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1. Introduction

Markov decision processes (MDPs) are an effective tool ideting decision-making in uncertain dynamic
environments€.g, Putterman (1994)). Since the parameters of these modetgcally either estimated
from data or learned from experience, it is not surprisirag,thn some applications, unavoidable modeling
uncertainty often causes the long term performance of gegydo significantly differ from the model’'s
predictions (refer to experiments by Mannor et al. (2006¢}.us consider a concrete problem where one
needs to deal with inherent model uncertainty. A factory emwmants to design a replacement policy for a
line of machines. This problem is known to be well modeledwaitVIDP with states representing reachable
aging phases and actions describing different repair dacement alternatives. Although the parameters
used in such a model can typically be estimated from hisibdata (experienced repair costs and decreases
in production due to failures), one can rarely fully resdlvem. For example, there is inherent uncertainty
in future fluctuations for the cost of new equipment. Also often doesn’t have access to enough historical
data to adequately assess the probability of a machineibgedkwn at a given aging stage. One should
expect significant improvements from incorporating thisentainty in the performance evaluation of a
given repair policy. This example illustrates the need foteda that address parameter uncertainty in
general and specifically in the MDPs.¢, Ben-Tal and Nemirovski (1998), Silver (1963), Martin 619,
Satia and Lave (1973), Dearden et al. (1999)).

To date, most efforts have focused on the study of robust MBRBs Nilim and ElI Ghaoui (2005), lyen-
gar (2002), Givan et al. (2000), Bagnell et al. (2001)). is tontext, under the assumption that parameters
lie in a given uncertainty set, one considers a dynamic gagaest nature as equivalent to choosing the
best strategy for the worst-case scenario. Under mild ¢iondi (namely the convexity of the uncertainty
sets), the robust formulation of the problem of parameteettainty becomes tractable. Unfortunately, as
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will be demonstrated in Section 5, the robust MDP approaténofenerates overly conservative strate-
gies. Similar conclusion can be drawn in the context of BHhg robust control formulation, as in van
der Schaft (1999), which considers uncertainty in termsafridled perturbations in the system. Previous
work also studies parameter uncertainty in the form of pbdtions of the underlying Markov chain but
it focuses more on understanding the long term dynamicseftiistem rather than the performance of
policies (see Avrachenkov et al. (2002)).

In this paper we offer a more practical way of handling uraiaty in the parameters. Following recent
work by Mannor et al. (2006) that studied the effect of par@mencertainty on the mean and variance of
the value function of Markov processes with fixed policy, wié @onsider the parameters as random vari-
ables and study the Bayesian point of view on the questioecistn-making. In fact, it will be shown that
this framework can lead to a performance measure callecettoeptile criterion, which is both conceptually
natural and representative of the trade-off between opticand pessimistic strategies when facing param-
eter uncertainty. Unlike the robust methods, our approattmet require the assumption that parameters
lie in a bounded uncertainty set but instead will attempetson directly about the effect of this uncertainty
on the total cumulative reward itself. Note that Filar et(&B95) introduced the percentile criterion as a
risk-adjusted performance measure for “average rewardPsIIHowever, their study did not address the
guestion of parameter uncertainty.

The chance constrained criterion that is widely studiedsiagle-period optimization problems.g,
Charnes and Cooper (1959), Prékopa (1995)) will be geimethln Section 2 to infinite-horizon MDPs.
Although general chance constraints are suspected to bertdg computationally intractable” (Nemirovski
and Shapiro (2006)), this paper will detail the spectrumarhputational difficulties related to solving the
chance constrained criterion. In Section 3 we will dematstthat under the assumption that the transitions
are known and that the rewards are normally distributed¢tizmce constrained MDP can be solved using
a deterministic “second order cone” prograef( Lobo et al. (1998)), for which a solution can be found
in polynomial time. However, we will then show that althouttie normality assumption on rewards can
be softened, there still exist forms of uncertainty for whéxact optimization of the percentile criterion is
NP-hard. We then address in Section 4 the question of umagria the transitions of the Markov chain
and present an approximation method for finding an optimétyof the chance constrained MDP. In
Section 5, we will illustrate how this criterion outperfasrthe nominal and robust criterion on instances of
the machine replacement problem with either reward or iians uncertainty.

2. Background

In the context of an MDP with parameter uncertainty, one dtneebe “careless” and disregard parameter
uncertainty during decision making, or be “pessimistic’ggnning in order to be protected from worst-
case scenario. The purpose of our research is to focus omaétred” attitude that will realistically trades
between the two conflicting views. Next, we present thessethititudes in mathematical terms.

