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Abstract	
	
We	advance	a	novel	computational	model	that	characterizes	formally	the	ways	we	perceive	
or	misperceive	bodily	symptoms,	in	the	context	of	panic	attacks.	The	computational	model	
is	 grounded	within	 the	 formal	 framework	 of	 Active	 Inference,	 which	 considers	 top-down	
prediction	and	attention	dynamics	as	key	to	perceptual	inference	and	action	selection.	In	a	
series	of	simulations,	we	use	the	computational	model	to	reproduce	key	facets	of	adaptive	
and	maladaptive	 symptom	 perception:	 the	 ways	 we	 infer	 our	 bodily	 state	 by	 integrating	
prior	 information	and	somatic	afferents;	 the	ways	we	decide	whether	or	not	 to	attend	 to	
somatic	channels;	the	ways	we	use	the	symptom	inference	to	make	decisions	about	taking	
or	not	 taking	a	medicine;	and	 the	ways	all	 the	above	processes	can	go	awry,	determining	
symptoms	 misperception	 and	 ensuing	 maladaptive	 behaviors,	 such	 as	 hypervigilance	 or	
excessive	medicine	use.	While	recent	existing	theoretical	treatments	of	psychopathological	
conditions	 focus	 on	 prediction-based	 perception	 (predictive	 coding),	 our	 computational	
model	 goes	 beyond	 them,	 in	 at	 least	 two	 ways.	 First,	 it	 includes	 action	 and	 attention	
selection	 dynamics	 that	 are	 disregarded	 in	 previous	 conceptualizations	 but	 are	 crucial	 to	
fully	 understand	 the	 phenomenology	 of	 bodily	 symptoms	 perception	 and	misperception.	
Second,	 it	 is	 a	 fully	 implemented	 model	 that	 generates	 specific	 (and	 personalized)	
quantitative	predictions,	thus	going	beyond	previous	qualitative	frameworks.	
	
Keywords:	 panic	 disorder,	 active	 inference,	 predictive	 coding,	 maladaptive	 inference,	
computational	psychiatry	
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Introduction	
There	is	increasing	consensus	in	neuroscience	that	the	perception	(or	misperception)	

of	both	external	events,	such	as	visual	scenes,	and	internal	events,	such	as	bodily	symptoms,	
is	not	a	purely	bottom-up	process,	but	an	inferential	process	guided	by	top-down	dynamics,	
which	include	predictions	derived	from	prior	knowledge	and	top-down	attention	dynamics	
(Clark,	2016;	Engel	et	al.,	2001;	K.	 J.	 Friston,	2005;	Hohwy,	2013;	Rao	&	Ballard,	1999).	 In	
computational	 psychiatry,	 this	 implies	 that	 understanding	 phenomena	 like	 symptom	
perception	(or	misperception)	requires	going	beyond	bottom-up	and	afferent	processes,	to	
also	consider	top-down,	predictive	and	attention	processes.	In	other	words,	what	is	needed	
is	 a	 novel	 conceptual	 framework	 that	 puts	 predictive	 dynamics	 at	 its	 core	 and	 affords	 an	
"inferential	leap"	(Van	den	Bergh	et	al.,	2017)	in	our	understanding	of	how	we	perceive	and	
feel	our	bodily	symptoms.	

One	prediction-based	framework	that	is	rapidly	gaining	prominence	in	neuroscience	
is	 Active	 Inference.	 This	 framework	 describes	 the	 brain	 as	 a	 “predictive	machine”,	 which	
forms	an	 internal	 (generative)	model	of	 the	 statistical	 regularities	of	 its	environment,	and	
uses	the	model	for	perception	and	adaptive	control	 (K.	J.	Friston,	2010;	K.	J.	Friston	et	al.,	
2017;	 Pezzulo	 et	 al.,	 2015;	 Pezzulo,	 Rigoli,	 et	 al.,	 2018).	 An	 Active	 Inference	 agent	
continuously	strives	 to	minimize	the	discrepancy	between	 its	prior	expectations	 (including	
homeostatic	 priors,	 such	 as	 “expecting	 not	 to	 be	 hungry”)	 and	 its	 sensory	 evidence	
(including	interoceptive	sensations,	such	as	“feeling	hungry”).	To	minimize	this	discrepancy	
(or	more	 formally,	 variational	 free	 energy),	 an	 Active	 Inference	 agent	 uses	 synergistically	
perceptual	processes	(inferring	the	latent	causes	of	the	sensorium,	e.g.,	infer	whether	one	is	
hungry),	 action	 processes	 (selecting	 action	 plans	 that	 bring	 about	 predicted	 /	 desired	
sensory	 outcomes,	 which	 confirm	 to	 expectation,	 e.g.,	 elicit	 sensations	 of	 satiation	 by	
eating)	 and	 learning	 processes	 (finessing	 internal	 models,	 e.g.,	 learn	 that	 some	 physical	
activities	make	one	hungry).		

