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Brussels, Belgium

Abstract. Markov decision processes (MDPs) with multi-dimensional
weights are useful to analyze systems with multiple objectives that may
be conflicting and require the analysis of trade-offs. In this paper, we
study the complexity of percentile queries in such MDPs and give algo-
rithms to synthesize strategies that enforce such constraints. Given a
multi-dimensional weighted MDP and a quantitative payoff function f ,
thresholds vi (one per dimension), and probability thresholds αi, we show
how to compute a single strategy to enforce that for all dimensions i, the
probability of outcomes ρ satisfying fi(ρ) ≥ vi is at least αi. We consider
classical quantitative payoffs from the literature (sup, inf, lim sup, lim
inf, mean-payoff, truncated sum, discounted sum). Our work extends to
the quantitative case the multi-objective model checking problem studied
by Etessami et al. [16] in unweighted MDPs.

1 Introduction

Markov decision processes (MDPs) are central mathematical models for reason-
ing about (optimal) strategies in uncertain environments. For example, if rewards
(given as numerical values) are assigned to actions in an MDP, we can search for
a strategy (policy) that resolves the nondeterminism in a way that the expected
mean reward of the actions taken by the strategy along time is maximized. See
for example [23] for a solution to this problem. If we are risk-averse, we may
want to search instead for strategies that ensure that the mean reward along
time is larger than a given value with a high probability, i.e., a probability that
exceeds a given threshold. See for example [17] for a solution.

Recent works are exploring several natural extensions of those problems.
First, there is a series of works that investigate MDPs with multi-dimensional
weights [6,12] rather than single-dimensional as it is traditionally the case. Multi-
dimensional MDPs are useful to analyze systems with multiple objectives that
are potentially conflicting and make necessary the analysis of trade-offs. For
instance, we may want to build a control strategy that both ensures some good
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quality of service and minimizes the energy consumption. Second, there are works
that aim at synthesizing strategies enforcing richer properties. For example, we
may want to construct a strategy that both ensures some minimal threshold
with certainty (or probability one) and a good expectation [7]. An illustrative
survey of such extensions can be found in [25].

Our paper participates in this general effort by providing algorithms and
complexity results on the synthesis of strategies that enforce multiple percentile
constraints. A multi-percentile query and the associated synthesis problem is
as follows: given a multi-dimensionally weighted MDP M and an initial state
sinit, synthesize a unique strategy σ such that it satisfies the conjunction of q
constraints Q :=

∧q
i=1 P

σ
M,sinit

[
fli ≥ vi

] ≥ αi, where each li refers to a dimension
of the weight vectors, vi is a value threshold, and αi a probability threshold,
and f a payoff function. Each constraint i expresses that the strategy ensures
probability at least αi to obtain payoff at least vi in dimension li.

In this paper, we consider seven payoff functions: sup, inf, limsup, liminf,
mean-payoff, truncated sum and discounted sum. This wide range covers most
classical functions: our exhaustive study provides a complete picture for the
new multi-percentile framework and we focus on establishing meta-theorems and
connections whenever possible. Some of our results are obtained by reduction to
the previous work of [16], but for mean-payoff, truncated sum and discounted
sum, that are non-regular payoffs, we need to develop original techniques.

Consider some examples. In a stochastic shortest path problem, we may want
a strategy ensuring that the probability to reach the target within d time units
exceeds 50 percent: this is a single-constraint percentile query. With a multi-
constraint percentile query, we can impose richer properties, for instance, enforc-
ing that the duration is less than d1 in 50 percent of the cases, and less than d2
in 95 percent of the cases, with d1 < d2. We may also consider multi-dimensional
systems. If in the model, we add information about fuel consumption, we may
also enforce that we arrive within d time units in 95 percent of the cases, and
that in half of the cases the fuel consumption is below some threshold c.

Contributions. We study percentile problems for a range of payoffs: we estab-
lish algorithms and prove complexity and memory bounds. Our algorithms solve
multi-constraint multi-dimensional queries, but we also study interesting sub-
classes such as the single-dimensional case. We present an overview of our results
in Table 1. For all payoff functions but the discounted sum, they only require
polynomial time in the size of the model when the query size is fixed. In most
applications, the query size is typically small while the model can be very large.
So our algorithms have clear potential to be useful in practice.

(A) We show the PSPACE-hardness of the multiple reachability problem
with exponential dependency on the query size (Theorem 2), and the PSPACE-
completeness of the almost-sure case, refining the results of [16]. We also give a
polynomial-time algorithm for nested target sets (Theorem 3).

(B) For inf, sup, lim inf and lim sup, we establish a polynomial-time algorithm
for single-dimension (Theorem 5), and an algorithm that is only exponential in
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Table 1. Some results for percentile queries. Here F = {inf, sup, lim inf, lim sup}, MP
(resp. MP) stands for sup. (resp. inf.) mean-payoff, SP for shortest path, and DS for
discounted sum. Parameters M and Q resp. represent model size and query size; P(x),
E(x) and Pps(x) resp. denote polynomial, exponential and pseudo-polynomial time in
parameter x. All results without reference are new.

Single-constraint Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [23] P(M)·E(Q) [16], PSPACE-h. —

f ∈ F P [10] P P(M)· E(Q)

PSPACE-h.

MP P [23] P P

MP P [23] P(M)·E(Q) P(M)·E(Q)

SP P(M)·Pps(Q) [21] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [21] PSPACE-h. [21] PSPACE-h. [21]

ε-gap DS Pps(M, Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

the query size for the general case (Theorem 6). We prove PSPACE-hardness for
sup (Theorem 7), and give a polynomial time algorithm for lim sup (Theorem 8).

