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1. Introduction
Markov decision processes (MDPs) are an effective tool in modeling decision-making in uncertain dynamic
environments (e.g., Putterman (1994)). Since the parameters of these models are typically either estimated
from data or learned from experience, it is not surprising that, in some applications, unavoidable modeling
uncertainty often causes the long term performance of a strategy to significantly differ from the model’s
predictions (refer to experiments by Mannor et al. (2006)).Let us consider a concrete problem where one
needs to deal with inherent model uncertainty. A factory owner wants to design a replacement policy for a
line of machines. This problem is known to be well modeled with a MDP with states representing reachable
aging phases and actions describing different repair or replacement alternatives. Although the parameters
used in such a model can typically be estimated from historical data (experienced repair costs and decreases
in production due to failures), one can rarely fully resolvethem. For example, there is inherent uncertainty
in future fluctuations for the cost of new equipment. Also oneoften doesn’t have access to enough historical
data to adequately assess the probability of a machine breaking down at a given aging stage. One should
expect significant improvements from incorporating this uncertainty in the performance evaluation of a
given repair policy. This example illustrates the need for criteria that address parameter uncertainty in
general and specifically in the MDPs (e.g., Ben-Tal and Nemirovski (1998), Silver (1963), Martin (1967),
Satia and Lave (1973), Dearden et al. (1999)).

To date, most efforts have focused on the study of robust MDPs(e.g., Nilim and El Ghaoui (2005), Iyen-
gar (2002), Givan et al. (2000), Bagnell et al. (2001)). In this context, under the assumption that parameters
lie in a given uncertainty set, one considers a dynamic game against nature as equivalent to choosing the
best strategy for the worst-case scenario. Under mild conditions (namely the convexity of the uncertainty
sets), the robust formulation of the problem of parameter uncertainty becomes tractable. Unfortunately, as
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will be demonstrated in Section 5, the robust MDP approach often generates overly conservative strate-
gies. Similar conclusion can be drawn in the context of theH∞ robust control formulation, as in van
der Schaft (1999), which considers uncertainty in terms of bounded perturbations in the system. Previous
work also studies parameter uncertainty in the form of perturbations of the underlying Markov chain but
it focuses more on understanding the long term dynamics of the system rather than the performance of
policies (see Avrachenkov et al. (2002)).

In this paper we offer a more practical way of handling uncertainty in the parameters. Following recent
work by Mannor et al. (2006) that studied the effect of parameter uncertainty on the mean and variance of
the value function of Markov processes with fixed policy, we will consider the parameters as random vari-
ables and study the Bayesian point of view on the question of decision-making. In fact, it will be shown that
this framework can lead to a performance measure called the percentile criterion, which is both conceptually
natural and representative of the trade-off between optimistic and pessimistic strategies when facing param-
eter uncertainty. Unlike the robust methods, our approach will not require the assumption that parameters
lie in a bounded uncertainty set but instead will attempt to reason directly about the effect of this uncertainty
on the total cumulative reward itself. Note that Filar et al.(1995) introduced the percentile criterion as a
risk-adjusted performance measure for “average reward” MDPs. However, their study did not address the
question of parameter uncertainty.

The chance constrained criterion that is widely studied forsingle-period optimization problems (e.g.,
Charnes and Cooper (1959), Prékopa (1995)) will be generalized in Section 2 to infinite-horizon MDPs.
Although general chance constraints are suspected to be “severely computationally intractable” (Nemirovski
and Shapiro (2006)), this paper will detail the spectrum of computational difficulties related to solving the
chance constrained criterion. In Section 3 we will demonstrate that under the assumption that the transitions
are known and that the rewards are normally distributed, thechance constrained MDP can be solved using
a deterministic “second order cone” program (c.f., Lobo et al. (1998)), for which a solution can be found
in polynomial time. However, we will then show that althoughthe normality assumption on rewards can
be softened, there still exist forms of uncertainty for which exact optimization of the percentile criterion is
NP-hard. We then address in Section 4 the question of uncertainty in the transitions of the Markov chain
and present an approximation method for finding an optimal policy of the chance constrained MDP. In
Section 5, we will illustrate how this criterion outperforms the nominal and robust criterion on instances of
the machine replacement problem with either reward or transitions uncertainty.

2. Background
In the context of an MDP with parameter uncertainty, one can either be “careless” and disregard parameter
uncertainty during decision making, or be “pessimistic” byplanning in order to be protected from worst-
case scenario. The purpose of our research is to focus on a “tempered” attitude that will realistically trades
between the two conflicting views. Next, we present these three attitudes in mathematical terms.

2.1. The nominal MDP problem

We consider an infinite horizon Markov decision process described as followed: a finite state spaceS
with |S| states, a finite action spaceA with |A| actions, a transition probability matrixP ∈ R

|S|×|A|×|S|

with P (s, a, s′) = P(s′|s, a), an initial distribution on statesq, and a reward vectorr ∈ R
|S|. Although

our analysis will strictly consider the case where the reward only depends on the current state, the results
presented in this work can easily be extended to a reward function of the formr(s, a, s′). In the context of an
infinite horizon MDP, one can choose to apply a mixed policyπ, which is a mapping from the set of statesS
to to the probability simplex over the available actions. For reasons of tractability, we will limit our attention
to the set of stationary Markov policies, which is denoted byΥ. When considering an infinite horizon, an
optimal discounted reward stationary policyπ is the solution to the following optimization problem:

maximize
π∈Υ

Ex(
∑∞

t=0 αtr(xt)|x0 ∝ q,π) ,
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whereα ∈ [0,1) is the discount factor. This problem is known to be easily solvable using value iteration
(e.g., Bertsekas and Tsitsiklis (1996)). However, it does not take into account any uncertainty in the choice
of the parametersP andr. In practice, this uncertainty is unavoidable.

