
Perceived audio quality of sounds

degraded by non-linear distortions and

single-ended assessment using HASQI
Kendrick, P, Jackson, IR, Li, FF, Fazenda, BM and Cox, TJ

10.17743/jaes.2015.0068

Title Perceived audio quality of sounds degraded by non-linear distortions and 

single-ended assessment using HASQI

Authors Kendrick, P, Jackson, IR, Li, FF, Fazenda, BM and Cox, TJ

Publication title Journal of the Audio Engineering Society

Publisher Audio Engineering Society (AES)

Type Article

USIR URL This version is available at: http://usir.salford.ac.uk/id/eprint/36821/

Published Date 2015

USIR is a digital collection of the research output of the University of Salford. Where copyright 

permits, full text material held in the repository is made freely available online and can be read, 

downloaded and copied for non-commercial private study or research purposes. Please check the 

manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please

contact the Repository Team at: library-research@salford.ac.uk.

mailto:library-research@salford.ac.uk


Journal of the Audio Engineering Society

Vol. 63, No. 9, September 2015 ( C© 2015)

DOI: http://dx.doi.org/10.17743/jaes.2015.0068
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PAUL KENDRICK, AES Member, IAIN R. JACKSON, FRANCIS F. LI, TREVOR J. COX, AES Member, AND

BRUNO M. FAZENDA, AES Member

Acoustics Research Centre, University of Salford, Salford, M5 4WT UK

For field recordings and user generated content recorded on phones, tablets, and other mobile
devices nonlinear distortions caused by clipping and limiting at pre-amplification stages, and
dynamic range control (DRC) are common causes of poor audio quality. A single-ended
method to detect these distortions and predict perceived degradation in speech, music, and
soundscapes has been developed. This was done by training an ensemble of decision trees.
During training, both clean and distorted audio was available and so the perceived quality
could be gauged using HASQI (Hearing Aid Sound Quality Index). The new single-ended
method can correctly predict HASQI from distorted samples to an accuracy of ±0.19 (95%
confidence interval) using a quality range between 0.0 and 1.0. The method also has potential
for estimating HASQI when other types of degradations are present. Subsequent perceptual
tests validated the method for music and soundscapes. For the average mean opinion score
for perceived audio quality on a scale from 0 to 1, the single ended method could estimate it
within ±0.33.

0 INTRODUCTION

Modern technologies have enabled handy recording de-

vices, large data storage, and diverse outlets of User Gen-

erated Content (UGC). Three hundred hours of video are

uploaded to YouTube every single minute, and along with

other online databases such as freesound.org and sound-

cloud.com, much user generated audio is widely available.

UGC is now used extensively in news broadcasting: on aver-

age, a news agency adopts 11 pieces of UGC daily [1]. This

necessitates a rapid assessment method to determine if the

UGC is broadcast-worthy and so media asset management

systems would benefit from automatically generated audio

quality metadata. Furthermore, if audio problems can be

detected while recording, feedback can be given to the op-

erator of the device and many disappointing end results can

be avoided. A survey of both amateur and expert recordists

[2] found that the four most commonly reported errors

were: background noise (59%), wind noise (46%), han-

dling noise (31%), and other distortions (19%). Wind noise

problems in recordings have been addressed recently by the

authors [3]. Motivated by the need to tackle other recording

errors, this paper develops a method that can predict the

perceived quality of audio contaminated by distortion. Dis-

tortion problems also arise with other audio systems such as

hearing aids, sound reinforcement, and public address sys-

tems, and consequently the method developed has a wider

applicability than just UGC.

Three of the most common objective measures to quan-

tify non-linear distortions are Total Harmonic Distortion

(THD) [4], Inter-Modulation Distortion (IMD) [5], and

Total Difference-Frequency Distortion TDFD [6] [7]. Lee

and Geddes [8] [9] showed that there is a poor correla-

tion between the perceived amount of distortion and the

THD and IMD for a piece of music. They proposed an

alternative measure with improved correlation based on in-

tegrating the 2nd differential of the non-linear amplitude

transfer function. A number of perceptual measures have

been developed to better model the perceived quality af-

ter degradation. These include double-ended methods for

speech [10]–[13] that have been standardized such as Per-

ceptual Evaluation of Speech Quality (PESQ) [14] and the

updated version POLQA [15]. Perceptual Evaluation of

Audio Quality (PEAQ) [16] has also been developed to

assess audio quality. PEAQ and PESQ are primarily used

for assessing quality degradations caused by digital coding,

complex audio processing, or transmission chains [17]. The

Distortion Score (DS) [18], Rnonlin [17], and the Hearing

Aid Sound Quality Index (HASQI) [19] are double-ended

methods able to predict the degradation in quality caused by

overloading of transducers and preamplifiers. Recent stud-

ies have shown that HAQSI generalizes well for normal
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Fig. 1. A block diagram of the proposed method

hearing listeners [20] achieving good accuracy when pre-

dicting mean opinion scores. For music HASQI was found

to be able to predict the perceived degradation in audio qual-

ity due to clipping effectively [21]. HASQI can therefore

be used to assess distortion on transmission channels but

only if both the original and degraded signals are available.

There are many occasions where the undistorted sound

is unknown. UGC is a good example where a single-ended

method is needed working just from the corrupted audio. An

example of a single-ended method is ITU Recommendation

P.563 [22] but this is restricted to narrow band speech.

Maré [23] presented a method to detect clipping in audio

signals using a supervised artificial neural network. The

test set was not sufficiently distinct from the training set,

however, raising doubts about the capability of the method

to generalize to unknown sources.