Active	 Inference	 is	 increasingly	 applied	 to	 elucidate	 a	wide	 variety	 of	 phenomena	
such	 as	 action	 selection,	 learning,	 motor	 control,	 homeostatic	 regulation,	 interoceptive	
processing,	and	uncertainty	 reduction	or	epistemic	 foraging	 (Donnarumma	et	al.,	2017;	K.	
Friston	et	al.,	2012,	2015;	K.	J.	Friston,	FitzGerald,	Rigoli,	Schwartenbeck,	O’Doherty,	et	al.,	
2016;	K.	 J.	Friston	et	al.,	2017;	Pezzulo,	Rigoli,	et	al.,	2018).	Furthermore,	Active	 Inference	
and	 the	closely	 related	 theory	of	predictive	coding	have	been	recently	adopted	 to	explain	
failures	of	 the	above	 (and	other)	processes	and	the	resulting	psychopathologies,	 including	
somatic	 symptom	 disorder,	 schizophrenia,	 psychosis,	 hysteria,	 and	 beyond	 (Adams	 et	 al.,	
2013;	Barrett	et	al.,	2016;	Corlett	et	al.,	2019;	Edwards	et	al.,	2012;	K.	J.	Friston,	Stephan,	et	
al.,	2014;	Paulus	et	al.,	2019;	Paulus,	2019;	Pezzulo	et	al.,	2019;	A.	R.	Powers	et	al.,	2017;	
Sterzer	 et	 al.,	 2018;	 Van	 den	 Bergh	 et	 al.,	 2017).	 However,	 it	 is	 important	 to	 clarify	 that	
predictive	 coding	models	 only	 consider	 the	perceptual	 domain	 (K.	 J.	 Friston,	 2005;	Rao	&	
Ballard,	1999),	whereas	Active	Inference	extends	it	to	consider	both	perception	and	action,	
under	 a	 unique	 imperative	 (variational	 free	 energy	 minimization).	 The	 scope	 of	 Active	
Inference	theories	 is	broader	and	includes	not	just	misperceptions	or	false	beliefs	but	also	
maladaptive	 behavior	 stemming	 from	 psychopathological	 conditions.	 However,	 most	
existing	explanations	of	psychopathology	use	the	constructs	of	Active	Inference	at	a	rather	
abstract	level,	without	also	advancing	specific	formal	(computational)	models.	

In	 this	 article,	 we	 go	 one	 step	 beyond	 these	 previous	 attempts	 and	 use	 Active	
Inference	 to	 develop	 a	 formal	 model	 of	 symptom	 perception	 and	 misperception	 in	 the	
context	of	panic	disorder.	 In	 line	with	 recent	pleas	 for	 the	development	of	computational	
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psychiatry	 and	 psychosomatics	 (K.	 J.	 Friston,	 Stephan,	 et	 al.,	 2014;	 Petzschner,	 2017;	
Petzschner	 et	 al.,	 2017),	 we	 present	 a	 computational	 example	 illustrating	 how	 an	 Active	
Inference	framework	can	model	processes	of	symptom	perception	and	behavioral	action	in	
panic	 disorder.	 Our	 proposal	 builds	 on	 previous	 conceptualizations	 of	 interoceptive	
processing	within	the	Active	Inference	framework,	which	we	introduce	below.	
	
Interoceptive	processing	and	symptom	perception	from	an	active	inference	perspective	

Interoception	 refers	 to	 the	 ways	 by	 which	 afferent	 information	 from	 visceral	 and	
bodily	 input	 is	 processed	 in	 the	 brain	 (Craig,	 2015).	 Interoception	 is	 important	 for	
homeostatic	 regulation	 and	 adaptive	 behavior	 (Barrett	 &	 Simmons,	 2015;	 Pezzulo	 et	 al.,	
2015)	but	it	is	also	thought	to	be	critically	involved	in	feelings	and	emotions	(Barrett,	2017;	
Seth,	2013),	in	the	experience	of	agency	and	selfhood	(Seth	&	Tsakiris,	2018)	and	in	related	
psychopathological	 disorders	 (Quadt	 et	 al.,	 2018;	 Smith	 et	 al.,	 2020).	 Most	 of	 these	
interactions	 between	 interoception	 and	 psychological	 function	 occur	 outside	 awareness,	
but	some	information	may	be	consciously	perceived.	The	extent	to	which	people	are	able	to	
accurately	 perceive	 their	 internal	 state	 remains	 a	 matter	 of	 debate.	 On	 the	 one	 hand,	
individual	 differences	 seem	 to	 exist	 in	 this	 ability	which	may	 correlate	with	 psychological	
function	 such	 as	 variations	 in	 emotion	 processing,	 in	 the	 experience	 of	 selfhood	 and	 in	
sensitivity	 for	 body	 illusions	 (Berntson	 et	 al.,	 2018).	 On	 the	 other	 hand,	 the	most	widely	
used	 test	 to	 assess	 interoceptive	 accuracy	 in	 such	 studies,	 the	 heartbeat	 counting	 task,	
appears	methodologically	severely	flawed	and,	if	anything,	it	shows	that	the	large	majority	
of	people	are	poor	heartbeat	perceivers	(Zamariola	et	al.,	2018).		

