confidentiality, integrity, and

availability without being detected [1]. These attacks and

anomalies have measurable consequences and symptoms which

allow a skilled analyst to infer new signatures for detection

by misuse-based classifiers, but unseen attacks may only be

defended against after-the-fact. This issue is inherent to misuse-

or signature-based intrusion detectors, and it has been long-

hoped that anomaly-based detectors would surpass this by

making effective use of statistical measures [1].

While machine learning (ML) approaches seem like a

sensible fit for this problem, in 2010 Sommer and Paxson

identified the ‘failure to launch’ of ML-based anomaly detection

systems—a distinct lack of real-world system deployments [2].

To quite a large extent, this remains the case today. They posit

that their use is made difficult due to significant operational

differences from standard ML tasks, including: the high cost

of errors and extraordinarily low tolerance for false positives

inherent to network intrusion detection [3]; a general lack of

recent, openly available (and high-quality) training data; and

diversity of network traffic across varying timescales combined

with significant burstiness [4]. Above the aggregate level, the

constant deployment of new services and protocols means that

traffic is non-stationary and displays an evolving notion of

normality. Learning is made harder still by the challenges

encountered with unlabelled (often partial) data. All of these

factors greatly inflate the difficulty of the detection problem.

For certain classes of problem e.g., volumetric distributed

denial of service (DDoS) attacks, reinforcement learning (RL)

offers another perspective. RL agents operate by following

a policy to interact with or control a system, while at the

same time using observed performance metrics and deliberate

exploration to dynamically improve this policy. In this way

the role of a RL agent differs from that of a standard classifier,

adaptively reacting to threats by assuming the role of a feedback

loop for network optimisation, typically to safeguard service

guarantees. In a sense, this allows us to “overcome” some of the

difficulties of the detection problem by monitoring performance

characteristics and consequences in real-time; by looking for

(and controlling) the effect rather than the cause. Long-term,

we expect that the value of RL-based defence systems will be

to augment what existing misuse-based solutions can provide,

by automatically alerting, recording and controlling what are

believed to be illegal system states. The goal of this work is

much less general; we aim to prevent volume-based DDoS

attacks with the aid of RL-based techniques (an important goal

in its own right), while bringing to light the flexibility and

applicability of these techniques in the security domain.

To date, there have been few applications of this class of

algorithms towards intrusion detection and prevention which

make use of their full potential for online control, rather than

using them as the basis for a classifier. We aim to take steps

to redress this and establish their proper capabilities, beyond

simple “blind application”. What approaches do exist are aimed

towards the task of adaptive online DDoS mitigation, and rely

upon learning to control probabilistic packet drop.

We find that the existing work for this task [5] fails to account

for congestion-aware traffic (i.e., TCP) and environments with

high host density per egress point, achieving poor results due

to an overly coarse view of the network. To remedy this, we

make throttling decisions on a per-source basis and present

the engineering decisions this mandates: updating RL agents

from multiple traces per timestep, timed random sequential

action computation and a supporting software-defined network

(SDN) architecture. In tandem with the development and

evaluation of an effective state space and model, we provide the

design of a second model inspired by past work on algorithmic

DDoS prevention, as an example of the integration of domain-
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specific knowledge. Our introduction of per-source decisions

improves substantially upon the state-of-the-art when acting

upon most internet traffic (i.e., congestion-aware protocols), and

we show that our second model achieves excellent performance

for high host density in this case. Crucially, both models remain

protocol- and content-agnostic to offer future-proofing against

the rollout of future protocols like QUIC [6].

A. Contributions

This paper contributes two source-level granularity approaches

to RL-driven DDoS prevention (Instant and Guarded action

models), improving upon past aggregate-based models (sec-

tion III). These are designed to make effective decisions

irrespective of protocol, and act on individual flows at the edge

of any network topology. We offer an in-depth investigation

into suitable features for automatic DDoS mitigation, with

qualitative and quantitative justification (section IV). These

features have been suggested by past studies, and independently

tested in their own contexts. Our study is the first attempt to

quantify the individual efficacy of each in an RL setting.

We implement reactive simulations of HTTP and VoIP web-

server traffic, designed to test system characteristics that packet

trace playback fails to capture (section V). To our knowledge,

this is the first attempt to study or replicate Opus-based VoIP

traffic, which has become commonplace since the codec’s

release in 2012. These new traffic models inform an empirical

evaluation of our new models against the state-of-the-art in

RL-based DDoS mitigation using (section VII), alongside a

discussion of security concerns and real-world deployment

(section VIII). We additionally compare our work against

SPIFFY [7], reuniting two divergent strands of research and

grounding the study of RL-based DDoS defences.

I I . B A C K G R O U N D A N D T H R E AT M O D E L

A. Distributed Denial of Service

Distributed denial of service (DDoS) attacks are concentrated

efforts by many hosts to reduce the availability of a service,

typically to inflict financial harm or as an act of vandalism.

Attackers achieve this by either exploiting peculiarities of

operating system or application behaviour in semantic attacks

(e.g., SYN flooding attacks), or overwhelming their target

through sheer volume of requests or inbound packets (volume-

based attacks) [8]. Hosts often participate unwillingly, typically

having been recruited into a botnet by malware infection to

be orchestrated from elsewhere [9].

Although there are variations of each class of attack, flooding

attacks are the most relevant to our work. Amplification attacks

exploit services who eagerly send large replies in response to

small requests, where UDP-based services like DNS and NTP

are most exploitable [10], [11]. Malicious hosts send many

small requests, spoofed to appear as though they originated

from the victim, causing many large replies to be sent to the

intended target—significantly increasing a botnet’s throughput

while masking the identity of each participant. Transit-link/link-

flooding attacks have been the subject of recent attention,

wherein malicious traffic is forwarded across core links needed

to reach a target (but not to the target itself) [12], [13].
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Figure 1. An example of tile coding for 2-dimensional state and 4 actions,
using 2 tilings, 3 tiles per dimension, and a bias tile. All components of s are
clamped to [0, 1]. For simplicity, we denote x(s, ·) as a list of indices and
represent the values of all actions at each tile with a vector. (a) The state s

activates the bias tile and exactly one tile in each tiling. (b) The action values
of active tiles are summed to produce the current value estimate for each
action available in s—for this state, local knowledge ensures that action 4 is
chosen by the greedy policy despite typically being a poor choice elsewhere.

B. Reinforcement Learning

Reinforcement learning (RL) is a variant of machine learning

principally concerned with training an agent to choose an

optimal sequence of actions in pursuit of a given task [14]. We

assume the agent has a certain amount of knowledge whenever

a decision must be made: at any point in time t, it knows which

state it is in (St ∈ S), the set of actions which are available to

it (A(St ) ⊆ A) and a numeric reward obtained from the last

action chosen (Rt ∈ R, At−1 ∈ A(St−1)). This model of system

interaction is a Markov Decision Process (MDP). RL methods

combine this information with a current policy π to determine

which action should be taken: such a choice need not be

optimal if an agent needs to further explore some region of the

state space. The policy is refined by updating value estimates

for state-action pairs or via policy gradient methods, meaning

that RL-based approaches learn adaptively and online if reward

functions are available in the environment they are deployed

in. In practice, this means that agents are able to automatically

adapt to evolving problems without operator intervention or a

new, custom-built training corpus.

From any point in a sequence of decisions, we may describe

the sum of rewards yet to come as the discounted return,

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + . . ., choosing the discount factor

γ ∈ [0,1) to determine how crucial future rewards are vis-à-vis

the current state. Formally, an agent’s goal is to choose actions

which maximise the expected discounted return Eπ[Gt ].
There is immense variation in how policies and/or values

may be learned, reliant upon the learning environment, problem

and required convergence guarantees. In particular, we focus

on methods which choose actions according to their value

estimates from the current state: let q(s,a) ∈ R be the estimate

of action a’s value if it were to be taken in state s. Exact

(tabular) representations require that we store a value estimate

for each action in every state—if state is real-valued or high-

dimensional, then computation and storage quickly become

infeasible. To cope with a continuous state and/or action

space, one valuable technique is to employ linear function

approximation backed by tile coding [14, pp. 217–221].

Tile coding is a form of feature representation which converts

a state-action pair into a sparse boolean feature vector x(s,a)
by subdividing a d-dimensional subset of the space into a

number of overlapping grids with an optional bias component.