2.1. The nominal MDP problem

We consider an infinite horizon Markov decision process ulesd as followed: a finite state spaée
with |S| states, a finite action spackwith |A| actions, a transition probability matrik ¢ RI5/>I41xI5I
with P(s,a,s’) = P(s'|s,a), an initial distribution on stateg, and a reward vector € RI!. Although

our analysis will strictly consider the case where the remarly depends on the current state, the results
presented in this work can easily be extended to a rewardifumaf the formr(s, a, s’). In the context of an
infinite horizon MDP, one can choose to apply a mixed poticwhich is a mapping from the set of states

to to the probability simplex over the available actions: féasons of tractability, we will limit our attention

to the set of stationary Markov policies, which is denotedbywWhen considering an infinite horizon, an
optimal discounted reward stationary policys the solution to the following optimization problem:

maxir%lize B, (32 alr(zy)|z o q,m) ,
TE
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wherea € [0, 1) is the discount factor. This problem is known to be easilyabole using value iteration
(e.g, Bertsekas and Tsitsiklis (1996)). However, it does nke iato account any uncertainty in the choice
of the parameter® andr. In practice, this uncertainty is unavoidable.

In Mannor et al. (2006), the authors address this issue tstigating the effect of randofmandP on a
new nominal problem

mazr(grrlize E; 5 (Ez(ZZo al x|z x q,, ]5)) .
This problem maximizes the expected return over both thjediaries ofx and the random variables

and P. Because of the non-linear effect #f on the expected return, the authors argue that evaluating
the objective of this problem for a given policy is alreadffidult. Most importantly, their experiments
demonstrate that the common approach consisting of usenmtst likely (or expected) parameters in the
nominal problem leads to a strong bias in the performanceeoéihosen policy. These results underline the
difficulty in handling parameter uncertainty by simply fartating risk-adjusted utility functions, such as

in Howard and Matheson (1972). In this paper, we will consgfgcient techniques to take the uncertain
and P into account in the decision-making.

2.2. The robust MDP problem

The most common approach to account for uncertainty in thenpeters of an optimization problem is to
use robust optimization. This framework assumes that tloert@in parameters are constrained to lie in a
given complete set (hopefully convex) and optimize the woase scenario over this set. In the case of
discounted reward MDP, where the rewargd$or each time step and the transition matfxare known to

lie in a setR andP respectively, the robust problem thus becomes:

o]
magimice  min B _elr@leoocq,m) S

There are two types of reward uncertainty that are of intetaghe first type, termed fixed uncertainty,
the reward vector is drawn once and remains fixed for all tieg@s. In the second type, termed repeated
uncertainty, the reward is independently drawn from theifida set at each time step. It is a well known fact
that in both cases, under the assumption of no transitioartaioty, the optimal policy-* for Problem (1)

is the same (see Bertsekas and Tsitsiklis (1996)) and caonwel fefficiently. The same is true if one
disregards reward uncertainty and wants to solve the rgisabtem under transition uncertainty (see Nilim
and El Ghaoui (2005)).

2.3. The chance constrained MDP problem

Consider a Bayesian setup in which the random reward véetond random transition matrik are known

to be independent and have joint probability distributiandtionsf (7) andf(P) respectively. In such a
scenario, unless the distributions are supported over alfshounded subset of their domain, formulating
Problem (1) withR = {r|f(r) # 0} andP = {P|f(P) # 0} is no longer pertinent(g, if 7 oc ' (7, O7),
thenR = R/®I and (1) is—o0). Even if the optimization is performed over a restrictedibded subseg(g,
ellipsoids representing a 95% confidence), there is no aedinod to select this uncertainty set since the
real concern is the level of confidence in the total cumudateward and not in the individual parameters.
Instead, it is much more relevant to express the risk adjudiszounted performance of an uncertain MDP
in the following chance constrained form:

- .
e y (22)

subject to P; 5 (E. (X2, ol f(my) |z x g, m) >y) >1—e, (2b)
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where the probability?; 5 is the probability of drawing the reward vectarfor each time step indepen-
dently from f(7,) and the transition matri® from f(P), and whereg, (-|z, x ¢, 7) is the expectation of
the trajectory given a concrete realization"afnd P, a policyr, and a distributior for the initial stater,.
For a given policyr, the above chance constrained problem gives Ls a guarantee that will perform
better thany*, the optimal value of Problem (2), under the distributiorF@nd P. Note that, wher = 0,
Problem (2) and Problem (1) are equivalent; thusjeasures the risk of the policy doing worse thén
The performance measure we use is related to risk sensitteei@ often used in finance (value-at-risk).
However, in finance, one is usually interested in the risk sihgle trajectory. We focus on the risk of the
expected performance similarly to the robust optimizapproach of Givan et al. (2000), Bagnell et al.
(2001), Nilim and EI Ghaoui (2005).

Section 3 will focus on uncertainty in the reward parameteaser, in Section 4, parameter uncertainty
will be addressed. Although we do limit ourselves to preisgrthe details from a Bayesian point of view in
order to preserve the clarity of our derivations, a freqgistmaipproach to the percentile criterion do follow
naturally and is summarized in the paper appendix. This arises on fixed parameter uncertairitg. (
uncertainty due to the modeling, although in the system #narpeters are actually fixed). Similar methods
can be derived for the problem of repeated uncertainty.

