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Abstract

This paper considers a realistic problem in person re-

identification (re-ID) task, i.e., partial re-ID. Under par-

tial re-ID scenario, the images may contain a partial ob-

servation of a pedestrian. If we directly compare a par-

tial pedestrian image with a holistic one, the extreme spa-

tial misalignment significantly compromises the discrimi-

native ability of the learned representation. We propose

a Visibility-aware Part Model (VPM), which learns to per-

ceive the visibility of regions through self-supervision. The

visibility awareness allows VPM to extract region-level fea-

tures and compare two images with focus on their shared

regions (which are visible on both images). VPM gains

two-fold benefit toward higher accuracy for partial re-ID.

On the one hand, compared with learning a global fea-

ture, VPM learns region-level features and benefits from

fine-grained information. On the other hand, with visibility

awareness, VPM is capable to estimate the shared regions

between two images and thus suppresses the spatial mis-

alignment. Experimental results confirm that our method

significantly improves the learned representation and the

achieved accuracy is on par with the state of the art.

1. Introduction

Person re-identification (re-ID) aims to spot the appear-

ances of same person in different observations by com-

paring the query image with the gallery images (i.e., the

database). In spite that the re-ID research community has

achieved significant progress during the past few years, re-

ID systems are still faced with a series of realistic difficul-

ties. A prominent challenge is the partial re-ID problem

[34, 7, 33, 36], which requires accurate retrieval with partial

observation of the pedestrian. More concretely, in realistic

re-ID systems, a pedestrian may happen to be partially oc-

cluded or be walking out of the field of camera view, and
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Figure 1. Two challenges related to partial-re-ID and our solution

with the proposed VPM. (a) aggravation of spatial misalignment,

(b) distracting noises from unshared regions (the blue region on the

left image) and (c) VPM locates visible regions on a given image

and extracts region-level features. With visibility-awareness, VPM

compares two images by focusing on their shared regions.

the camera fails to capture the holistic pedestrian.

Intuitively, partial re-ID increases the difficulty to make

correct retrieval. Analytically, we find that partial re-

ID raises two more unique challenges, compared with the

holistic person re-ID, as illustrated in Fig. 1.

• First, partial re-ID aggravates the spatial misalignment

between probe and gallery images. Under holistic re-

ID setting, the spatial misalignment mainly originates

from the articulate movement of pedestrian and the

viewpoint variation. Under partial re-ID setting, even

when two pedestrian with same pose are captured from

same viewpoints, there still exists severe spatial mis-

alignment between the two images (Fig. 1 (a)).

• Second, when we directly compare a partial pedestrian

against a holistic one, the unshared body regions in the

holistic pedestrian become distracting noises, rather

393



than discriminative clues. We note that the same sit-

uation also happens when any two compared images

contain different proportion of the holistic pedestrian

(Fig. 1 (b)).

We propose the Visibility-aware Part Model (VPM) for

partial re-ID. VPM avoids or alleviates the two unique dif-

ficulties related to partial re-ID by focusing on their shared

regions, as shown in Fig. 1 (c). More specifically, we first

define a set of regions on the holistic person image. Dur-

ing training, given partial pedestrian images, VPM learns to

locate all the pre-defined regions on convolutional feature

maps. After locating each region, VPM perceives which re-

gions are visible and learns region-level features. During

testing, given two images to be compared, VPM first cal-

culates the local distances between their shared regions and

then concludes the overall distance.

VPM gains two-fold benefit toward higher accuracy for

partial re-ID. On the one hand, compared with learning a

global feature, VPM learns region-level features and thus

benefits from fine-grained information, which is similar to

the situation in holistic person re-ID [23, 12]. On the other

hand, with visibility-awareness, VPM is capable to estimate

the shared regions between two images and thus suppresses

the spatial misalignment as well as the noises originated

from unshared regions. Experimental results confirm that

VPM achieves significant improvement on partial re-ID ac-

curacy, compared with a global feature learning baseline

[32], as well as a strong part-based convolutional baseline

[23]. The achieved performance are on par with the state of

the art.