(C) In the mean-payoff case, we distinguish MP defined by the limsup of the
average weights, and MP by their liminf. For the former, we give a polynomial-
time algorithm for the general case (Theorem 10). For the latter, our algorithm
is polynomial in the model size and exponential in the query size (Theorem 11).

(D) The truncated sum function computes the sum of weights until a target
is reached. It models shortest path problems. We prove the multi-dimensional
percentile problem to be undecidable when both negative and positive weights
are allowed (Theorem 12). Therefore, we concentrate on the case of non-negative
weights, and establish an algorithm that is polynomial in the model size and
exponential in the query size (Theorem 13). We derive from recent results that
even the single-constraint percentile problem is PSPACE-hard [21].

(E) Discounted sum turns out to be linked to a long-standing open problem,
not known to be decidable (Lemma 8). Nevertheless, we give an algorithm for
an approximation called ε-gap percentile problem. It guarantees correct answers
up to an arbitrarily small zone of uncertainty (Theorem 14). We prove this
problem is PSPACE-hard in general, and NP-hard for single-constraint queries.
According to a very recent preprint by Haase and Kiefer [20], our reduction even
proves PP-hardness of single-contraint queries, which suggests that the problem
does not belong to NP at all otherwise the polynomial hierarchy would collapse.

We systematically study the memory requirement of strategies. We build our
algorithms using different techniques. Here are a few of them. For inf and sup
payoff functions, we reduce percentile queries to multiple reachability queries,
and rely on the algorithm of [16]: those are the easiest cases. For lim inf, lim sup
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and MP, we additionally need to resort to maximal end-component decomposi-
tion of MDPs. For the following cases, there is no simple reduction to existing
problems and we need non-trivial techniques to establish algorithms. For MP, we
use linear programming techniques to characterize winning strategies, borrowing
ideas from [6,16]. For shortest path and discounted sum, we consider unfoldings
of the MDP, with particular care to bound their sizes, and for the latter, to
analyze the cumulative error due to necessary roundings.

Related Work. There are works that study multi-dimensional MDPs: for dis-
counted sum, see [12], and for mean-payoff, see [6,17]. In the latter papers, the
following threshold problem is studied: given a threshold vector v and a proba-
bility threshold ν, does there exist a strategy σ such that Pσ

s [r ≥ v] ≥ ν, where r
denotes the mean-payoff vector. The work [17] solves it for the single dimensional
case, and the multi-dimensional for the non-degenerate case (w.r.t. solutions of
a linear program). A general algorithm was given in [6]. This problem asks for a
bound on the joint probability of the thresholds, i.e., the probability of satisfying
all constraints simultaneously. In contrast, we bound the marginal probabilities
separately, which may allow for more modeling flexibility. Maximizing the expec-
tation vector was considered in [6]. An approach unifying the probability and
expectation views for mean-payoff was recently presented in [11].

Multiple reachability objectives in MDPs were considered in [16]: given an
MDP and multiple targets Ti, thresholds αi, decide if there exists a strategy that
forces each Ti with a probability larger than αi. This work is the closest to our
work and we show here that their problem is inter-reducible with our problem
for the sup measure. In [16] the complexity results are given only for model size
and not for query size: we refine those results and answer questions left open.

Several works consider percentile queries but only for one dimension and
one constraint (while we consider multiple constraints and dimensions) and par-
ticular payoff functions. Single-constraint queries for lim sup and lim inf were
studied in [10]. The threshold probability problem for truncated sum was stud-
ied for either all non-negative or all non-positive weights in [22,26]. Quantile
queries in the single-constraint case were studied for the shortest path with
non-negative weights in [29], and for energy-utility objectives in [1]. It has been
recently extended to cost problems [21], in a direction orthogonal to ours. For
fixed horizon, [32] studies maximization of the expected discounted sum subject
to a single percentile constraint. Still for the discounted case, there are works
studying threshold problems [30,31] and value-at-risk problems [5]. All can be
related to single-constraint percentiles queries.

A long version of this paper with full details is available online [24].

2 Preliminaries

A finite Markov decision process (MDP) is a tuple M = (S,A, δ) where S is
the finite set of states, A is the finite set of actions and δ : S × A → D(S) is a
partial function called the probabilistic transition function, where D(S) denotes



Percentile Queries in Multi-dimensional Markov Decision Processes 127

the set of rational probability distributions over S. The set of actions that are
available in a state ,∈ S is denoted by A(s). We use δ(s, a, s′) as a shorthand
for δ(s, a)(s′). An absorbing state s is such that for all a ∈ A(s), δ(s, a, s) = 1.
We assume w.l.o.g. that MDPs are deadlock-free: for all s ∈ S, A(s) �= ∅ (if not
the case, we simply replace the deadlock by an absorbing state with a unique
action). An MDP where for all s ∈ S, |A(s)| = 1 is a fully-stochastic process
called a Markov chain.

A weighted MDP is a tuple M = (S,A, δ, w), where w is a d-dimension weight
function w : A → Z

d. For any l ∈ {1, . . . , d}, we denote wl : A → Z the projection
of w to the l-th dimension, i.e., the function mapping each action a to the l-th
element of vector w(a). A run of M is an infinite sequence s1a1 . . . an−1sn . . .
of states and actions such that δ(si, ai, si+1) > 0 for all i ≥ 1. Finite prefixes of
runs are called histories.