It	 is	 important	 to	 note	 that	 the	 debate	 on	 interoceptive	 accuracy	 is	 largely	
predicated	 on	 the	 assumption	 that	 afferent	 sensory	 information,	 originating	 in	 the	 body,	
fully	 determines	 interoception	 (Van	 den	 Bergh	 et	 al.,	 2018).	 However,	 according	 to	 the	
recent	 theories	 of	 interoceptive	 inference	 (Seth,	 2013)	 and	 Embodied	 Predictive	
Interoception	Coding	model	(EPIC)	(Barrett	&	Simmons,	2015),	interoception	emerges	from	
brain	predictions	about	the	state	of	the	body	that	are	interacting	with	actual	sensory	input.	
In	this	view,	interoception	is	a	matter	of	Active	Inference	(Seth	&	Friston,	2016).		

This	 Active	 Inference	 account	 of	 interoception	 can	 be	 extended	 to	 symptom	
perception.	 Obviously,	 the	 perception	 of	 bodily	 symptoms	 as	 indicators	 of	 physiological	
dysfunction	relies	on	interoception,	but	it	is	more	than	that.	It	can	be	considered	a	form	of	
categorical	perception	during	which	patterns	of	interoceptive	stimulation	are	grouped	into	
meaningful	 categories	 (e.g.,	 cardiac,	 gastrointestinal)	 with	 behavioural	 relevance.	 In	 an	
Active	Inference	framework,	categorical	perception	of	interoceptive	variables	is	a	Bayesian	
inferential	 process,	 akin	 to	 categorical	 perception	 of	 exteroceptive	 variables	 (e.g.,	 object	
categories).	This	process	is	based	on	the	two	typical	ingredients	of	Bayesian	inference:	prior	
beliefs	 (predictions)	 about	 categories,	 given	 an	 individual’s	 learning	 history	 and	 current	
context	(Lynn	&	Barrett,	2014;	Rigoli	et	al.,	2017);	and	sensory	evidence	(here,	interoceptive	
or	somatic	 input).	Crucially,	both	prior	belief	and	sensory	evidence	contribute	to	Bayesian	
inference,	but	their	relative	“weights”	depend	on	their	reliability	or	precision	(formally,	the	
inverse	 of	 the	 variance	 of	 a	 distribution,	 e.g.,	 Gaussian	 distribution).	 This	 implies	 that,	
depending	on	the	relative	precision	of	(the	neural	representations	of)	both	the	categorical	
predictions	and	the	actual	interoceptive	input,	the	eventual	symptom	percept	will	be	closer	
to	 the	 predictions	 or	 to	 the	 somatic	 input	 (Van	 den	 Bergh	 et	 al.,	 2017).	 In	 conditions	 of	
highly	 precise	 (but	 incorrect)	 categorical	 priors	 and	 low	 precise	 interoceptive	 input	 (e.g.,	
noisy	 somatic	 channels),	 perceived	 symptoms	may	 reflect	 prior	 beliefs	 rather	 than	 actual	
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input	and	hence	provide	a	biased	perception	of	bodily	state	(Henningsen	et	al.,	2018;	Van	
den	Bergh	et	al.,	2018).		

