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Percentile Performance Criteria For Limiting 
Markov Decision Average Processes 

Jerzy A. Filar, Dmitry Krass, and Keith W. Ross, Senior Member, IEEE 

Abstract- In this paper we address the following basic fea- 
sibility problem for infinite-horizon Markov decision processes 
(MDP’s): can a policy be found that achieves a specified value 
(target) of the long-run limiting average reward at a specified 
probability level (percentile)? Related optimization problems of 
maximizing the target for a specified percentile and vice versa 
are also considered. We present a complete (and discrete) clas- 
sification of both the maximal achievable target levels and of 
their corresponding percentiles. We also provide an algorithm for 
computing a deterministic policy corresponding to any feasible 
target-percentile pair. 

Next we consider similar problems for an MDP with multiple 
rewards and/or constraints. This case presents some difficulties 
and leads to several open problems. An LP-based formulation 
provides constructive solutions for most cases. 

I. INTRODUCTION AND DEFINITIONS 

NFINITE horizon Markov decision processes (MDP’s, for I short) have been extensively studied since the 1950’s. One 
of the most commonly considered versions is the so-called 
“limiting average reward” model. In this model the decision- 
maker aims to maximize the expected value of the limit- 
average (“long-run average”) of an infinite stream of single- 
stage rewards. There are now a number of good algorithms 
for computing optimal deterministic policies in the limiting 
average MDP’s (e.g., see [41, [6], [ill). 

It should be noted, however, that an optimal policy in 
the above “classical” sense is insensitive to the probability 
distribution function of the long-run average reward. That 
is, it is possible that an optimal policy, while yielding an 
acceptably high expected long-run average reward, carries 
with it unacceptably high probability of low values of that 
same random variable. This “risk insensitivity” is inherent in 
the formulation of the classical objective criterion as that of 
maximizing the expected value of a random variable, and it 
is not necessarily undesirable. Nonetheless, in this paper we 
adopt the point of view that there are many natural situations 
where the decision-maker is interested in finding a policy that 
will achieve a sufficiently high long-run average reward, that 
is, a target level with a sufficiently high probability, that is, a 
percentile. The key conceptual difference between this paper 
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and the classical problem is that our controller is not searching 
for an optimal policy but rather for a policy that is “good 
enough,” knowing that such a policy will typically fail to 
exist if the target level and the percentile are set too high. 
Conceptually, our approach is somewhat analogous to that 
often adopted by statisticians in testing of hypotheses where 
it is desirable (but usually not possible!) to simultaneously 
minimize both the “type 1” and the “type 2” errors. See 
Bouakiz [5] for a review of similar approaches in economics 
and operations research literature and White [ 161 for a review 
of various approaches to risk-sensitivity in MDP’s. 

We start out by considering a problem with a single objec- 
tive. It will be seen (Section IV below) that for our target level- 
percentile problem it is possible to present a complete (and 
discrete) classification of both the maximal achievable target 
levels and of their corresponding percentiles (see Theorem 
4.3 and its corollaries). The case of a communicating MDP 
is particularly interesting as here every target level can be 
achieved with only two possible values: zero or one (see 
Theorem 4.1 and its corollary). In all cases our approach is 
constructive in the sense that we can supply an algorithm for 
computing a deterministic policy for any feasible target level 
and percentile pair. 

In Section V we turn our attention to problems with multiple 
objectives and/or constraints. The connection of this to the 
problem with sample path constraint of [13] and [14] is dis- 
cussed. In Section VI, we show how the techniques developed 
in Section IV extend directly to these problems, provided that 
the problems can be solved for a communicating MDP (see 
Theorem 6.3). The multiobjective/constrained problems are 
considered in detail for communicating MDP’s, with construc- 
tive solutions obtained for most cases (see Theorems 6.1 and 
6.2). Conclusions and some open problems are presented in 
Section VII. 

Our analysis is made possible by the recently developed de- 
composition and sample path theory due to Ross and Varadara- 
jan [14]. The logical development of the results is along the 
lines of Filar [SI. The latter paper, to the best of our knowledge, 
introduced the percentile objective criterion in the context of 
a limiting average Markov control problem, but substituted 
the long-run expected frequencies in place of actual percentile 
probabilities since the decomposition and sample path theory 
of [14] was not known at that time (the unusual way of 
evaluating risk in [8] was also pointed out in [16]). Some 
earlier related work appeared in Mitten [12], Sobel [15], and 
Henig [lo]. In the remainder of this section we shall introduce 
the notation of the limiting average Markov decision process. 
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P,,(R 2 7 I X1 = S I )  2 a? (2.1) 

If (2.1) holds for some policy U ,  then we shall say that U 

achieves the target level 7 at percentile a,  and r will be called 
a-achievable. 