2.4. Notation

In the remainder of the paper, the following notation is uskd is the vector of all ones iiR¥. For

clarity, Q; ;) will refer to the i-th row, j-th column term of a matrixQ. Also, for the sake of sim-
pler linear manipulations, we will present a poliegyunder its matrix formil € RISI*ISIxI141 " such that
(s, 59.0) = 7(51,0)1{s; = 5o} and when this three dimensional matrix will be multipliecatwother matrix
Q € RISXIAXK jt will refer to a matrix multiplication carried along!®/* (514D x RUSHADXK "sych that
(MQ) (i) = 2= .oy i ko) @ (k0,5 - NOte that this formulation explicitly denotes the lineelation between
the decision variablél and the inferred transition probability,, such that{IlP); ;) = (Pr)q;) =P(s' =

jls=1i,a=m(7)).

3. Decision making under uncertain reward parameters

First, the problem of reward uncertainty is addressed foorammon family of distribution functions, the
multivariate Gaussian distributiohoc NV (17, ©7). Under the assumption of Gaussian rewards, solving the
percentile MDP is not considerably harder than solving trainal MDP. We later briefly describe how the
Gaussian reward assumption can be relaxed although thistelestributions over the parameters for which
the percentile problem becomes intractable.

3.1. Reward uncertainty with Gaussian distribution

The Gaussian assumption is standard in many applicatioitsalews modeling correlation between the
reward obtained in different states. Also, in the Bayestam&work it is common to assume that is
known and use a Gaussian prior, with parametgss©, ), over ;. Then, based on new independent sam-
ples{ry,rs, ..., } from the distributionf (), one can obtain an analytical posterior ouerwhich has the
same Gaussian shape with parameters (see Gelman et al) {@00®re details):

=0, (901,% 1o Zn) , 0, =(6;' +me;!) .
=1

LEMMA 1. (Theorem 10.4.1 of Rkopa (1995)) Suppose= R" has a multivariate Gaussian distribution.
Then the set of € R” vectors satisfying

P(zT¢€<0)>1—¢
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is the same as those satisfying
HZTug + ‘I’il(l — 6)\/ .%'T@gaf <0,

wherep, = E(€), ©¢ is the covariance matrix of the random vectare is a fixed probability such that
0 <e<1,and® is the cumulative distribution function 8f(0,1).

Lemma 1 is an important result in the field of stochastic paiogning. In our specific context, the lemma
allows us to show that finding an optimal stationary policy thee problem of maximizing th¢l — ¢)-
percentile criterion under Gaussian uncertainty can beesged as a “second order cone” program.

THEOREM 1. For anye € (0,0.5], the discounted reward chance constrained problem withl fixaussian
uncertainty in the rewards

maximize Yy (3a)
yeR,meY
subject to Pr(E, (3,2, o' (xy)|zg ox g, m) > y) > 1 —€, (3b)

where the expectation is taken with respect to the randojadrary ofz when following stationary policy
m, and7 o< N (uz, ©7), is equivalent to the convex “second order cone” program

1
maximize 35, popur — (L= )l132, p207 Iz (4a)

pERISIX
subject to YouPe=q +> , aplP, (4b)
pa=0, VacA, (4c)

where given an optimal assignmerit an optimal policyr* to Problem(3) can be retrieved using:

i, 0(s)=0
" [A] aore
Xarals) '

Proof We first use the fact that with fixed reward uncertainty Caistr(3b) can be expressed in the
form

Pi(v'F>y)>1—¢ (6a)
¢" ) (aIlP)' =u' . (6b)

Using a change of variable that is commonly used in the MOEréiture (see Putterman (1994)), Con-
straint (6b) is equivalent to:

vT=q¢"+ad , plP, (7a)
UT:ZaeAlolv 101207 \V/(IGA, (7b)

wherep, € RIS!. From feasible pointv, p), an equivalent paifv, IT) feasible according to Constraint (6b)
can be retrieved using:
, 0 if v(s)=0
(s, s',0) = { pals)yfg — ¢} otherwise. ®)

v(s’)

Given thate < 0.5, one can use Lemma 1 to convert Constraint (6a) into an el@uiveeterministic
convex constraint. Theorem 1 follows naturally[]
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3.2. Complexity of the solution

It is important to note that “second order cone” programnigng well developed field of optimization for
which a number of polynomial time algorithms have been psegdoWe refer the reader to Lobo et al. (1998)
for background on the subject and algorithms for solving thimily of problems.Based on a primal-dual
interior point method presented in Lobo et al. (1998), westaw the following.