An	additional	important	aspect	of	Active	Inference	is	that	it	describes	perception	as	
an	active	process	–	because	agents	are	free	to	decide	what	 information	and	what	sensory	
channels	to	attend	or	not	to	attend	(this	includes	both	overt	and	covert	attention	allocation,	
but	 in	 this	 context,	we	only	 focus	 on	 covert	 attention).	 The	 decision	 of	what	 information	
should	 be	 attended	 to	 considers	 both	 the	 agent’s	 prior	 beliefs	 and	 (beliefs	 about)	 the	
precision	 of	 information	 sources	 (e.g.,	 somatic	 channels).	 Intuitively,	 an	 Active	 Inference	
agent	only	needs	 to	attend	precise	 information	 that	has	 some	 information	value,	 i.e.,	has	
the	potential	to	change	his	belief	state.	Information	that	can	resolve	the	agent’s	uncertainty	
about	motivationally	salient	events	(e.g.,	about	whether	or	not	one	has	a	dysfunction)	and	
comes	 from	 reliable	 sensory	 channels	 has	 high	 information	 gain	 and	 should	 be	 (covertly)	
attended	to;	whereas	 information	 that	 is	already	 fully	predicted	 (e.g.,	 is	associated	with	a	
very	strong	prior)	or	comes	from	noisy	sensory	channels	has	 little	or	no	 information	value	
and	hence	should	not	be	attended	to.	These	attention	dynamics	are	important	for	symptom	
perception,	 too.	 This	 is	 because	 the	 same	 conditions	 that	 may	 promote	 symptom	
misperception	–	highly	precise	(but	incorrect)	categorical	priors	and	imprecise	interoceptive	
input	–	may	also	determine	a	progressive	 loss	of	 somatic	attention,	which	 further	 impairs	
the	correct	symptom	perception.	On	the	contrary,	an	imprecise	internal	model	that	leaves	a	
person	uncertain	 about	 (present	or	 future)	motivationally	 salient	 events	may	promote	an	
excessive	level	of	somatic	attention,	associated	with	hypervigilance.	

In	sum,	Active	Inference	suggests	that	the	imbalance	of	(the	precision	of)	prior	and	
sensory	evidence	can	cause	symptoms	misperception,	both	as	a	direct	effect	of	(precision-
weighted)	Bayesian	inference,	and	as	an	indirect	effect	of	(uncertainty-resolving)	attention	
dynamics.	 Of	 note,	 Active	 Inference	 suggests	 that	 in	 most	 cases,	 what	 appears	 to	 be	
maladaptive	 inference	 is	 not	 the	 result	 of	 wrong	 inferential	 processes,	 but	 of	 correct	
inferential	processes	given	odd	premises	(e.g.,	excessively	precise	priors).	In	this	article,	we	
apply	 this	 Active	 Inference	 perspective	 on	 symptoms	 misperception	 in	 the	 context	 of	 a	
specific	psychopathological	condition	-	panic	disorder	-	and	later	we	embody	our	proposals	
in	a	fully	implemented	computational	model.	
	
An	Active	Inference	perspective	on	panic	disorder	

Panic	 disorder	 is	 characterized	 by	 sudden	 bouts	 of	 massive	 autonomic	 activity	
dominated	by	cardiorespiratory	sensations	and	accompanied	by	severe	anxiety	and	a	feeling	
of	 impending	 doom	 (e.g.	 fear	 of	 dying).	 Although	 occasional	 panic	 attacks	 are	 rather	
prevalent	 in	 the	 general	 population,	 panic	 disorder	 develops	 when	 individuals	 start	 to	
persistently	 worry	 about	 having	 another	 attack	 and	 to	 substantially	 change	 behavior	 in	
order	 to	predict,	 control	 or	 avoid	potential	 new	attacks.	 Fear	 conditioning	 through	which	
low-level	cardiorespiratory	sensations	become	interoceptive	conditioned	cues	is	considered	
an	important	process	in	the	maintenance	and	exacerbation	of	panic	disorder	(Bouton	et	al.,	
2001),	resulting	in	patients	becoming	hypervigilant	for	interoceptive	cues	that	may	predict	a	
full-blown	 panic	 attack.	 Safety	 learning	 easily	 develops	 taking	 the	 form	 of	 excessive	
dependence	on	the	presence	of	others	(e.g.	a	spouse),	on	being	in	specific	situations	(e.g.	at	
home)	and/or	on	taking	medication	(e.g.	alprazolam).		

The	above	brief	description	of	panic	disorder	is	a	severe	simplification,	but	it	may	be	
sufficient	 to	 lay	 the	 ground	 for	 a	 computational	 model	 explaining	 the	 perception	 and	
misperception	of	bodily	symptoms	 in	these	patients	 from	an	Active	 Inference	perspective.	
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For	illustrative	purposes,	we	focus	on	only	a	few	specific	characteristics:	a	person	with	panic	
disorder	who	wants	to	decide	whether	or	not	to	take	a	medicine	(e.g.	alprazolam)	to	stop	a	
possible	panic	attack.	Clearly,	the	optimal	plan	is	to	take	the	medicine	only	if	he	is	about	to	
have	 a	 possible	 panic	 attack	 and	 not	 continuously	 as	 dependence	 might	 ensue.	 In	 the	
simulations	 below,	 we	 define	 the	 patient’s	 goal	 as	 a	 generic	 “feeling	 normal”	 sensation,	
which	 can	 be	 achieved	 in	 two	ways:	 if	 he	 is	 about	 to	 have	 a	 panic	 attack	 and	 takes	 the	
medicine,	or	if	he	is	not	about	to	have	a	panic	attack	and	does	not	take	the	medicine.		