Moreover, VPM is featured for employing self-

supervision for learning the region visibility awareness. We

randomly crop partial pedestrian images from the holistic

ones and automatically generate region labels, yielding the

so-called self-supervision. Self-supervision enables VPM

to learn locating pre-defined regions. It also helps VPM to

focus on visible regions during feature learning, which is

critical to the discriminative ability of the learned features,

as to be accessed in Section 4.4.

The main contributions of this paper are summarized as

follows:

• We propose a visibility-aware part model (VPM) for

partial re-ID task. VPM learns to locate the visible re-

gions on pedestrian images through self-supervision.

Given two images to be compared, VPM conducts

a region-to-region comparison within their shared re-

gions, and thus significantly suppresses the spatial mis-

alignment as well as the distracting noises originated

from unshared regions.

• We conduct extensive partial re-ID experiments on

both synthetic datasets and realistic datasets and val-

idate the effectiveness of VPM. On two realistic

dataset, Partial-iLIDs and Partial-ReID, VPM achieves

performance on par with the state of the art. So far as

we know, few previous works on partial re-ID reported

the performance on synthetic large-scale datasets e.g.,

Market-1501 or DukeMTMC-ReID. We experimen-

tally validate that VPM can be easily scaled up to

large-scale (synthetic) partial re-ID datasets, due to its

fast matching capacity.

2. Related Works

2.1. Deeply­learned part features for re­ID

Deep learning methods currently dominate the re-ID re-

search community with significant superiority on retrieval

accuracy [32]. Recent works [23, 12, 26, 29, 22, 28, 16]

further advance the state of the art on holistic person re-ID,

through learning part-level deep features. For example, Wei

et al. [26], Kalayeh et al. [12] and Sun et al. [23] extract

several region parts, with pose estimation [17, 27, 10, 18, 1],

human parsing [2, 5] and uniform partitioning, respectively.

Then they learn a respective feature for each part and as-

semble the part-level features to form the final descriptor.

These progresses motivate us to extend learning part-level

features to the specified problem of partial re-ID.

However, learning part-level features does not naturally

improve partial re-ID. We find that PCB [23], which main-

tains the latest state of the art on holistic person re-ID, en-

counters a substantial performance decrease when applied

in partial re-ID scenario. The achieved retrieval accuracy

even drops below the global feature learning baseline (to be

accessed in Sec. 4.2). Arguably, it is because part mod-

els rely on precisely locating each part and are inherently

more sensitive to the severe spatial misalignment problem

in partial re-ID.

Our method is similar to PCB in that both methods per-

form uniform division instead of semantic body parts for

part extraction. Moreover, similar to SPReID [12], our

method also uses probability maps to extract each part dur-

ing inference. However, while SPReID requires an extra

human parser and human parsing dataset (strong supervi-

sion) for learning part extraction, our method relies on self-

supervision. During matching stage, both PCB and SPReID

adopt the common strategy of concatenating part features.

In contrast, VPM first measures the region-to-region dis-

tance and then conclude the overall distance by dynamically

crediting the local distances with high visibility confidence.

2.2. Self­supervised learning

Self-supervision learning is a specified unsupervised

learning approach. It explores the visual information to au-

tomatically generate surrogate supervision signal for feature

learning [19, 25, 13, 3, 14]. Larsson et al. [13] train the deep

model to predict per-pixel color histograms and consequen-
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Figure 2. The structure of VPM. We first define p = m×n (3×1 in the figure for instance) densely aligned rectangle regions on the holistic

pedestrian. VPM resizes a partial pedestrian image to fixed size, inputs it into a stack of convolutional layers (“conv”) and transforms it

into a 3D tensor T . Upon T , VPM appends a region locator to discover each regions through pixel-wise classification. By predicting

a probability of belonging to each region for every pixel g, the region locator generates p probability maps to infer the location of each

region. It also generates p visibility scores through “
∑

” operation over each probability map. Given the predicted probability maps, the

feature extractor extracts a respective feature for each pre-defined region through weighted pooling (“WP”). VPM, as a whole, outputs p

region-level features and p visibility scores for inference.

tially facilitate automatic colorization. Doersch et al. [3]

and Noroozi et al. [19] propose to predict the relative posi-

tion of image patches. Gidaris et al. train the deep model to

recognize the rotation applied to original images.

Self-supervision is an elemental tool in our work. We

employ self-supervision to learn visibility awareness. VPM

is especially close to [3] and [19] in that all the three meth-

ods employ the position information of patches for self-

supervision. However, VPM significantly differs from them

in the following aspects.