Fix an MDP M = (S,A, δ). An end-component (EC) of M is an MDP C =
(S′, A′, δ′) with S′ ⊆ S, ∅ �= A′(s) ⊆ A(s) for all s ∈ S′, and Supp(δ(s, a)) ⊆ S′

for all s ∈ S′, a ∈ A′(s) (here Supp(·) denotes the support), δ′ = δ|S′×A′ and
such that C is strongly connected, i.e., there is a run between any pair of states
in S′. The union of two ECs with non-empty intersection is an EC; one can thus
define maximal ECs. We let MEC(M) denote the set of maximal ECs of M ,
computable in polynomial time [14].

A strategy σ is a function (SA)∗S → D(A) such that for all h ∈ (SA)∗S
ending in s, we have Supp(σ(h)) ⊆ A(s). The set of all strategies is Σ. We
consider finite- and infinite-memory strategies as strategies that can be encoded
by Moore machines with finite or infinite states respectively. An MDP M , initial
state s, and a strategy σ determines a Markov chain Mσ

s on which a unique
probability measure is defined. Here, Mσ

s is defined on the state space that
is product of M and that of the Moore machine encoding σ. Given an event
E ⊆ (SA)ω, we denote by P

σ
M,s[E] the probability of runs of Mσ

s whose projection
to M is in E. That is the probability of achieving event E when the MDP M is
executed with initial state s and strategy σ.

Let Inf(ρ) denote the random variable representing the disjoint union of states
and actions that occur infinitely often in the run ρ. By an abuse of notation, we
see Inf(ρ) as a sub-MDP M ′ if it contains exactly the states and actions of M ′. It
was shown that for any MDP M , state s, strategy σ, Pσ

M,s[Inf is an EC] = 1 [14].

Multiple Reachability. Given a subset T of states, let ♦T be the reachability
objective w.r.t. T , defined as the set of runs visiting a state of T at least once.

The multiple reachability problem consists, given MDP M , state sinit, target
sets T1, . . . , Tq, and probabilities α1, . . . , αq ∈ [0, 1] ∩ Q, in deciding whether
there exists a strategy σ ∈ Σ such that

∧q
i=1 P

σ
M,sinit

[♦Ti] ≥ αi. The almost-sure
multiple reachability problem restricts to α1 = . . . = αq = 1.

Percentile Problems. We consider payoff functions among inf, sup, lim inf,
lim sup, mean-payoff, truncated sum (shortest path) and discounted sum. For
any run ρ = s1a1s2a2 . . ., dimension l ∈ {1, . . . , d}, and weight function w,

– inf l(ρ) = infj≥1 wl(aj), supl(ρ) = supj≥1 wl(aj),
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– lim inf l(ρ) = lim infj→∞ wl(aj), lim supl(ρ) = lim supj→∞ wl(aj),
– MPl(ρ) = lim infn→∞ 1

n

∑n
j=1 wl(aj), MPl(ρ) = lim supn→∞

1
n

∑n
j=1 wl(aj),

– DSλl

l (ρ) =
∑∞

j=1 λj
l · wl(aj), with λl ∈ ]0, 1[ ∩ Q a rational discount factor,

– TST
l (ρ) =

∑n−1
j=1 wl(aj) with sn the first visit of a state in T ⊆ S. If T is never

reached, then we assign TST
l (ρ) = ∞.

For any payoff function f , fl ≥ v defines the runs ρ that satisfy fl(ρ) ≥ v.
A percentile constraint is of the form P

σ
M,sinit

[fl ≥ v] ≥ α, where σ is to be synthe-
sized given threshold value v and probability α. We study multi-constraint per-
centile queries requiring to simultaneously satisfy q constraints each referring to a
possibly different dimension. Formally, given a d-dimensional weighted MDP M ,
initial state sinit ∈ S, payoff function f , dimensions l1, . . . , lq ∈ {1, . . . , d}, value
thresholds v1, . . . , vq ∈ Q and probability thresholds α1, . . . , αq ∈ [0, 1] ∩ Q the
multi-constraint percentile problem asks if there exists a strategy σ ∈ Σ such
that query Q :=

∧q
i=1 P

σ
M,sinit

[
fli ≥ vi

] ≥ αi holds. We can actually solve queries
∃? σ,

∨m
i=1

∧ni

j=1 P
σ
M,sinit

[
fli,j ≥ vi,j

] ≥ αi,j . We present our results for conjunc-
tions of constraints only since the latter is equivalent to verifying the disjuncts
independently: in other terms, to

∨m
i=1 ∃σ

∧ni

j=1 P
σ
M,sinit

[
fli,j ≥ vi,j

] ≥ αi,j .
We distinguish single-dimensional percentile problems (d = 1) from multi-

dimensional ones (d > 1). We assume w.l.o.g. that q ≥ d otherwise one can sim-
ply neglect unused dimensions. sFor some cases, we will consider the ε-relaxation
of the problem, which consists in ensuring each value vi − ε with probability αi.

We assume binary encoding of constants, and define the model size |M | as
the size of the representation of M , and the query size |Q| that of the query.
Problem size refers to the sum of the two. We study memory needs for strategies
w.r.t. different classes of queries; but randomization is always necessary as shown
in the next lemma.

Lemma 1. Randomized strategies are necessary for multi-dimensional per-
centile queries for any payoff function.