To	make	an	optimal	decision	about	taking	or	not	taking	the	medicine,	the	patient	has	
to	first	resolve	his	uncertainty	about	whether	he	is	about	to	have	a	panic	attack	(context	1:	
"panic	 attack")	 or	 not	 (context	 2:	 "no	 panic	 attack").	 He	 makes	 this	 inference	 by	 jointly	
considering	two	factors.	The	first	factor	 is	his	prior	belief	about	experiencing	panic	attacks	
more	frequently	in	some	situations	(e.g.,	in	public	places)	but	not	others	(e.g.,	at	home).	The	
second	factor	is	his	current	bodily	sensations	of	two	kinds,	one	of	which	(heart	pounding)	is	
more	diagnostic	then	the	other	(breathlessness)	about	upcoming	panic	attacks.	Importantly,	
in	the	simulations	that	we	describe	below,	the	person	can	decide	whether	or	not	to	attend	
to	these	slightly	aversive	bodily	sensations	before	making	the	decision,	 in	order	to	reduce	
his	 uncertainty.	 Our	 simulations	 will	 illustrate	 how	 Active	 Inference	 agents	 balance	
epistemic	(uncertainty-minimizing)	aspects	of	the	decision,	such	as	whether	or	not	to	attend	
somatic	 stimuli,	 with	 economic	 (reward-maximizing)	 aspects	 of	 the	 decision,	 such	 as	
whether	or	not	to	take	the	medicine.	To	 illustrate	the	peculiarities	of	the	Active	 Inference	
model,	 we	 will	 compare	 it	 with	 a	 standard	 decision-making	 model	 that	 only	 considers	
reward	 maximization;	 and	 show	 that	 the	 uncertainty-minimization	 imperative	 implicit	 in	
Active	Inference	is	important	to	ensure	adaptive	action	in	ambiguous	contexts.	Finally,	our	
simulations	 will	 show	 the	 ways	 Active	 Inference	 can	 go	 awry	 and	 cause	 symptoms	
misperception,	 hypervigilance	 and	 excessive	 safety	 behaviour	 –	 therefore	 explaining	 the	
clinical	phenomenology	or	panic	disorders.	
	
Specification	of	the	agent's	generative	model	

In	the	Active	Inference	framework,	an	agent	makes	decisions	(e.g.,	whether	or	not	to	
take	 a	medicine)	 based	 on	 its	generative	model,	 which	 generally	 includes	 4	 components,	
called	A,	B,	C,	D	matrices	(see	the	Appendix	for	a	formal	description).	The	first	component	
(likelihood	 function,	 A)	 is	 a	 probabilistic	 description	 of	 what	 observations	 (e.g.,	 somatic	
sensations,	 such	 as	 heart	 pounding,	 breathlessness	 and	 “feeling	 strange”)	 should	 be	
expected	under	different	states	of	affairs,	which	cannot	be	directly	observed	and	are	hence	
called	 hidden	 states	 (e.g.,	 having	 or	 not	 having	 a	 panic	 attack).	 The	 second	 component	
(transition	function,	B)	is	a	probabilistic	description	of	how	hidden	states	change	over	time,	
as	an	effect	of	the	agent’s	actions	(e.g.,	what	happens	if	one	takes	a	medicine	when	he	has,	
or	not	has,	a	panic	attack).	The	third	component	is	a	(prior,	C)	probability	distribution	over	
observations,	which	in	Active	Inference	encodes	the	agent’s	prior	preferences	or	goals	(i.e.,	
that	 he	 likes	 “feeling	 normal”	 but	 dislikes	 “feeling	 strange”,	 heart	 pounding	 and	
breathlessness).	The	fourth	condition	is	the	agent’s	prior	belief	(D)	about	its	current	hidden	
state,	before	receiving	any	sensory	observation.		

Once	an	Active	 Inference	agent	 is	endowed	with	a	 specific	 generative	model	 (fully	
specified	by	the	A,	B,	C,	D	matrices)	and	is	exposed	to	a	certain	set	of	environmental	stimuli	
(e.g.,	 it	 feels	 pounding),	 its	 decision	 dynamics	 follow	 automatically	 from	 a	 standard	
(variational)	 inferential	 scheme	 that	 approximates	 full	 Bayesian	 inference:	 free	 energy	
minimization.	A	full	description	of	the	free	energy	minimization	procedure	is	provided	in	the	
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Appendix.	Here,	it	suffices	to	say	that	an	Active	Inference	agent	uses	the	generative	model	
for	 both	 perception	 and	 action	 selection.	 The	 former	 corresponds	 to	 inferring	 its	 current	
hidden	state	(e.g.,	whether	it	is	having	a	pain	attack)	based	on	its	observations	(e.g.,	given	
that	it	feels	breathlessness)	and	prior	beliefs.	The	latter	corresponds	to	selecting	an	action	
or	 a	 sequence	 of	 actions	 (called	 policy)	 that	 simultaneously	 achieves	 the	 agent's	 goals	
(“feeling	normal”)	and	lowers	his	uncertainty	about	the	hidden	state.		