Each tile corresponds to an entry of x(s,a) which is set to 1 if

the state-action pair lies within it. Figure 1a demonstrates the
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Figure 2. The update step for fig. 1, given an observed TD error δt = −0.2
(indicating a lower observed reward than the expected long-term value of
0.7) and α = 0.5. Action 4’s value is thus reduced in the tiles associated
with state s, but remains the most likely choice; the negative δt may have
arisen from noise in the reward signal. For illustrative purposes, we choose
an unrealistically high α (typically, α ≤ 0.05 is a more reasonable choice).

process for a 2-dimensional state space, and that the numbers

of tilings and tiles per dimension control feature resolution

and generalisation. Moreover, to capture combinatorial effects

or create multi-scale representation we may combine codings

by concatenating individual feature vectors. We may then

approximate an action’s value with respect to a policy parameter

vector w, defining some q̂(s,a,w) ≈ q(s,a):

q̂(s,a,w) = w
⊤

x(s,a) (1)

As each component of w is the value estimate of the cor-

responding tile, learning an effective policy is equivalent to

learning w. Given a learning rate α ∈ R and initialising w0 = 0,

we may continually update wt using the 1-step semi-gradient

Sarsa algorithm [14, pp. 243–244]:

δt = Rt+1 + γ q̂(St+1, At+1,wt ) − q̂(St, At,wt ), (2a)

wt+1 = wt + αδt∇q̂(St, At,wt ), (2b)

where δt is known as the temporal-difference (TD) error, and

the vector gradient ∇ is taken with respect to w.

Computing the approximate value of every available action

forms the basis of a policy. Actions with maximal value can

be chosen each time (the greedy policy), we might modify this

by taking random actions with probability ǫ to encourage early

exploration (the ǫ-greedy policy), or we might use some other

mechanism. Figure 1b extends the prior working example to

show how the value of each action is computed (and which

action would be chosen by a greedy policy), combining a

global estimate (Tbias) with knowledge particular to each state.

This combination of algorithm and coding strategy is well-

optimised, if actions are discrete; this allows a particularly

efficient (vectorised) implementation of the policy and update

rules by storing a vector of action values for each tile. Action

values for any state are then obtained by summing the weight

vectors from all activated tiles—taking |A|(ntilings − 1) floating

point additions per decision. Observing that ∇q̂(s,a,w) =
x(s,a), further optimisations arise by considering that a tile-

coded feature vector is a binary vector of constant Hamming

weight (and so is amenable to representation as an array of

indices, slist). This means that we need only perform ntilings+2

additions and 2 multiplications per model update:

wt+1[i][index(At )] = wt [i][index(At )] + αδt,∀i ∈ slist . (3)

Figure 2 shows how this applies to our prior example. If desired

we may define a state space with an arbitrary number of tiles per

dimension (higher-resolution, lower generalisation), yet having

constant-size state vectors and constant action computation cost

(O(ntilings)). Beyond this, we need not store action values for

tiles which have not yet been visited, conserving memory. A

caveat of tile coding remains, in that the value of α must be

reduced according to the number of tilings to prevent divergence

at the expense of slower learning (α← α/ntilings).

C. Motivation

Moving beyond the overt benefits of choosing RL-based

defences for coping with non-stationary problems, we believe

that there are concrete reasons for their use here. We have

seen that for other domains in particular, misclassification is a

serious problem, which can introduce collateral damage in the

context of DDoS prevention. In theory, the feedback-loop-like

model allows us to monitor flows after an action is taken to

allow forgiveness of mistakenly punished flows. This does rely

upon the ability to take a flow-by-flow view of the state space,

but if we can combine knowledge of current state with the last

applied action, then perhaps a flow which falls off identically

to a legitimate flow can be rescued.

Other studies suggest that there are particularly useful

features which make the task of online DDoS flow identification

feasible. Aggregate network load observed at various locations

suggests the overall health of a network [5], and the ratio of

correspondence between pair flows can suggest asymmetry and

in many cases illegitimacy [10]. Generic volume-based statistics

(counts, counts per duration, average packet sizes) have seen

effectiveness in such as k-nearest neighbours classifiers trained

to detect DDoS attacks in progress [15]. Most importantly,

there is evidence showing behavioural changes in response to

bandwidth expansion [7], suggesting similar artefacts might

arise after throttling, packet drop, or other interference.

D. Threat Model

An attacker’s goal is to minimise the fair-share bandwidth

allocation that a server can give to hosts, and they are expected

to act rationally in its pursuit. Threat actors are external and

act intentionally, aren’t expected to be advanced persistent

threats, and likely range from hacktivists to moderately funded

adversaries. We assume that attacks will be volumetric DDoS

attacks with the structure of an amplification attack, and that

traffic aggregates at the target (unlike in a transit-link attack).

The addresses of the set of unwitting reflector nodes are visible

to the target, though any bots taking part in an attack or the

machines those bots control are not revealed to the target

without communication with 3rd party organisations such as

upstream ISPs. The discovery of any reflector by some defence

system does have a cost to the attacker—there is a particularly

large (yet finite) supply of viable reflector nodes [10], but

the constraints that each has a large upstream bandwidth and

support for high-amplification-factor protocols narrow this pool.

We do not assume that an attacker has white-box access to an

agent’s policy, or that they will attempt to intelligently modify

flow/system state to indirectly control an agent [16]–[19].

While they may be able to perform some degree of reverse

engineering by observing the health of their own legitimate

canary flows, “stealing” the policy through observation [20],

investigating whether perturbations would persist in volatile

network traffic statistics falls outside of the scope of this

work. The same observation extends to the possibility of

poisoning attacks [21]. These are APT-level capabilities, whose



exploration presents a rich source for future work.

I I I . D D O S M I T I G AT I O N W I T H P E R - F L O W

R E I N F O R C E M E N T L E A R N I N G

Our main hypothesis is that the best method for advancing past

the current shortcomings of RL-based DDoS mitigation is to

design agents such that filtering decisions are computed per flow.

However, these alterations must account for computational con-

straints imposed by the deployment environment—the amount

of flows passing over an agent is unbounded. We describe

and justify our approach, our algorithmic improvements, and

present two action models, one of which draws on domain

knowledge introduced by SPIFFY [7].

A. System Design and Assumptions

A deployment environment is a network with a set of in-

gress/egress points from its domain of control, through which

traffic can flow, and a set of protected destination nodes. These

nodes may be services, servers, or in the case of Autonomous

Systems (ASes) and transit networks, egress points leading

to other networks. Agents are co-located with each egress

switch (i.e., k ingress points from other ASes require k agents),

all employ the same action model/design, and control the

proportion of upstream packets from each external host to

discard. Each destination node s has a maximum capacity, Us .

We assume that the deployment environment is a moderately

complex software-defined network, because the paradigm offers

features which can directly benefit RL agents acting within.

The OpenFlow protocol allows a controller (or other authorised

hosts) to install complex actions, forwarding rules and logic

into a switch at runtime. Furthermore, networks of this kind

more naturally enable the future use of network function

virtualisation, a technology which could allow relocation and

easy installation of learners (e.g., as examined by Jakaria et al.

[22]). Agents communicate with their co-hosted OpenFlow-

enabled switches—running a modified version of Open vSwitch

(OVS) [23]—to install probabilistic packet-drop rules.

Our system design applies to both software-defined and

traditional networks of arbitrary shape and size. Only the

ingress/egress nodes from a network need to be OpenFlow-

enabled, as it is advantageous to perform filtering as close to a

flow’s source as possible. In a traditional network, each agent

has exclusive control over its switch’s tables. In a fully software-

defined network, these agents require exclusive control over the

first table, forwarding legitimate packets to subsequent tables

managed by the network’s controller. The main difference is

that a traditional network needs this additional hardware, and

does not allow an operator to dynamically determine where

the “edge” of their network lies through vNF relocation.

B. Algorithm

To make decisions cheaply and at low latency, we use semi-

gradient Sarsa with tile coding as described in eq. (2) and

section II-B, rather than using neural networks or more

complicated function approximators. Exploration is introduced

via ǫ-greedy action selection, linearly annealing ǫ to 0 over

time. Each agent has its own internal parameter vector w,

and agents do not share their weight vector updates with one

another (but may share experience and traces with one another).

Although the choice of a classical RL method likely brings

lower theoretical performance, there are significant reasons

to favour such methods; these include lower latency decision-

making, lower energy usage, reduced model complexity (and

training time), the availability of necessary hardware, and

simpler decision boundaries. This aligns with our goal of quick

online learning, and faster adaptation to aggregate changes in

traffic without introducing dedicated tensor processing hardware

to networks. Simpler decision boundaries reduce the risk of

overfitting and unexpected behaviour, and we expect that the

simplicity of tile-based policy computation will also greatly

aid interpretability of anomalous action choices.

When choosing a learning algorithm, we compared against

Q-learning as well as methods based on eligibility traces such

as Watkins’s Q(λ) [14, pp. 312–314] and Sarsa(λ) [14, pp.

305]. Preliminary experiments found that Sarsa offered the

best performance and behaviour.

1) Action rate

We adapt the algorithm to prioritise rapid response to changes

in network state and to visit as many state-to-state transitions

as possible for effective learning. To this end, we allow agents

to make many decisions per timestep. We maintain the last

state-action pair associated with each source IP and destination,

and calculate any actions for the flows which still exist. Finally,

we update w using each available trace and the reward signal

from the relevant destination. As exploration still occurs for

each action, this approach reduces ǫ multiple notches every

timestep. In turn, we increase the annealing window for ǫ by

a factor of 2.67 so as to preserve exploration over time, by

accounting for the greater volume of decisions being made.