Self-supervision signal. [3] randomly samples a patch

and one of its eight possible neighbors, and then trains the

deep model to recognize the spatial configuration. Simi-

larly, [19] encodes the neighborhood relationship into a jig-

saw puzzle. Different from [3] and [19], VPM does not

explore the spatial relationship between multiple images or

patches. VPM pre-defines a division on the holistic pedes-

trian image and then assigns an independent label to each

region. Then VPM learns to directly predict which regions

are visible on a partial pedestrian image, without comparing

it against the holistic one.

Usage of the self-supervision. Both [3] and [19] trans-

fer the model trained through self-supervision to the object

detection or classification task. In comparison, VPM uti-

lizes self-supervision in a more explicit manner: with the

visibility awareness gained from self-supervision, VPM de-

cides which regions to focus when comparing two images.

3. Proposed Method

3.1. Structure of VPM

VPM is designed as a fully convolutional network, as

illustrated in Fig. 2. It takes a pedestrian image as the input

and outputs a constant number of region-level features, as

well as a set of visibility scores indicating which regions

are visible on the input image.

We first define p = m × n densely aligned rectangle

regions on the holistic pedestrian image through uniform

division. Given a partial pedestrian image, we resize it to a

fixed size, i.e., H × W and input it into VPM. Through a

stack of convolutional layers (“conv” in Fig. 2, which uses

all the convolutional layers in ResNet-50 [6]), VPM trans-

fers the input image into a 3D tensor T . The size of T is

c × h × w (which are the number of channels, height and

width, respectively), and we view the c − dim vector g as

a pixel on T . On tensor T , VPM appends a region locator

and a region feature extractor. The region locator discov-

ers regions on tensor T . Then the region feature extractor

generates a respective feature for each region.

A region locator perceives which regions are visible and

predicts their locations on tensor T . To this end, the region

locator employs a 1× 1 convolutional layer and a following

Softmax function to classify each pixel g on T into the pre-

defined regions, which in formulated by,

P (Ri|g) = softmax(WT g) =
expWT

i g
p∑

j=1

expWT
j g

, (1)

where P (Ri|g) is the predicted probability of g belonging

to Ri, W is the learnable weight matrix of the 1× 1 convo-
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lutional layer, p is the total number of pre-defined regions.

By sliding over every pixel g on T , the region loca-

tor predicts g as belonging to all the pre-defined regions

with corresponding probabilities, and thus gets p probabil-

ity maps (one h×w map for each region), as shown in Fig.

2. Each probability map indicates the location of a corre-

sponding region on T , which allows region feature extrac-

tion.

The region locator also predicts the visibility score C for

each region, by accumulating P (Ri|g) over all the g on T ,

which is formulated by,

Ci =
∑

f∈T

P (Ri|g), (2)

Eq. 2 is natural in that if considerable pixels on T be-

longs to Ri (with large probability), it indicates that Ri is

visible on the input image and is assigned with a relatively

large Ci. In contrast, if a region is actually invisible, the re-

gion locator will still return a probability map (with all the

values approximating 0). In this case, Ci will be very small,

indicating possibly-invisible region. The visibility score is

important for calculating the distance between two images,

as to be detailed in Section 3.2.

A region feature extractor generates a respective fea-

ture f for a region by weighted pooling, which is formulated

by,

fi =

∑
g∈T

P (Ri|g)g

Ci

, ∀i ∈ {1, 2, · · · , p}, (3)

where the division of Ci is to maintain the norm invariance

against the size of the region.

The region locator returns a probability map for each re-

gion, even if the region is actually invisible on the input

image. Correspondingly, we can see from Eq. 3 that the re-

gion feature extractor always generates a constant number

(i.e., p) of region features for any input image.

3.2. Employing VPM

Given two images to be compared, i.e., Ik and I l, VPM

extracts their region features and predicts the region vis-

ibility scores through Eq. 3 and Eq. 2, respectively.