Problem 2: Given a E [0, I] find 

re: = sup {r  I r is N - achievable}. (2.2) 

FILAR er al: LIMITING AVERAGE MARKOV DECISION PROCESSES 

A finite MDP, I?, is observed at discrete-time points n = 
1, 2, .. . . The state space is denoted by S = (1, 2, ... , IS/}. 
With each state i E S we associate a finite action set A( i ) .  At 
any time point n, the system is in one of the states, and an 
action has to be chosen by the decision-maker. If the system is 
in state i and the action a E A( i )  is chosen, then an immediate 
reward ~ ( i ,  a )  is earned and the process moves to a state 
j E S with transition probability p i a j ,  where pi,j 2 0 and 

A decision rule U ,  at time n is a function which assigns 
a probability to the event that action a is taken at time n. 
In general U ,  may depend on all realized states up to and 
including time n. A policy (or a control) U is a sequence 
of decision rules: U = (ul, U’, . . .  ,U,, ...). A policy is 
stationary if each U ,  depends only on the current state at 

. A pure (or 
deterministic) policy is a stationary policy with nonrandomized 
decision rules. A stationary policy f induces a Markov chain 

CjEs P i a j  = 1. 

time n, and u1 = u2 = ...  = U” = ...  

P ( f )  with the transitions > ( f j t J  = CaEA(i p i a j f i a  for 
i, j E S, where f i a  is the probability (under )) that action 
a is chosen whenever state i is visited. If P ( f )  consists of a 
single recurrent class of states, then f is called an irreducible 
policy. If P ( f )  contains some transient states in addition to a 
single recurrent class, then f is called a unichain policy. MDP 
F is called unichain if every stationary policy in r is unichain. 

Let X ,  and A ,  be the random variables that denote the 
state at time n and the action chosen at time n, and define the 
limiting average reward as the random variable 

n=l 

It should now be clear that once a policy U and an initial 
state X 1  = s1 are fixed, the expectation 4(u, SI): = E,[R I 
X 1  = SI]  of R is well defined and will, from now on, be 
referred to as the expected average reward due to a policy U .  

The classical limiting average reward problem is to find an 
optimal policy U* such that for all policies U 

4(u*, SI) 2 4(u, s1) for all s1 E S. (1.1) 

It is well known (e.g., see [4]) that there always exists a pure 
optimal policy U*. 

11. PROBLEMS RELATING TO PERCENTILE OBJECTIVE CRITERIA 

We shall say that any pair (7, a )  such that 7 E R and 
a E [0, 11 constitutes a target level-pqcentile pair. We shall 
address the following problems. 

Problem 1: Fix s1 E S. Given (7, a )  E R x [0, 11 does 
there exist a policy U such that 

3 

Problem3: Given r E R find 

aT: = sup { a  E [0, 11 I 3 a policy U s.t. (2.1) holds}. (2.3) 

Remark 2.1: It should be clear that in many situations the 
natural goal of maximizing the target level will be in direct 
conflict with the goal of maximizing the’percentile value. This 
is because r, is a nonincreasing function of a,  while a, is a 
nonincreasing function of r. 

111. PRELIMINARIES 

We shall develop our results within the framework of 
the decomposition and sample path theory due to Ross and 
Varadarajan [14] (for a related decomposition, see [2]). This 
decomposition approach has also proved instrumental in solv- 
ing other limiting average MDP problems with nonstandard 
criteria (see [14] and [3]). In this section we collect some 
results from [14] that will be needed for the proofs in the 
subsequent sections. 

In 1141 it is shown that the state space S has a unique par- 
tition C1, C,, . . . , C K ,  T ,  whose properties are summarized 
below. 

Theorem 3.1 (Proposition 2 of [14]): For any policy U ,  we 
have 

K 

k = l  

where 

@ k :  = { X ,  E c k  almost always) 

(where “almost always” means that X ,  q! c k  finitely often). 
The sets CI, . . . , CK and T are referred to as strongly com- 

municating classes and the set of transient states, respectively. 
For a given strongly communicating class c k ,  denote by q k )  
the MDP restricted to c k .  Thus, the state space of r ( k )  is c k  

and the action space & ( i ) ,  i E c k ,  is given by 

A k ( i )  = { U  E A(2): Piaj  = 0 v’j q! c k } .  