The new method presented below exploits a different ma-

chine learning regime to map features extracted from the

corrupted audio to predict human perceived quality moni-

tored using HASQI. A broader database of samples is used,

demonstrating the need for more features to achieve gener-

alization.

1 METHOD

A machine learning regime is used to take features ex-

tracted from the distorted audio and predict human per-

ceived quality. Fig. 1 gives an overview of the proposed

method. Speech, music, and soundscape samples were ar-

tificially distorted in a controlled manner using a diverse

range of non-linear processes. The distortion of each sam-

ple was quantified using HASQI to form a teacher value

for the machine learning algorithm that is used during su-

pervised training. Before passing the audio to the machine

learning algorithm it is necessary to reduce the amount of

data, and this is done by extracting key features.

1.1 Database Formation

The machine learning scheme will learn to map from

audio features to HASQI using a large database of training

examples. The inclusion of a sufficient number of cases in

the dataset is vital. The cases need to represent the wide

range of likely audio samples in terms of what might be

recorded and also the distortion likely to be encountered.

1.1.1 Audio Database

Speech, music, and soundscape samples were used to

represent all the most likely sources of recorded audio.

An audio database was collected from a large collection

of CDs, including speech, music of various genres, and

soundscapes counting a range of geophonic, biophonic, and

anthrophonic sound sources. The database contains 404

music files with an average length of 2 minutes 45 seconds,

182 speech files with an average length of 4 minutes 48

seconds, and 469 soundscape clips with an average duration

of 1 minute 48 seconds. At least one 10-second excerpt

was randomly taken from each of these files, resulting in

1500 10-second excerpts for each of speech, music, and

soundscape, with about 500 of each type.

1.1.2 Distorting Samples

To create distortion algorithms to degrade the samples,

it was necessary to better understand common recording

problems and technologies. In microphones and preampli-

fiers, overloading can occur when the signals go beyond a

device’s dynamic range. This causes the peaks in a wave-

form to be clipped generating harmonics of the original

signal. In addition, when the analogue signal exceeds the

dynamic range of an AD converter, aliased distortions may

also be introduced.

Many devices incorporate Dynamic Range Control

(DRC) to protect against overloading. The DRC reduces

the amplification gain when the peak or root mean square

(rms) of the signal is likely to overload the circuit. Instead of

reducing the gain instantaneously, the DRC often incorpo-

rates an integration period, characterized by an attack and

release time, and the gain reduction is usually characterized

by a compression ratio. Dynamic range control systems can

inadvertently degrade perceived quality, and careful choice

of parameters is important [24]: (i) Audible distortion may

occur if the release time is too short and the amplitude gain

is modulated too quickly. (ii) Dropouts are likely to hap-

pen if the release time is too long because the suppressed

gain does not recover quick enough to handle subsequent

weak signals. This produces a “pumping” effect that is ob-

vious to the listener. (iii) When the attack time is too short,

the transients are suppressed excessively resulting in a lack

of punch and clarity. The effectiveness of the compression

can also be compromised. In addition, the DRC system is

a dynamic compressor and so it may also introduce other

artifacts or nonlinear distortions and degrade the signal to

noise ratio [25].

Kendrick et al. examined the DRC systems for a number

of portable audio devices [26]. The devices tested included

mobile phones, portable audio recorders, cameras, and
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Table 1. The range of DRC parameters measured for 9 devices

Minimum Maximum

Attack time 1 ms 17 ms
Release time 0 ms 400 ms
Compression ratio 1.4 Inf.

sound cards (Cannon 550D, Edirol r44, Neumann U87ai

via Focusrite 2i4, Shure SM57 via Focusrite 2i4, Zoom H2,

Zoom H4, Google Nexus 4, iPhone, and a Sony vx2000

camcorder). Table 1 describes the ranges of the three key

parameters found in the devices that had DRC.

DRC may not completely eliminate overloading, in

which case when the signal level is high the compres-

sion ratio would be inadequate. Therefore, to detect non-

linear distortions in audio all three scenarios must be care-

fully considered in constructing the database of examples—

overloading at the preamplifier; distortions due to the DRC

system, and overloading during analogue to digital conver-

sion.

Distortion was emulated using the method developed by

De Man and Reiss [27] in which the following amplitude

transfer function was used to generate non-linear distortions

of different types,

f (xB) = sgn (xB)
K |x |3 − T

(

2K
3
2 + K + 2K

1
2

)

|x |2 + T 2
(

2K 2 + 2K
3
2 + 4K

)

|x | − T 3
(

2K
1
2 + 1

)

(

K 2 + 2K
3
2 − 2K

1
2 − 1

)

T 2
(1)

where xB = x + B; x is the instantaneous value of the input

signal (ranging between –1 and 1); T is the threshold (value

between 0 and 1); K is the knee parameter (K = 1 for a hard

knee, K > 1 for a soft knee) where a Hermite spline is used

to connect the linear part (that ends where |x | = T/
√

K )

and the non-linear part; and B is a bias parameter that adds

a small DC offset to the signal. Components in the signal

from 22050 to ∞ Hz, can be aliased. To simulate distortion

without significant aliasing, the signal was up-sampled four

times to 176.4 kHz prior to applying the amplitude transfer

function and then down-sampled to 44.1 kHz afterwards.

The oversampling rate was chosen by computing the sig-

nal power above 22050 Hz in the oversampled signal for

typical sources and parameters. As the oversampling rate

is increased the signal power above 22050 Hz in the digital

domain converges towards the power in the analogue signal

above 22050 Hz. This convergence indicates that above a

certain oversampling level aliasing becomes insignificant;

an oversampling rate of 4 was found to be sufficient.