In Mannor et al. (2006), the authors address this issue by investigating the effect of random̃r andP̃ on a
new nominal problem

maximize
π∈Υ

Er̃,P̃

(

Ex(
∑∞

t=0 αtr̃(xt)|x0 ∝ q,π, P̃ )
)

.

This problem maximizes the expected return over both the trajectories ofx and the random variables̃r
and P̃ . Because of the non-linear effect of̃P on the expected return, the authors argue that evaluating
the objective of this problem for a given policy is already difficult. Most importantly, their experiments
demonstrate that the common approach consisting of using the most likely (or expected) parameters in the
nominal problem leads to a strong bias in the performance of the chosen policy. These results underline the
difficulty in handling parameter uncertainty by simply formulating risk-adjusted utility functions, such as
in Howard and Matheson (1972). In this paper, we will consider efficient techniques to take the uncertainr̃
andP̃ into account in the decision-making.

2.2. The robust MDP problem

The most common approach to account for uncertainty in the parameters of an optimization problem is to
use robust optimization. This framework assumes that the uncertain parameters are constrained to lie in a
given complete set (hopefully convex) and optimize the worst-case scenario over this set. In the case of
discounted reward MDP, where the rewardsrt for each time step and the transition matrixP are known to
lie in a setR andP respectively, the robust problem thus becomes:

maximize
π∈Υ

min
P∈P,r0∈R,r1∈R,...

Ex(
∞
∑

t=0

αtrt(xt)|x0 ∝ q,π) . (1)

There are two types of reward uncertainty that are of interest. In the first type, termed fixed uncertainty,
the reward vector is drawn once and remains fixed for all time-steps. In the second type, termed repeated
uncertainty, the reward is independently drawn from the feasible set at each time step. It is a well known fact
that in both cases, under the assumption of no transition uncertainty, the optimal policyπ∗ for Problem (1)
is the same (see Bertsekas and Tsitsiklis (1996)) and can be found efficiently. The same is true if one
disregards reward uncertainty and wants to solve the robustproblem under transition uncertainty (see Nilim
and El Ghaoui (2005)).

2.3. The chance constrained MDP problem

Consider a Bayesian setup in which the random reward vectorr̃ and random transition matrix̃P are known
to be independent and have joint probability distribution functionsf(r̃) andf(P̃ ) respectively. In such a
scenario, unless the distributions are supported over a “small” bounded subset of their domain, formulating
Problem (1) withR = {r|f(r) 6= 0} andP = {P |f(P ) 6= 0} is no longer pertinent (e.g., if r̃ ∝N (µr̃,Θr̃),
thenR = R

|S| and (1) is−∞). Even if the optimization is performed over a restricted bounded subset (e.g.,
ellipsoids representing a 95% confidence), there is no clearmethod to select this uncertainty set since the
real concern is the level of confidence in the total cumulative reward and not in the individual parameters.
Instead, it is much more relevant to express the risk adjusted discounted performance of an uncertain MDP
in the followingchance constrained form:

maximize
y∈R,π∈Υ

y (2a)

subject to Pr̃,P̃ (Ex(
∑∞

t=0 αtr̃t(xt)|x0 ∝ q,π)≥ y)≥ 1− ǫ , (2b)



Delage and Mannor: Percentile Optimization for MDP with Parameter Uncertainty
4 Operations Research 00(0), pp. 000–000,c© 0000 INFORMS

where the probabilityPr̃,P̃ is the probability of drawing the reward vectorr̃t for each time step indepen-
dently fromf(r̃t) and the transition matrix̃P from f(P̃ ), and whereEx(·|x0 ∝ q,π) is the expectation of
the trajectory given a concrete realization ofr̃ andP̃ , a policyπ, and a distributionq for the initial statex0.
For a given policyπ, the above chance constrained problem gives us a1− ǫ guarantee thatπ will perform
better thany∗, the optimal value of Problem (2), under the distribution ofr̃ andP̃ . Note that, whenǫ = 0,
Problem (2) and Problem (1) are equivalent; thus,ǫ measures the risk of the policy doing worse thany∗.
The performance measure we use is related to risk sensitive criteria often used in finance (value-at-risk).
However, in finance, one is usually interested in the risk of asingle trajectory. We focus on the risk of the
expected performance similarly to the robust optimizationapproach of Givan et al. (2000), Bagnell et al.
(2001), Nilim and El Ghaoui (2005).

Section 3 will focus on uncertainty in the reward parameters. Later, in Section 4, parameter uncertainty
will be addressed. Although we do limit ourselves to presenting the details from a Bayesian point of view in
order to preserve the clarity of our derivations, a frequentist approach to the percentile criterion do follow
naturally and is summarized in the paper appendix. This workfocuses on fixed parameter uncertainty (i.e.,
uncertainty due to the modeling, although in the system the parameters are actually fixed). Similar methods
can be derived for the problem of repeated uncertainty.