2) Per-tile updates

While the standard formulation of eq. (2) updates the value

of all tiles identically (by a scalar αδt ), we found it more

effective to compute a different temporal difference value for

each tiling. While we make use of the sum of all tiles’ action

value estimates when making decisions, each tiling is updated

using only its own contribution, allowing us to set α to a higher

value without divergence. A crucial observation is that value

updates to each tile can move by different values in different

directions, converging on effective estimates sooner.

3) Decision narrowings

When learning control on the basis of a high-dimensional, tile-

coded state space, assignment of credit for each decision is

difficult (because all tiles have identical gradient). To combat

this, with probability ǫ an agent will mark a flow as being

governed by a subset of the state space for the next 5 decisions.

Each agent chooses actions on that source/destination pair

using one element of local state, the global state, and the bias

tile—we include the latter two to strike a balance between and

accuracy and correct credit assignment.

C. Feature Space

Our state space combines elements of global state (network

link load observations) with per-flow measurements. Each is
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Figure 3. Global state selection for a flow between an external host and
server s0 which passes over Agent 1. All nodes in the path taken through the
defended network are filled in blue, and all link load measurements which are
chosen for action computation are indicated with a thick blue line.

tile-coded with 8 tilings and 6 tiles per dimension, using the

windows described in table I.

Global state is a vector of load values in R4 (Mbit/s)

depending upon the bandwidth measurements regularly received

from monitors in the environment. For any flow, an agent then

computes the path it would take through the network. The

incoming load recorded along the first hop, last hop, and tertiles

of the path may then be tile-coded together. In the event that

the path from an agent to its destination is shorter than 4 hops,

we duplicate (in order of preference) the load measurement of

a middle hop or the last hop. Figure 3 illustrates the process.

We build global state in this way to offer compatibility

with multipath, multi-destination networks, offering support

for diverse deployment environments from endpoint servers to

transit ASes. Computing the path from agent to destination is

not computationally expensive. Multipath routing is often fast

since typical equal-cost multipath (ECMP) routing algorithms

simply hash a packet’s flow key, and are deterministic to provide

consistent quality-of-service to hosts.

We describe and analyse each of the per-flow features

included in the state vector throughout section IV. Each feature

is tiled separately, with the exception of packet in/out count

(per-window and total), mean in/out packet size, and ∆ in/out

rate, which are combined with the last action taken. Rather

than having the network push the data to an agent, the agent

requests this information about active flows periodically to

isolate it from non-control-plane traffic and to eliminate the

risk of resource exhaustion by excessive requests.

D. Reward Function

Each destination node s generates a reward signal, Rs,t , at

every timestep t. Assume, for now, that each destination has

access to some classification function g(·) which estimates the

volume of legitimate traffic received, and expects to receive

traffics. Denoting the upstream, downstream and combined

loads load
↑
t (s), load

↓
t (s), load

l
t (s) at this node:

cs,t = [max(load
↑
t (s), load

↓
t (s)) > Us], (4a)

Rs,t = (1 − cs,t )
g(load−t (s))

traffics
− cs,t, (4b)

replacing load−t (s) in eq. (4) with whichever directional load

is prioritised according to the traffic characteristics of the

deployment environment, where cs,t represents the “overloaded”

condition at destination s. We choose load
↑
t (·) for our UDP-

based models and load
↓
t (·) for HTTP, though we expect that

load
l
t (·) would be the most suitable for general deployment or

heterogeneous traffic patterns. These choices reflect where the

bulk of transmitted bytes in each traffic model are observed

(and the lack of this knowledge in the general case).

While our use and definition of g(·) appears nebulous, there

are many ways to infer this quantity in practice. End-host

servers may use canary flows or other active measurements,

or employ existing quality-of-experience metrics in the case

of VoIP services such as lost packets, reorderings, and jitter.

ASes and transit networks may make use of reports received

from downstream networks, i.e. over the DDoS Open Threat

Signalling (DOTS) protocol [24]. Even if such heuristics or

perfect knowledge aren’t available in deployment, a sufficiently

well-trained agent needs only to greedily follow the policy it

has learned from training, allowing pre-training by a simulated

environment (with perfect knowledge) to transfer to reality.

If a network is believed to be vulnerable to indirect attacks,

such as link-flooding attacks, we may use the following reward:

RCross
s,t (β) = βRs,t + (1 − β)min {Rs′,t |s′ , s} (5)

where the collaboration parameter β ∈ [0,1] models the

expected degree of interference between flows, and s, s′ are

protected destination nodes in the network. The key insight

underpinning LFAs is that flows can affect a target without

communicating with that target. β then acts as a tunable

parameter which can incentivise agents to remove flows which

harm overall system health, by including the performance of

the worst-performing destination. However, such attacks (and

the effectiveness of RCross
s,t ) are not examined by our work.

E. Action Space

When monitoring a source-destination pair, an agent uses its

state vector to decide which proportion of that flow’s inbound

traffic should be dropped. This is implemented by installing

an action via OpenFlow, instructing its host switch to drop

each relevant packet with probability p. We choose to drop

packets rather than impose traffic limits as it offers us a discrete

action space without prior knowledge of traffic characteristics

or measurement. Furthermore, we need not consider burstiness,

fairness or tuning (such as per-flow bucket sizes) which could

limit scalability. We offer two models on how to choose p:

1) Instant control

Each agent directly chooses p ∈ {0.0,0.1, . . . ,0.9}, giving a

discrete, static action set which cannot completely filter traffic.

These choices ensure that the rate reduction imposed on a

source IP may never be permanent or irreversible. Since this

model needs no forward planning, we found it best to set the

discount factor γ = 0 (making agents purely myopic).

2) Guarded control

The measurements of Kang et al. [7] suggest that bot attack

flows cannot scale up to match an increase in available band-

width. We apply their observations within the RL paradigm by

constraining how an agent treats each flow using a simple finite

state automaton: we restrict p ∈ {0.00,0.05,0.25,0.50,1.0}.
The action set is then simply to maintain, increase, or decrease

p for a flow in single steps. We choose these potential values

for p to add complete filtering to a steady progression of

rate-limiters (25 % increments for UDP traffic). The outlier,



p = 0.05, corresponds to roughly a 50 % rate reduction for

TCP flows in our test topology. This uneven spread of choices

for p allows light and heavy rate reduction to be applied to both

congestion-aware and congestion-unaware traffic as required.

To enable temporary bandwidth expansion in all deployments,

every flow is initially placed under light packet drop (p = 0.05);

this is chosen above the equivalent for UDP due to TCP’s higher

prevalence. Most importantly, an agent must now choose to

punish a flow multiple times in succession to cause rapid

degradation, reducing variance while allowing an agent to see

how a host reacts to structured changes in the environment.

As each agent now requires the capability to plan ahead,

we require a discount factor γ , 0, allowing the value of

future states to influence state-action value updates. We found

the setting γ = 0.8 to be the most effective choice for this

hyperparameter during exploratory testing.

3) Risks

Our mode of action means that each agent is in control of

pushback [25], and so carries a risk of introducing collateral

damage into the network. This is particularly severe when

handling TCP traffic: the Mathis equation [26] states that TCP

bandwidth is proportional to 1/√p (noting that p is nonzero in

any real network) while constant bitrate (CBR) UDP traffic is

proportional to 1 − p. This weakness is still present in modern

TCP flavours, such as TCP Cubic which in turn has bandwidth

proportional to 1/p0.75 [27]. This is of particular importance

due to the prevalence of TCP and other congestion-aware

protocols within the Internet. Our own analysis of CAIDA

datasets [28] shows that congestion-aware traffic makes up at

least 73–82 % of packets, corresponding to 77–84 % of data

volume1. QUIC, a future congestion-aware protocol, comprises

2.6–9.1 % of traffic observed on backbone links, depending on

location and typical workload [29].

This further justifies our focus on per-flow decisions—real-

world deployments see many flows pass over any egress point,

making global actions (such as those chosen by Malialis and

Kudenko [5]) more likely to inflict collateral damage. Given

the probability that a host is legitimate, PG ∈ [0,1], it follows

that a host will be malicious with probability PB = 1 − PG .

Defining imperfect service to mean any case where all n hosts

connecting over a switch do not share the same classification

(i.e., a mixture), then the probability that a switch is delivering

imperfect service is PM ,n = 1 − (Pn
G
+ Pn

B
).

Theorem 1. As the host/learner ratio n increases, it is more

likely that a throttling switch will exhibit imperfect service:

∀n ∈ Z+,PM ,n ≤ PM ,n+1.

Proof. Base case: PM ,1 = 0,PM ,2 = 1−P2
G
−P2

B
> 0. Inductive

step: Assume that the theorem holds for n. Observe that

Pn
G
≥ Pn+1

G
(resp. PB). It then follows that:

Pn
G + Pn

B ≥ Pn+1
G + Pn+1

B

1 − (Pn
G + Pn

B) ≤ 1 − (Pn+1
G + Pn+1

B )
PM ,n ≤ PM ,n+1 �

1https://github.com/FelixMcFelix/caida-stats
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Figure 4. Learned performance of Instant Control agents when benign traffic
is UDP-like, using only a single feature as a basis for decisions. Mean IAT,
inbound packet sizes, and global state offer the best predictive performance,
while most features offer marginal advantage over the unprotected baseline.