From [14] we know that A k ( i )  is nonempty for all E 
c k  and that r ( k )  is a communicating MDP. Recall that 
a communicating MDP is such that for any pair of states 
‘L, j E S, there is a pure policy under which j is accessible 
from i .  Now consider the following linear program L P ( k )  

k t  ‘uk denote the optimal objective function value of LP(k ) .  
We can now state the following result. 
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Theorem 3.2 (Lemma 4 [14]): For all policies U ,  all initial 
states s1 E S ,  and all k = 1,. . . , K ,  we have 

Pu(R 5 ‘Uk I @ k ,  x1 = 31) = 1 

whenever P u ( @ k ,  XI = SI) > 0. 

Iv. BASIC RESULTS FOR THE SINGLE REWARD CASE 

We shall first solve Problems 1-3 for the case of r being 
a communicating MDP. In this case, there is one strongly 
communicating class C1, and T is empty; thus, S = C 1 .  

Consider then LP( 1) and to simplify notation denote v: = 
VI. Also let {x,’,} be an optimal basic feasible solution of 
LP( 1) and g* be a stationary optimal policy constructed from 
{x&} (e.g., see [l l] ,  [9], or [13]). Then g* satisfies 

4(g* ,  s1) = v, s1 E s (4.1) 

where v is the maximal objective function value in LP(1). 
Moreover, the Markov chain P(g*) associated with the policy 
g* has at most one recurrent class plus (a perhaps empty) set 
of transient states. 

Theorem 4.1: In a communicating MDP r there exists a 
policy that achieves the target level T with percentile Q if and 
only if r 5 v. If T 5 v, then the pure policy g* achieves the 
target level T with percentile a,  for any Q E [0, 11 

Note: This result (at least for the unichain case) seems to 
be well known in the “folklore” of MDP’s. A proof for the 
communicating case can be found in Asriev and Rotar’ [ l]  
(who establish this result for a much more general stochastic 
dynamic control model). Since our proof is quite simple, we 
present it here for completeness. 

Proofi Since g* gives rise to a Markov chain with one 
recurrent class, we have 

Pg* ( R  = (b(g*, SI) 1 x1 = SI) = 1 

(e.g., see 113, Proposition 1 (iii)]). Combining this with (4.1) 
gives 

Pg*(R  = v 1 XI = SI) = 1. (4.2) 

From Theorem 3.2, we have 

P,(R I v I x1 = s1) = 1. (4.3) 

The result then follows from (4.2) and (4.3). 

following corollary. 

a E(0, 11, moreover 

As a direct consequence of Theorem 4.1 we have the 

Corollary 4.1: In a communicating MDP r, T~ = v for all 

1 i f . r I v  
0 if r > v. a, = { 

Problems 1-3 have now been solved for the communicating 
MDP’s. We retum to the general case, where we have strongly 
communicating classes C1, . . . , CK and the set T of transient 
states. Denote by g; the pure policy of Theorem 4.1 associated 
with q k ) ,  the MDP restricted to c k .  

Corollary 4.2: For a fixed k E { 1, . . . , K}, let g be a pure 
policy that coincides with g; on c k  and is defined arbitrarily 
elsewhere. Then 

if P g ( @ k ,  X1 = SI) > -0. 
Proof.’ Note that, the definition of @ k  implies that c k  

must be reached in finite time (Pg - as.). Thus, the result 
follows easily from the proof of Theorem 4.1. 

Next, we shall consider a fixed target level T and associate 
with it an index set I ,  = {k: 1 5 k 5 K ,  V k  2 T } ,  and an 
auxiliary “0-1 MDP’ I?,, whose states, actions, and transition 
probabilities are the saMe as I?, but with rewards defined by 

1 
T T ( i ,  a) :  = 0 6thenvise. 

if i E c k  and k E I ,  

It is easy to see that for an arbitrary policy U, the expected 
average reward in r, is given by 

(4.4) 

where 1(.) is the indicator function. Note that the last equality 
above follows from Theorem 3.1 and the definition of @ k ,  

since P,-a.s. after some finite time t we must have X, E c k  

for all n 2 t and some k E { l , . . . , K }  . 
Theorem 4.2: Let g* be an optimal pure policy in r, which 

coincides with g; on c k  for k E I,‘ There exists a policy U 

satisfying 

Pu(R 2 7 1 xi = Si) 2 Q (4.5) 

where Q is the percentile, if and only if 4T(g* ,  S I )  2 a. 
Further, if the target T can be achieved at percentile a, then 
it can be achieved by the pure policy g*. 