With region features and region visibility scores {fk
i , C

k
i }

, {f l
i , C

l
i}, VPM first calculates region-to-region euclidean

distances Dkl
i = ‖fk

i − f l
i‖(i = 1, 2, · · · , p). Then VPM

concludes the overall distance from the local distances by,

Dkl =

p∑
i=1

Ck
i C

l
iD

kl
i

p∑
i=1

Ck
i C

l
i

. (4)

In Eq. 4, the visible regions are with relative large vis-

ibility scores. The local distances between shared regions

are highly credited by VPM and thus dominate the overall

distance Dkl. In contrast, if a region is invisible in any one

of the compared images, its region feature is considered as

unreliable and the corresponding local distance contributes

little to Dkl.

Employing VPM adds very light computational cost,

compared with popular part-based deep learning methods

[23, 29, 12]. While some prior partial re-ID methods re-

quire pairwise comparison before feature extraction and

may have efficiency problems, VPM presents high scalabil-

ity, which allows experiments on large re-ID datasets such

as Market-1501 [31] and DukeMTMC-reID [35], as to be

accessed in Section 4.2.

3.3. Training VPM

Training VPM consists of training the region locator and

training the region feature extractor. The region locator and

the region feature extractor share the convolutional layers

before tensor T , and are trained end to end in a multi-task

training manner. Training VPM is also featured for employ-

ing auxiliary self-supervision.

Self-supervision is critical to VPM. It supervises VPM

to learn region visibility awareness, as well as to focus on

visible regions during feature learning. Specifically, given a

holistic pedestrian image, we randomly crop a patch and re-

size it to H ×W . The random crop operation excludes sev-

eral pre-defined regions and the remaining regions are re-

shaped during the resizing. Then, we project the regions on

the input image to tensor T through ROI projection [11, 20].

To be concrete, let us assume a region with its up-left cor-

ner located at (x1, y1) and its bottom-right corner located

at (x2, y2) on the input image. Then the ROI projection

defines a corresponding region on tensor T with its up-left

corner located at ([x1/S] , [y1/S]) and its right-bottom cor-

ner located at ([x2/S] , [y2/S]), in which the [•] denotes the

rounding and S is the down-sampling rate from input image

to T . Finally, we assign every pixel g on T with a region

label L(L ∈ 1, 2, · · · , p) to indicate which region g belongs

to. We also record all the visible regions in a set V . As we

will see, self-supervision contributes to training VPM in the

following three aspects:

• First, self-supervision generates the ground truth of re-

gion labels for training the region locator.

• Second, self-supervision enables VPM to focus on vis-

ible regions when learning feature through classifica-

tion loss (cross-entropy loss).

• Finally, self-supervision enables VPM to focus on the

shared regions when learning features through triplet

loss.

Without the auxiliary self-supervision, VPM encounters
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Figure 3. VPM learns region-level features with auxiliary self-

supervision. Only features corresponding to visible regions con-

tribute to the cross-entropy loss. Only features corresponding to

shared regions contribute to the deducing of triplet loss.

dramatic performance decrease, as to be accessed in Section

4.4.

The region locator is trained through cross-entropy loss

with the self-supervision signal L as the ground truth, which

is formulated by,

LR = −
∑

g∈T

✶i=Llog(P (Ri|g)), (5)

where ✶Ri=L returns 1 only when i equals the ground truth

region label L and returns 0 in any other cases.

The region feature extractor is trained with the combi-

nation of cross-entropy loss and triplet loss, as illustrated in

3. Recall that the region feature extractor always generates

p region features for any input image. It leads to a nontrivial

problem during feature learning: only features of visible re-

gions should be allowed to contribute to the training losses.

With self-supervision signals V , we dynamically select the

visible regions for feature learning.

The cross-entropy loss is commonly used in learning fea-

tures for pedestrian under the IDE [30] mode. We append

a respective identity classifier i.e., IPi(fi)(i = 1, 2, · · · , p)
upon each region feature fi, to predict the identity of train-

ing images. The identity classifier consists of two sequen-

tial fully-connected layers and a Softmax function. The first

fully-connected layers reduces the dimension of the input

region feature, and the second one transforms the feature di-

mension to K (K is the total identities of training images).

Then the cross-entropy loss is formulated by,

LID = −
∑

i∈V

✶k=ylog(softmax(IPi(fi))), (6)

where k is the predicted identity and y is the ground truth

label. With Eq. 6, self-supervision enforces focus on visible

regions for learning region features through cross-entropy

loss.