Corollary 1.1. Restricting PG ∈ (0,1) so that both PG and

PB are non-zero ensures strict inequality: PM ,n < PM ,n+1.

When considering that many hosts have an especially adverse

reaction to our main means of control, flow-level granularity

becomes an obvious choice.

F. Systems Considerations

Taking many actions per timestep means that any agents are

assigned a larger, and potentially unbounded, set of tasks to

perform every time they receive load and flow statistics from

the network and their parent switch. This introduces some

potential issues: the inability to respond to unexpected changes

in flow state, delayed service of new flows, and risks that flow

states become outdated. At their worst, these risks present

additional attack surface to an adversary. To adapt to these

problems, we make use of timed random sequential updates.

Each agent begins with an empty work list. For the set of

flows active in any timestep, we shuffle the list and perform as

many action calculations and updates as possible, within a set

time limit. Uncompleted work is passed on to the next timestep,

until the list is emptied, at which point it is repopulated using

the set of available measurements. To ensure that flow control

actions are made with recent information, we combine state

vectors for unvisited flows in the current work set, and replace

the stored vector for all others. State vector combination is

done by summing deltas and packet counts, updating means via

weighted sums, and replacing all other fields. Following Chen

et al.’s observations concerning short flows [30], we maintain a

deadline of 1 ms—in tests, an agent is typically able to process

around 3 flows in this time. We expect this should be tuned

based on the frequency at which statistics arrive. Naturally, this

implies that an agent must carry work forward (and coalesce

state updates) when host density is n > 3 (section VI); this

behaviour is not explicitly a property of network size.

I V. R E T H I N K I N G T H E S TAT E S PA C E

The main element required by a per-source model is a feature set

with high predictive power, so that behavioural differences are

apparent to an agent. Elaborating on the statistics discussed in

section II-C which others have shown to be effective, we believe

the following features to be useful (and humanly justifiable),

and investigate their use alongside different traffic types:

Global state: This is the vector of load measurements along

a flow’s path introduced in section III-C. These values

indicate the overall health of the network, and crucially are all

https://github.com/FelixMcFelix/caida-stats
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Figure 5. Learned performance of Instant Control agents when benign traffic
is TCP-like, using only a single feature as a basis for decisions. All of the
chosen features can offer a marked improvement over no protection at all.
Global state and Mean IAT still offer the greatest improvement above baseline,
but packet-level statistics are considerably less effective for this class of traffic.
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Figure 6. Learned performance of Instant Control agents when benign traffic
is TCP-like, combining each feature with the last action taken as a basis
for decisions. This combination causes a significant improvement in the
effectiveness of packet-level and per-window statistics.

measurements which an agent directly controls.

Source IP address: While trivial to spoof (and thus of limited

use for many classes of attack), reflectors are themselves

legitimate services being abused by spoofing attackers. As

a result, they communicate with attack victims using their own

IP address. In real-world scenarios the addresses of reflector

nodes might exhibit similarity due to network uncleanliness

[31], e.g., unhardened services exposed by a single organisation.

Last action taken: This encodes an agent’s current belief

in the maliciousness of a flow. This feature also potentially

allows forgiveness, serving as a reference point for determining

whether a source mistakenly marked as malicious exhibits

different falloff behaviour after punishment. It’s important to

note that this feature only makes sense once combined with

another flow feature, and never appears individually tile-coded.

Flow duration and size: Features which describe the length

of time a connection has been active, and the amount of data

transferred within that time. An extraordinarily long flow,

having sent a lot of data, could be more likely to be an amplifier:

though most (62 %) waves of amplifier traffic last shorter than

15 min [32], this is considerably longer than the typical length

of an HTTP request/response.

Correspondence ratio: The ratio between upstream and

downstream traffic for a source IP. We define this to be

CX = min(load
↑
t (·), load

↓
t (·))/max(load

↑
t (·), load

↓
t (·)), where a

value close to 0 indicates strong asymmetry.

∆ Send/receive rate: The change in traffic rates caused by

the last action. Behavioural changes induced by bandwidth

expansion/reduction are expected to be most visible here.

Mean inter-arrival time (IAT): A measure of how often

packets arrive at the agent’s parent switch; low IATs indicate

a high number of packets per second, and can be a possible

marker of malicious behaviour. We only make use of the mean

IAT of inbound traffic.

Table I
T I L E C O D I N G W I N D O W S F O R E A C H F E AT U R E .

New Feature (unit) Range

Load (Mbit/s) [0,Us ]
IP [0, 232 − 1]
Last Action (%) [0, 1]
Duration (ms) [0, 2000]
Size (MiB) [0, 10]
Correspondence Ratio [0, 1]
Mean IAT (ms) [0, 10 000]
∆In/Out Rate (Mbit/s) [−50, 50]
Packets In/Out [0, 7000]
Packets In/Out Window [0, 2000]
Mean In/Out Packet Size (B) [0, 1560]

(Per-window) packet count: The amount of packets sent

to/from a source over a flow’s lifetime (or the current window

of measurement), similar in use to flow size and mean IAT.

Mean packet size per window: Legitimate flows, both TCP-

and UDP-based, often transmit packets with a distribution of

sizes. Attack traffic is not likely to be so diverse: we might

expect solely max-size packets in the case of amplification

attacks, or minimum-size packets in other flooding attacks.

The exclusion of features such as source/destination ports or

protocol numbers is a deliberate choice. If QUIC (or a similar

protocol) were to become ubiquitous, then these fields would

have little to no correlation with the class of traffic a flow

might contain. Our aim was to design around this constraint

as a form of future-proofing.

All of the above features, save for global state, are 1-

dimensional. Figure 4 shows the effectiveness of each feature

for UDP (resp. fig. 5 for TCP), on a single-destination topology

(section VI-A) with n = 2 hosts per egress point averaged

over 10 runs. Figure 6 demonstrates how feature accuracy

varies when tiled alongside last action, with similar trends

observed when applied to UDP traffic (omitted). The plots show

that different protocols and traffic classes are best defended

by different features—as such, every feature presented has

value in a complete model. All features converge to their

highest-observed performance within around 4000 timesteps.

In general, some of the most effective features are the global

state, mean IAT, mean inbound packet size and ∆ rates.

V. T R A F F I C M O D E L L I N G

We contribute network models built around live testing of

reactive TCP and UDP traffic in an SDN-enabled environment,

which is adaptable to arbitrary topologies, with an explicit focus

on preserving their real-time dynamics in a way that trace-based

evaluation cannot. First and foremost, we are interested in

representative load and packet inter-arrival characteristics and

in how these characteristics evolve in response to actions. We

introduce these models because we are interested in capturing

interactive, correlated back-and-forth exchanges associated with

live HTTP traffic; mainly because of the particular interactions

between the application-level dynamics, congestion awareness

at the transport level and the nature of control signal used.

A. Network Design

We make use of a fully software-defined network, built using

OpenFlow-aware switches in mininet alongside a controller

based on Ryu [33]. All internal routers are primed with

knowledge of the shortest path to each internal host, while new

inbound flows register the “way back” for each hop used, to



ensure consistent traffic conditions for each flow. If several

ports offer different (equal-length) paths to a destination, a

consistent random port is chosen from the flow-hash by an

OpenFlow Group action (in select mode). If such information

is lost, perhaps expiring due to inactivity, it suffices to forward

an outbound packet on a random outbound port, as we assume

that any external IP is reachable through any of the test

network’s egress ports (i.e., that it is not connected to any

stub ASes). The controller is also responsible for computing

how switches respond to ARP requests: this need arises due to

the reliance upon Linux’s networking stack for live applications,

and wouldn’t need to be considered for trace-based evaluation.

B. TCP (HTTP) Traffic Model

To model legitimate TCP traffic, server nodes run an nginx

v1.10.3 HTTP daemon, serving statically generated web pages

alongside various large files and binaries. Benign hosts run

a simple libcurl-based application written in Rust, repeatedly

requesting resources from the server. Hosts and clients both use

TCP Cubic [27]. Each host’s download rate is limited to match

the maximum bandwidth assigned to it, and requests several

random files known to exist within a website, followed by any

dependent resources for each (stylesheets, images, etc.) as a

browser might. On completion, a host changes its IP to generate

separate statistics per-flow, while minimising downtime. This

presents a balanced distribution of flow duration and size, with

large files included to model elephant flows.

C. UDP (Opus/VoIP) Traffic Model

VoIP traffic exhibits very different characteristics to the above

model; packet arrivals are highly periodic due to real-time

requirements, flows have a constant bitrate, and do not react

substantially to lost packets. Interestingly, DDoS attack traffic

is known to share many of these characteristics, offering

an interesting detection problem. We present a VoIP traffic

model2 based on Discord3, a freely-available messaging and

VoIP platform geared toward gaming communities. We chose

Discord as our prototype due to its publicly documented API,

many open source bot frameworks, large user base, and due

to the lack of models for Opus-encoded traffic.