2.4. Notation

In the remainder of the paper, the following notation is used. 1K is the vector of all ones inRK . For
clarity, Q(i,j) will refer to the i-th row, j-th column term of a matrixQ. Also, for the sake of sim-
pler linear manipulations, we will present a policyπ under its matrix formΠ ∈ R

|S|×|S|×|A|, such that
Π(s1,s2,a) = π(s1, a)11{s1 = s2} and when this three dimensional matrix will be multiplied toanother matrix
Q ∈ R

|S|×|A|×K it will refer to a matrix multiplication carried alongR|S|×(|S| |A|) × R
(|S| |A|)×K, such that

(ΠQ)(i,j) =
∑

(k,a) Π(i,k,a)Q(k,a,j). Note that this formulation explicitly denotes the linear relation between
the decision variableΠ and the inferred transition probabilityPπ, such that(ΠP )(i,j) = (Pπ)(i,j) = P(s′ =
j|s = i, a = π(i)).

3. Decision making under uncertain reward parameters
First, the problem of reward uncertainty is addressed for a common family of distribution functions, the
multivariate Gaussian distributioñr ∝N (µr̃,Θr̃). Under the assumption of Gaussian rewards, solving the
percentile MDP is not considerably harder than solving the nominal MDP. We later briefly describe how the
Gaussian reward assumption can be relaxed although there exist distributions over the parameters for which
the percentile problem becomes intractable.

3.1. Reward uncertainty with Gaussian distribution

The Gaussian assumption is standard in many applications asit allows modeling correlation between the
reward obtained in different states. Also, in the Bayesian framework it is common to assume thatΘr̃ is
known and use a Gaussian prior, with parameters(µ0,Θ0), overµr̃. Then, based on new independent sam-
ples{r1, r2, ..., rm} from the distributionf(r̃), one can obtain an analytical posterior overµr̃, which has the
same Gaussian shape with parameters (see Gelman et al. (2003) for more details):

µ1 = Θ1

(

Θ−1
0 µ0 +Θ−1

r̃

m
∑

i=1

ri

)

, Θ1 =
(

Θ−1
0 +mΘ−1

r̃

)−1
.

LEMMA 1. (Theorem 10.4.1 of Prékopa (1995)) Supposeξ ∈R
n has a multivariate Gaussian distribution.

Then the set ofx∈R
n vectors satisfying

P(xTξ ≤ 0)≥ 1− ǫ
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is the same as those satisfying

xTµξ +Φ−1(1− ǫ)
√

xTΘξx≤ 0 ,

whereµξ = E(ξ), Θξ is the covariance matrix of the random vectorξ, ǫ is a fixed probability such that
0≤ ǫ≤ 1, andΦ is the cumulative distribution function ofN (0,1).

Lemma 1 is an important result in the field of stochastic programming. In our specific context, the lemma
allows us to show that finding an optimal stationary policy for the problem of maximizing the(1 − ǫ)-
percentile criterion under Gaussian uncertainty can be expressed as a “second order cone” program.

THEOREM 1. For anyǫ∈ (0,0.5], the discounted reward chance constrained problem with fixed Gaussian
uncertainty in the rewards

maximize
y∈R,π∈Υ

y (3a)

subject to Pr̃(Ex(
∑∞

t=0 αtr̃(xt)|x0 ∝ q,π)≥ y)≥ 1− ǫ , (3b)

where the expectation is taken with respect to the random trajectory ofx when following stationary policy
π, andr̃ ∝N (µr̃,Θr̃), is equivalent to the convex “second order cone” program

maximize
ρ∈R|S|×|A|

∑

a
ρT

aµr̃ −Φ−1(1− ǫ)‖∑
a
ρT

aΘ
1
2
r̃ ‖2 (4a)

subject to
∑

a
ρT

a = qT +
∑

a
αρT

aPa (4b)
ρT

a ≥ 0 , ∀ a∈A , (4c)

where given an optimal assignmentρ∗, an optimal policyπ∗ to Problem(3) can be retrieved using:

π∗(s, a) =

{

1
|A| if

∑

a
ρ∗

a(s) = 0
ρ∗a(s)

∑

a ρ∗a(s)
otherwise.

(5)

Proof We first use the fact that with fixed reward uncertainty Constraint (3b) can be expressed in the
form

Pr̃(υ
Tr̃ ≥ y)≥ 1− ǫ (6a)

qT

∞
∑

t=0

(αΠP )t = υT . (6b)

Using a change of variable that is commonly used in the MDP litterature (see Putterman (1994)), Con-
straint (6b) is equivalent to:

υT = qT +α
∑

a
ρT

aPa (7a)
υT =

∑

a∈A
ρT

a , ρT

a ≥ 0 , ∀ a∈A , (7b)

whereρa ∈ R
|S|. From feasible point(υ,ρ), an equivalent pair(υ,Π) feasible according to Constraint (6b)

can be retrieved using:

Π(s, s′, a) =

{

0 if υ(s′) = 0
ρa(s′)

υ(s′)
11{s = s′} otherwise.

(8)

Given thatǫ ≤ 0.5, one can use Lemma 1 to convert Constraint (6a) into an equivalent deterministic
convex constraint. Theorem 1 follows naturally.�
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3.2. Complexity of the solution

It is important to note that “second order cone” programmingis a well developed field of optimization for
which a number of polynomial time algorithms have been proposed. We refer the reader to Lobo et al. (1998)
for background on the subject and algorithms for solving this family of problems.1 Based on a primal-dual
interior point method presented in Lobo et al. (1998), we canshow the following.

THEOREM 2. Given anN states,M actions MDP with fixed Gaussian uncertainty in the reward vector,
chance constrained Problem 3 can be solved in timeO(M

7
2 N

7
2 ).