The triplet loss pushes the features from a same pedes-

trian close to each other and pulls the features from differ-

ent pedestrians far away. Given a triplet of images, i.e., an

anchor image Ia, a positive image Ip and a negative image

In, we define a region-selective triplet loss derived from the

canonical one by,

Ltri = [Dap −Dan + α]+ ,

Dap =

∑
i∈(V a∩V p)

‖fa
i − fp

i ‖

|V a ∩ V p|
,

Dan =

∑
i∈(V a∩V n)

‖fa
i − fn

i ‖

|V a ∩ V n|
,

(7)

where fa
i , fp

i and fn
i are the region features from anchor

image, positive image and negative image, respectively. V a,

V p and V n are the visible region sets for anchor image, pos-

itive image and negative image, respectively. |•| denotes the

operation of counting the elements of a set, i.e., the number

of shared regions in the two compared images. α is the mar-

gin for training triplet, and is set to 1 in our implementation.

With Eq. 7, self-supervision enforces focus on the shared

regions when calculating the distances of two images.

The overall training loss is the sum of region prediction

loss, the identity classification loss and the region-selective

triplet loss, which is formulated by,

L = LR + LID + Ltri (8)

We also note that Eq. 4 and Eq. 7 share a similar pattern.

Training with the modified triplet loss (Eq. 7) mimics the

matching strategy (Eq. 4) and is thus specially beneficial

(to be detailed in Table 3). The difference is that, during

training, the focus is enforced through “hard” visibility la-

bels, while during testing, the focus is regularized through

predicted “soft” visibility scores.

4. Experiment

4.1. Settings

Datasets. We use four datasets, i.e., Market-1501

[31], DukeMTMC-reID [21, 35], Partial-REID and Partial-

iLIDS, to evaluate our method. Market-1501 and

DukeMTMC-reID are two large scale holistic re-ID dataset.

The Market-1501 dataset contains 1,501 identities ob-

served from 6 camera viewpoints, 19,732 gallery images

and 12,936 training images detected by DPM [4]. The

DukeMTMC-reID dataset contains 1,404 identities, 16,522

training images, 2,228 queries, and 17,661 gallery im-

ages. We crop certain patches from the query images dur-

ing testing stage to imitate the partial re-ID scenario and

get a comprehensive evaluation of our method on large-

scale (synthetic) partial re-ID datasets. We note that few

prior works on partial re-ID evaluated their methods on

large-scale dataset, mainly because of low computing ef-

ficiency. Partial-REID [34] and Partial-iLIDS [33] are
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Dataset γ
baseline PCB VPM

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

0.5 64.5 82.2 88.1 44.4 0.9 3.2 5.6 1.7 70.9 86.5 92.1 48.8

0.6 79.0 91.4 94.3 57.9 8.1 16.5 23.2 6.6 84.4 94.3 96.1 62.5

Market-1501 0.7 83.9 93.9 95.9 63.7 36.5 58.9 67.4 26.8 88.2 95.8 97.2 71.7

0.8 85.7 94.3 96.4 66.1 71.9 87.3 91.4 56.8 90.1 95.8 97.7 74.7

0.9 87.1 95.5 97.4 67.8 88.8 95.8 97.1 77.2 91.7 96.6 98.0 78.7

1.0 86.8 95.3 97.4 67.7 93.4 97.8 98.4 83.0 93.0 97.8 98.8 80.8

0.5 65.0 81.1 86.7 47.2 5.0 10.1 13.6 4.0 69.5 83.1 87.9 52.2

0.6 76.2 87.3 90.4 55.4 13.1 25.6 33.5 10.5 78.2 89.0 91.3 60.9

DukeMTMC-reID 0.7 76.3 87.3 90.6 90.6 35.9 57.0 65.4 28.4 80.3 89.5 92.0 63.1

0.8 76.3 88.3 91.9 58.8 64.0 82.6 87.7 52.3 80.3 89.3 92.4 63.5

0.9 77.0 88.1 91.7 59.0 81.6 90.4 93.0 70.3 81.7 90.9 93.1 70.7

1.0 76.2 87.3 91.2 58.6 84.1 92.4 94.5 73.2 83.6 91.7 94.2 72.6
Table 1. Comparison between VPM, baseline and PCB. For VPM, we use p = 6 × 1 pre-defined regions. For PCB, we adopt the code

released by the authors and append an extra triplet loss, for fair comparison with VPM. On Market-1501, the extra triplet loss enables PCB

to gain +5.6% mAP over the original 77.4% reported by the authors [23].