THEOREM 2. Given anN states,M actions MDP with fixed Gaussian uncertainty in the rewardt@ec
chance constrained Problem 3 can be solved in tix{@/? N%).

Proof Based on the work presented in Lobo et al. (1998), solving@@R’Sto any precision is bounded
above byO (x/?(k:2 Zfil k; + k3)2, whereK is the number of constraintk,is the number of variables,
andk; is the size of the vector in the norm operator of constraifihese results lead to a bound of

0 (\/MN TN T I(M2N?N + M3N3)> —O(MEND)

for Problem 4 and consequently for Problem 3 since the toameftion from one problem to the other does
not depend on the size of the MDP.[]

Note that following Calafiore and EI Ghaoui (2006), it is pb#sto reduce the Gaussian reward assump-
tion while preserving tractability of the percentile prefsl. An example of such a reduction can be referred
to as the Q-radial distribution assumption. The randomaretis said to have &)-radial distribution if
it can be defined a& = Qw + p5, Wherep; = E(7), Q € RISI** for somek < | S|, andw € R* is a ran-
dom vector having probability densitf(w) that only depends on the norm af(i.e., f(w) = g(||w||2))-
Theorem 1 can naturally be extended for radial distribgtion

Unfortunately, one can also show that some uncertainty leadethe reward parameters actually lead
to intractable forms for percentile Problem 3.

THEOREM 3. Solving the chance constrained MDP Problem 3 wg#dmeral uncertainty in the reward
parameters is NP-hard.

A detailed proof of this Theorem is presented in the onlinpesolix, where we show that the NP-
complete 3SAT problem can be reduced to solving Problem 8{dMDP with discrete reward uncertainty.

4. Decision making under uncertain transition parameters

We now focus on the problem of transition parameter unagstail his type of uncertainty is present in
applications where one does not have a physical model ofythardics of the system. In this cagemust
be estimated from experimentation and is therefore inligremcertain. Since the Bayesian framework
allows us to formulate a distribution ov&x, we consider a chance constrained MDP problem with tramsiti
uncertainty:

maximize Yy (9a)
yeER,TeY
subject to Py (B, (3,2, a'ry(xy) |z x ¢, ) > y) >1—¢, (9b)

where the probabilit  is the probability of drawing the transition mattixfrom a distributionf (P) and
whereE, (-|z, « ¢,7) is the expectation of the trajectory given a concrete ratitim of P, deterministic
rewardsr, a policyr, and a distribution of the initial statg As was the case for reward uncertainty, this
problem is hard to solve in general. However, in section 43ige the Dirichlet prior to suggest a method
that generates a near optimal policy given a sufficient nurobsamples drawn fron®.
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4.1. Computational complexity of uncertainty in the transition parameters

Finding an optimal policy, according to the chance consg&diproblem, for an uncertain MDP is NP-hard
even if there is no uncertainty in the reward parameters.

COROLLARY 1. Solving chance constrained MDP Problem 9 for general uraety in the transition
parameters is NP-hard.

Following similar lines as for proving Theorem 3, given astance of the NP-complete 3SAT Problem,
one can easily construct in polynomial time an MDP with déseitransition uncertainty. Solving Problem 9
for this uncertain MDP is equivalent to determining if theAdSnstance is satisfiable. A sketch of this proof
is included in the online appendix.

4.2. The Dirichlet prior on transition probability

Since we cannot expect to solve chance constrained Probliemadgeneral distribution, for each state-
action pair(i,a), we will use independent Dirichlet priors to model the utaiaty in the parameters
of P(iya)(j), the probability of observing a transition to stgteut of statei when taking actioru. This
assumption is very convenient for describing prior knowgkedbout transition parameters due to the fact
that, after gathering new transition observations, oneeceasily evaluate a posterior distribution over these
parameters. More specifically, for a vector of transitiorapaeter$ = (p1, ..., pn ), the Dirichlet distribu-
tion overp follows the density functiory(p) = (1/Z(53)) ]_[jilpffl, where are modeling parameters
for the Dirichlet prior andZ(/3) is a normalization factor. Given a set of observed transitibservations
{jM, 5@ ..., 74} from the multinomial distributiorf (j|p) = p,, one can analytically resolve the posterior
distribution overp. This distribution conveniently takes the same Dirichtatd f(p|;*, ..., ;™)) =
(1/Z(8, My, ..., My)) HjilpfﬁMfl, where); is the number of times that a transitionjtavas observed.
It is also known that the covariance between different tavfiisis (see Gelman et al. (2003) for details):
Oup = — (Bx + M,)(8; + M)
” (Bo+M)2(Bo+M+1)
O = (B + M;)(Bo+ M — B; — M)
" (Bo+M)*(Bo+M+1) 7

wherefy =, 3; andM =3 M.