3 Multiple Reachability and Contraction of MECs

Multiple reachability. An algorithm to solve this problem was given in [16]
based on a linear program (LP) of size polynomial in the model and exponential
in the query; whereas restricting the target sets to absorbing states yields a
polynomial-size LP. We will use this LP later in Fig. 1 in Sect. 5.

Theorem 1 [16]. Memoryless strategies suffice for multiple reachability with
absorbing target states, and can be computed in polynomial time. With arbi-
trary targets, exponential-memory strategies (in query size) can be computed in
time polynomial in the model and exponential in the query.

In this section, we improve over this result by showing that the case of almost-
sure multiple reachability is PSPACE-complete, with a recursive algorithm and a
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reduction from QBF satisfiability. This also shows the PSPACE-hardness of the
general problem. Moreover, we show that exponential memory is required for
strategies, following a construction of [13].

Theorem 2. The almost-sure multiple reachability problem is PSPACE-
complete, and strategies need exponential memory in the query size.

Despite the above lower bounds, it turns out that the polynomial time algorithm
for the case of absorbing targets can be extended; we identify a subclass of the
multiple reachability problem that admits a polynomial-time solution. In the
nested multiple reachability problem, the target sets are nested, i.e. T1 ⊆ T2 ⊆
. . . ⊆ Tq. The memory requirement for strategies is reduced as well to linear
memory. Intuitively, we use q +1 copies of the original MDP, one for each target
set, plus one last copy. The idea is then to travel between those copies in a way
that reflects the nesting of target sets whenever a target state is visited. The
crux to obtain a polynomial-time algorithm is then to reduce the problem to a
multiple reachability problem with absorbing states over the MDP composed of
the q + 1 copies, and to benefit from the reduced complexity of this case.

Theorem 3. The nested multiple reachability problem can be solved in polyno-
mial time. Strategies have memory linear in the query size, which is optimal.

Contraction of MECs. In order to solve percentile queries, we sometimes
reduce our problems to multiple reachability by first contracting MECs of given
MDPs, which is a known technique [14]. We define a transformation of MDP M
to represent the events Inf(ρ) ⊆ C for C ∈ MEC(M) as fresh states. Intuitively,
all states of a MEC will now lead to an absorbing state that will abstract the
behavior of the MEC.

Consider M with MEC(M) = {C1, . . . , Cm}. We define MDP M ′ from M
as follows. For each Ci, we add state sCi

and action a∗ from each state s ∈ Ci

to sCi
. All states sCi

are absorbing, and A(sCi
) = {a∗}. The probabilities of

events Inf(ρ) ⊆ Ci in M are captured by the reachability of states sCi
in M ′, as

follows. We use the classical temporal logic symbols ♦ and � to represent the
eventually and always operators respectively.

Lemma 2. Let M be an MDP and MEC(M) = {C1, . . . , Cm}. For any strat-
egy σ for M , there exists a strategy τ for M ′ such that for all i ∈ {1, . . . , m},
P

σ
M,sinit

[♦�Ci] = P
τ
M ′,sinit

[♦sCi
]. Conversely, for any strategy τ for M ′ such that

∑m
i=1 P

τ
M ′,sinit

[♦sCi
] = 1, there exists σ such that for all i, P

σ
M,sinit

[♦�Ci] =
P

τ
M ′,s[♦sCi

].

Under some hypotheses, solving multi-constraint percentile problems on ECs
yield the result for all MDPs, by the transformation of Lemma 2. We prove a
general theorem and then derive particular results as corollaries. Informally, for
prefix-independent payoff functions, if for any EC, there is a strategy that is
optimal in each dimension, and if optimal values are computable in polynomial
time, then the percentile problem can be solved in polynomial time.
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Theorem 4. Consider all prefix-independent payoff functions f such that for all
strongly connected MDPs M , and all (li, vi)1≤i≤q ∈ {1, . . . , d} × Q, there exists
a strategy σ such that ∀i ∈ {1, . . . , d},Pσ

M,sinit
[fli ≥ vi] ≥ supτ P

τ
M,sinit

[fli ≥ vi]. If
the value supτ is computable in polynomial time for strongly connected MDPs,
then the multi-constraint percentile problem for f is decidable in polynomial
time. Moreover, if strategies achieving supτ for strongly connected MDPs use
O(g(M, q)) memory, then the overall strategy use O(g(M, q)) memory.

The hypotheses are crucial. Essentially, we require payoff functions that are
prefix-independent and for which strategies can be combined easily inside MECs
(in the sense that if two constraints can be satisfied independently, they can
be satisfied simultaneously). Prefix-independence also implies that we can for-
get about what happens before a MEC is reached. Hence, by using the MEC
contraction, we can reduce the percentile problem to multiple reachability for
absorbing target states.

4 Inf, Sup, LimInf, LimSup Payoff Functions

We give polynomial-time algorithms for the single-dimensional multi-constraint
percentile problems. For inf, sup we reduce the problem to nested multiple reach-
ability, while lim inf and lim sup are solved by applying Theorem 4.

Theorem 5. The single-dimensional multi-constraint percentile problems can
be solved in polynomial time in the problem size for inf, sup, lim inf, and lim sup
functions. Computed strategies use memory linear in the query size for inf and
sup, and constant memory for lim inf and lim sup.

We are now interested in the multi-dimensional case. We show that all multi-
dimensional cases can be solved in time polynomial in the model size and expo-
nential in the query size by a reduction to multiple LTL objectives studied in [16].
Our algorithm actually solves a more general class of queries, where the payoff
function can be different for each query.