two commonly-used datasets for partial re-ID. Partial-REID

contains 600 images and 60 identities, every one of which

has 5 holistic images and 5 partial images. Partial-iLIDS

is derived from iLIDS [24], which is collected in an airport

and the lower-body of a pedestrian is frequently occluded

by the luggage. Partial-iLIDS crops the non-occluded re-

gion from these images and get 238 images from 119 identi-

ties. Both Partial-REID and Partial-iLIDS offer only testing

images. When evaluating our method on these two public

datasets, we train VPM on the training set of Market-1501,

for fair comparison with other competitive methods, includ-

ing MTRC [15], AMC+SWM [34], DSR [7], and SFR [8].

Implementation Details. Training VPM relies on the

assumption that the original training images all contain

holistic pedestrian and the pedestrian are tightly bounded

by bounding boxes. On two holistic re-ID datasets, Market-

1501 and DukeMTMC-reID, there do exist some images

which contain either partial pedestrian or oversized bound-

ing boxes. We consider these images as tolerable noises.

To generate the partial image for training VPM, we crop

a patch from the holistic image with random area ratio γ.

We set γ to be uniformly distributed between 0.5 and 1.

VPM is not necessarily bounded with any specified crop

strategy and we may consider the prior knowledge for op-

timization. We argue that choosing the detailed crop strat-

egy according to the realistic condition is reasonable be-

cause partial re-ID is a realistic challenge, and the occlusion

fashion is usually predictable. We also experimentally val-

idate that choosing an appropriate crop strategy to imitate

the confronted partial re-ID condition benefits the retrieval

accuracy, as to be detailed in Section 4.3. That being said,

VPM is still general in that it may adopt any crop strategy

to conduct self-supervision.

VPM is trained with the combination of cross-entropy

loss and triplet loss. We use the standard Stochastic Gra-

dient Descent (SGD) optimization strategy, initialize the

learning rate as 0.1 and decay it to 0.01 after 30 epochs. We

construct each mini-batch with 64 images from 8 identities

(8 images per identity) and use the hard mining strategy [9]

for deducing the triplet loss.

4.2. Evaluation on large­scale partial re­ID datasets

We evaluate the effectiveness of VPM with experiment

on the synthetic partial datasets derived from two large-

scale re-ID datasets, Market-1501 and DukeMTMC-reID.

We differ the ratio γ of the cropped patches from 0.5 to 1.0

during testing. For comparison with VPM, we implement a

baseline which learns global feature through the combina-

tion of cross-entropy loss and triplet loss. We also imple-

ment a part-based feature learning method PCB [23]. For

fair comparison, we enhance PCB with an extra triplet loss

during training, and achieve slightly higher performance

than [23]. The results are summarized in Table 1.

VPM significantly improves partial re-ID perfor-

mance over the baseline. On Market-1501, VPM sur-

passes the baseline by +6.4%, +5.4%, +4.3%, +4.4%,

+4.6%, +6.2% rank-1 accuracy and +4.4%, +4.6%, +8.0%,

+ 8.6%, +10.9%, +13.1% mAP when γ is set from 0.5 to 1,

respectively. The superiority of VPM against the baseline,

which learns a global feature representation, is derived from

two-fold benefit. On the one hand, VPM learns region-level

features and benefits from fine-grained information. On

the other hand, with visibility awareness, VPM conducts a

region-level alignment and eliminates the distracting noises

originated from unshared regions.

VPM increases the robustness of part features un-

der partial re-ID scenario. Comparing VPM with PCB,

a state-of-the-art part feature learning method for holistic
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Figure 4. Impact of p on the partial-reID accuracy. We set p to

2,3,4,6 and 8, respectively. We use Market-1501 for training and

differ the crop ratio γ during testing.

person re-ID task, we observe that as γ decreases, the re-

trieval accuracy achieved by PCB dramatically drops (e.g.,

0.9% rank-1 accuracy at γ = 0.5 ), implying that PCB

is extremely vulnerable to the spatial misalignment in par-

tial re-ID. By contrast, the retrieval accuracy achieved by

VPM decreases much slower as γ decreases. We infer that

VPM facilitates region-to-region comparison within shared

regions of two images and thus gains strong robustness.