Proof Based on the work presented in Lobo et al. (1998), solving an SOCP to any precision is bounded
above byO

(√
K(k2

∑K

i=1 ki + k3)
)

, whereK is the number of constraints,k is the number of variables,
andki is the size of the vector in the norm operator of constrainti. These results lead to a bound of

O
(√

MN +N +1(M 2N2N +M 3N3)
)

= O(M
7
2 N

7
2 )

for Problem 4 and consequently for Problem 3 since the transformation from one problem to the other does
not depend on the size of the MDP.�

Note that following Calafiore and El Ghaoui (2006), it is possible to reduce the Gaussian reward assump-
tion while preserving tractability of the percentile problem. An example of such a reduction can be referred
to as the Q-radial distribution assumption. The random vector r̃ is said to have aQ-radial distribution if
it can be defined as̃r = Qw̃ + µr̃, whereµr̃ = E(r̃), Q ∈ R

|S|×k for somek ≤ |S|, andw̃ ∈ R
k is a ran-

dom vector having probability densityf(w̃) that only depends on the norm of̃w (i.e., f(w̃) = g(‖w̃‖2)).
Theorem 1 can naturally be extended for radial distributions.

Unfortunately, one can also show that some uncertainty models on the reward parameters actually lead
to intractable forms for percentile Problem 3.

THEOREM 3. Solving the chance constrained MDP Problem 3 withgeneral uncertainty in the reward
parameters is NP-hard.

A detailed proof of this Theorem is presented in the online appendix, where we show that the NP-
complete 3SAT problem can be reduced to solving Problem 3 foran MDP with discrete reward uncertainty.

4. Decision making under uncertain transition parameters
We now focus on the problem of transition parameter uncertainty. This type of uncertainty is present in
applications where one does not have a physical model of the dynamics of the system. In this case,P must
be estimated from experimentation and is therefore inherently uncertain. Since the Bayesian framework
allows us to formulate a distribution over̃P , we consider a chance constrained MDP problem with transition
uncertainty:

maximize
y∈R,π∈Υ

y (9a)

subject to PP̃ (Ex(
∑∞

t=0 αtrt(xt)|x0 ∝ q,π)≥ y)≥ 1− ǫ , (9b)

where the probabilityPP̃ is the probability of drawing the transition matrix̃P from a distributionf(P̃ ) and
whereEx(·|x0 ∝ q,π) is the expectation of the trajectory given a concrete realization of P̃ , deterministic
rewardsr, a policyπ, and a distribution of the initial stateq. As was the case for reward uncertainty, this
problem is hard to solve in general. However, in section 4.3 we use the Dirichlet prior to suggest a method
that generates a near optimal policy given a sufficient number of samples drawn from̃P .



Delage and Mannor: Percentile Optimization for MDP with Parameter Uncertainty
Operations Research 00(0), pp. 000–000,c© 0000 INFORMS 7

4.1. Computational complexity of uncertainty in the transition parameters

Finding an optimal policy, according to the chance constrained problem, for an uncertain MDP is NP-hard
even if there is no uncertainty in the reward parameters.

COROLLARY 1. Solving chance constrained MDP Problem 9 for general uncertainty in the transition
parameters is NP-hard.

Following similar lines as for proving Theorem 3, given an instance of the NP-complete 3SAT Problem,
one can easily construct in polynomial time an MDP with discrete transition uncertainty. Solving Problem 9
for this uncertain MDP is equivalent to determining if the 3SAT instance is satisfiable. A sketch of this proof
is included in the online appendix.

4.2. The Dirichlet prior on transition probability

Since we cannot expect to solve chance constrained Problem 9for a general distribution, for each state-
action pair(i, a), we will use independent Dirichlet priors to model the uncertainty in the parameters
of P̃(i,a)(j), the probability of observing a transition to statej out of statei when taking actiona. This
assumption is very convenient for describing prior knowledge about transition parameters due to the fact
that, after gathering new transition observations, one caneasily evaluate a posterior distribution over these
parameters. More specifically, for a vector of transition parameters̃p = (p̃1, ..., p̃N ), the Dirichlet distribu-
tion over p̃ follows the density functionf(p) = (1/Z(β))

∏N

j=1 p
βj−1

j , whereβ are modeling parameters
for the Dirichlet prior andZ(β) is a normalization factor. Given a set of observed transition observations
{j(1), j(2), ..., j(M)} from the multinomial distributionf(j|p) = pj, one can analytically resolve the posterior
distribution overp̃. This distribution conveniently takes the same Dirichlet form f(p|j(1), j(2), ..., j(M)) =

(1/Z(β,M1, ...,MN ))
∏N

j=1 p
βj+Mj−1

j , whereMj is the number of times that a transition toj was observed.
It is also known that the covariance between different termsof p̃ is (see Gelman et al. (2003) for details):

Θ(j,k) =− (βk +Mk)(βj +Mj)

(β0 +M)2(β0 +M +1)

Θ(j,j) =
(βj +Mj)(β0 +M −βj −Mj)

(β0 +M)2(β0 +M +1)
,

whereβ0 =
∑

j
βj andM =

∑

j
Mj.