Given an MDP M , for all i ∈ {1 . . . q} and value vi, we denote A≥vi

li
the set of

actions of M whose rewards are at least vi. We fix an MDP M . For any constraint
φi ≡ f(wli) ≥ vi, we define an LTL formula denoted Φi as follows. For fli = inf,
Φi = �A≥vi

li
, for fli = sup, Φi = ♦A≥vi

li
, for fli = lim inf, Φi = ♦�A≥vi

li
, and for

fli = lim sup, Φi = �♦A≥vi

li
. The percentile problem is then reduced to queries

of the form ∧q
i=1P

σ
M,sinit

[Φi] ≥ αi, for which an algorithm was given in [16] that
takes time polynomial in |M | and doubly exponential in q. We improve this
complexity since our formulae have bounded sizes.

Theorem 6. The multi-dimensional percentile problems for sup, inf, lim sup
and lim inf can be solved in time polynomial in the model size and exponential
in the query size, yielding strategies with memory exponential in the query.

The problem is PSPACE-hard for sup as shown in the following theorem.



Percentile Queries in Multi-dimensional Markov Decision Processes 131

Theorem 7. The multi-dimensional percentile problem is PSPACE-hard for sup.

Nevertheless, the complexity can be improved for lim sup functions, for which
we give a polynomial-time algorithm by an application of Theorem 4.

Theorem 8. The multi-dimensional percentile problem for lim sup is solvable
in polynomial time. Computed strategies use constant-memory.

The exact query complexity of the lim inf and inf cases are left open.

5 Mean-Payoff

We consider the multi-constraint percentile problem both for MP and MP. We
will see that strategies require infinite memory in both cases, in which case it
is known that the two payoff functions differ. The single-constraint percentile
problem was first solved in [17]. The case of multiple dimensions was mentioned
as a challenging problem but left open. We solve this problem thus generalizing
the previous work.

The Single-Dimensional Case. We start with a polynomial-time algorithm
for the single-dimensional case obtained by an application of Theorem 4.

Theorem 9. The single dimensional multi-constraint percentile problems for
payoffs MP and MP are equivalent and solvable in polynomial time. Computed
strategies use constant memory.

Percentiles on Multi-dimensional MP. Let E
σ
M,sinit

[MPi] be the expectation
of MPi under strategy σ, and Val∗M,sinit

(MPi) = supσ E
σ
M,sinit

[MPi], computable in
polynomial time [23]. We solve the problem inside ECs, then apply Theorem 4. It
is known that for strongly connected MDPs, for each i, some strategy σ satisfies
P

σ
M,sinit

[MPi = Val∗M,sinit
(MPi)] = 1, and that for all strategies τ , Pτ

M,sinit
[MPi >

v] = 0 for all v > Val∗M,sinit
(MPi). By switching between these optimal strategies

for each dimension, with growing intervals, we prove that for strongly connected
MDPs, a single strategy can simultaneously optimize MPi on all dimensions.

Lemma 3. For any strongly connected MDP M , there is an infinite-memory
strategy σ such that ∀i ∈ {1, . . . , d}, Pσ

M,sinit
[MPi ≥ Val∗M,sinit

(MPi)] = 1.

Thanks to the above lemma, we fulfill the hypotheses of Theorem 4, and we
obtain the following theorem.

Theorem 10. The multi-dimensional percentile problem for MP is solvable in
polynomial time. Strategies use infinite-memory, which is necessary.

Percentiles on Multi-dimensional MP. In contrast with the MP case, our
algorithm for MP is more involved, and requires new techniques. In fact, the
case of end-components is already non-trivial for MP, since there is no single
strategy that satisfies all percentile constraints in general, and one cannot hope
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to apply Theorem 4 as we did in previous sections. We rather need to consider
the set of strategies σI satisfying maximal subsets of percentile constraints; these
are called maximal strategies. We then prove that any strategy satisfying all
percentile queries can be written as a linear combination of maximal strategies,
that is, there exists a strategy which chooses and executes each σI following a
probability distribution.

For general MDPs, we first consider each MEC separately and write down
the linear combination with unknown coefficients. We know that any strategy in
a MDP eventually stays forever in a MEC. Thus, we adapt the linear program
of [16] that encodes the reachability probabilities with multiple targets, which are
the MECs here. We combine these reachability probabilities with the unknown
linear combination coefficients, and obtain a linear program (Fig. 1), which we
prove to be equivalent to our problem.

Single EC. Fix a strongly connected d-dimensional MDP M and pairs of thresh-
olds (vi, αi)1≤i≤q. We denote each event by Ai ≡ MPi ≥ vi. In [6], the problem
of maximizing the joint probability of the events Ai was solved in polynomial
time. In particular, we have the following for strongly connected MDPs.

Lemma 4 [6]. If M is strongly connected, then there exists σ such that
P

σ
M,s[∧1≤i≤qAi] > 0 if, and only if there exists σ′ such that Pσ′

M,s[∧1≤i≤qAi] = 1.
Moreover, this can be decided in polynomial time, and for positive instances, for
any ε > 0, a memoryless strategy τ can be computed in polynonomial time in
M , log(vi) and log(1ε ), such that Pτ

M,s[∧1≤i≤qMPi ≥ vi − ε] = 1.