4.3. Expected return approximation using a Dirichlet prior

Even with the Dirichlet assumption we are confronted witle flollowing difficulty in solving per-
centile Problem 9. Unlike in the case of reward uncertaimiigre under fixed reward uncertainty and
known transitions parameter&; . (>",° a'7(z;)|zo x ¢,7) = ¢"(I — oIIP)'E(7) and the optimal
policy can be found using the nominal problem), finding a @olihat simply minimizes the expected
retunEs (-, o'r(x)|xo o ¢,7) under transition uncertaint® is already hard. More specifically, the
expected return can be expressed as

Ep,m(z a'r(zy)|zooxq,m) = Ep <E$(Z alr(zy)|zo o< q,7r)>
t=0 t=0

=E; qT(I—aHP)_1r>

—E; (q"(I - all(E(P) + AP))‘%)

= E; qW(X“Y*—(X“Y*aX“HAfU_W)
=Es(¢"(I—aX"TIAP)"'X™r

I
=

s (qTZak(X”HAﬁ)kX”r> :

k=0
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where AP = P — E(P), and X™ = (I — oIIE(P))'. The matrix X~ is always well defined sincé

is modeled with the Dirichlet distribution, thus ensuritigtE(P) is a valid transition matrix and that
I — oIlIE(P) is nonsingularE; (3,7, a'r(z)|zg o g, ) therefore depends on all the moments of the
uncertainty inP. Following similar lines as in Mannor et al. (2006), we foausfinding a stationary policy
that performs well according to the second order approxonaif the expected return. We expect the norm

of higher order moments @k P to decay with the number of observed transitions.

Ep, () a'r(z)|woxq,m P) = ¢' X"r+aqg X" TIE(AP)X"r + o’¢" X "TIE(APX"TIAP)X™r + Lexp
t=0

~q' X r4+o?¢" X TTIQX ™ r
whereLexp=>_,-,&"¢'E ((X”HAP)’“) X7r, and where) € RISI*I41xI51 “such that

Quias) = (E(APX”HAP))(_ _)
2,a,)
= > (X)) B(AP g AP ar 5))

k,l,a’

= Xm0 E(AP a0 APi )
k

— (iaa) s

= T(i.0)O(5) X () -

This is under the assumption that the rowsadre independent from each other and u$ng" to represent
the covariance between the terms of the transition veaton Btatei with actiona. We are now interested
in the second order approximation®f ,(>°,~, a'r(z,)|zo ox ¢, 7, P).

DEeFINITION 1. F(x) is the second order approximation of the expected returemmnahsition uncertainty,
such that

]F(T(') — qTXTrT, 4 QQQTXWHQXWT )
REMARK 1. One should note that the approximatiBfir) depends on the first twvo moments of random

matrix P. It can therefore efficiently be evaluated for any policythughF (r) is still non-convex inr, in
practice, global optimization techniques will lead to wdsblutions as presented in Section 5.2.

Before studying the usefulness of minimizifitf7), we will first introduce the definition of1 — ¢)-
percentile performance for a policy in this context and pnés lemma that constrains the range of possible
solutions for any chance constrained problem.

DEFINITION 2. For afixed policyr, Y(r, ), the(1 —e¢)-percentile performance of polieyunder transition
uncertaintyP, is the solution to:

V(me) = maximize Yy

subject to Py (B, (D2, a'ry(x,)|zgoc g, m) > y) >1—€.

LEMMA 2. Given any random variablé with meany and variance®, then the optimal valug* of the
optimization problem

maxi%ize Y (11a)
ye
subject to P(2>y) >1—€, (11b)

is assured to be in the range € [ — %, u+ —2=].

The proof is given in the online appendix.One can now detiegfbllowing theorem.
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THEOREM 4. Given state transition observatiokés,, a,, s}), ..., (sar, aa, s,) } @nd suppose that/* =
min, , Z M ) the minimum number of transitions observed from any staiteguany action, and €

(0,0.5], pollcy
T =arg max [F(7) (12)

K

is o(1/v/eM~*) optimal with respect to the chance constrained MDP problem
maximize Y(m,e) (13)

where the probability? s is the probability of drawingP from the posterior Dirichlet distribution, and
where the expectation is taken with respect to the randojedtary ofx when following stationary policy
m given a concrete realization d?.

Proof Using Lemma 2 witf? replaced byj () = E, (35, a'r(z;)|z, g, 7, P), one can easily show
that for any policyr

Vp(m,€) =F(m) < Ep(gp(m)) + \/%\/EP(QP(W)Q) —E5(gp(m))? —F(m)
= Lexp(m) + L\lla_r(:) ;
and
Yp(m,e) — F(r) = Ep(gp(r)) - %w&s@s(w)?) “Ep(jp(m))? ~ F(r)
= Lexplr) /22
where

Lexp(m) = > a*q'E ((X”HAP)’“) Xtr=of; M1*)2

Lvar(r) = Eap (B AP)?) — ()’

=E <<qT iak(X”HAP)kX”r> ) —E(§.)?