Proof: From Theorem 3.1 we have that for any policy U 

K 

Pu(R 2 T 1 x1 S I )  = c P , ( R  2 T I @ k ,  x1 = 31) 
k = l  

P,(@k I X i  = si ) .  (4.6) 

From Theorem 3.2 we have 

From Corollary 4.2 

I 
I I T  

I Note that there is no loss of generality here, because g; ensures that once 
the process enters Ch it remains there forever. Thus it  yields the maximal 
reward of one for every state i E Ck, 1. E I,. 
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where the inequality follows from the optimality of g; for 
r(k). Combining (4.6)-(4.8) gives 

P,(R 2 7 I x1 = SI )  5 Pg*(R 2 7 1 x1 = SI) 

= C P g * ( @ k  I x1 = 31) 
k € I T  

= 4T(9*, s1) 

from which the result follows. 
It is important to note that Theorem 4.2 provides a con- 

structive answer to Problem 1 of Section I1 concerning a- 
achievability of the target level T .  We shall now address 
the problem of determining .r,-the maximal achievable per- 
centile for the fixed level r. Towards this goal we assume 
without loss of generality that the strongly communicating 
classes C1, . . . , CK are ordered so that 

U1 2 U 2  2 ” ‘  2 OK. (4.9) 

Recall the definition of the MDT rUk (here Vk is the target 
level). To simplify the notation, we will refer to I’Uk as rk and 
to the corresponding expected average reward as 4k instead 

Theorem 4.3: Let g; be an optimal pure policy for MDP 

r, = r*: = max {vk I @(Si, SI) 2 a,  

of p. 

r k  chosen as in Theorem 4.2. We have for a ~ ( 0 ,  11 that 

k = 1 , .  . . , K}. 
(4.10) 

Proofi Let 1 be the largest index that achieves the maxi- 
mum in (4.10), 1 is well defined since $ K ( g ; ( ,  SI) = 1. Since 
r* = vl, we have 1,. = (1, 2 , .  . . , I } .  Thus, from Theorem 
4.2, we know that 

Pg;(R 2 T* x1 = SI)  2 a. (4.1 1) 

Hence, r* is a-achievable, implying that T, 2 T*. If strict 
inequality were possible in the preceding statement, then there 
would exist a r’ > r* and a policy U such that 

P,(R 2 7’ I x1 = SI) 2 a. (4.12) 

Now let 

m: = max { k :  v k  2 T ’ }  

noting that if 01, < T’ for all k = 1, . . . , K ,  then the left side 
of (4.12) equals zero contradicting the hypothesis a > 0. By 
the definition of m we have 

U ,  2 7’ > r* 

Applying Theorem 3.1, Theorem 4.1 
(4.12) yields 

K 

a 5 C P , ( R  2 7’ I @k, Xi = s1 
k = l  
m 

= C P , ( R  2 7‘ I cpk ,  x1 = s1 

5 C P U ( @ k  I x1 = s1) 

k = l  
m 

k = l  

= 4 m ( U ,  s1) I $,(&, 31). 

(4.13) 

and optimality gk to 

(4.14) 

But, by the definition of T * ,  (4.14) implies r* >_ vm, which 
contradicts (4.13). 

Corollary 4.3: The maximal a-achievable target level, T,, 

is a monotone nonincreasing step-function of a, defined on 
the interval (0, 11. 

Proof: Choose g; as in Theorem 4.3. Let ak:= 
qhk(g;, SI)  for k = l , . . . , K ,  so that 0 5 a1 5 a2 5 ... 5 
CXK = 1. If we define TO: = VI, then by Theorem 4.3, r, = TO 

for all a ~ ( 0 ,  all. Similarly, r, = Tk, a constant for all 
a €(arc, a k + 1 ] ,  where Tk 2 T ~ + I  for each k = 1 , .  . . , K - 1. 

Corollary4.4: Choose g; as in Theorem 4.3. The maxi- 
mum percentile aT for a given target level r ,  is a mono- 
tone nonincreasing step function of r defined in the interval 
[VK, VI]. In particular for T ~ ( v k + l ,  vk]  we have 

for each k = l , . - . , K  - 1. 
Proof: This follows easily from the monotonicity of 

@(g;,  SI) in the index k .  
Remark 4.1: Corollaries 4.3 and 4.4 demonstrate the 

strength of the percentile objective criteria. Namely, the 
decomposition of states into Cl , . . .  , CK and T, and 
the subsequent computation of policies g; together with 
“breakpoints” ~ k ,  and v k  for T, and aT, respectively, allows 
for a flexible and practical evaluation of gain-risk trade-offs 
in an average reward MDP. 

In view of Corollaries 4.3 and 4.4 the only “reasonable” 
choices of a and r are of the special form (7, a) with T = T~ 

and a = a,; these correspond to Pareto-optimal solutions. 
The preceding results are summarized in the following 

algorithm, which (for a fixed initial state SI) finds all target- 
level-percentile pairs of the indicated “special form” 

Step I :  Apply the algorithm of [14] to find the decompo- 
sition C~,,..,CK, T. 