We give an overview of our algorithm. Using Lemma 4, we define strategy σI

achieving P
σI

M,s[∧i∈IAi] = 1 for any maximal subset I ⊆ {1, . . . , q} for which such
a strategy exists. Then, to build a strategy for the multi-constraint problem, we
look for a linear combination of these σI : given σI1 , . . . , σIm , we choose each i0 ∈
{1, . . . , m} following a probability distribution to be computed, and we run σIi0

.
We now formalize this idea. Let I be the set of maximal I (for set inclusion)

such that some σI satisfies PσI

M,s[∧i∈IAi] = 1. Note that for all I ∈ I, and j �∈ I,
P

σI

M,s[∧i∈IAi ∧ Aj ] = 0. Assuming otherwise would contradict the maximality
of I, by Lemma 4. We consider the events AI = ∧i∈IAi ∧i
∈I ¬Ai for maximal I.

We are looking for a non-negative family (λI)I∈I whose sum equals 1 with
∀i ∈ {1, . . . , q},

∑
I∈I s.t. i∈I λI ≥ αi. This will ensure that if each σI is chosen

with probability λI (among the set {σI}I∈I); with probability at least αi, some
strategy satisfying Ai with probability 1 is chosen. So each Ai is satisfied with
probability at least αi. This can be written in the matrix notation as

Mλ ≥ α, 0 ≤ λ,1 · λ = 1, (1)

where M is a q × |I| matrix with Mi,I = 1 if i ∈ I, and 0 otherwise.

Lemma 5. For any strongly connected MDP M , and an instance (vi, αi)1≤i≤q

of the multi-constraint percentile problem for MP, (1) has a solution if, and only
if there exists a strategy σ satisfying the multi-constraint percentile problem.



Percentile Queries in Multi-dimensional Markov Decision Processes 133

1sinit(s) +
∑

s′∈S,a∈A(s′)

ys′,aδ(s′, a, s) =
∑

a∈A′(s)

ys,a, ∀s ∈ S, (2)

∑

s∈SMEC

ys,a∗ = 1, (3)

∑

s∈C

ys,a∗ =
∑

I∈IC

λC
I , ∀C ∈ MEC(M), (4)

λC
I ≥ 0, ∀C ∈ MEC(M), ∀I ∈ IC , (5)

∑

C∈MEC(M)

∑

I∈IC :i∈I

λC
I ≥ αi, ∀i = 1 . . . d. (6)

Fig. 1. Linear program (L) for the multi-constraint percentiles for MP.

Now (1) has size O(q · 2q), and each subset I can be checked in time polynomial
in the model size. The computation of I, the set of maximal subsets, can be
carried out in a top-down fashion; one might thus avoid enumerating all subsets
in practice. We get the following result.

Lemma 6. For strongly connected MDPs, the multi-dimensional percentile
problem for MP can be solved in time polynomial in M and exponential in q.
Strategies require infinite-memory in general. On positive instances, 2q-memory
randomized strategies can be computed for the ε-relaxation of the problem in time
polynomial in |M |, 2q,maxi

(
log(vi), log(αi)

)
, log(1ε ).

General MDPs. Given MDP M , let us consider M ′ given by Lemma 2. We
start by analyzing each maximal EC C of M as above, and compute the sets IC

of maximal subsets. We define a variable λC
I for each I ∈ IC , and also ys,a for

each state s and action a ∈ A′(s). Recall that A′(s) = A(s) ∪ {a∗} for states s
that are inside a MEC, and A′(s) = A(s) otherwise. Let SMEC be the set of states
of M that belong to a MEC. We consider the linear program (L) of Fig. 1.

The linear program follows the ideas of [6,16]. Note that the first two lines
of (L) corresponds to the multiple reachability LP of [16] for absorbing target
states. The equations encode strategies that work in two phases. Variables ys,a

correspond to the expected number of visits of state-action s, a in the first phase.
Variable ys,a∗ describes the probability of switching to the second phase at
state s. The second phase consists in surely staying in the current MEC, so
we require

∑
s∈SMEC

ys,a∗ = 1 (and we will have ys,a∗ = 0 if s does not belong
to a MEC). In the second phase, we immediately switch to some strategy σC

I

where C denotes the current MEC. Thus, variable λC
I corresponds to the prob-

ability with which we enter the second phase in C and switch to strategy σC
I

(see (4)). Intuitively, given a solution (λI)I computed for one EC by (1), we have
the correspondence λC

I =
∑

s∈C ys,a∗ · λI . The interpretation of (6) is that each
event Ai is satisfied with probability at least αi.
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Lemma 7. The LP (L) has a solution if, and only if the multi-constraint per-
centiles problem for MP has a solution. Moreover, the equation has size poly-
nomial in M and exponential in q. From any solution of (L) randomized finite
memory strategies can be computed for the ε-relaxation problem.

Theorem 11. The multi-dimensional percentile problem for MP can be solved
in time polynomial in the model, and exponential in the query. Infinite-memory
strategies are necessary, but exponential-memory (in the query) suffices for the
ε-relaxation and can be computed with the same complexity.

6 Shortest Path

We study shortest path problems in MDPs, which generalize the classical graph
problem. In MDPs, the problem consists in finding a strategy ensuring that a
target set is reached with bounded truncated sum with high probability. This
problem has been studied in the context of games and MDPs (e.g., [2,7,15]). We
consider percentile queries of the form Q :=

∧q
i=1 P

σ
M,sinit

[
TSTi

li
≤ vi

] ≥ αi (inner
inequality ≤ is more natural but ≥ could be used by negating all weights). Each
constraint i may relate to a different target set Ti ⊆ S.