k=0

MM

E (ak“qT(X”HAP)’“X"r qT(X”HAP)lX”r) CE(j,)?
0

) ) |
E (a“qu(X”HAP)kX”r qT(X"HAP)lX”r) = of

M*

)

k,l:k+1>2

where the bounds( e —L ) ando( M*) were derived from the rate of decay for each moment of a Datch
distribution (see WIikS (1962) for details on these momgents

This gives us a bound between the optimial- ¢)-percentile performance obtained from policy =
argmax_)p(7,€) and7 returned by Problem 12.

y]s(ﬂ'*,é) - yp(ﬁ',é) - yﬁ(ﬂ—*?€) —F(ﬂ'*) +F(7T*) - yp(ﬁ',é)
<5l R EE) -Jrlee)
* Vv Lvanm vanm
SLeXpiﬂ')—F? LXp( T
= o

). O
eM*
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4.4. Improving the bound with action elimination

In some instances of MDPs with transition uncertainty, igiibe the case that little observations were
made from state-action pairs that were observed to havedawrr. Unfortunately, although most likely
that neither the true optimal percentile policy nor the agpnate one put positive weight on these state-
action pairs, Theorem 4 states that our confidence in theajppate policy should depend on this reduced
number of transition observations from the given pairs. 3elyathe idea of action elimination, proposed
by MacQueen (1966) in the context of the nominal MDP, to thregtile optimization framework in order
to relax this dependence.

DEFINITION 3. LetB be an arbitrary set of undesirable state-action pairs suahfor any state there
exists an actiom for which (i,a) ¢ B. Let B¢ be the complement d§ with respect toS x A.

In order to prevent the dependence of the proposed bouneatate-action pairs if, we propose a simple
test that will allow us to redefind/* in Theorem 4 a8/ = min;,yepe >, M},

DEFINITION 4. Considering( s. to be the set of stationary policy that have support strigti\state-action
pairs in3¢, let:

o0

Q.+ (i,a;B°) = sup ECE(Z a'r(zy)|ze =1i,m a0 = a)
Pc gﬁgﬁér@ =0

be the highest achievable expected return given that orts stsstate;, takes actior before following a
policy in Y ge.

Similarly, let:
Q*(@G;BC) = nél’lrfgc EI(Zat’r(xt”xO :Z.aﬂ-aa() :(I)
P e Supports) t=0

be the lowest achievable expected return given that ones $tastate;, takes actioru before following a
policy in T ge.

Both of these limits are finite using the fact that the expetotéurn is always bounded aboveby(1 — «)
times the largest achievable reward and belovi byl — «) times the smallest achievable one.

COROLLARY 2. Suppose that a set of state-action pdfraccording to Definition 3 and a slack parameter
A > 0 satisfy the condition:

Q4 (i,a;8°) < b(r%?xB Q_(i,b;B°)+ X V(i,a)eB . (14)
((2,b)eBC
Then for state transition observatiof&s,, a;, s), ..., (sar, anr, s5,) } @nde € (0,0.5], the policy obtained
solving Problem 12 iso(1/veM** + \/(1 — «)) optimal according to Problem 13, wher®/** =
ming; S M
(i,a)eBC j j .

Note thatQ, (i,a; B°) and@Q_(i,a; ) can be computed to a sufficient level of accuracy for(al)
pairs using backup operations similar to what was preséentBidlim and El Ghaoui (2005). The proof is
presented in the online appendix and relies mostly on apglyheorem 4 on a version of the MDP that do
not possess the state-action pairginAs a final remark on this result, Corollary 2 can easily beerded
to a probabilistic setting whei®@, and@ _ are be defined in terms of high probability bounds.

5. Experiments

We have chosen the machine replacement problem as an digplit@ our methods. Consider the repair
cost that is incurred by a factory that holds a high number aéimmes, given that each of these machines
are modeled with the same underlying MDP for which paramsedez not known with certainty. In such a
setting, it would be natural to apply a repair policy unifdyron all the machines with the hope that, with
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probability higher than — ¢, this policy will have a low maintenance cost on averages Thispecifically
what the percentile criterion quantifies. We now presentitvgtances of this problem with either reward
or transition parameter uncertainty. Note that we havectadiesimple instances of this problem in order to
present clearly how our method compares to the nominal antbthust approaches described in Section 2.
In fact, our methods remain computationally tractable waitaichine replacement problems of more than
1000 states.

5.1. Machine replacement as an MDP with Gaussian rewards

In our experiment with Gaussian reward MDP, we used a simgigian of the machine replacement prob-
lem with 50 states, 2 actions, deterministic transitiondisaount factor of 0.8, and fixed Gaussian uncer-
tainty in the rewards (see Figure 1). Our model developslaswvoafter the policy is chosen by the agent,
the environment is created according to a predefined joints&an distribution over the rewards, and the
policy is applied on this environment which is solely detinistic thereafter. For each of the first 49 steps,
repairs have a cost independently distributed/3$30, 1). The 50th state of the machine’s life was designed
to be a more risky state: not repairing incurs a highly ursgertost\/ (100, 800), while repairing is a more
secure but still uncertain optiok(130, 20).