The Dynamic Range Control was emulated using the

method by Giannoulis et al. [28]. Peak level detection was

chosen for its prevalence in DRC systems. Giannoulis et

al. modeled four peak detection methods in DRC systems

including branching, smoothed-branching, decoupled, and

smoothed-decoupled.

Decoupling is where the peak level is measured using a

separate circuit that ensures that the peak level measure is

not dependent on the attack time. This is simulated by,

peak1 [n] = max (xL [n] , αR peak1 [n − 1])

peakL [n] = αA peakL [n − 1]

+ (1 − αA) αR peak1 [n] (2)

where αA = e−1/(τa Fs) and αR = e−1/(τr Fs); τa is the attack

time; τr the release time; peakL [n] is the peak level at

sample n; xL [n] is the absolute value of sample n; and Fs

is sampling frequency. In this method the attack envelope is

imposed on the release envelope, and therefore a branching

simulation is also developed that ensures the attack and

release envelopes are also decoupled. If the signal does not

completely decay away after the compressor is released, the

release envelope will decay at the prescribed rate and will

meet a background plateau more quickly than expected.

To ensure that the release time is always the same, the

releaseenvelope can be smoothed so that it decays gently to

the background level rather than silencing abruptly.

peakL [n]

=

⎧

⎪

⎨

⎪

⎩

αA peakL [n − 1] xL [n] > peakL [n − 1]

+(1 − αA)xL [n]

αR peakL [n − 1] xL [n] ≤ peakL [n − 1]

(3)

Smoothing can be applied to both methods; for the

branching method the peak detection becomes,

peakL [n]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

αA peakL [n − 1]

+ (1 − αA) xL [n] xL [n] > peakL [n − 1]

αR peakL [n − 1]

+ (1 − αR) xL [n] xL [n] ≤ peakL [n − 1]

(4)

and the decoupled peak detection,

peak1 [n] = max (xL [n] , αR peak1 [n − 1]

+ (1 − αR) xL [n − 1])

peakL [n] = αA peakL [n − 1] + (1 − αA) αR peak1 [n]

(5)

These four methods introduce varying levels of harmonic

distortion [24].

A Monte Carlo simulation was carried out with each of

the 10-second audio samples being distorted or compressed

in six ways as shown in Table 2. As this is a system that

learns from data, care was taken to ensure that the distri-

bution of samples was well balanced in terms of the types

of non-linear processing that may be encountered. For the

clipping distortion, the parameters used for the simulation

are described in Table 3 and for the DRC the parameters in

700 J. Audio Eng. Soc., Vol. 63, No. 9, 2015 September



PAPERS SINGLE-ENDED QUANTIFICATION OF PERCEIVED DISTORTION USING HASQI

Table 2. Distortion types used to train detector

Distortion class Distortion type

1 No Distortion
2 Clipping with reduced aliasing
3 Clipping with aliasing
4 DRC present
5 DRC present with clipping afterwards
6 DRC present with aliasing clipping afterwards

Table 4. These parameters are randomly generated but with

rules applied to the generating functions to ensure balanced

distribution of examples. The reasons for each choice are

explained in more detail in Appendices 1 and 2.

1.1.3 Teacher Values

Supervised machine learning needs large quantities of

labeled data for training. The massive number of samples

due to the combination of distortion types, distortion lev-

els, and huge number of original sources make labeling

them by subjective testing impossible. Taking advantage

of having both the original and distorted audio during the

training phase, a double-ended method could be used to

estimate HASQI [19] as the teacher values. The original

and distorted audio samples were truncated using rectan-

gular windows of one second. Fifty-percent overlap was

used. Each window was normalized to the rms value of that

window before estimating HASQI.

HASQI is a continuous value from 0 to 1 but is based

on subjective tests that returned a five level quality score

from Bad to Excellent as suggested by ITU-R BS.1284-

1 [29]. As a supervised classifier was adopted to perform

the prediction, HASQI is first quantized back to the five

classes shown in Table 5. The class determined by HASQI

over one second using the double-ended method will be

referred to as Class D, and the single-ended estimate of

that class is referred to as ClassS. The reason for the non-

uniform scale divisions is due to the definition of the ends

of the HASQI scale, where Bad = 0 and Excellent = 1,

spacing the other descriptors equally over the scale and then

quantizing causes, Good, Fair, and Poor classes to have a

width of 0.25, while Excellent and Bad have a smaller width

of 0.125.

1.2 Machine Learning Algorithms

Support Vector Machines (SVMs), Artificial Neural Net-

works (ANNs), Hidden Markov Models (HMMs), and

Gaussian Mixture Models (GMMs) are well-known ma-

chine learning algorithms in audio classification and pat-

tern recognition. Decision trees have recently gained much

attention in related applications and the authors have ap-

plied them to wind noise assessment [3]. Consequently, the

random decision forest [30], also known as a random for-

est, was adopted. The Matlab class “TreeBagger” is used to

train the random forest [31].

Machine learning is often tested using k-fold cross vali-

dation to test how well the trained system deals with cases

that were not present in the training and is used in the

study. In addition, perceptual experiments were carried out

to more rigorously validate the method (see Sec. 3).

1.3 Audio Features

Features were extracted from the distorted audio to be

used as the input to the random decision forest. Features

were extracted within frames of 1024 samples (23 ms) and

50% overlap was used. Clipping and DRC are known to

cause sample values to be redistributed. This can be cap-

tured by the probability mass function (PMF), which is

the discrete form of the probability density function. Fig. 2

shows four example PMFs for the same one second of audio,

one with no clipping and the others with clipping applied.