Arbitrary Weights. We prove that without further restriction, the multi-
dimensional percentile problem is undecidable, even for a fixed number of
dimensions. Our proof is inspired by the approach of Chatterjee et al. for the
undecidability of two-player multi-dimensional total-payoff games [8] but
requires additional techniques to adapt to the stochastic case.

Theorem 12. The multi-dimensional percentile problem is undecidable for the
truncated sum payoff function, for MDPs with both negative and positive weights
and four dimensions, even with a unique target set.

Non-negative Weights. In the light of this result, we will restrict our setting to
non-negative weights (we could equivalently consider non-positive weights with
inequality ≥ inside percentile constraints). We first discuss recent related work.

Quantiles and Cost Problems. In [29], Ummels and Baier study quantile
queries over non-negatively weighted MDPs. They are equivalent to minimizing
v ∈ N in a single-constraint percentile query P

σ
M,sinit

[
TST ≤ v

] ≥ α such that
there still exists a satisfying strategy, for some fixed α. Very recently, Haase and
Kiefer extended quantile queries by introducing cost problems [21]. They can be
seen as single-constraint percentile queries where inequality TST ≤ v is replaced
by an arbitrary Boolean combination of inequalities ϕ. Hence, it can be written
as P

σ
M,sinit

[
TST |= ϕ

] ≥ α. Cost problems are studied on single-dimensional
MDPs and all the inequalities relate to the same target T , in contrast to our
setting which allows both for multiple dimensions and multiple target sets. The
single probability threshold bounds the probability of the whole event ϕ.

Both settings are incomparable. Still, our queries share common subclasses
with cost problems: atomic formulae ϕ exactly correspond to our single-
constraint queries. Moreover, cost problems for such formulae are inter-reducible



Percentile Queries in Multi-dimensional Markov Decision Processes 135

with quantile queries [21, Proposition 2]. Cost problems with atomic formulae
are PSPACE-hard, so this also holds for single-constraint percentile queries. The
best known algorithm in this case is in EXPTIME. In the following, we estab-
lish an algorithm that still only requires exponential time while allowing for
multi-constraint multi-dimensional multi-target percentile queries.

Main Results. Our main contributions for the shortest path are as follows.

Theorem 13. The percentile problem for the shortest path with non-negative
weights can be solved in time polynomial in the model size and exponential in
the query size (exponential in the number of constraints and pseudo-polynomial
in the largest threshold). The problem is PSPACE-hard even for single-constraint
queries. Exponential-memory strategies are sufficient and in general necessary.

Sketch of Algorithm. Consider a d-dimensional MDP M and a q-query per-
centile problem, with potentially different targets for each query. Let vmax be the
maximum of the thresholds vi. Because weights are non-negative, extending a
finite history never decreases the sum of its weights. Thus, any history ending
with a sum exceeding vmax in all dimensions is surely losing under any strategy.

Based on this, we build an MDP M ′ by unfolding M and integrating the sum
for each dimension in states of M ′. We ensure its finiteness thanks to the above
observation and we reduce its overall size to a single-exponential by defining
a suitable equivalence relation between states of M ′: we only care about the
current sum in each dimension, and we can forget about the actual path that
led to it. Precisely, the states of M ′ are in S × {0, . . . , vmax + 1}d. Now, for each
constraint, we compute a set of target states in M ′ that exactly captures all
runs satisfying the inequality of the constraint. Thus, we are left with a multiple
reachability problem on M ′: we look for a strategy σ′ that ensures that each
of these sets Ri is reached with probability αi. This query can be answered in
time polynomial in |M ′| but exponential in the number of sets Ri, i.e., in q
(Theorem 1).

Remark 1. Percentile problems with unique target are solvable in time polynomial
in the number of constraints but still exponential in the number of dimensions.

For single-dimensional queries with a unique target set (but still potentially
multi-constraint), our algorithm remains pseudo-polynomial as it requires poly-
nomial time in the thresholds values (i.e., exponential in their encoding).

Corollary 1. The single-dimensional percentile problem with a unique target
set can be solved in pseudo-polynomial time.

Lower Bound. By equivalence with cost problems for atomic cost formulae, it
follows from [21, Theorem 7] that no truly-polynomial-time algorithm exists for
the single-constraint percentile problem unless P = PSPACE.
Memory. The upper bound is by reduction to multiple reachability over an
exponential unfolding. The lower bound is via reduction from multiple reacha-
bility.
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7 Discounted Sum

The discounted sum models that short-term rewards or costs are more important
than long-term ones. It is well-studied in automata [3] and MDPs [9,12,23]. We
consider queries of the form Q :=

∧q
i=1 P

σ
M,sinit

[
DSλi

li
≥ vi

] ≥ αi, for discount fac-
tors λi ∈ ]0, 1[∩Q and the usual thresholds. That is, we study multi-dimensional
MDPs and possibly distinct discount factors for each constraint.

Our setting encompasses a simpler question which is still not known to be
decidable. Consider the precise discounted sum problem: given a rational t, and
a rational discount factor λ ∈ ]0, 1[, does there exist an infinite binary sequence
τ = τ1τ2τ3 . . . ∈ {0, 1}ω such that

∑∞
j=1 λj ·τj = t? In [4], this problem is related

to several long-standing open questions, such as decidability of the universality
problem for discounted-sum automata [3]. A slight generalization to paths in
graphs is also mentioned by Chatterjee et al. as a key open problem in [9].

Lemma 8. The precise discounted sum problem can be reduced to an almost-
sure percentile problem over a two-dimensional MDP with only one state.