The performance of policies obtained using nominal, rolmst 99% chance constrained problem for-
mulations are presented in Figuré Zhese results describe what one would typically expect fiwathree
solution concepts. While the nominal strategy, blind to #omyn of risk, finds no advantage in ever repair-
ing, the robust strategy ends up following a highly constrggolicy (repairing the machine in state #49 to
avoid state #50). On the other hand, the 99% chance coredrajstimal strategy handles the risk more effi-
ciently by waiting until state #50 to apply a mixed stratelygttrepairs with 90% probability. This strategy
performed better than its robust alternative while prasgrgmall variance in performance over the 10000
different sampled environments.

5.2. Machine Replacement as an MDP with Dirichlet prior on transitions

In this experiment, we use a version of the machine replaoepreblem with 10 states, 4 actions, a dis-
count factor of 0.8, a uniform initial state distributiondatransition uncertainty modeled with Dirichlet
distribution. States 1 to 8 describe the normal aging of taehine, while stateR1 and R2 represent two
possible stages of repairB1 being normal repairs on the machine costing 2, adtanding for a harder
one with a cost of 10. Letting the machine reach the age of 8nglzed with a cost of 20. In each of these
states, one has access to three repair services for themaaVe designed a Dirichlet model for transitions
occurring when no repairs are done. In the case of each ohtke tepair options, for simplicity we used
slightly perturbed versions of a reference Dirichlet mathelt is presented in Figure 3. In this figure, the
expected transition parameters are presented giverdthiaansitions were observed from each state. The
parametelM acts as a control for the amount of transition uncertainggent in the model.

We applied three solution methods to this decision probleirst, the nominal problem was formu-
lated using the expected transition probabilities fromDiréchlet distribution. Then, we applied the robust

nominal strategy
— — - chance-constrained strategy
..... robust strategy
Figurel Instance of a machine replacement problem with fixed unicgytin the rewards. The optimal paths followed for
three strategy criterion are drawn.
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Figure2  Performance comparisons between nominal, robust and el@mstrained policies on 10000 runs of the machine
replacement problem. The right figure focuses on the intgrv7, —10].

method presented in Section 2.2. As mentioned earlieruih&dear how to state the robust MDP problem
when using probabilistic models for parameter uncertaiigre, we chose to evaluate the 90% percentile
performance of policies and therefore built a 90% confiddrmein R!S!<141xI5! for the random vectoP.
(Using 10000 samples drawn fromand a giveny ratio, for each parametd?; , ;) we chosed,, , ;) and
B;...;) s0 that they included a ratio gfof the random samples. A search ovewas done to find the mini-
maly that led to a boxd; , ;) < Pii..j) < B(i.a) containing 90% of the samples drawn frdfaWe do not
discuss the validity of this method as it is purely illustratof the difficulties involved in the choice of an
90% uncertainty set faP.) Finally, we used the “2nd order approximation” perforrmameasure presented
in Section 4.3 to find an optimal policy for this machine reglaent problem. To do so, we were required
to solve a non-convex optimization problem using a gradirsicent algorithm (applied onaF()). The
gradient ofF (7) was found to be

OF (7 w i 0%l
87T((- : B Z (Q;m —i—onqk(H(z,»,»)QX r)+a’(q'X HQ(""’“))”) W(',))—i_
» -~ i,a
T T T ™ aQ k.al\l
(4" X7 ) (Quan X™r) +0* ) (qTXU“))(X(l")r)ﬂ(k’a/)ﬁ ’
k,a’,l e
ST e Doing nothing

Repairing with optionj

Figure3  Instance of a machine replacement problem with Dirichleeutainty in the transition parameters. The graph presents
the expected transition probabilities for the two typesaticas (repairing, or not) after observidd transitions from
each state. In our experiments, three repair options artabha all three leading to slightly perturbed version loé t
Dirichlet model presented here.
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(a) (b)
Figure4  (a) presents a performance comparisons between nomibalstrand chance constrained policies on 10000 runs of
the machine replacement problem with= 1. (b) presents the effect of decreasing the uncertaintydrirdmsitions
on the mean and the 90% percentile performances of thediffenethods.