Step2: Foreachk E { l , . . . , K }  ,findthevaluevk o f r (k ) .  
Order the strongly communicating classes so that 

Step 3: For each k E { 1, . . . , K}, form the MDP r,+ and 
find the optimal policy 9;. Let = 4k(g;, SI). 

Srep4: Let J = {(wk, a k )  I k = l , . . . ,K} .  If 
(rl, a ) ,  ( T ~ ,  a) E J and T~ > 7-2, then elimi- 
nate (72, a )  from J. Continue until no further 
eliminations are possible. 

Step.5: We have constructed the set J = ((7, a )  = 

Note that Step 2 is not hard computationally, since very 
efficient algorithms are known for communicating MDP’s. 
In Step 3 one should use the aggregated MDP method of 
[ 141, where each strongly communicating class is replaced 
by one state. In addition to computational efficiency, this 
method will automatically yield a deterministic optimal policy 
satisfying the conditions of Theorem 4.2. Also, since when k 
is incremented by one, only one immediate reward changes in 
the aggregated problem (the rest of the data stay the same), 
perhaps a parametric solution method can be used (e.g. by 
using LP algorithms for solving the aggregated problem). 
Further computational efficiency can be gained by quitting 

U1 >_ . . .  2 O K .  

(T,, a,) I 7 E R, a E (0, 111. 

7 I l l  
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Step 3 as soon as a k  = 1 for some k (since all subsequent 
CYk’s are automatically equal to one). Note also that steps 1 
and 2 need not be repeated for different starting states. Finally, 
we note that before starting the algorithm, one should check 
whether MDP r‘ is communicating (easily verifiable conditions 
can be found in [9]). If so, the complete characterization is 
immediately available from Corollary 4.1. 

V. PROBLEMS WITH MULTIPLE REWARDS 
AND CONSTRAINTS-FORMULATIONS 

A natural extension of the percentile objective criteria is to 
the case where each action carries multiple immediate rewards, 
i.e., each immediate reward is actually a vector of some fixed 
length L 

r( i ,  a )  E RL for i E S ,  a E A ( i ) .  

The definition of the limiting average reward in Section I leads 
to a vector R of random variables. 

At this point two approaches can be taken. Under the 
first approach, a separate target level-percentile pair would be 
specified for each of the L components of R = (RI ,  . . . , RL). 
This leads to the following multi-objective version of Problem 
1 (of Section 11). 

ProbZem4: Fix s1 E S. Given a pair of vectors (r, a) E 
RL x [0, 1IL, does there exist a policy U such that 

P,(R1 2 71 1 X1 = SI) 2 (YL for 1 = 1,. . . , L? 

This problem appears to present serious difficulties and is 
presently unsolved. Below we present an example showing that 
stationary policies do not suffice for this case, thus indicating 
that it is unlikely that a simple extension of the results and 
methods developed in Section IV will work in this case. 

Example 5.1: Consider the following MDP with L = 2 

Thus action 1 is absorbing in both states, and action 2 in state 
1 results in immediate rewards of (0, 0) and transition to state 
2 with probability one. 

Suppose the initial state is one and that the target level- 
percentile pairs are (;, ;) for each component of the reward 
vector. Note that for any stationary policy f 

and 

Therefore, no stationary policy suffices. 
Let g be the deterministic policy that takes action 1 in each 

state, and let u1 be the decision rule that takes actions 1 and 2 
with probabilities 1/2 each in state 1. Define the nonstationary 

policy U to be U = (ul, g) (i.e., U uses the decision rule u1 at 
time 1 and follows g thereafter). It is easy to see that 

and thus U achieves both the specified target-levels at the 
corresponding percentiles. In fact the same conclusions apply 
for any 71,  72  E (0, 1). 

Under the second approach to a problem with multiple 
rewards, a separate target level is specified for each compo- 
nent of R, and all target levels are required to be achieved 
simultaneously at a single percentile level (I. 

Problem5: Fix SI E S. Given a vector r E RL and 
(I E [0, 11, does there exist a policy U such that 

Intuitively, the difference between the two approaches is that 
in Problem 4, the requirements are placed on the marginal 
distributions of the components of R, while in Problem 5 
the requirement is placed on the joint distribution of R. 
Henceforth, we will refer to these two approaches as the 
“marginal-probability” and the “joint-probability” formula- 
tions, respectively. While the marginal-probability formulation 
provides for more modeling flexibility, the advantage of the 
joint-probability formulation is that it leads to more tractable 
problems: most of the results obtained for Problem 1 will be 
extended to Problem 5. 