Hard clipping (K = 1), causes an increase in the probability

a sample will occur around a relative sample value of ±1.

Amplitude transfer functions with a soft knee also show a

peak at ±1 but with a smoother transition and a lower peak

value. A bias causes translation of the PMF in the direction

Table 3. Clipping parameters for Monte Carlo simulation

Parameter
Parameter generating functions x is a random variable with a uniform probability density function

between 0 and 1

T (Threshold, linear) T = x1.5

K (Knee type) 50 % chance K = 1
(hard clipping)

25 % chance K = 1 + 100x
(soft clipping)

25 % chance K = 1 + x
(soft clipping)

B (Bias) 50 % chance B = 0 50 % chance B = x − 0.5

Table 4. DRC parameters for Monte Carlo simulation

Parameter
Parameter generating functions, x is a random variable with a uniform probability density function between 0

and 1

T (Threshold, dB) T = −40x
τa (attack time, s) τa = 0.02x + 0.0001
τr (release time, s) τr = 0.5x
R (Compression ratio) 50 % chance R = ∞ 50 % chance R = 40x
DRC model 25 % chance branching

model
25 % chance smoothed

branching model
25 % chance decoupled

model
25 % chance smoothed

decoupled model

J. Audio Eng. Soc., Vol. 63, No. 9, 2015 September 701
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Fig. 2. Probability Mass Functions (PMF) for an audio sample comparing the clean (a) with three different levels of distortion hard
clipping (b), soft clipping (c), and hard clipping with a DC bias (d).

Table 5. Quantization of HAQSI into five classes

Class D HASQI range Quality

5 1 < HASQI ≤ 0.875 Excellent
4 0.875 < HASQI ≤ 0.625 Good
3 0.625 < HASQI ≤ 0.375 Fair
2 0.375 < HASQI ≤ 0.125 Poor
1 0 < HASQI ≤ 0.125 Bad

of the sign of the bias and reduces the peak at one extreme

while increasing it at the other.

To compute the PMF, each audio frame was normalized

to the maximum absolute sample value, the histogram was

then computed using 255 equally spaced sample levels from

–1 to 1. The normalization in each window ensured that the

PMF was represented with an optimal resolution for that

window.

Maré [23] showed how the PMF could be used to iden-

tify distortions. To achieve generalization to audio not seen

in training, we found that more features are necessary to

represent a wide range of signal properties including tim-

bre, spectral features. These were calculated using the MIR

toolbox [32] and are listed in Table 6. The mean for each

feature was then computed over 1 second.

1.3.1 Feature Selection and Training

To identify which features should be presented to the ran-

dom decision forest, a sequential forward feature selection

was carried out using 2-fold cross validation. Random de-

cision forests allow some integration of automatic feature

selection within the learning process. This is particularly

useful when handling empirical data with no explicit model

or clue for heuristic feature selection.

The random decision forest is an ensemble learning

method that uses bagging, whereby a number of classifica-

tion decision trees are each trained on a bootstrap sampled

(with replacement) subset of the data, and at each node

a randomized subset of features are selected and used for

classification. Brieman [30] suggested that an optimal size

of the feature subset would be
√

m (rounded to the nearest

integer), where m is the total number of features.

Using
√

m features for each split, greedy forward fea-

ture selection [33] (FFS) was carried out using a wrapper

method, which means that the output error from the trained

classifier is used to gauge the quality of the algorithm. Two-

fold cross validation was carried out for every feature set,

each time ensuring that the same source of audio did not

appear in both training and validation tests.

The performance was quantified using the Matthews

Correlation Coefficient (MCC), which takes a value be-

tween 0 and 1, where 1 represents optimal performance.

The MCC is calculated from the confusion matrix [34].

The FFS was initialized by training a predictor using each

feature separately. The best performing feature was the one

that produced the highest MCC averaged over all folds.

Having determined the first feature to be used, the second,

third, fourth, etc., were then determined. The training was
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Table 6. Features and their rank order in the feature selection
process, definitions of the features are provided in [32]

Rank order MIR toolbox features

Number of times
feature was

selected

1 PMF 12
1 Spectral Flux 12
3 Spectral Kurtosis 10
4 Spectral Entropy 8
4 Spectral Roughness 8
6 Spectral Skewness 7
6 Zero crossing rate 7
8 Spectral Irregularity 6
9 Attack Slope 5

10 Spectral Spread 4
11 MFCCs 2
12 dMFCCs 1
13 Spectral Flatness 1

– rms level 0
– Tempo 0
– Spectral Centroid 0
– Spectral Brightness 0
– Spectral Rolloff 85% 0
– Spectral Rolloff 95% 0
– ddMFCCs 0
– Low energy 0
– Attack Time 0
– Spectrum 0

undertaken with every possible additional feature added to

the first feature with the best individual performance. If

the added feature increased the MCC, then the feature was

retained. This procedure was repeated until all the features

under investigation were exhausted or there was no further

improvement in performance. If a feature contained multi-

ple values, such as the 255 values in the PMF, these were

treated as a single feature, i.e., all 255 values were included

or removed in one block.

The random forest is a stochastic method and will yield

different results every training phase due to both the boot-

strap sampling and the random selection of features at each

node. By increasing the size of the forest the variance

between the outputs from the trees is decreased, there-

fore there is a trade-off between variance and speed of

processing. A rule of thumb, the number of trees in the

forest needs to be sufficient so that the ranking of the

features no longer changes as the number of trees is in-

creased [35]. To determine the optimal forest size, a sig-

nificance test of the performance improvement was car-

ried out between two forest sizes after feature selection.