Hosts send RTP traffic with Salsa20 encrypted payloads—

20 ms audio frames at 96 kbit/s. We generate similar traffic at

hosts by replaying anonymised traces gathered in general use

and tabletop RPG servers; each trace contains only the size of

each audio payload, entries denoting missed packets, and the

duration of silent periods. We trim these silent periods to a

maximum 5 s due to the lengthy talk/silence bursts introduced

by users in RPG servers, and estimate the size of missed

packets by taking an exponentially-weighted moving average

over known sizes. Hosts punctuate audio frames with a 4-byte

keepalive every 5 s. All traffic passes over a central server which

groups hosts into rooms, and is forwarded to other participants;

we do not replicate pre-call Websocket traffic which would be

used for authentication. There is no peer-to-peer traffic—the

server acts as a TURN relay for all hosts. We find that each

flow occupies an expected 52.4 kbit/s upstream bandwidth. To

2https://github.com/FelixMcFelix/opus-voip-traffic
3https://discord.gg

match the target upload rate assigned to each host, it runs

enough individual sessions to meet the target data rate.

D. Attack Traffic Model

Malicious traffic is generated by use of the hping3 program,

generating UDP-flood traffic targeting random ports. We

configure each instance of hping3 to generate ethernet MTU-

sized packets (1500 B) with a random source and destination

port towards a target server, and configure the output rate r (in

Mbit/s) by setting the inter-arrival time tattack =
1500·8
r ·106 . This

fulfils certain characteristics of many types of amplification

DDoS traffic: it is congestion-unaware [10], and packets are

larger than the minimum frame size and identically-sized (e.g.,

NTP amplification traffic is fragmented at the application layer

into 482 B chunks [34]). We differ from NTP amplification

in frame size so that inter-arrival times are larger, to keep

emulation of the network feasible at high traffic rates.

V I . E VA L U AT I O N

We compare our work most naturally against MARL, introduced

by Malialis and Kudenko [5], the state-of-the-art in RL-based

DDoS prevention. We are most interested in seeing how their

approach contrasts with ours across different topologies and

workloads. Different network environments will also impose

different levels of host density, where popular web servers may

have orders of magnitude more clients than egress points from

their network—we aim to see how these characteristics affect

performance and learning rate. Marl is known to outperform

the AIMD [35] strategy, yet the state of the art has long

since moved on. To paint a more current picture, we compare

our work against an effective modern approach, SPIFFY [7].

SPIFFY tests a proportion of flows by routing them through an

alternate path with higher bandwidth, observing how their speed

changes some time later. This comparison lets us position our

new agent designs against the state of the art, observing that

SPIFFY has a similar mode of interaction to RL-based systems

(taking action, observing an effect, and acting once again)

and does not rely on protocol characteristics or signatures.

We make the simplifying assumption that a suitable unused

path exists (with identical bandwidth to the server’s link). We

test 10 % of active flows at a time (according to the authors’

observation that there is a factor of 10 difference between

the ideal and achieved bandwidth expansion), excluding flows

below 50 kbit/s and requiring a 3× expansion from legitimate

flows, making a judgement after 5 s.

To test this, we made use of both traffic models introduced

in section V (OPUS and TCP), both topologies discussed

below (1-dest vs Fat-Tree), and vary the amount of hosts

typically communicating over each agent’s ingress/egress node.

Additionally, we evaluated our new models in multi-agent

mode (separate, no model sharing), and in single-agent mode

(single, 0-cost perfect information sharing). In each case, the

algorithm’s performance was averaged over 10 episodes of

length 10 000 timesteps (setting each agent’s w = 0 between

episodes). Host allocations at the beginning of each episode

were generated pseudorandomly to ensure fairness between

episodes—a host is malicious with probability P(malicious),
and is benign otherwise. Benign hosts generate traffic from

https://github.com/FelixMcFelix/opus-voip-traffic
https://discord.gg
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either sections V-B and V-C depending on the experiment,

while malicious hosts generate traffic according to section V-D

(both at experiment-dependent rates).

All experiments were executed on Ubuntu 18.04.2 LTS

(GNU/Linux 4.4.3-040403-generic x86 64), using a 4-core

Intel Core i7-6700K (clocked at 4.2 GHz) and 32 GiB of RAM.

All code underpinning these findings is available on a public

repository4.

A. Single Destination

The network is tree-structured, where one server s connects

through a dedicated switch to k team leader switches, each

connected to ℓ intermediate switches, which in turn each

connect to m egress switches. We then have Nhosts = kℓmn.

Figure 7 demonstrates this. We configured the network topology

using k = 2 teams, ℓ = 3 intermediate nodes per team, m = 2

agents per intermediate node, and n ∈ {2,4,8,16} hosts per

learner. This is a slight simplification of Malialis and Kudenko’s

‘online’ experiment [5], choosing fewer teams but remaining

as a single server with a fan-out network.

B. Multiple Destinations

The previous topology allows for direct comparison against

the state-of-the-art, and indeed is illustrative of one way in

which attack traffic might aggregate in the network. It is hard,

however, to argue its relevance to specific classes of victim or

to reason about the interactions it might have with dependent

applications. In contrast, the fat-tree topology [36] sees regular

use in real-world datacentres and scales well horizontally. We

use a k = 4 fat-tree, with one pod hosting two servers s0 and s1.

n external hosts connect through each core switch (where agents

are hosted), and communicate with s0, s1 uniformly randomly.

Both servers host identical services. We set n ∈ {6,12,24,48}
hosts per learner (keeping Nhosts identical to each tier of the

single-host topology), and restrict Us0
= Us1

= Us/2.

C. Parameters

The algorithm parameters were set at α = 0.05, linearly

annealing ǫ = 0.2 → 0 by t = 3000 in the case of Marl

(8000 actions per agent in the Instant/Guarded models).

Benign hosts each occupied 0–1 Mbit/s, and hosts were

redrawn at each episode’s start with P(malicious) = 0.4.

Malicious hosts each sent 2.5–6 Mbit/s when attacking UDP

traffic, though this was increased to 4–7 Mbit/s when using

TCP-like traffic (to meaningfully impact benign flows). Given

n and P(malicious), we see an expected malicious bandwidth

4https://github.com/FelixMcFelix/rln-dc-ddos-paper

Table II
AV E R A G E R E WA R D F O R C O M B I N AT I O N S O F M O D E L , H O S T

D E N S I T Y A N D T R A F F I C C L A S S W I T H A S I N G L E D E S T I N AT I O N .

Traffic n SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 2 0.043 0.628 0.629 0.448 0.430 0.629
4 0.069 0.538 0.653 0.449 0.308 0.571
8 0.065 0.468 0.533 0.516 0.398 0.507

16 0.053 0.460 0.438 0.452 0.347 0.504
TCP 2 0.799 0.305 0.061 0.068 0.241 0.196

4 0.953 0.359 0.191 0.097 0.278 0.504
8 0.995 0.362 0.376 0.201 0.357 0.605

16 0.999 0.320 0.316 0.302 0.478 0.708

Table III
AV E R A G E R E WA R D F O R C O M B I N AT I O N S O F M O D E L , H O S T

D E N S I T Y A N D T R A F F I C C L A S S W I T H M U LT I P L E D E S T I N AT I O N S .

Traffic n SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 6 0.092 0.382 0.300 0.170 0.307 0.189
12 0.096 0.217 0.322 0.275 0.333 0.235
24 0.125 0.404 0.358 0.296 0.382 0.461
48 0.110 0.430 0.418 0.438 0.427 0.428

TCP 6 0.692 −0.222 0.123 −0.018 0.121 0.116
12 0.896 0.008 0.132 0.008 0.163 0.266
24 0.974 0.063 0.130 0.024 0.337 0.390
48 0.995 0.156 0.219 0.111 0.431 0.499

1.27–1.87 and 2.03–2.18×Us respectively. For our choices of

n in both topologies, we observe Nhosts ∈ {24,48,96,192},
and an expected number of malicious hosts E [Nattackers] ∈
{9.6,19.2,38.4,76.8}. For the largest choice of n, we see

an expected total attack traffic E [Vattack] = 334.05 and

422.4 Mbit/s for Opus and HTTP traffic respectively.

Us was fixed at Nhosts + 2 Mbit/s (to account for burstiness),

and each link had a delay of 10 ms. All links had unbounded

capacity, save for each server-switch. These parameters match

those of the original study to enable direct comparison, and

many are (to the best of our knowledge) arbitrary, but we justify

our range of n as capturing increasing scales of host activity.

V I I . R E S U LT S

We now examine the performance of our two new models

(Instant, Guarded) as compared against existing RL work (Marl)

and SPIFFY under different traffic behaviour and topologies,

varying the host-to-learner ratio n and environment. We present

the average rewards for all combinations of these factors in

tables II–III—providing a rough idea of expected performance,

with the highest-performing model in bold and the best RL-

based model underlined. Average rewards take into account

any portions of time that an agent allows illegal system states.