In	the	context	of	the	current	paper,	perception	corresponds	to	the	inference	of	panic	
attack	symptoms,	whereas	action	selection	corresponds	to	two	kinds	of	decisions:	taking	or	
not	taking	a	medicine,	and	attending	or	not	attending	to	somatic	channels	(the	latter	can	be	
considered	a	 sort	of	 attention	 regulation).	We	assume	 that	both	 symptom	perception	 (or	
misperception)	 and	 adaptive	 (or	 maladaptive)	 action	 selection	 emerge	 from	 Active	
Inference,	under	a	particular	generative	model	(and	A,	B,	C,	D	matrices),	which	we	introduce	
below,	see	Figure	1.	

The	 first	 component	 of	 the	 generative	model	 is	 a	 likelihood	 (A)	matrix	 that	maps	
probabilistically	 ten	hidden	states	 to	 forty	observations	 (and	 is	stochastic).	The	ten	hidden	
states	 are	 obtained	 as	 the	 tensorial	 product	 between	 two	 hidden	 contexts,	 which	
correspond	to	the	two	hypotheses	of	being	about	to	have	(context	1:	“panic	attack”),	or	not	
to	 have	 (context	 2:	 “no	 panic	 attack”),	 a	 panic	 attack;	 by	 five	 task	 situations:	 an	 “initial	
state”,	 two	 states	 that	 correspond	 to	 “having	 attended	 to	 heart	 pounding”	 and	 “having	
attended	to	breathlessness”	and	two	states	that	correspond	to	“having	taken	the	medicine”	
or	“not	having	taken	the	medicine”,	respectively.	The	forty	observations	are	obtained	as	the	
tensorial	products	between	five	exteroceptive	sensations	and	eight	interoceptive	sensations.	
The	 five	 exteroceptive	 sensations	 correspond	 one-to-one	 to	 the	 five	 task	 situations	
explained	above	(not	shown	in	Figure	1	for	the	sake	of	simplicity).	As	the	agent	receives	a	
different	exteroceptive	sensation	 in	each	task	situation,	 it	always	knows	unambiguously	 in	
which	task	situation	it	is.	However,	exteroceptive	sensations	do	not	disambiguate	between	
contexts:	 an	 agent	 in	 the	 "initial	 state"	 receives	 the	 same	 exteroceptive	 sensation,	
independent	of	the	context	 (panic	or	not	panic)	 it	 is	 in.	To	 infer	 in	which	context	 it	 is,	 the	
agent	has	to	consider	its	eight	interoceptive	sensations.	These	include	two	noninformative	
initial	 sensations	 (a	 and	 b),	 two	 bodily	 sensations	 that	 correspond	 to	 the	 presence	 or	
absence	of	heart	pounding	(c	and	d),	two	bodily	sensations	that	correspond	to	the	presence	
or	absence	of	breathlessness	(e	and	f)	and	two	final	sensations:	a	more	positive	sensation	
called	 “feeling	 normal”	 (g)	 and	 a	 more	 negative	 sensation	 called	 “feeling	 strange”,	 e.g.,	
lightheadedness	 (h).	 As	 mentioned	 above,	 the	 probabilistic	 mapping	 between	 the	 ten	
hidden	states	and	the	eight	observations	corresponds	to	the	 likelihood	(A)	matrix	and	it	 is	
set	as	 stochastic	 in	our	 simulations.	Note	 that	 the	mapping	 from	hypotheses	 to	 the	heart	
pounding	sensations	(c	and	d)	is	“sharper”	(i.e.,	has	lower	entropy)	than	the	mapping	from	
hypotheses	 to	breathlessness	sensations	 (e	and	 f),	 reflecting	the	 fact	 that	 the	presence	of	
the	former	is	more	diagnostic	for	panic	attack	than	the	latter.	In	other	words,	if	I	am	having	
a	panic	attack	I'm	very	likely	to	sense	heart	pounding	when	attending	to	heart	pounding	but	
less	likely	to	sense	breathlessness,	when	attending	to	breathlessness.	