The feature selection procedure was repeated for a number

of forest sizes, increasing the number of trees by a fac-

tor of 2 starting at 12 (multiples of 12 was a convenient

choice because the parallel code was running on a 12 core

machine).

McNemar’s hypothesis test was used to determine the

significance [36]. A hypothesis test is defined where the null

hypothesis is rejected (that there is no difference between

predictors), if χ
2 > χ

2
1,0.05 = 3.851 (significance level p <

Table 7. Random forest size vs MCC

Trees MCC χ
2

12 0.56 N/A
24 0.58 18.20
48 0.60 47.76
96 0.61 10.72

192 0.61 0.03
384 0.61 0.92
768 0.61 0.18

1536 0.61 3.76

0.05) and if the MCC of the larger forest is greater than the

smaller one where,

χ
2 =

(|Mab − Mba| − 1)2

Mab + Mba

∼ χ
2
1 (6)

where Mab is the number of misclassifications made by

the smaller forest, which were correctly classified by the

larger forest, and Mba is the number of misclassifications

made by a larger forest, which were correctly classified

by the smaller forest, ∼χ1
2 expresses that the function

has a chi-square distribution with 1 degree of freedom.

Table 7 presents the results from the forest size investigation

showing no significant improvement in performance above

a forest size of 96.

The feature selection algorithm produces a different per-

mutation of features every time. Therefore to select the best

set of features, the FFS was run repeatedly and the features

most frequently selected were used. The FFS was repeated

until the rank order of the top N features in the rank order

stabilized (no change after two FFS repeats). On an aver-

age, 7 features were selected and stability occurred after 12

runs. The rank order and the frequency a feature was se-

lected is shown in Table 6. PMF being joint top supports the

work done by Maré [23]. Alongside this was spectral flux,

which is the mean Euclidian distance of the spectra between

successive frames. Other important features were Spectral

Kurtosis, Spectral Entropy, Spectral Roughness (average of

all the dissonance between all possible pairs of peaks [37]),

Spectral Skewness, and the Zero crossing rate.

Much of the information contained in the spectral and

timbral features is already available from the PMF. This

indicates that in a lower computational power environment

(e.g., a smart phone) where a compact algorithm may be

required, the PMF might be sufficient.

2 RESULTS

Table 8 shows a confusion matrix from a system av-

eraged over 2-folds using the 7 chosen features and 96

trees. The MCC was 0.616. Fig. 3 illustrates the perfor-

mance for different signal and distortion types. Aliasing

had little effect on performance of the algorithm, therefore

non-aliasing and aliasing cases were pooled for each dis-

tortion type. Fig. 3 shows that the performance is generally

similar for both soft and hard clipping, but there are small

differences between source types, with the estimation be-

ing best for music and worst for speech. The relatively poor

J. Audio Eng. Soc., Vol. 63, No. 9, 2015 September 703
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Fig. 3. Mathews Correlation Coefficient (MCC) as a measure of
classification accuracy for different audio sources and distortion
types.

performance occurs when the degradation to quality is due

to DRC alone. The confusion matrix for DRC-only cases

in Table 9 shows 96% were rated good or excellent—DRC

is not degrading the audio as badly as the other types of

distortion. While there appears to be confusion between the

two highest quality classes, very rarely will a sample be

mislabeled more than two classes above or below its true

class.

2.1 Aggregation Over Longer Samples

Human judgments of audio quality are usually made over

periods longer than one second, therefore a method to ag-

gregated the results over a longer time period is needed.

A similar judgment of temporally varying phenomena has

been studied in soundscapes research and VoIP speech qual-

ity. Dittrich and Oberfeld [38] showed primacy (first sound

heard) and recency (last sound heard) effects for annoyance

from broadband noises. Västfjäll showed that listeners con-

sistently preferred in-flight soundscapes with a better end-

ing [39]. The peak-end rule hypotheses states that the most

recent and the most extreme affective event are most salient

for retrospective judgments. While in some studies this was

found to explain the variance of the judgments [40], other

researchers disagree [41]. It is suggested by Ariely and

Carmon [42] that this was due to the recent exposure to

affective peaks moderating the judgments. Recent work by

Steffens and Guastavino on soundscape pleasantness [41]

suggested that the best predictors might be a combination

of the average instantaneous rating and the trend over the

same judgments (modeled by a linear regression). The ra-

tionale is that the linear regression models the expectation

of how the soundscapes will evolve in the future.

In summary, there is no agreement about exactly how

best to model how humans aggregate sensory judgments

over longer periods of time, and consequently this study

simply averages the results from each one-second window

over the whole sample.

Comparing a HASQI value formed from the whole 10

second sample, with the average of the one-second HASQI

values reveals a 95% confidence limit of ±0.16. By weight-

ing the one second HASQI values according to the rms over

the one second window reduces the error to ±0.13. Con-

sequently, the weighting by frame rms is adopted to give

bHASQIA, the aggregated single-ended HASQI estimate.

The formulation is:

bH ASQ IA =
1

4

(

∑M
i=1 (ClassSi · rmsi )

∑M
i=1 (rmsi )

− 1

)

(7)

where M is the total number of windows, ClassSi is the

single-ended estimate of the HASQI class over window i

and rmsi is the root mean square value over windowi .

Fig. 4 compares bHASQIA with HASQI integrated over

the whole 10-second clip. This dataset was computed us-

ing 10-fold cross validation and each of the 10 folds of the

cross-validation are overlaid in Fig. 4 (all types of audio

and distortion). The Pearson correlation coefficient is 0.97

Table 8. Confusion matrix for all results in one-second windows. Correct HASQI (ClassD) verses
single-ended estimation (ClassS).