Several plots augment this, illustrating peak performance or

the amount of time which an agent requires to learn.

A. Congestion-unaware traffic

In a single-destination network, we observe that Marl’s

performance degrades as n increases. Typically, our Instant

agent design achieves the best performance in multi-agent mode,

having lower collateral damage than the current state-of-the-art,

but sharply degrades at low n when agents share experience.

This trend reverses for the Guarded model, which improves as

n increases and in single-agent mode—when n ≥ 4, the single-

agent variant offers consistent improvement. Figure 8 shows the

preserved traffic in multi-agent mode. When defending multiple

destinations, we see a sharp decrease in the effectiveness of all

https://github.com/FelixMcFelix/rln-dc-ddos-paper
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Figure 8. Online performance for Opus benign traffic in a single-destination
network, multi-agent mode. Instant outperforms Marl for n ∈ {4, 8} (with
higher variance), but performs similarly to Marl at n ∈ {2, 16}. Guarded

underperforms compared to the other agent designs in this problem variant.
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Figure 9. Online performance for HTTP benign traffic in a single-destination
network, single-agent mode. Instant and Guarded exhibit similar efficacy at
n = 2, protecting less traffic than Marl. Only Guarded’s performance rapidly
increases with n, achieving a considerably better median and lower variance
than the other models. The longer tails of outliers typically indicate the longer
training time the new models require—we observe that Guarded typically has
considerably lower variance once it has converged on a stable policy.

agent designs. Our new agent designs become more effective

as n increases, while Marl’s effectiveness is roughly constant

(aside from the outlier at n = 12). Interestingly, SPIFFY is

unable to effectively protect constant bitrate traffic.

B. Congestion-aware traffic

Table II shows that Marl offers a low (though fairly consistent)

level of protection for TCP traffic, which the Instant agent

offers no substantial improvement over. However, Guarded

agents offer a remarkable improvement for this class of traffic,

particularly when experience can be shared—offering a 2.21×
improvement over the state-of-the art during training, which

is made clearer in fig. 9. Figure 10 shows that this model

can protect a peak 80 % of TCP traffic (2.5× improvement)

after just 100 s, but also that all of the new models require

considerably longer than Marl to learn their best-achieving

policy. We observe that the same trends present themselves in

the multi-destination topology: Guarded remains the best fit

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
at

io
L

eg
it

T
ra

ffi
c

P
re

se
rv

ed

Iteration (t · 50ms)

Marl
Instant

Guarded
Instant (Single)

Guarded (Single)
Unprotected

Figure 10. Online performance of standard and single-agent models in a single-
destination network with n = 16 hosts per egress point, HTTP traffic. At this
level of host density, Guarded reaches higher peak performance sooner and is
considerably more consistent throughout the episode. Guarded benefits greatly
from information sharing, converging to protect around 75 % of TCP traffic
within 100 s. The Instant model converges to Marl’s level of performance.

Table IV
AV E R A G E R E WA R D V E R S U S AT TA C K V O L U M E .

Factor E [Vattack] (Mbit/s) Reward

1.5 633.6 0.671
2.0 844.8 0.625
2.5 1056.0 0.620
3.0 1267.2 0.619
3.5 1478.4 0.600

for TCP, in both training modes. Crucially, the rigid tree of

learners and teams which define Marl, along with its lack of

action granularity, seem to be a poor fit in this environment. In

both cases, SPIFFY greatly outperforms the RL-based methods.

C. Increased Attack Volume

To assess the effect of larger volumes of attack traffic, we

increase an attacker’s output by various factors, supposing

n = 16 with HTTP traffic (Guarded, Single); table IV records

the expected rate of attack and average performance. The

initial increase in traffic volume causes the steepest reduction

in performance (due to the increased cost of incorrect action),

though performance levels out as attack traffic increases.

D. Computational Cost

Measurements from each of these experiments indicated that the

cost of computing any action is typically within 80–100 µs per

flow. This is reassuring when measured alongside the insights

from other work. Chen et al. [30] observe that, ideally, actions

must be computed and taken within 1 ms to have a meaningful

affect on short flows. That our starting point falls significantly

below this threshold allows us to safely consider more costly

actions or larger state spaces, which would typically increase

the computational cost. This cost is constant and independent

of network size. As discussed in section III-F, we are able to

judge 3 flows before this deadline: the difference is primarily

accounted for by serialisation/communication delays and single-

threaded processing in the Python language.

V I I I . D I S C U S S I O N

Model performance: Of the results presented, Guarded’s

unpredictable (often worse) starting performance is unexpected,

given its far smaller action space. It’s natural to expect that this

would make the model easier to learn, but the additional state

required appears to make the task harder, beyond even the

value of choosing a non-zero discount factor (adding forward-

planning to explicitly mitigate this effect). Accordingly, we

see that this design performs best (and exhibits considerably

lower variance) when agents learn from as much knowledge as

possible: high n and single-agent training. To filter incoming

traffic from a source, it must decide to degrade inbound traffic

multiple times in a row, reducing the likelihood that a legitimate

flow is punished by accident. Our belief is that Guarded is a

considerably stronger model for these reasons, and its successes

offer strong rationale to consider the best schemes for efficient

information sharing. Paradoxically, Instant generally achieves

the best performance for UDP traffic yet actively suffers when

trained as a single learner—this may occur due to a roughly

even spread of values between disparate actions, due to shared

characteristics between legitimate and malicious flows.

Although we have improved upon Marl in both identified

problem cases, the improvements are not quite on the order



we’d expect for UDP traffic. The most likely explanation is

that agents are converging to, and becoming stuck in, locally

optimal (but globally sub-optimal) policies. The increased

state space size makes this a more likely occurrence, as does

the unclear effect of hyperparameters (α, γ) as we scale up

the state space. We suspect that these difficulties may be

exacerbated by the competitive nature of learning that these

models embody: agents are learning action values for multiple

features simultaneously, taking many actions at once (making it

harder to observe the true value of each action), and controlling

shared global state. Although our design does take steps to

counteract such effects, these mitigations may not be enough.

Moreover, benign UDP traffic shares many characteristics

with attack traffic, suggesting that more training samples or

some unknown feature might aid control, or that it may be

worthwhile to extensively pre-train agents non-competitively

on each feature using individual flows.

Most importantly, what we wish to impart is the knowledge

that while the models and techniques we present here are

a significant improvement over past RL-based work, this

strand still trails behind existing (exact) DDoS flow detection

mechanisms where TCP traffic is concerned. The ability

to better protect VoIP traffic when compared against one of

these approaches is a curious observation, which suggests that

other (exact) protocol-agnostic approaches may carry hidden

assumptions and is a promising direction for future investigation.

Similar traffic makes up a significant fraction of network load

today (18–27 %). Although we have conducted work to map the

territory, there are still more advancements to be made before

RL-based DDoS defence is truly competitive. The benefits

we have at present are, however, substantial. What we offer

above many of the approaches we discuss in section IX are

potentially more flexible deployments, low-overhead and fixed-

cost decision-making, without requiring active measurement or

the network resources and capabilities that the most effective

techniques rely upon. Moreover, our decision making processes

are entirely agnostic of the protocol or content of traffic, offering

future-proofing against the introduction of new transports.

Security concerns and vulnerability: Can an agent be flooded

with new flows to reduce their ability to make decisions? One

of the risks introduced by our policy update strategy is that so

much work can be queued up that an agent is never able to act on

some attack flows. The natural solution is to impose an upper

bound on the amount of action computations/policy updates

that can be performed before a work list is discarded completely.

This removes the guarantee that all flows will be visited fairly

often, but if updates occur regularly then this random sampling

may be sufficient to achieve good performance.

Can an attack on the controller can impact our approach?

This question hinges upon whether the deployment environment

is a traditional network or is fully SDN-enabled—each agent

is, in a sense, a controller alongside the network’s controller.

In a traditional network, only the agents act as controllers,

but since they periodically request per-flow data (rather than

continuously receiving it) no amount of flows generates more

requests or messages to the agent. More work is generated,

but we discuss how to handle this safely above. Accordingly,

agents can never be stalled by request volume: their only remote

communication (load measurements) comes from trusted nodes,

is highly periodic, and has constant size. The same logic holds

for a fully software-defined network. Recalling that we do

not employ the network’s controller to install filtering rules on

edge switches, an agent’s ability to act is unimpeded. Thus,

the controller is made no more vulnerable than in any other

SDN. The only necessary change for such a scenario is that

a load measurement which has not been updated (due to a

timeout or missed deadline) should be set at Rt = −1.