4.3. Expected return approximation using a Dirichlet prior

Even with the Dirichlet assumption we are confronted with the following difficulty in solving per-
centile Problem 9. Unlike in the case of reward uncertainty (where under fixed reward uncertainty and
known transitions parameters,Er̃,x(

∑∞
t=0 αtr̃(xt)|x0 ∝ q,π) = qT(I − αΠP )−1

E(r̃) and the optimal
policy can be found using the nominal problem), finding a policy that simply minimizes the expected
returnEP̃ ,x(

∑∞
t=0 αtr(xt)|x0 ∝ q,π) under transition uncertaintỹP is already hard. More specifically, the

expected return can be expressed as

EP̃ ,x(
∞
∑

t=0

αtr(xt)|x0 ∝ q,π) = EP̃

(

Ex(
∞
∑

t=0

αtr(xt)|x0 ∝ q,π)

)

= EP̃

(

qT(I −αΠP̃ )−1r
)

= EP̃

(

qT(I −αΠ(E(P̃ ) +∆P̃ ))−1r
)

= EP̃

(

qT((Xπ)−1 − (Xπ)−1αXπΠ∆P̃ )−1r
)

= EP̃

(

qT(I −αXπΠ∆P̃ )−1Xπr
)

= EP̃

(

qT

∞
∑

k=0

αk(XπΠ∆P̃ )kXπr

)

,
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where∆P̃ = P̃ − E(P̃ ), andXπ = (I − αΠE(P̃ ))−1. The matrixXπ is always well defined sincẽP
is modeled with the Dirichlet distribution, thus ensuring that E(P̃ ) is a valid transition matrix and that
I − αΠE(P̃ ) is nonsingular.EP̃ ,x(

∑∞
t=0 αtr(xt)|x0 ∝ q,π) therefore depends on all the moments of the

uncertainty inP̃ . Following similar lines as in Mannor et al. (2006), we focuson finding a stationary policy
that performs well according to the second order approximation of the expected return. We expect the norm
of higher order moments of∆P̃ to decay with the number of observed transitions.

EP̃ ,x(
∞
∑

t=0

αtr(xt)|x0 ∝ q,π, P̃ ) = qTXπr +αqTXπΠE(∆P̃ )Xπr +α2qTXπΠE(∆P̃XπΠ∆P̃ )Xπr +Lexp

≈ qTXπr +α2qTXπΠQXπr ,

whereLexp=
∑∞

k=3 αkqT
E

(

(XπΠ∆P̃ )k

)

Xπr, and whereQ∈R
|S|×|A|×|S|, such that

Q(i,a,j) =
(

E(∆P̃XπΠ∆P̃ )
)

(i,a,j)

=
∑

k,l,a′

(XπΠ)(k,l,a′)E(∆P̃(i,a,k)∆P̃(l,a′,j))

=
∑

k

Xπ
(k,i)π(i,a)E(∆P̃(i,a,k)∆P̃(i,a,j))

= π(i,a)Θ
(i,a)

(j,·) X
π
(·,i) .

This is under the assumption that the rows ofP̃ are independent from each other and usingΘ(i,a) to represent
the covariance between the terms of the transition vector from statei with actiona. We are now interested
in the second order approximation ofEP̃ ,x(

∑∞
t=0 αtr(xt)|x0 ∝ q,π, P̃ ).

DEFINITION 1. F(π) is the second order approximation of the expected return under transition uncertainty,
such that

F(π) = qTXπr +α2qTXπΠQXπr .

REMARK 1. One should note that the approximationF(π) depends on the first two moments of random
matrix P̃ . It can therefore efficiently be evaluated for any policy. AlthoughF(π) is still non-convex inπ, in
practice, global optimization techniques will lead to useful solutions as presented in Section 5.2.

Before studying the usefulness of minimizingF(π), we will first introduce the definition of(1 − ǫ)-
percentile performance for a policy in this context and present a lemma that constrains the range of possible
solutions for any chance constrained problem.

DEFINITION 2. For a fixed policyπ,Y(π, ǫ), the(1−ǫ)-percentile performance of policyπ under transition
uncertaintyP̃ , is the solution to:

Y(π, ǫ) = maximize
y∈R

y

subject to PP̃ (Ex(
∑∞

t=0 αtrt(xt)|x0 ∝ q,π)≥ y)≥ 1− ǫ .

LEMMA 2. Given any random variablẽz with meanµ and varianceΘ, then the optimal valuey∗ of the
optimization problem

maximize
y∈R

y (11a)

subject to P(z̃ ≥ y)≥ 1− ǫ , (11b)

is assured to be in the rangey∗ ∈ [µ− Θ√
ǫ
, µ+ Θ√

1−ǫ
].

The proof is given in the online appendix.One can now derive the following theorem.
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THEOREM 4. Given state transition observations{(s1, a1, s
′
1), ..., (sM , aM , s′M )} and suppose thatM ∗ =

mini,a

∑

j
M

(i,a)
j , the minimum number of transitions observed from any state using any action, andǫ ∈

(0,0.5], policy
π̂ = argmax

π

F(π) (12)

is o(1/
√

ǫM ∗) optimal with respect to the chance constrained MDP problem

maximize
π∈Υ

Y(π, ǫ) , (13)

where the probabilityPP̃ is the probability of drawingP̃ from the posterior Dirichlet distribution, and
where the expectation is taken with respect to the random trajectory ofx when following stationary policy
π given a concrete realization of̃P .