where
0Q ' (i,a) (h.a'y 9K k)
— Y —Wi=kANa=d O VX" 4+ T E Q)%
87%»7@) { } (1,-) “*(40) (k,a’) - {,r) 87%»7@)
OXlny

aﬂ'(i,a) = OZXZ;C,i) (P(l-_’a_’.)X(Til)) .
Although gradient descent techniques provide no guararmdeesaching a global optimum, by taking as
initial point the policy returned by the nominal problem, were assured to find a policy that performs better
than the nominal one with respectér) .2 Figure 4(a) shows the histogram of expected discounted-dswa
obtained using the different methods on 10000 instanceseofléscribed uncertain machine replacement
problem (with M = 1). We also indicated the mean and the 90% percentile of ttierelift methods. It

is interesting to see that although the 2nd order approxmanethod and the nominal method do not
directly address the percentile criterion, the 90% peilgeperformance actually outperforms the policy
obtained using the robust method for large parameter waingrt When having a look at the different
policies returned by the methods, we realize that the rginlgty again acts very conservatively by applying
repairs too early. On the other hand, the nominal strate@g @t make any use of the fact that 3 repair
options are available. The 2nd order approximation metkagdms a policy that for instance uses a mixed
strategy over the repair options in states (i.e., heavy repair state) in order to reduce the variance of
transition probabilities and, indirectly, the overall exped cost. In Figure 4(b), we show how these results
evolve with the number of observed transitions (quantifigdbin the Dirichlet model). As expected, when
more transitions are observed, the 2nd order approximatdiay slowly converges to the nominal policy,
due to the vanishing second termiiyfr).

6. Conclusion

In this paper, we presented a “chance constrained forronlator MDPs with uncertain parameters. We
showed that, although some of its instances are intractatdelve, some instances of this problem can be
efficiently solved using second-order cone programmindadh our experiments demonstrated that, given
a preferred level of risk, the proposed criterion compaa@srably with policies derived using a nominal
model or a robust approach. We believe that many importastilepms that are usually addressed using
standard MDP models should be revisited and better resalsid) our proposed models for parameter
uncertainty €.g, machine replacement, inventory management, some quggentrol problemsetc).
Finally, we consider the chance constrained formulatidmetan important step towards the optimization of
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data-driven MDPs. Given that the MDP’s parameters are astidbased on data, this formulation naturally
enables the decision maker to account for parameter uittgrta

Appendix. The frequentist approach

Interestingly, the percentile criterion can also be refadated under the frequentist perspective. In this
context, one makes no prior assumption on the parametard P but instead bases his analysis solely on
realized instances of these variables. When estimatingetvard associated with each state of the MDP,
based on the central limit theorem, one can typically apprate his uncertainty using the Gaussian dis-
tribution. It is easy to show that given enough noisy measerdgs ofi, Theorem 1 can be applied to this
context.

In the case of the transition probabilities, one assumesdnaach state-action pafi, a) there exists
an underlying multinomial distributio®; ,(j) describing the transitions of the system. Given enough
examples of transitions from stateising actiona, one typically builds an estimatlé(m) (7) based on the
frequencies of transitions. One must now consider the tmiogy related to mean estimation from samples
AP, y= P, y— P for which mean and covariance can be approximated usinggthteat limit theorem.
Because of the nature of the multinomial distribution, oa@ show that third and higher moments of
AP decrease in magnitude with the number of observed transitibhus, the algorithm and performance
bounds presented in Theorem 4 extend naturally to the fregpadramework. We encourage interested
readers to find more insights on this problem in Mannor e28106).

We would like to briefly outline an alternate frequentist eggeh for dealing with reward uncertainty.
Given that the two first moments dfare estimated, based on the sampling, to be cloget®) with high
probability, a rigorous interpretation of the percentitéezion (called distributionally robust) can enforce
the chance constraint to be met over the Bgt o of all possible distributions with such moments. The
concept of distributionally robust solutions is commonfyphed in the field of stochastic optimization
(see Shapiro and Kleywegt (2002)). Using Theorem 3.1 fromafidme and El Ghaoui (2006), Theorem 1
can naturally be extended to this case.

CoOROLLARY 3. Given that: is drawn from a distribution in the sé%,,_ ¢., Theorem 1 holds with Chance
Constraint(3b) replaced with thelistributionally robust Chance Constraint

inf P;(EI(Z 't (zy)|zo ox g, ) >y) > 1 —¢€,
v t=0

fr”-efu;,@,r

and Objectivd4a)replaced with

imi P 104 I
masimie Yarte =21 [, o102 |
Thus, for anye € (0,1), the distributionally robust version of the discounted aggvchance constrained
MDP Problem(3) can be solved using an equivalent “second order cone” pnoble

Notes

In our implementation, we used a toolbox developed for Matt€VX: Matlab Software for Disciplined Convex Program-
ming” by Michael Granet al.

ZImplementation details: the robust problem was solvedgugie method presented in Section 2.2, setting the 99% cocide
ellipsoid of the random cost vector as the uncertainty sksp Aall “second order cone” programming was implementeddatiab
using the CVX software available online at: http://wwwetad.edui-boyd/cvx/.

3Implementation details: Matlab’s optimization toolboxsuased to solve this non-linear optimization problem.
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