We note that an extension to multiple rewards is especially 
important, since some of the components of r(i, a )  can be re- 
garded as negatives of the costs. In this case, the corresponding 
components of R and r can be regarded as constraints which 
must be satisfied at the specified percentile level (either singly 
in Problem 4 or jointly in Problem 5). This can be seen as 
a generalization of the “sample path constraint” of Ross and 
Varadarajan [13] and [I41 (which in our notation corresponds 
to (Y = 1 and L = 1). 

VI. BASIC RESULTS FOR THE MULTIPLE REWARDS CASE 

In this section we consider Problem 5 for the case of com- 
municating MDP’s. We employ the linear-programming-based 
techniques developed in [6], [ 1 I], and [ 131 and introduced 
in Section I11 above. It should be noted that the problem 
considered in this section is related to the problem of finding 
optimal policies in average-reward communicating MDP’s 
with state-action frequency constraints. It is well known (see 
e.g., [7, example 9.31) that stationary policies may not be 
optimal in this case. For a problem with one inequality 
constraint, [13] shows that an €-optimal stationary policy can 
always be found (the policy is generally not deterministic). 
This result is related to Theorem 6.2. 

In the sequel, all vector inequalities and equalities are 
defined componentwise, that is R 2 r means R1 2 71, 

1 = l , . . . , L  . 
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We first state some preliminary definitions and results. 
Consider the following polyhedral set 

(this is simply the feasible region of LP(k)  of Section 111). 
For z = (xia) E A, define a stationary policy 

if i E S, 

a E A ( i )  

a E A(i )  xia > 0, 

f ( z ) i a  = 

if i E S, CaEA(i) xia = 0. 
(6.2) 

Define the following random variable (whenever it exists), 
representing long-term average state-action frequencies 

1 3 '  
Zi, = lim - x l [ X t  = i ,  At = a].  (6.3) 

T+oo T 
t=l 

We will need the following well-known results, the proofs 

Lemma 6.1: Let I' be an arbitrary MDP. 
of which can be found in [ 1 11 and [ 131. 

i) If f is a stationary policy then Pf-almost surely, 2 is 
well-defined, Z E A, and 

ii) If f is a stationary policy and f is unichain, then 

where r(f)  is the unique stationary probability vector 
of P(f). 

iii) If z E A and f(z) is unichain, then 

iv) If I? is a communicating MDP and z E A, z > 0, then 
f(z) is an irreducible stationary policy. 

Let r be a given target vector and Q a given percentile level. 
We now define the following linear program LP 

max b 
Subiect to 

Note that the feasible region of LP is contained in A x R. 
Theorem 6.1 : Let r be a communicating MDP. 
i) If LP is infeasible, then for any policy U 

ii) Suppose LP is feasible. Let (z*, b*) be an optimal 
solution and f* = f(z*). If b* > 0, or f* is unichain, 
then 

Proof: 
i) The proof is analogous to the proof of Proposition 2 in 

ii) If b* > 0 then f* is irreducible by Lemma 6 . 1 4 ~ )  and 
thus, by Lemma 6.1-iii), z* = 2 P p - a s .  It now follows 
by Lemma 6.1-i) and the feasibility of z* that 

~ 4 1 .  

This result is a counterpart of Theorem 4.1 for the single- 
objective case. When conditions in part it) of Theorem 6.1 
hold, it provides a solution to Problem 5 for any a E [0, 11, and 
if the condition in part i) holds then Problem 5 has no solutions 
for any a. Unlike Theorem 4.1, however, the current result 
does not provide a complete characterization of solutions. If 
the optimal value b* of LP is equal to zero and f(z*) is not 
unichain, then it is not currently known whether Problem 5 
has any solutions or any solutions in stationary policies. The 
following example shows that it is possible to have a situation 
where no feasible stationary policies exist when b* = 0. 

Example 6.1: Consider the following MDP I' with L = 2 

where s1 = 1, r = (1/2, 1/2) and Q > 0. Then LP is 
feasible with b* = 0 and 

Thus f(z*) is not unichain, and in fact it is easy to see that 
for any stationary policy f, Pf(R 2 r )  = 0. It is not known 
whether there exists some nonstationary policy U such that 
P,(R 2 r)  > 0. 

It might be reasonable to suppose that when b* = 0, the 
presence of feasible stationary policies might be detected by 
checking whether f(z*) is unichain for any optimal basic 
feasible solution x* of LP (this would cover Example 6.1 
where there is only one optimal basic feasible solution). The 
following example, however, shows that it is possible that 
b* = 0, f(z*) is not unichain for any optimal basic feasible 
solution, and yet, feasible stationary policies exist for any 
Q > 0. 