Machine learning algorithms have earned a reputation for

eluding human interpretation, while being vulnerable to evasion

and poisoning. Given the security risks associated with

introducing such techniques, it is natural to be concerned with

the interpretability of the models we have proposed. With the

exception of global state, the tile coding parameters we make

use of ensure that the set of outputs for each feature we add is

relatively enumerable: for n tilings and c tiles per dimension

there are ncdim f individual action value vectors per feature

f (48 for the new features we introduce, 10 368 for global

state), though considerably more combinations thereof (cn ·dim f ).

Furthermore, system state which is dependent on many signals

drawn from across a wide network (such as our global state) is

difficult to exert precise control over. These signals’ topological

separation, in concert with their burstiness and unpredictability,

may have substantial effects on an attacker’s capabilities.

Real-world Deployment: Currently, we assume that switches

support an extension to OpenFlow to enable remotely installable

packet-drop rules, either by running a modified version of OVS

on commodity hardware at these locations or through custom

firmware for egress switches. Similar functionality could be

employed by making use of OpenFlow’s meter rules.

Where overheads are concerned, the state space sizes

guarantee that an Instant agent’s policy remains under 520 KiB,

although in practice our sparse representation typically leads to

far smaller policies: ∼17.8 KiB from our experiments. Guarded

policies are 30 % of this size. As we have described earlier,

action updates require a constant number of floating point

operations—160 floating point additions and 32 multiplications

per update of w with per-tile updates, above the 160 additions

required to choose an action. The vast majority of these

operations can be vectorised trivially, if such hardware is

present. Action computation for Guarded agents is cheaper still,

requiring only 48 additions per action. Beyond this, we require

that egress switches are capable of co-hosting an agent (i.e.,

through network function virtualisation), with the necessary

hardware to support this. We believe that it may be possible to

implement similar behaviour on standard commodity switches

through application of programmable data planes [37].

Gathering and transmission of load/flow statistics would

be difficult to perform as often as an emulated environment

allows, without inadvertently affecting host traffic. However,

the measurements acquired in such a scenario are likely to be

less noisy (by being collected over longer periods of time),

which could aid training. The main bottlenecks are likely in

forwarding the load measurements from various aggregation

points (which can be made more efficient through multicast)

and in running some estimator g(·) to condition the reward

function. We expect that agents will be able to share policies



for all features, which may help to offset the reduced rate of

incoming experience. Regardless, it will take longer to achieve

enough state-state transitions to converge on a good policy.

One limit of SDN-capable hardware is that OpenFlow rules

occupy 6× the space of standard rules—commercial switches

only have TCAM space for 2–20 k rules [38]. Our approach

consumes a rule for each active flow (the host density), and by

the end of an experiment a switch can accrue around 900 rules.

While we use a default fallback action to maintain connectivity,

eviction of high-value decisions which filter high-bandwidth

attackers poses a significant risk. Given that most flows are

small (with the majority of bytes coming from a few “heavy-

hitters”) [39], it may suffice to only apply RL-based analysis to

larger flows. OpenFlow rules have an importance, controlling

which rules may be evicted by a new entry (preventing entries

from evicting those with higher importance). If an agent is

to act on all flows, a solution is to assign an importance of

0 to mice flows, 1 to elephant flows, and 2 to total filtering

(leaving agents to time out and remove elephant flow rules to

prevent bloat). Given the high churn and prevalence of mice

flows, eviction here is most likely to affect flows which are

complete. In both cases, extra rules can be made available by

upgrading rules which completely filter a flow into upstream

blackholing (as in collaborative approaches [40]), having the

agent remove this rule once blackholing is active.

I X . R E L AT E D W O R K

DDoS Prevention: Braga et al. [41] examine the detection

of flooding DDoS attacks through self-organising maps, using

SDN to gather statistics effectively. Many of their features

aren’t overly relevant, as their focus is not active defence or

discovering which hosts contribute to an attack. The closest

available approach within this field is that of Malialis and

Kudenko [5] (whom we have positioned our work against),

and their contribution in applying RL to the task of intrusion

prevention is significant: their work helps to show the viability

of live, adaptive, feedback-loop-like control of the network to

detect and prevent DDoS attacks. They create a tree overlay

topology (subdivided into teams), where each agent applies

packet drop to all flows inbound to a protected server. Our

results show that their technique underperforms at high host

density and when congestion-aware traffic dominates—that

their results do not demonstrate this suggests an evaluation

driven purely by traces (rather than live application dynamics).

SPIFFY [7] aims to remedy transit-link attacks by observing

how flows from each source respond to a sudden increase in

available bandwidth. Kang et al. realise that bots participating

in an attack are often unable to match this bandwidth expansion

(having already saturated the capacity of their outbound links),

while legitimate flows typically speed up to match the new

fair-share rate. A weakness of their approach is that computing

a route to measure bandwidth expansion on real networks can

be costly (up to 14 s for the Cogent topology), and that the low

expansion factors in real network can require more “rounds”

of filtering. By contrast, our approach takes a constant time

to compute an action for a flow regardless of topology size.

Their assumptions about traffic response to such bandwidth

expansion do not hold for constant bitrate flows (e.g., VoIP)

and may not extend to HTTP DASH flows, both of which

make up a sizeable proportion of network traffic.

Athena [15] is a generalised SDN framework for intrusion

detection, but has shown the use of a k-nearest neighbours

classifier to detect individual attack flows. Although heavy-

weight (and proven to be effective compared with Braga et al.

[41]), their comparison against SPIFFY lacks the quantitative

evidence required to understand how the system compares.

Smith and Schuchard [42] use AS-level routing to tackle both

transit-link and flooding-based attacks. This view is taken

due to the perceived cost of per-stream classification and

inherent sensitivity to adversarial examples. The approach is

creative, relying upon BGP fraudulent route reverse poisoning

to preserve traffic to a target AS, but unlike SPIFFY the

approach doesn’t actually remove the congestion. Because

of this, flooding-based attacks aren’t fully alleviated.

RL in Networks: Earnest, well-considered application of

RL towards the challenge of intrusion prevention has seen

comparatively little examination. Past work treats the paradigm

as a traditional classifier for anomaly detection [43] and DDoS

prevention [44]. Given that the main strengths of RL techniques

are the ability to control ongoing interaction and adapt by

observing the concrete effects of actions, such works don’t

apply the rich literature on the subject to its fullest potential.

For categorising how RL fits into solving problems, we label

works as direct- or indirect-control RL. A direct-control RL

problem is one where the RL agent(s) learn optimal control

over a set of actions as the primary defence or decision-

maker—requiring measurements, reward functions and action

sets tailored for this purpose. To date, the best-fitting example

we have encountered is that of Malialis and Kudenko [5].

An indirect-control RL problem is one where agents act in

service to another technique responsible for decision-making,

optimising or generalising aspects of its operation beyond that

of hand-coded heuristics. A past example includes learning

when best to share knowledge between hidden Markov model

anomaly detectors [45]. This work is weakened by its reliance

on the problematic ‘DARPA99’ dataset [2], but the idea itself

is well-treated. Outside of intrusion detection, there has been

growing interest in the use of RL in data-driven networking,

such as for intra-AS route optimisation [46] and resource-

constrained process allocation [47]. Mao et al. [48] employ

client-side observations of network state and video performance

with RL to optimise bitrate selection for multimedia streaming.

AuTO [30] employs deep RL to perform traffic optimisation.

Crucially, they find that the vast majority of flows are short-

lived, requiring effective decisions in less than a millisecond.

To overcome the high latency of action computation via a

neural network, two agents are trained, handling aspects of

short and long flows respectively. The first learns to optimise

the flow size thresholds to demarcate long and short flows;

these short flows are routed by ECMP. The second agent makes

bespoke decisions about routing, prioritisation etc. for each of

the remaining long flows.

X . C O N C L U S I O N S A N D F U T U R E W O R K

Through this paper, we have discussed reinforcement learning

and its relevance to network intrusion prevention. We believe



the potential to learn feedback loop-like control online and

against non-stationarity makes it particularly suited to the

problems endemic to the field. We identified weaknesses in

past work, recommending an RL agent which acts per flow,

and have outlined the algorithmic and engineering choices

needed to make its deployment feasible. Supporting this,

we’ve presented an in-depth examination of our feature space,

offering quantitative and qualitative justification for our choices.

Our evaluation shows that our new agent designs considerably

advance the state-of-the-art in RL-based DDoS prevention, with

Guarded agents showing the most promise for future evaluation.

The most direct improvements to be made lie in the correct

protection of legitimate UDP traffic, which our agent designs

have difficulty safeguarding. Outside of this, there is scope

to test these new techniques against link-flooding attacks in

large-scale topologies using reward functions such as eq. (5).

Simulation is the most likely avenue for such evaluation.

The remaining weaknesses invite many improvements worth

investigation. A problem we raised (without a clear solution)

was the design of reward functions which do not rely upon

heuristic estimates or a priori knowledge of benign traffic

content. If true online learning is desired (i.e., coping with a

non-stationary environment), then such reward functions are

sorely needed. While load
l
t (·) is likely to be a good candidate

for many deployments, we believe that finding an effective

metric derived from the individual statistics we suggested serves

as an interesting research problem.