Note	also	that	the	agent	"feels	normal"	(i.e.,	observes	g)	in	two	conditions:	when	he	
is	about	to	have	a	panic	attack	and	takes	the	medicine;	and	when	he	is	not	about	to	have	a	
panic	 attack	 and	 does	 not	 take	 the	medicine.	 Conversely,	 the	 agent	 "feels	 strange"	 (i.e.,	
observes	h)	when	he	 is	about	to	have	a	panic	attack	and	does	not	take	the	medicine;	and	
when	he	is	not	about	to	have	a	panic	attack	and	takes	the	medicine	(e.g.,	feels	a	bit	dry	in	
the	mouth).		
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Figure	1.	The	agent's	generative	model.	The	agent's	generative	model	includes	ten	hidden	

states	(1-10):	five	task	situations	(initial	state,	having	attended	to	heart	pounding	or	
breathlessness,	having	or	not	having	taken	the	medicine)	by	two	contexts	(panic	and	not	

panic).	Furthermore,	the	generative	model	includes	five	exteroceptive	sensations	(not	shown	
in	the	figure	for	the	sake	of	simplicity)	that	map	one-to-one	to	the	five	task	situations;	and	
eight	interoceptive	sensations	(a-h):	two	noninformative	initial	sensations,	the	presence	or	
absence	of	heart	pounding,	the	presence	or	absence	of	breathlessness,	a	positive	sensation	

("feeling	normal")	and	a	negative	sensation	(feeling	"strange").		See	the	main	text	for	
explanation.	

	
Furthermore,	 the	 generative	 model	 includes	 five	 actions,	 which	 correspond	 to	

moving	to	any	of	the	five	task	situations	(i.e.,	going	to	start,	attend	heart	pounding,	attend	
breathlessness,	take	medicine,	not	take	medicine).	Note	that	in	active	inference,	actions	(or	
more	 formally,	 control	 states)	 are	 hidden	 variables	 that	 need	 to	 be	 inferred.	 The	
probabilistic	 mapping	 between	 actions	 and	 subsequent	 hidden	 states	 is	 encoded	 in	 the	
transition	 (B)	 matrix.	 In	 our	 simulations,	 this	 mapping	 depends	 on	 the	 agent's	 hidden	
context.	 Importantly,	 transitions	 between	 task	 situations	 are	 deterministic,	 which	 implies	
that	when	an	agent	has	selected	a	desired	task	situation	(e.g.,	"heart	pounding	attended"),	
it	 can	 confidently	 reach	 it,	 by	 selecting	 the	 appropriate	 action	 (e.g.,	 "attend	 heart	
pounding"),	whichever	 its	 initial	state.	However,	there	are	exceptions:	we	set	the	terminal	
states	4,	5,	9	and	10	to	be	"absorbing	states",	 i.e.,	once	reached,	they	cannot	be	left.	This	
means	that	executing	any	action	(e.g.,	go	to	start	or	attend	to	heart	pounding)	in	states	4,	5,	
9,	or	10	will	imply	a	self-transition	to	the	same	states	4,	5,	9,	or	10.	
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Transitions	between	contexts	are	stochastic;	but	the	probability	to	change	context	is	
small	(0.1)	and	constant	for	all	actions.	For	example,	an	agent	that	starts	from	(any	state	of)	
the	 "panic	 attack"	 context	 and	 selects	 the	 action	 to	 "attend	heart	 pounding"	will	make	 a	
high-probability	 (0.9)	 transition	 to	 hidden	 state	 2	 (context:	 "panic	 attack",	 task	 situation:	
"heart	pounding	attended")	and	a	low-probability	(0.1)	transition	to	hidden	state	7	(context:	
"no	 panic	 attack",	 task	 situation:	 "heart	 pounding	 attended").	 Conversely,	 an	 agent	 that	
starts	 from	 (any	 state	of)	 the	 "no	panic	 attack"	 context	 and	 selects	 the	 action	 to	 "attend	
heart	pounding"	will	make	a	high-probability	(0.9)	transition	to	hidden	state	7	(context:	"no	
panic	 attack",	 task	 situation:	 "heart	 pounding	 attended")	 and	 a	 low-probability	 (0.1)	
transition	 to	 hidden	 state	 2	 (context:	 "	 panic	 attack",	 task	 situation:	 "heart	 pounding	
attended").	This	implies	that	the	agent	has	no	specific	actions	to	change	its	hidden	context	
(e.g.,	 from	 "no	 panic"	 to	 "panic"),	 but	 it	 can	 rarely	 experience	 contextual	 changes,	 by	
chance.	