Correct (Class D)

Bad Poor Fair Good Excellent

Single-ended estimate (ClassS) Bad 678 77 4 0 0
Poor 89 502 138 24 7
Fair 13 148 412 156 31
Good 2 5 103 427 222
Excellent 4 2 5 141 609

Table 9. Confusion matrix for DRC cases. One-second windows. Correct HASQI (ClassD) verses
single-ended estimation (ClassS).

Correct (Class D)

Bad Poor Fair Good Excellent

Single-ended Estimate (ClassS) Bad 0 0 0 0 0
Poor 0 0 0 0 1
Fair 1 1 1 10 10
Good 0 1 1 95 94
Excellent 1 2 3 65 386
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Table 10. Single-ended aggregated estimate of quality, (bHASQIA), verses correct, 10 second, value of
HASQI. Aggregation over ten-seconds (HASQI10s).

HASQI10s

Bad Poor Fair Good Excellent

Single-ended Estimate (bHASQIA) Bad 234 19 1 0 0
Poor 4 40 11 2 0
Fair 0 9 25 9 2
Good 0 1 15 71 53
Excellent 0 0 3 63 355

Fig. 4. Estimate of single-ended aggregated HASQI (bHASQIA)
verses HASQI calculated using a double-ended method over 10
second (HASQI10s)

and 95% of the estimates are within ±0.19 of HASQI, with

previous results indicating much of this error is due to the

aggregation. If bHASQIA is quantized into five classes, us-

ing the specifications in Table 5, the MCC is 0.7; Table

10 displays the averaged confusion matrix for this result.

Seventy-nine percent of HASQI classes are correctly iden-

tified by the single-ended method, and for those incorrectly

identified 95% of those are wrong by a single class. The

Pearson correlation coefficient is likely inflated due to the

presence of clusters of data near the origin and the top right

corner of Fig. 4. The MCC, however, is a balanced measure

of classifier performance and is immune to this inflation.

Fig. 4 exhibits some quantization of the bHASQIA results

around 0 0.25, 0.5 and 0.75 and 1, this is due to all windows

in a sample having the same estimated ClassS.

3 SUBJECTIVE VALIDATION

For the single-ended method, HASQI was an intermedi-

ate tool to generate a large number of training and testing

samples. How does this relate to perceived quality? Since

HASQI has been extensively validated on speech, the focus

of the subjective validations in this project has been mu-

sic and soundscapes. Excerpts of music and soundscapes

were distorted by varying amounts of hard clipping and

then presented to subjects for subjective quality ratings.

The perceptual results were compared with correct HASQI

value and the single-ended estimate, bHASQIA.

3.1 Music

A small number of music samples, which somehow had

to represent the diversity of all music, were needed. As

the primary effect of distortion is to change the timbre,

it was decided to select the test samples based on mu-

sic with contrasting timbre. First a large number of music

samples were gathered. Three-hundred-fifty-one music ex-

tracts were taken from an exemplar set of music samples

suggested by Rentfrow and Gosling [43]. For each of the

117 pieces for which high quality recordings could be ob-

tained, three 7-second excerpts representing key sections

such as an intro, verse, and chorus were extracted. Addi-

tionally, each of the three music samples used by Arehart

et al. [44] to develop HASQI were also included in the test

set.

Then a method was devised to extract contrasting timbre

examples from the hundreds of excerpts. The samples were

distorted by hard clipping, using a threshold set to give a

HASQI value of 0.5 for each sample. Each stereo exam-

ple was sampled at 44.1 kHz (all HASQI values averaged

over both channels). All samples, clean and distorted, were

clustered according to their timbre using the method by Au-

tocoutrier and Pachet [45]. Two samples were drawn from

each of the six clusters. They were drawn by selecting the

two with the shortest Euclidian distance to the cluster cen-

tres. Additionally, each of the three music samples used by

Arehart et al. [44] were also included, regardless of which

cluster they had grouped within. The 14 pieces from which

the test stimuli were taken are listed in Table 11.

3.1.1 Perceptual Test Design

A total of 30 participants (mean age: 23.7 years; SD: 4.7

years) completed the experiment. None reported any known

hearing impairments. Each participant was presented with

140 7-second clips that consisted of 9 different thresholds of

hard clipping distortion and 1 clean for each of the 14 music

pieces. All samples were presented in stereo at the same A-

weighted sound pressure level, integrated over 7 seconds

and both channels, over Sennheiser 650 HD headphones,

via a Focusrite Scarlett 2i4 audio interface (this having
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Table 11. The 14 music pieces the final test samples were taken from by cluster number ‘*’ denotes sample used to develop HASQI

Cluster Number Song Name Artist/Composer Publisher / product code

1 Riverboat Set: Denis Dillon’s Square
Dance Polka, Dancing on the Riverboat

John Whelan Narada Lotus – ND-61060

Crazy Train Ozzy Osborne Sony Music - 88697738182
“Haydn” - Symphony in C Major, Hob. I:

82, The Bear: III. Menuet – Trio *
* Haydn Sony Music – SX10k89750

2 Ave Maria Franz Schubert Phillips – 412 629-2
Packin’ Truck Leadbelly Saga – 982 076-7
“vocalise” * Ding Dong the witch is dead Tierney Sutton Telarc Jazz – cd 83548

3 Kalifornia Fatboy Slim Skint – Brassic 11CD
Brown Sugar The Rolling Stones Polydor – lc000309. 0602527015620

4 The Four Seasons: Spring Antonio Vivaldi EMI – 7243 5 56253 2 8
5 For What It’s Worth Buffalo Springfield Acto 7567 90389 2yg

The Girl From Ipanema Stan Getz Verve lc 00383
6 Spoonful Howlin’ Wolf Universal – 329 375-2

Nobody Loves Me But My Mother B.B. King Geffen records b0003854-02
“jazz” * Corcovado * Verve lc 00383

previously been calibrated using a dummy head). Playback

level was calibrated by setting the playback of the clean

Jazz excerpt to 72 dB (linear, average of both channels),

which meant samples were reproduced at an A-weighted

Leq of 62 dB, as this was the level used by Arehart et al.