Example 6.2: Consider the following MDP I? with L = 3 

and let s1 = 1. Take some a > 0 and r = (1/4,1/4, 1/4). 
It is not hard to verify that the resulting LP has the optimal 
value b* = 0 with only two optimal basic feasible solutions 

2' = (zll, 2 1 2 ,  2 1 3 ,  2 2 1 ,  5 2 2 ,  5 3 1 ,  5 3 2 )  T 

= (1/4, 1/4, 0, 1/4, 0, 1/4, O ) T  

m 
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and 

z2 = (1/4, 0, 0, 0, 1/4, 1/4, 1/4)T. 

Neither f(zl) nor f(z2) is unichain and, in fact, the proba- 
bility of achieving T is zero for both of these policies. If we 
take the feasible point 

1 
2 2  

z* = -zl + Az2 = (1/4, 1/8, 0, 1/8, 1/8, 1/4, 1/8)T 

then f ( z*)  is unichain and Pf(z*)(R 2 T 1 X 1  = S I )  = 1 
We will call a target vector r for which LP is feasible and 

has optimal value b* = 0 an indeterminate target vector. 
We note that this case does not arise in the case of unichain 

MDP’s (since one of the two conditions of Theorem 6.1 must 
be met), and we have the following corollary. 

Corollary 6.1: Suppose r is a unichain MDP. Then either 
LP is infeasible, in which case Problem 5 has no solutions for 
any a > 0, or LP is feasible with an optimal solution (b*,  z*), 
in which case for f = f ( z*) ,  P f ( R  2 T I XI = SI) = 1. 

In the remainder of this section we show that the difficulties 
associated with indeterminate target vectors can always be 
avoided by a slight relaxation of the target vector and that 
indeterminate target vectors are sufficiently “rare” in the set 
of all possible target vectors. We will need the following result. 

Lemma6.2: Suppose I? is a communicating MDP. Take 
z E A. Then for any t > 0 and SI E S, there exists an 
irreducible stationary policy f such that 

(where 1 1  . I( is an arbitrary vector norm). 
> 0, then f = f ( z )  is irreducible by Lemma 

6.1-iv), and it follows by Lemma 6.1-iii) that 2 = z Pj-a.s. 
Now suppose that xia = 0 for some i E S ,  a E A(i). 

Let g be a completely randomized (stationary) policy (i.e., 
gia = for any i E S, a E A(i)). Since I‘ is a 
communicating MDP, g must be irreducible. By Lemma 6.1- 
ii), 2 = z(g) P,-almost surely, where z(g)ia = r ( g ) i g i ,  for 
i E S ,  a E A(i ) .  By Lemma 6.1-i), z(g) > 0 and z(g) E A. 
Let 

Proof: If 

z(X)  = X z  + (1 - X)z(g) for X E (0, I). 

Clearly, z ( X )  E A and %(A) > 0 for any X < 1. It follows 
by continuity of z (X)  with respect to X that we can choose 
A* E (0, 1) so that 

an irreducible stationary policy f such that 

Pf ( R  2 T - Eb 1 x 1  = S I )  = 1. 

Proofi Let (b*, z*) be an optimal solution of LP with 
target vector T. By assumption, b* = 0. By Lemma 6.2, for 
any y > 0, there exists an irreducible stationary policy f such 
that ((z’ - z*I( I y, where z’ = 2 is a constant Pf-almost 
surely. Choose y small enough so that 

xi , r ( i ,  a )  2 T - tS Pj - as .  (6.5) 
i ES a€ A ( i )  

(this can always be done since the left-hand side of (6.5) is a 
continuous function of z’ and CaEA(i) x b r ( i ,  a )  2 S. 

Since f is irreducible, by Lemma 6.1-ii), Pf-almost surely 
z’ > 0, i.e., z’ 2 b’ > 0 for some b’ E R. It follows from (6.5) 
that (b’, z’) is feasible in LP with the target vector T - €15 and 
consequently, the optimal value for this LP is positive. The 
result now follows from Theorem 6.1 -ii). 

Thus, any strict relaxation of an indeterminate target vector 
produces a target vector for which Problem 5 can be solved by 
an irreducible policy for any percentile level a. Geometrically, 
the situation is as follows: let T = {T I LP is feasible]. T 
must be a closed set. Let 

TS = {T I Problem 5 has a solution in unichain policies 
for any percentile o E [O, 111, 
. TF = {T I LP has optimal value b* > O}, 
. TI = {T 1 T is an indeterminate target vector}. 