Proof Using Lemma 2 with̃z replaced bỹgP̃ (π) = Ex(
∑∞

t=0 αtr(xt)|x0 ∝ q,π, P̃ ), one can easily show
that for any policyπ

YP̃ (π, ǫ)−F(π) ≤ EP̃ (g̃P̃ (π)) +
1√

1− ǫ

√

EP̃ (g̃P̃ (π)2)−EP̃ (g̃P̃ (π))2 −F(π)

= Lexp(π) +

√

Lvar(π)

1− ǫ
,

and

YP̃ (π, ǫ)−F(π) ≥ EP̃ (g̃P̃ (π))− 1√
ǫ

√

EP̃ (g̃P̃ (π)2)−EP̃ (g̃P̃ (π))2 −F(π)

= Lexp(π)−
√

Lvar(π)

ǫ
,

where

Lexp(π) =
∞
∑

k=3

αkqT
E

(

(XπΠ∆P̃ )k
)

Xπr = o(
1

(M ∗)2
)

Lvar(π) = E∆P̃

(

E(ỹπ|∆P̃ )2
)

−E(ỹπ)2

= E





(

qT

∞
∑

k=0

αk(XπΠ∆P̃ )kXπr

)2


−E(ỹπ)2

=
∑

k,l:k+l≥0

E

(

αk+lqT(XπΠ∆P̃ )kXπr qT(XπΠ∆P̃ )lXπr
)

−E(ỹπ)2

=
∑

k,l:k+l≥2

E

(

αk+lqT(XπΠ∆P̃ )kXπr qT(XπΠ∆P̃ )lXπr
)

= o(
1

M ∗ ) ,

where the boundso( 1
(M∗)2

) ando( 1
M∗ ) were derived from the rate of decay for each moment of a Dirichlet

distribution (see Wilks (1962) for details on these moments).
This gives us a bound between the optimal(1 − ǫ)-percentile performance obtained from policyπ∗ =

argmaxπ YP̃ (π, ǫ) andπ̂ returned by Problem 12.

YP̃ (π∗, ǫ)−YP̃ (π̂, ǫ) = YP̃ (π∗, ǫ)−F(π∗) + F(π∗)−YP̃ (π̂, ǫ)
≤ YP̃ (π∗, ǫ)−F(π∗) + F(π̂)−YP̃ (π̂, ǫ)

≤ Lexp(π
∗) +

√

Lvar(π∗)√
1− ǫ

−Lexp(π̂) +

√

Lvar(π̂)√
ǫ

= o(
1√
ǫM ∗

) . �
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4.4. Improving the bound with action elimination

In some instances of MDPs with transition uncertainty, it might be the case that little observations were
made from state-action pairs that were observed to have low return. Unfortunately, although most likely
that neither the true optimal percentile policy nor the approximate one put positive weight on these state-
action pairs, Theorem 4 states that our confidence in the approximate policy should depend on this reduced
number of transition observations from the given pairs. We apply the idea of action elimination, proposed
by MacQueen (1966) in the context of the nominal MDP, to the percentile optimization framework in order
to relax this dependence.

DEFINITION 3. LetB be an arbitrary set of undesirable state-action pairs such that for any statei there
exists an actiona for which (i, a) /∈ B. LetBc be the complement ofB with respect toS ×A.

In order to prevent the dependence of the proposed bound on the state-action pairs inB, we propose a simple
test that will allow us to redefineM ∗ in Theorem 4 asM ∗∗ = min(i,a)∈Bc

∑

j
M

(i,a)
j .

DEFINITION 4. ConsideringΥBc to be the set of stationary policy that have support strictlyon state-action
pairs inBc, let:

Q+(i, a;Bc) = sup
π ∈ ΥBc

P ∈ support(P̃ )

Ex(
∞
∑

t=0

αtr(xt)|x0 = i, π, a0 = a)

be the highest achievable expected return given that one starts in statei, takes actiona before following a
policy in ΥBc .

Similarly, let:

Q−(i, a;Bc) = inf
π ∈ ΥBc

P ∈ support(P̃ )

Ex(
∞
∑

t=0

αtr(xt)|x0 = i, π, a0 = a)

be the lowest achievable expected return given that one starts in statei, takes actiona before following a
policy in ΥBc .

Both of these limits are finite using the fact that the expected return is always bounded above by1/(1−α)
times the largest achievable reward and below by1/(1−α) times the smallest achievable one.

COROLLARY 2. Suppose that a set of state-action pairsB according to Definition 3 and a slack parameter
λ≥ 0 satisfy the condition:

Q+(i, a;Bc) ≤ max
b:(i,b)∈Bc

Q−(i, b;Bc) +λ ∀(i, a)∈B . (14)

Then for state transition observations{(s1, a1, s
′
1), ..., (sM , aM , s′M)} andǫ ∈ (0,0.5], the policy obtained

solving Problem 12 iso(1/
√

ǫM ∗∗ + λ/(1 − α)) optimal according to Problem 13, whereM ∗∗ =
min(i,a)∈Bc

∑

j
M

(i,a)
j .

Note thatQ+(i, a;Bc) andQ−(i, a;Bc) can be computed to a sufficient level of accuracy for all(i, a)
pairs using backup operations similar to what was presentedin Nilim and El Ghaoui (2005). The proof is
presented in the online appendix and relies mostly on applying Theorem 4 on a version of the MDP that do
not possess the state-action pairs inB. As a final remark on this result, Corollary 2 can easily be extended
to a probabilistic setting whereQ+ andQ− are be defined in terms of high probability bounds.