We also notice that under γ = 1.0, i.e., the holistic per-

son re-ID scenario, VPM achieves comparable retrieval ac-

curacy with PCB.

In Table 1, we use 6 pre-defined parts to construct VPM.

Moreover, we analyze the impact of the part numbers p on

Market-1501, with results shown in Fig. 4. Under all set-

tings of p and γ, VPM consistently surpasses the baseline,

which further confirms the superiority of VPM. We also ob-

serve that larger p generally brings higher (rank-1) retrieval

accuracy. Larger p allows VPM to learn the region-level

features in finer granularity and thus benefits the discrim-

inative ability, which is consistent with the observation in

holistic person re-ID works [29, 23]. Larger p also allows

more accurate region alignment when comparing a partial

person image against a holistic one. We suggest choosing p
with the joint consideration of retrieval accuracy and com-

puting efficiency, and set p = 6 in most of our experiments

(if not specially mentioned).

4.3. Comparison with the state of the art

We compare VPM with the state-of-the-art methods on

two public datasets, i.e., Partial-REID and Partial-iLIDS.

We train three different versions of VPM with different crop

strategies for preparing training patches, i.e., top crop (the

top regions are always visible), bottom crop (the bottom re-

gions are always visible) and bilateral crop (top crop + bot-

tom crop). The results are presented in Table 2, from which

Methods
Partial-REID Partial-iLIDS

R-1 R-3 R-1 R-3

MTRC [15] 23.7 27.3 17.7 26.1

AMC+SWM [34] 37.3 46.0 21.0 32.8

DSR [7] 50.7 70.0 58.8 67.2

SFR [8] 56.9 78.5 63.9 74.8

VPM (Bottom) 53.2 73.2 53.6 62.3

VPM (Top) 64.3 83.6 67.2 76.5

VPM (Bilateral) 67.7 81.9 65.5 74.8
Table 2. Evaluation of VPM on Partial-REID and Partial-iLIDS.

Three VPMs trained with different crop strategies are evaluated.

two observations are drawn.

First, comparing three editions of VPM against each

other, we find that the crop strategy matters to VPM. On

Partial-iLIDS, all query images of which are cropped from

the top side of holistic pedestrian images, VPM (Top)

achieves the highest retrieval accuracy. On Partial-REID,

which contains images cropped from different directions,

VPM (Bilateral) achieves the highest retrieval accuracy.

VPM (Bottom) always performs the worst due to two rea-

sons. First, retaining the bottom regions severely deviates

from the testing condition. Second, the bottom regions

(mainly containing legs) inherently offers relatively weak

discriminative clues. We note that when solving the prob-

lem of partial-reID, the realistic partial condition is usually

estimable. We recommend analyzing the partial condition

and choosing a similar crop strategy for training VPM. That

being said, VPM is general in that it is able to cooperate

with various crop strategies.

Second, given appropriate crop strategies, VPM achieves

very competitive performance compared with the state of

the art. On Partial-REID, VPM (Bilateral) surpasses the

strongest competing method SFR by +10.6% Rank-1 ac-

curacy. On Partial-iLIDS, VPM (Top) surpasses SFR by

+3.3% Rank-1 accuracy. Even with no prior knowledge of

partial condition on testing set, we may eclectically choose

VPM (Bilateral), which considers both top and down occlu-

sions and thus maintains stronger robustness.

4.4. The importance of self­supervision

We conduct ablation study to analyze the impact of self-

supervision on VPM. We train four Malfunctioned VPM for

comparison:

• MVPM-1 is trained as a normal VPM, but abandons

the visibility awareness during testing, i.e., MVPM-

1 concludes the overall distance with all region-level

features, even if some regions are invisible.

• MVPM-2 abandons self-supervision on triplet loss

during training, i.e., all region features equally con-

tribute to deducing the triplet loss Ltri.