[44].

To ensure that the distortion applied to each music sample

covered a wide range of quality degradations, nine thresh-

olds for each clip were computed by setting target HASQI

values between 0.1 and 1. A participant training session was

held before the actual testing with three pairs of samples not

included in the test. Participants were reminded that they

were judging overall quality not any musical preference.

Ratings were entered via a mouse using a continuous

slider labelled “Bad” and “Excellent” at each endpoint with

no other markers based on the ITU-R BS.1284-1 [29] rec-

ommendations adopted in the development of HASQI [29].

Participants were asked to make absolute quality judgments

on individual samples with no reference. The use of rela-

tive judgments of quality using a reference sample was not

adopted for the following of reasons;

1) HASQI was also developed using absolute category

ratings and a direct comparison was important.

2) One of the research questions in [21] from which some

of this data is based was: is there any link between the

underlying quality of a sample and the degradation

due to amplitude clipping?

3) A high priority was placed on maximizing the num-

ber of music pieces and soundscapes to increase the

validity of the resulting algorithm performance analy-

sis. The large number of samples made the use of an

impairment scale time prohibitive.

The slider’s initial position was at the “Bad” end of the

scale on each trial. Progression from one trial to the next

was conditional on listening to the sample in full and pro-

viding a rating. There were no limits on the number of times

each sample could be repeated. There was no time limit for

completion of the test and participants were prompted to

Table 12. The 12 examples of soundscapes [46] used along
with their crest factors.

Tag and ID Crest Factor

‘ambience 28252’ 4.39
‘beach 48412’ 13.9
‘car 50378’ 6.95
‘church 151381’ 5.84
‘crowd 160041’ 6.92
‘crowd 25522’ 4.81
‘forest 184201’ 18.3
‘machine 146211’ 14.7
‘nature 150888’ 19.1
‘rain 55512’ 8.62
‘thunder 169255’ 5.05
‘zoo 104483’ 5.75

take a short break at the half-way stage if required. Presen-

tation order of the samples was fully randomized. The test

session typically lasted around 40 minutes and participants

were financially reimbursed for their time.

3.2 Validations with Soundscapes

Twelve sound samples (field recorded soundscapes) were

selected from the freefield1010 database [46], which was

a selection of ten-second audio clips uploaded to the

freesound.com database and tagged as “field-recording.”

First, the 20 most popular tags were identified and all files

with those tags were used. Then, the crest factors were

computed. The crest factor is the ratio of the peak to the

rms level. A signal with a low crest factor will exhibit fairly

constant levels of clipping while a signal with a high crest

factor might have some highly distorted regions while other

regions may remain relatively clean. Four examples clos-

est to the 10th, 50th, and 90th percentiles of the crest factor

distribution were selected and are listed in Table 12. The

perceptual test procedure was the same as that used for the

music clips—18 subjects participated in the test.
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Fig. 5. Double-ended HASQI verses normalized MOS of quality for 14 pieces of music degraded by hard clipping at different thresholds

3.3 Results

For the music clips, Cox et al. [21] found that the MOS

(Mean Opinion Score) of even the clean samples varied

considerably because of different styles of audio produc-

tion for the originals. As the interest is in distortions that

degrade the quality, the MOS scores were normalized to the

averaged MOS calculated from all subjects for the clean

undistorted signals of a particular audio file. The standard

deviation of the opinion scores for each clip and distortion

condition provides a gauge of the intersubject variability of

opinion; the average standard deviation for all conditions

was 0.17.

Fig. 5 shows relationship between double-ended HASQI

(x-axis) and the normalized MOS (y-axis); the Pearson’s

correlation coefficient is 0.916. The results seem to be more

promising than Arehart et al. [44] report. Their correlation

between HASQI and the MOS for three pieces of music

was 0.838. The better correlation found in our experiments

might be attributed to the fact that only clipping and DRC

were considered. Ninety-five percent of the HASQI esti-

mates are within ±0.24 of the normalized MOS.

A few samples showed relatively large prediction errors.

For example, “Packin’ Truck” has HASQI overestimating

the MOS by up to 40%. This track was recorded in 1935

and the recording quality is poor with noise and distortion

already present. There appears to be some leniency in qual-

ity ratings of degraded audio when the expected technical

quality of the original audio is already low.

For the soundscape samples there was an increase in the

variability of the opinion scores compared with music, the

standard deviation of the opinion scores was 0.29; this can

be seen in Fig. 6. This increase in variability may be due to

the smaller number of listeners (18 rather than 30). Despite

this increase in the variability of opinion, the correlation

of HASQI and the normalized MOS yields a correlation

coefficient of 0.85 with 95% of HASQI estimates within

±0.29 of the normalized MOS.

For soundscapes, HASQI over-estimated the level of

degradation for two clips in particular. These two clips

contained mainly high frequency bird and insect sounds.

There were also cases where HASQI under-estimated the

degradation, such as thunder, rain, and machinery sounds.