5. Experiments
We have chosen the machine replacement problem as an application for our methods. Consider the repair
cost that is incurred by a factory that holds a high number of machines, given that each of these machines
are modeled with the same underlying MDP for which parameters are not known with certainty. In such a
setting, it would be natural to apply a repair policy uniformly on all the machines with the hope that, with
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probability higher than1− ǫ, this policy will have a low maintenance cost on average. This is specifically
what the percentile criterion quantifies. We now present twoinstances of this problem with either reward
or transition parameter uncertainty. Note that we have selected simple instances of this problem in order to
present clearly how our method compares to the nominal and the robust approaches described in Section 2.
In fact, our methods remain computationally tractable withmachine replacement problems of more than
1000 states.

5.1. Machine replacement as an MDP with Gaussian rewards

In our experiment with Gaussian reward MDP, we used a simple version of the machine replacement prob-
lem with 50 states, 2 actions, deterministic transitions, adiscount factor of 0.8, and fixed Gaussian uncer-
tainty in the rewards (see Figure 1). Our model develops as follow: after the policy is chosen by the agent,
the environment is created according to a predefined joint Gaussian distribution over the rewards, and the
policy is applied on this environment which is solely deterministic thereafter. For each of the first 49 steps,
repairs have a cost independently distributed asN (130,1). The 50th state of the machine’s life was designed
to be a more risky state: not repairing incurs a highly uncertain costN (100,800), while repairing is a more
secure but still uncertain optionN (130,20).

The performance of policies obtained using nominal, robustand 99% chance constrained problem for-
mulations are presented in Figure 2.2 These results describe what one would typically expect fromthe three
solution concepts. While the nominal strategy, blind to anyform of risk, finds no advantage in ever repair-
ing, the robust strategy ends up following a highly conservative policy (repairing the machine in state #49 to
avoid state #50). On the other hand, the 99% chance constrained optimal strategy handles the risk more effi-
ciently by waiting until state #50 to apply a mixed strategy that repairs with 90% probability. This strategy
performed better than its robust alternative while preserving small variance in performance over the 10000
different sampled environments.

5.2. Machine Replacement as an MDP with Dirichlet prior on transitions

In this experiment, we use a version of the machine replacement problem with 10 states, 4 actions, a dis-
count factor of 0.8, a uniform initial state distribution and transition uncertainty modeled with Dirichlet
distribution. States 1 to 8 describe the normal aging of the machine, while statesR1 andR2 represent two
possible stages of repairs:R1 being normal repairs on the machine costing 2, andR2 standing for a harder
one with a cost of 10. Letting the machine reach the age of 8 is penalized with a cost of 20. In each of these
states, one has access to three repair services for the machine. We designed a Dirichlet model for transitions
occurring when no repairs are done. In the case of each of the three repair options, for simplicity we used
slightly perturbed versions of a reference Dirichlet modelthat is presented in Figure 3. In this figure, the
expected transition parameters are presented given thatM transitions were observed from each state. The
parameterM acts as a control for the amount of transition uncertainty present in the model.

We applied three solution methods to this decision problem.First, the nominal problem was formu-
lated using the expected transition probabilities from theDirichlet distribution. Then, we applied the robust

Figure 1 Instance of a machine replacement problem with fixed uncertainty in the rewards. The optimal paths followed for
three strategy criterion are drawn.
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Figure 2 Performance comparisons between nominal, robust and chance constrained policies on 10000 runs of the machine
replacement problem. The right figure focuses on the interval [−17,−10].

method presented in Section 2.2. As mentioned earlier, it isunclear how to state the robust MDP problem
when using probabilistic models for parameter uncertainty. Here, we chose to evaluate the 90% percentile
performance of policies and therefore built a 90% confidencebox in R

|S|×|A|×|S| for the random vector̃P .
(Using 10000 samples drawn from̃P and a givenγ ratio, for each parameterP(i,a,j) we choseA(i,a,j) and
B(i,a,j) so that they included a ratio ofγ of the random samples. A search overγ was done to find the mini-
malγ that led to a boxA(i,a,j) ≤P(i,a,j) ≤B(i,a,j) containing 90% of the samples drawn from̃P . We do not
discuss the validity of this method as it is purely illustrative of the difficulties involved in the choice of an
90% uncertainty set for̃P .) Finally, we used the “2nd order approximation” performance measure presented
in Section 4.3 to find an optimal policy for this machine replacement problem. To do so, we were required
to solve a non-convex optimization problem using a gradientdescent algorithm (applied on−F(π)). The
gradient ofF(π) was found to be

∂F(π)

∂π(i,a)

=
∑

k,l

(

qkrl +α2qk(Π(l,·,·)QXπr) +α2(qTXπΠQ(·,·,k))rl

) ∂Xπ
(k,l)

∂π(i,a)

+

α2(qTXπ
(·,i))(Q(i,a,·)X

πr) +α2
∑

k,a′,l

(qTXπ
(·,k))(X

π
(l,·)r)π(k,a′)

∂Q(k,a′,l)

∂π(i,a)

,

Figure 3 Instance of a machine replacement problem with Dirichlet uncertainty in the transition parameters. The graph presents
the expected transition probabilities for the two types of actions (repairing, or not) after observingM transitions from
each state. In our experiments, three repair options are available, all three leading to slightly perturbed version of the
Dirichlet model presented here.
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Figure 4 (a) presents a performance comparisons between nominal, robust and chance constrained policies on 10000 runs of

the machine replacement problem withM = 1. (b) presents the effect of decreasing the uncertainty in the transitions
on the mean and the 90% percentile performances of the different methods.

where

∂Q(k,a′,l)

∂π(i,a)

= 11{i = k ∧ a = a′}Θ(i,a)

(l,·) Xπ
(·,i) +π(k,a′)

∑

r

Θ
(k,a′)

(l,r)

∂Xπ
(r,k)

∂π(i,a)

∂Xπ
(k,l)

∂π(i,a)

= αXπ
(k,i)(P(i,a,·)X

π
(·,l)) .