Given that one of the advantages of RL methods is the ability

to handle non-stationary problems, it is important to propose

and test sensible simulations or captures of evolving networks.

While it is known that DDoS attack strategies evolve in real

time [49], evaluation is difficult at present since no works

detail what patterns such evolution might take. Regardless,

these scenarios present ideal circumstances to apply adaptive

exploration [50], changepoint detection, or intelligent sampling

methods to judge which flows are most worthy of consideration.

For estimating when to explore, we believe that the intersection

of signal processing and RL is as-yet unexplored.

Effective real-world deployment of RL-based defences cannot

assume that switches in a network will support a custom version

of OVS or other arbitrary software, introducing the question

of whether agent training, execution and distribution may be

possible when using programmable data planes [37]. We also

expect it will be fruitful to look into how agents may share

knowledge with one another.

Although we believe that the security landscape for classical

RL models is not identical to that of neural-network based

approaches (particularly with such noisy, volatile, and hard-to-

control data), there is still immense value in determining the

exact capabilities of a sufficiently powerful adversary as the

risk of external control still exists. In particular, we believe that

poisoning attacks and evasion attacks merit close consideration.

We hope it is clear that reinforcement learning holds promise

and can inspire further innovation. It allows us to offer

distinct advantages above existing works, such as protocol-

agnostic DDoS flow detection, flexible deployment, and

automatically learned low-overhead decision-making—without

requiring many of the network resources or capabilities that

other techniques rely upon. It’s hoped that more research in

this direction will open the door to works which respect the

complexity of the network; evolving topologies, natural change

in traffic and protocol distributions, and the mutation of attacks.
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[32] L. Krämer et al., ‘Amppot: Monitoring and defending against

amplification ddos attacks’, in Research in Attacks, Intrusions, and

Defenses - 18th International Symposium, RAID 2015, Kyoto, Japan,

November 2-4, 2015, Proceedings, vol. 9404, 2015, pp. 615–636.
[33] Ryu. (2018). Ryu SDN framework, [Online]. Available: https :

//osrg.github.io/ryu/ (visited on 12/10/2018).
[34] (2014). Cisco event response: Network time protocol amplification

distributed denial of service attacks, [Online]. Available: https://www.
cisco.com/c/en/us/about/security-center/event-response/network-time-
protocol-amplification-ddos.html (visited on 23/09/2019).

[35] D. K. Y. Yau et al., ‘Defending against distributed denial-of-service
attacks with max-min fair server-centric router throttles’, IEEE/ACM

Trans. Netw., vol. 13, no. 1, pp. 29–42, 2005.
[36] M. Al-Fares et al., ‘A scalable, commodity data center network

architecture’, in Proceedings of the ACM SIGCOMM 2008 Conference

on Applications, Technologies, Architectures, and Protocols for

Computer Communications, Seattle, WA, USA, August 17-22, 2008,
2008, pp. 63–74.

[37] S. Jouet and D. P. Pezaros, ‘Bpfabric: Data plane programmability for
software defined networks’, in ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, ANCS 2017, Beijing,

China, May 18-19, 2017, 2017, pp. 38–48.
[38] X. N. Nguyen et al., ‘Rules placement problem in openflow networks:

A survey’, IEEE Communications Surveys and Tutorials, vol. 18, no. 2,
pp. 1273–1286, 2016.

[39] R. Pan et al., ‘Approximate fairness through differential dropping’,
Computer Communication Review, vol. 33, no. 2, pp. 23–39, 2003.

[40] S. Ramanathan et al., ‘SENSS against volumetric ddos attacks’,
in Proceedings of the 34th Annual Computer Security Applications

Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018,
2018, pp. 266–277.

[41] R. Braga et al., ‘Lightweight ddos flooding attack detection using
nox/openflow’, in The 35th Annual IEEE Conference on Local Com-

puter Networks, LCN 2010, 10-14 October 2010, Denver, Colorado,

USA, Proceedings, 2010, pp. 408–415.
[42] J. M. Smith and M. Schuchard, ‘Routing around congestion: Defeating

ddos attacks and adverse network conditions via reactive BGP
routing’, in 2018 IEEE Symposium on Security and Privacy, SP 2018,

Proceedings, 21-23 May 2018, San Francisco, California, USA, 2018,
pp. 599–617.

[43] S. Shamshirband et al., ‘Anomaly detection using fuzzy q-learning
algorithm’, Acta Polytechnica Hungarica, vol. 11, no. 8, pp. 5–28,
2014.

[44] A. Servin and D. Kudenko, ‘Multi-agent reinforcement learning for
intrusion detection: A case study and evaluation’, in Multiagent System

Technologies, 6th German Conference, MATES 2008, Kaiserslautern,

Germany, September 23-26, 2008. Proceedings, vol. 5244, 2008,
pp. 159–170.

[45] X. Xu et al., ‘Defending ddos attacks using hidden markov models
and cooperative reinforcement learning’, in Intelligence and Security

Informatics, Pacific Asia Workshop, PAISI 2007, Chengdu, China,

April 11-12, 2007, Proceedings, vol. 4430, 2007, pp. 196–207.
[46] A. Valadarsky et al., ‘Learning to route’, in Proceedings of the 16th

ACM Workshop on Hot Topics in Networks, Palo Alto, CA, USA,

HotNets 2017, November 30 - December 01, 2017, 2017, pp. 185–191.
[47] H. Mao et al., ‘Resource management with deep reinforcement

learning’, in Proceedings of the 15th ACM Workshop on Hot Topics

in Networks, HotNets 2016, Atlanta, GA, USA, November 9-10, 2016,
2016, pp. 50–56.

[48] H. Mao et al., ‘Neural adaptive video streaming with pensieve’, in
Proceedings of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA,

August 21-25, 2017, 2017, pp. 197–210.
[49] M. S. Kang et al., ‘Defending against evolving ddos attacks: A case

study using link flooding incidents’, in Security Protocols XXIV -

24th International Workshop, Brno, Czech Republic, April 7-8, 2016,

Revised Selected Papers, vol. 10368, 2016, pp. 47–57.
[50] M. Tokic and G. Palm, ‘Gradient algorithms for explora-

tion/exploitation trade-offs: Global and local variants’, in Artificial

Neural Networks in Pattern Recognition - 5th INNS IAPR TC 3

GIRPR Workshop, ANNPR 2012, Trento, Italy, September 17-19, 2012.

Proceedings, vol. 7477, 2012, pp. 60–71.

Kyle A. Simpson received the MSci degree in
computing science from the University of Glasgow in
2017. He is currently a PhD student within the Net-
worked Systems Research Laboratory at the School
of Computing Science, University of Glasgow. His
research focusses on the use of machine learning and
reinforcement learning techniques in cybersecurity
and network management, with a core interest in
evolving problems and defences.

Simon Rogers is a senior lecturer in the School
of Computing Science, University of Glasgow. He
received his PhD from the department of Engineering
mathematics at the University of Bristol in 2005 and
has been a permanent member of academic staff at
the University of Glasgow since 2009. His work
focuses on the development of machine learning and
statistical methods for the analysis of complex data,
particularly within the field of computational biology.

Dimitrios P. Pezaros (S’01–M’04–SM’14) received
the B.Sc. and Ph.D. degrees in Computer Science
from Lancaster University. He is currently (full)
Professor and the founding director of the Networked
Systems Research Laboratory at the School of Com-
puting Science, University of Glasgow. He is also
a visiting Professor at the University of Athens,
Department of Informatics and Telecommunications.
Professor Pezaros has published widely in the areas
of computer communications, network and service
management, and resilience of future networked

infrastructures, and has received significant funding for his research from
public funding agencies and the industry. He is a Chartered Engineer, and a
senior member of the IEEE and the ACM.

https://arxiv.org/abs/1702.02284
https://arxiv.org/abs/1902.09062
https://www.openvswitch.org/
https://doi.org/10.17487/RFC8312
https://rfc-editor.org/rfc/rfc8312.txt
https://rfc-editor.org/rfc/rfc8312.txt
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html

	Cover Sheet (AFV)
	205890
	Introduction
	Contributions

	Background and Threat Model
	Distributed Denial of Service
	Reinforcement Learning
	Motivation
	Threat Model

	DDoS Mitigation with Per-flow Reinforcement Learning
	System Design and Assumptions
	Algorithm
	Action rate
	Per-tile updates
	Decision narrowings

	Feature Space
	Reward Function
	Action Space
	Instant control
	Guarded control
	Risks

	Systems Considerations

	Rethinking the State Space
	Traffic Modelling
	Network Design
	TCP (HTTP) Traffic Model
	UDP (Opus/VoIP) Traffic Model
	Attack Traffic Model

	Evaluation
	Single Destination
	Multiple Destinations
	Parameters

	Results
	Congestion-unaware traffic
	Congestion-aware traffic
	Increased Attack Volume
	Computational Cost

	Discussion
	Related Work
	Conclusions and Future Work
	Biographies
	Kyle A. Simpson
	Simon Rogers
	Dimitrios P. Pezaros