This suggests that answering percentile problems would require an important
breakthrough. In the following, we establish a conservative algorithm that, in
some sense, can approximate the answer.

The ε-gap Problem. Our algorithm takes as input a percentile query and an
arbitrarily small precision factor ε > 0 and has three possible outputs: Yes,
No and Unknown. If it answers Yes, then a satisfying strategy exists and can be
synthesized. If it answers No, then no such strategy exists. Finally, the algorithm
may output Unknown for a specified “zone” close to the threshold values involved
in the problem and of width which depends on ε. It is possible to incrementally
reduce the uncertainty zone, but it cannot be eliminated as the case ε = 0 would
answer the precise discounted sum problem, which is not known to be decidable.

We actually solve an ε-gap problem, a particular case of promise problems [19],
where the set of inputs is partitioned in three subsets: yes-inputs, no-inputs and
the rest of them. The promise problem then asks to answer Yes for all yes-inputs
and No for all no-inputs, while the answer may be arbitrary for the remaining
inputs. In our setting, the set of inputs for which no guarantee is given can be
taken arbitrarily small, parametrized by value ε > 0: this is an ε-gap problem.
This notion is formalized in Theorem 15.

Related Work: Single-Constraint Case. There are papers considering mod-
els related to single-constraint percentile queries. Consider a single-dimensional
MDP and a single-constraint query, with thresholds v and α. The threshold
problem fixes v and maximizes α [30,31]. The value-at-risk problem fixes α and
maximizes v [5]. This is similar to quantiles in the shortest path setting [29].
Paper [5] is the first to provide an exponential-time algorithm to approximate
the optimal value v∗ under a fixed α in the general setting. The authors also
rely on approximation. While we do not consider optimization, we do extend the
setting to multi-constraint, multi-dimensional, multi-discount problems, and we
are able to remain in the same complexity class, namely EXPTIME.
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Main Results. Our main contributions for the discounted sum are as follows.

Theorem 14. The ε-gap percentile problem for the discounted sum can be solved
in time pseudo-polynomial in the model size and the precision factor, and expo-
nential in the query size: polynomial in the number of states, the weights, the
discount factors and the precision factor, and exponential in the number of con-
straints. It is PSPACE-hard for two-dimensional MDPs and already NP-hard for
single-constraint queries. Exponential-memory strategies are both sufficient and
in general necessary to satisfy ε-gap percentile queries.

Cornerstones of the Algorithm. Our approach is similar to the shortest path:
we want to build an unfolding capturing the needed information w.r.t. the dis-
counted sums, and then reduce the percentile problem to a multiple reachability
problem over this unfolding. However, several challenges have to be overcome.

First, we need a finite unfolding. This was easy in the shortest path due to
non-decreasing sums and corresponding upper bounds. Here, it is not the case
as we put no restriction on weights. Nonetheless, thanks to the discount factor,
weights contribute less and less to the sum along a run. In particular, cutting all
runs after a pseudo-polynomial length changes the overall sum by at most ε/2.

Second, we reduce the overall size of the unfolding. For the shortest path we
took advantage of integer labels to define equivalence. Here, the space of values
taken by the discounted sums is too large for a straightforward equivalence. To
reduce it, we introduce a rounding scheme of the numbers involved. This idea is
inspired by [5]. We bound the error due to cumulated roundings by ε/2.

So, we control the amount of information lost to guarantee exact answers
except inside an arbitrarily small ε-zone. Given a q-constraint query Q for thresh-
olds vi, αi, dimensions li and discounts λi, we define the x-shifted query Qx, for
x ∈ Q, as the exact same problem for thresholds vi + x, αi, dimensions li and
discounts λi. Our algorithm satisfies the following theorem, which formalizes the
ε-gap percentile problem mentioned in Theorem 14.

Theorem 15. There is an algorithm that, given an MDP, a percentile query Q
for the discounted sum and a precision factor ε > 0, solves the following ε-gap
problem in exponential time. It answers

– Yes if there is a strategy satisfying the (2 · ε)-shifted percentile query Q2·ε;
– No if there is no strategy satisfying the (−2 · ε)-shifted percentile query Q−2·ε;
– and arbitrarily otherwise.

Lower Bounds. The ε-gap percentile problem is PSPACE-hard by reduction
from subset-sum games [28]. Two tricks are important. First, counterbalancing
the discount effect via adequate weights. Second, simulating an equality con-
straint. This cannot be achieved directly because it requires to handle ε = 0.
Still, by choosing weights carefully we restrict possible discounted sums to inte-
ger values only. Then we choose the thresholds and ε > 0 such that no run
can take a value within the uncertainty zone. This circumvents the limitation
due to uncertainty. For single-constraint ε-gap problems, we prove NP-hardness,
even for Markov chains. Our proof is by reduction from the K-th largest subset
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problem [18], inspired by [7, Theorem 11]. A recent, not yet published, paper
by Haase and Kiefer [20] claims that this K-th largest subset problem is actu-
ally PP-complete. If this claim holds, then it suggests that the single-constraint
problem does not belong to NP at all, otherwise the polynomial hierarchy would
collapse to PNP by Toda’s theorem [27].
Memory. For the precise discounted sum and generalizations, infinite memory
is needed [9]. For ε-gap problems, the exponential upper bound follows from the
algorithm while the lower bound is shown via a family of problems that emulate
the ones used for multiple reachability (Theorem 2).
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LNCS, vol. 5489, pp. 32–45. Springer, Heidelberg (2009)
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