Although gradient descent techniques provide no guarantees of reaching a global optimum, by taking as
initial point the policy returned by the nominal problem, wewere assured to find a policy that performs better
than the nominal one with respect toF(π).3 Figure 4(a) shows the histogram of expected discounted rewards
obtained using the different methods on 10000 instances of the described uncertain machine replacement
problem (withM = 1). We also indicated the mean and the 90% percentile of the different methods. It
is interesting to see that although the 2nd order approximation method and the nominal method do not
directly address the percentile criterion, the 90% percentile performance actually outperforms the policy
obtained using the robust method for large parameter uncertainty. When having a look at the different
policies returned by the methods, we realize that the robustpolicy again acts very conservatively by applying
repairs too early. On the other hand, the nominal strategy does not make any use of the fact that 3 repair
options are available. The 2nd order approximation method returns a policy that for instance uses a mixed
strategy over the repair options in statesR1 (i.e., heavy repair state) in order to reduce the variance of
transition probabilities and, indirectly, the overall expected cost. In Figure 4(b), we show how these results
evolve with the number of observed transitions (quantified by M in the Dirichlet model). As expected, when
more transitions are observed, the 2nd order approximationpolicy slowly converges to the nominal policy,
due to the vanishing second term ofF(π).

6. Conclusion
In this paper, we presented a “chance constrained formulation” for MDPs with uncertain parameters. We
showed that, although some of its instances are intractableto solve, some instances of this problem can be
efficiently solved using second-order cone programming. Infact, our experiments demonstrated that, given
a preferred level of risk, the proposed criterion compares favorably with policies derived using a nominal
model or a robust approach. We believe that many important problems that are usually addressed using
standard MDP models should be revisited and better resolvedusing our proposed models for parameter
uncertainty (e.g., machine replacement, inventory management, some queueing control problems,etc.).
Finally, we consider the chance constrained formulation tobe an important step towards the optimization of
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data-driven MDPs. Given that the MDP’s parameters are estimated based on data, this formulation naturally
enables the decision maker to account for parameter uncertainty.

Appendix. The frequentist approach

Interestingly, the percentile criterion can also be reformulated under the frequentist perspective. In this
context, one makes no prior assumption on the parametersr̃ andP̃ but instead bases his analysis solely on
realized instances of these variables. When estimating thereward associated with each state of the MDP,
based on the central limit theorem, one can typically approximate his uncertainty using the Gaussian dis-
tribution. It is easy to show that given enough noisy measurements ofr̃, Theorem 1 can be applied to this
context.

In the case of the transition probabilities, one assumes that for each state-action pair(i, a) there exists
an underlying multinomial distributionP(i,a)(j) describing the transitions of the system. Given enough
examples of transitions from statei using actiona, one typically builds an estimatêP(i,a)(j) based on the
frequencies of transitions. One must now consider the uncertainty related to mean estimation from samples
∆P̃(i,.) = P(i,.)− P̂(i,.) for which mean and covariance can be approximated using the central limit theorem.
Because of the nature of the multinomial distribution, one can show that third and higher moments of
∆P̃ decrease in magnitude with the number of observed transitions. Thus, the algorithm and performance
bounds presented in Theorem 4 extend naturally to the frequentist framework. We encourage interested
readers to find more insights on this problem in Mannor et al. (2006).

We would like to briefly outline an alternate frequentist approach for dealing with reward uncertainty.
Given that the two first moments ofr̃ are estimated, based on the sampling, to be close to(µr̃,Θr̃) with high
probability, a rigorous interpretation of the percentile criterion (called distributionally robust) can enforce
the chance constraint to be met over the setFµr̃ ,Θr̃

of all possible distributions with such moments. The
concept of distributionally robust solutions is commonly applied in the field of stochastic optimization
(see Shapiro and Kleywegt (2002)). Using Theorem 3.1 from Calafiore and El Ghaoui (2006), Theorem 1
can naturally be extended to this case.

COROLLARY 3. Given that̃r is drawn from a distribution in the setFµr̃ ,Θr̃
, Theorem 1 holds with Chance

Constraint(3b) replaced with thedistributionally robust Chance Constraint

inf
fr̃∈Fµr̃,Θr̃

Pr̃(Ex(
∞
∑

t=0

αtr̃(xt)|x0 ∝ q,π)≥ y)≥ 1− ǫ ,

and Objective(4a)replaced with

maximize
ρ∈R|S|×|A|

∑

a
ρT

aµr̃ −
√

1−ǫ
ǫ
‖
[

∑

a ρT

aΘ
1
2
r̃

]

‖2 .

Thus, for anyǫ ∈ (0,1), the distributionally robust version of the discounted reward chance constrained
MDP Problem(3) can be solved using an equivalent “second order cone” problem.

Notes
1In our implementation, we used a toolbox developed for Matlab: “CVX: Matlab Software for Disciplined Convex Program-

ming” by Michael Grantet al.
2Implementation details: the robust problem was solved using the method presented in Section 2.2, setting the 99% confidence

ellipsoid of the random cost vector as the uncertainty set. Also, all “second order cone” programming was implemented inMatlab
using the CVX software available online at: http://www.stanford.edu/∼boyd/cvx/.

3Implementation details: Matlab’s optimization toolbox was used to solve this non-linear optimization problem.
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