399



Methods
Partial-iLIDS Market-1501

R-1 R-3 R-5 R-1 R-5 mAP

VPM. 67.2 76.5 82.4 93.0 97.8 80.8

VPM (no triplet) 57.1 73.9 79.0 91.3 97.0 77.8

MVPM-1 63.0 74.8 82.4 93.0 96.3 79.7

MVPM-2 61.3 73.1 79.0 92.8 97.4 80.1

MVPM-3 58.8 74.8 82.4 91.4 96.5 75.5

MVPM-4 59.7 74.8 78.2 90.4 96.6 75.7
Table 3. Ablation study on VPM. “VPM (no triplet)” is trained

with no triplet loss. On Market-1501, we only analyze the holistic

person re-ID mode.

• MVPM-3 abandons self-supervision on identification

loss LID during training, i.e., all region features are

supervised by the training identity label through LID.

• MVPM-4 abandons self-supervision on both triplet

loss and identification loss.

Moreover, we also analyze the impact of the modified

triplet loss with dynamic region selection (Eq. 7) in training

VPM. The results are summarized in Table 3, from which

we draw three observations.

First, comparing “VPM (no triplet)” with “VPM”, we

find the modified triplet loss with dynamic region selec-

tion is vital for VPM, especially under partial re-ID sce-

nario. Without triplet loss, the rank-1 accuracy slightly

decreases by -1.7% on (holistic) Market-1501, while on

Partial-iLIDS, the rank-1 accuracy dramatically decreases

by -10.1%. It is because training with the modified triplet

loss mimics the matching strategy (Eq. 4) for partial re-ID

and is thus especially important.

Second, comparing “MVPM-1” with “VPM”, we ob-

serve a dramatic performance decrease on Partial-iLIDS.

Both models are trained in exactly the same procedure. The

difference is that “MPVM-1” employs all the region fea-

tures to conclude the overall distance, while VPM focuses

on the shared regions between two images. On Market-

1501, all the regions are visible and two models achieves

very close retrieval accuracy. We thus infer that the visibil-

ity awareness is critical for VPM under partial re-ID sce-

nario.

Third, comparing last three editions of MVPM with

“VPM” as well as “MVPM-1”, we observe further per-

formance decreases on Partial-iLIDS. The last three edi-

tions abandon self-supervision to regularize the learning of

region-level features (either on the cross-entropy loss or

triplet loss or both). Learning features from invisible re-

gions brings about larger sample noises. Consequentially,

the learned region features are significantly compromised.

We thus conclude that enforcing VPM to focus on visible

regions through self-supervision is critical for learning re-

gion features.

Figure 5. Region visualization. We train VPM with 3 × 2 pre-

defined regions. For each image, VPM discovers 6 regions with

6 probability maps, as detailed in Section 3.1. For better visual-

ization, we assign each pixel to its closest region and achieve the

partitioning effect. Images on the first and the second row are from

(synthetic) Market-1501 and Partial-REID, respectively.

4.5. Visualization of discovered regions

We visualize the regions discovered by VPM (the re-

gion locator, in particular) in Fig. 5. We use p = 3 × 2
pre-defined regions to facilitate both horizontal and verti-

cal visibility awareness. It is observed that VPM conducts

adaptive partition with visibility awareness. Given holis-

tic images (the first column), VPM successfully discovers

all the 3 × 2 regions. Given partial pedestrian images with

horizontal occlusion (the second column), VPM favors the

dominating regions (left regions in Fig. 5). Given partial

pedestrian images with lower-body occluded (the last two

columns), VPM roughly discovers 4 visible regions, and

perceives that the bottom 2 regions are invisible. These ob-

servations confirm that VPM gains robust region-level visi-

bility awareness and is capable to locate the visible regions

through self-supervised learning.

5. Conclusion

In this paper, we propose a region-based feature learn-

ing method, VPM for partial re-ID task. Given a set of

pre-defined regions on the holistic pedestrian image, VPM

learns to perceive which regions are visible on a partial im-

age through self-supervision. VPM locates each region on

the convolutional feature maps and then extracts region-

level features. With visibility awareness, VPM compares

two pedestrian images with focus on their shared regions

and correspondingly suppresses the severe spatial misalign-

ment in partial re-ID. Experimental results confirm that

VPM surpasses both the global feature learning baseline

and part-based convolutional methods, and the achieved

performance is on par with the state of the art.
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