These clips differentiate themselves from the others as they

do not contain harmonic sounds. It is likely that the reason

for the lower performance with soundscapes is that HASQI

was primarily aimed at speech quality during development

and naturally performs better on such cases.

Next, the proposed single-ended algorithm was trained

using every sample from the audio library described in Sec.

1.1.1 excluding those used in the perceptual studies. Figs. 7

and 8 show the relationship between the normalized MOS

and the single-ended estimates, bHASQIA, for music and

soundscapes. For music the correlation coefficient between

bHASQIA and the normalized MOS is 0.861 and 95% of

the single-ended estimates of bHASQIA are within ±0.3 of

the MOS. For the soundscapes, similar results are found,

with the correlation coefficient between HASQIA and the

normalized MOS being 0.802 and 95% of the estimates are

within ±0.33 of the MOS.

As previously mentioned, the average standard deviation

of the opinion scores for each clip gives an estimation of

the intersubject variability. This was 0.17 for music and

0.29 for soundscapes. The intersubject variability and the

error in the single-ended estimation of quality can be com-

pared using the standard deviation of the error in the MOS

estimation using bHASQIA . This was 0.17 for both music

and soundscapes. This shows that on average the error in

the single-ended estimate of quality for a single clip is of

the same order, or lower than, the intersubject variability of

opinion.
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Fig. 6. Double-ended HASQI verses normalized MOS of quality for 12 soundscape clips degraded by hard clipping at different thresholds

4 CONCLUSION

A single-ended method to quantify perceived audio qual-

ity in the presence of non-linear distortions has been de-

veloped and presented in this paper. This single-ended

method estimates HASQI (Hearing Aid Sound Quality In-

dex). The model uses machine learning to learn from ex-

amples and generalize. Validations on a set of music and

soundscapes not seen during training, yield single-ended

estimates within ±0.19 of HASQI, using a quality range

Fig. 7. Single-ended quality estimate (bHASQIA) verses normalized MOS of quality for 14 pieces of music degraded by hard clipping
at different thresholds
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Fig. 8. Single-ended quality estimate (bHASQIA) verses normalized MOS of quality for 12 soundscapes degraded by hard clipping at
different thresholds

between 0.0 and 1.0. HASQI has also been shown to pre-

dict quality degradations for processes other than non-linear

distortions including additive noise, linear filtering, and

spectral changes. By including these other causes of qual-

ity degradations, the current model for non-linear distortion

assessment might be expanded, although additional features

and validation would be required.

A series of perceptual measurements on music and

soundscapes were undertaken. The subjective testing pro-

vided more data that shows that HASQI can be used to

quantify perceived non-linear distortion for normal hearing

listeners. The new single-ended method was used to esti-

mate quality and compared to the Mean Opinion Scores

(MOS) from the subjective tests. The standard deviation of

the error in the single-ended MOS estimations was 0.17.

This is of a similar order to the standard deviation of hu-

man subjects: the standard deviation of the MOS from the

perceptual tests was for music was 0.17 and 0.29 for music

and soundscapes respectively.

The code to estimate bHASQI is freely available for

download at [47] for non-commercial purposes under an

Attribution-NonCommercial 4.0 International (CC BY-NC)

license. The databases used to develop the algorithm are not

available due to copyright issues with the audio samples.
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APPENDIX 1 DESCRIPTION OF PARAMETER

DISTRIBUTIONS FOR CLIPPING FUNCTION

The parameters using in the clipping model described in

Eq. (1), T (Threshold), K (Knee type), and B (Bias) were

randomly generated for every example. To ensure that the

distribution of examples in the resulting database was repre-

sentative, a number of rules were applied to the generating

functions:

� A nonlinear distribution was chosen for the threshold T

so that there was a roughly even distribution of samples

along the HASQI scale. T = x1.5 was used where x is a

uniformly distributed random number between 0 and 1.

� Half of all the examples were assigned a hard knee

(K = 1) and the other half a soft knee (K > 1) to simu-

late the different types of clipping that may occur.
� When a soft knee is selected, half of these were

generated using a modest smoothing parameter, where

K varies uniformly between 1 and 2, effectively this

smooths just the transition region in the amplitude trans-

fer function. For the other half K was varied uniformly

between 1 and 101, to ensure some extreme examples

were present.
� Bias is avoided in mobile devices but may occur in some

poorly designed devices; for this reason half of all exam-

ples had no bias (B = 0). To ensure some more extreme

examples were present, the other half was generated

so that B was uniformly distributed between –0.5 and

0.5.

APPENDIX 2 DESCRIPTION OF PARAMETER

DISTRIBUTIONS FOR DRC FUNCTION

The parameters using in the DRC models described in

Eqs. (2)–(5) are: T (Threshold dB), τa (attack time, s), τr (re-

lease time, s), R (Compression ratio), and the DRC model

type. These were randomly generated for every example.

To ensure that the distribution of examples in the resulting

database is representative, a number of rules are applied to

the generating functions.

� The threshold T was varied uniformly between 0 dB

and –40 dB; this represents a range of realistic cases as

well as some extreme examples.
� For the attack and release times, Table 1 describes the

range of parameters commonly found in mobile devices;

therefore the attack time (τa) is varied uniformly be-

tween 0.1 ms and 20.1 ms. The release time (τr ) is varied

uniformly between 0 and 500ms.
� For the Compression ratioR, half of examples used a

value of infinity to represent limiting, and the other half

used a finite value to represent compression, for com-

pression examples R was varied uniformly between 0

and 40.
� Finally, equal numbers of each of the four different

models of compression was ensured.
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