Then TSUTI = T, TF c TS,  and TI c boundary{T}. Note 
also that the intersection of TS and T I  need not be empty, as 
shown by Example 6.2. We illustrate the relationships between 
these sets in the context of Example 6.1, where 

(represented by the shaded region on Fig. 1) 

(the boundary of T), and 

TF = T \ T I .  

Let f = f(z(X*)).  By Lemma 6.1-iv), f must be irreducible. 
It follows by Lemma 6.1-iii) that 2 = z(X*)  Pf-as. The result 
now follows immediately from (6.4). 

We are now ready to prove the following result. 
Theorem 6.2: Suppose r is a communicating MDP and T 

is an indeterminate target vector. Let S be an arbitrary vector 
with positive components and choose E > 0. Then there exists 

Remark 6.1: In summary, our results for the communicat- 
ing case with multiple rewards closely parallel the correspond- 
ing results for the single reward: for “most” target vectors, 
either Problem 5 has no solution or else it is solvable by 
irreducible policies for any percentile level. The differences 
from the single reward case lie in the fact that the feasible 
stationary policies might have to be randomized (for single 
reward deterministic policies sufficed), and in our inability to 
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T= 

Remark 6.2: Similarly to Problem 3 of Section 11, define 

a7 = sup {a E [0, 11 1 3 a policy U s.t. (5.1) holds}. 

It is clear from the proof of Theorem 4.2 that aT = q5T(f*, SI) 
and the policy f *  constructed above achieves T at percentile 
QT. 

Fig. 1. The set of possible target vectors for Example 6.1. 

handle (completely) the indeterminate target vector case. If the 
modeler has some flexibility in setting the target vector, the 
indeterminate case can always be avoided. In some cases, how- 
ever, such flexibility might not exist. Therefore, we consider 
the further study of the indeterminate case to be important. 
Specifically, the following questions should be addressed: 

1 )  Must nonstationary feasible policies exist when 7 is 
indeterminate? In particular, do such policies exist in 
Example 6.1? 

2) Can the indeterminate target vectors for which Problem 
5 has a solution in unichain policies (i.e., T E TI n TS) 
be characterized? It would be particularly interesting to 
find a computationally simple characterization or show 
that one does not exist. 

We now turn our attention to the general (multichain) 
MDPs. Surprisingly, the extension of our communicating MDP 
results to this case can be done quite easily by employing the 
decomposition and sample path theory. 

As in Section IV above, let CI, . . . , C K ,  T be the strongly 
communicating classes and the set of transient states of r, and 
let r ( k )  be the MDP restricted to C k .  Define the index set 

J ,  = { k  I 1 5 k 5 K, The optimal value of LP for r ( k )  
is positive}. 

For k E J,, let f i  be the stationary policy of Theorem 6.1-ii) 
associated with the MDP r ( k ) .  Following Section IV, define 
MDP I?, whose states, actions, and the transition law are the 
same as I?, but with the rewards defined by 

(6.6) 
1 
0 otherwise. 

if i E ck, a E A ( i )  and k E J ,  
T T ( i ,  a ) :  = 

Theorem 6.3: Assume the target vector ,T is not an indeter- 
minate target vector for any I?(k),  k = { 1,. . . , K}. Let f *  be 
an optimal stationary policy in r, which coincides with f ;  on 
ck for k E J,.* There exists a policy U satisfying 

P,(R 2 T I x1 = SI) 2 a (6.7) 

if and only if 4T(f* ,  SI) 2 a. Further, if the target vector T 

can be achieved at percentile a, then it can be achieved by 
the stationary policy f*. 

Proof: Exactly the same as in Theorem 4.2. 
This result provides a constructive answer to Problem 5, 

provided T satisfies the assumption of Theorem 6.3. 

See the footnote in Theorem 4.2. 

VII. PROBLEMS FOR FURTHER RESEARCH 

In the preceding sections we have outlined several prob- 
lems for further research. For the multiple reward case, a 
satisfactory treatment of the marginal-probability formulation 
described in Section V would be very useful. Open problems 
connected with the indeterminate target vector case were 
discussed in Remark 6.1. 

Another important open problem associated with the per- 
centile objective criterion is the satisfactory treatment of the 
discounted case. Analysis of a similar problem for this case 
can be found in Bouakiz [5 ] ;  however, no algorithmic results 
were obtained. Problems 1-3 of Section I1 appear to be 
much harder in this case, mainly because no equivalent of 
the decomposition theory is known (or perhaps, possible) for 
discounted MDP’s. 
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