By	starting	from	this	action	set,	the	agent	can	consider,	and	select	amongst,	several	
2-step	policies	 (i.e.,	sequences	of	2	actions).	 In	our	simulation,	we	will	consider	the	choice	
between	two	kinds	of	policies:	pragmatic	policies	to	go	directly	to	one	of	the	four	terminal	
states	 4,	 5,	 9,	 or	 10	 and	 remain	 there	 (e.g.,	 Policy	 1:	 take	medicine	 and	 then	wait);	 and	
epistemic	 policies	 to	 attend	 to	 bodily	 sensations	 (by	 going	 to	 states	 2,	 3,	 7	 or	 8)	 before	
reaching	a	terminal	state	(e.g.,	Policy	3:	attend	to	heart	pounding	and	then	take	medicine).	
	 The	latter,	epistemic	policies	are	important	as	they	visit	hidden	states	pertaining	to	
heart	 pounding	 and	 breathlessness,	 which	 are	 the	 only	 states	 that	 provide	 reliable	
information	 about	 the	 agent's	 context	 (panic	 or	 no	 panic).	 These	 can	 be	 regarded	 as	
"attentional	states"	in	the	following	sense.	We	assume	that	at	the	beginning	of	the	trial,	the	
agent	does	not	attend	 to	 its	 interoceptive	 channels	 -	 and	hence	 it	 receives	uninformative	
sensations	 (a,b)	 from	which	 it	 cannot	 infer	whether	 or	 not	 it	 is	 having	 a	 panic	 attack.	 To	
receive	informative	sensations,	the	agent	has	to	attend	to	its	interoceptive	channels	(heart	
pounding	 or	 breathlessness).	 When	 attending	 to	 heart	 pounding,	 there	 is	 a	 precise	
likelihood	 mapping	 to	 the	 presence	 or	 absence	 of	 corresponding	 sensations,	 depending	
upon	whether	one	is	about	to	have	a	panic	attack	or	not.	In	other	words,	the	sensations	of	
heart	 pounding	 rest	 upon	 an	 interaction	 between	 two	 hidden	 states	 -	 the	 context	
(impending	 panic	 attack	 or	 not)	 and	 attentional	 set	 (attending	 to	 heart	 pounding	 or	
attending	 to	 breathlessness).	 Note	 that	 the	 subject	 has	 to	 be	 in	 one	 of	 the	 five	 task	
situations	and	in	one	of	the	two	contexts.	Technically,	these	constitute	hidden	factors	with	
five	 and	 two	 levels,	 respectively.	 Importantly,	 a	 subject	 can	move	 between	 the	 five	 task	
situations,	 choosing	 whether	 to	 attend	 to	 heart	 pounding,	 breathlessness	 or	 forego	 any	
particular	 attentional	 set	 and	 take	 medicine	 (or	 not).	 However,	 the	 subject	 cannot	
intentionally	move	between	 the	 two	 contexts	 (i.e.,	 chose	whether	or	not	 to	have	a	panic	
attack).	 Contextual	 changes	 can	 occur	 stochastically	 in	 our	 simulations,	 but	 their	 (small)	
probability	does	not	depend	on	the	selected	action	-	hence	the	agent	has	no	control	over	its	
context	(panic	or	not	panic).	

Finally,	the	generative	model	includes	two	kinds	of	priors.	The	former	is	a	prior	over	
observations,	which	 in	active	 inference	plays	 the	 role	of	 the	person's	prior	preferences	or	
goals.	 This	 is	 encoded	 in	 the	 model	 as	 the	 (C)	 vector,	 which	 assigns	 positive	 valence	 to	
feeling	 normal,	 negative	 valence	 to	 feeling	 strange,	 and	 slight	 negative	 valence	 to	 heart	
pounding	and	breathlessness	(which	are	felt	as	aversive	by	patients).	The	second	is	a	prior	
belief	about	the	person’s	current	state,	encoded	in	the	model	as	the	(D)	matrix;	and	in	our	
simulations,	it	reflects	the	knowledge	that	it	starts	from	the	initial	state	but	does	not	know	
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its	context	 (i.e.,	 the	probabilities	of	being	 in	"panic	attack"	and	"no	panic	attack"	contexts	
are	the	same).		

Note	that	this	latter	(prior)	belief	is	subjective	–	it	is	part	of	the	person’s	generative	
model	–	and	distinct	 from	the	true	state	the	person	 is	 in,	encoded	 in	 (S),	which	 is	 instead	
part	of	environmental	dynamics	(also	called	the	generative	process	in	Active	Inference).	This	
separation	between	the	generative	model	(encoding	what	the	persons	knows	and	prefers)	
and	the	generative	process	(encoding	the	"true"	environmental	state,	including	the	hidden	
context	the	agent	is	in)	is	crucial	in	our	simulations.	This	is	because,	initially,	the	agent	is	not	
sure	 about	 his	 context	 (having	 or	 not	 having	 a	 panic	 attack)	 and	 has	 to	 resolve	 this	
uncertainty	to	decide	what	to	do.	
	
The	perception	and	misperception	of	bodily	symptoms:	five	simulations	

After	 specifying	 the	 agent’s	 generative	 model,	 we	 illustrate	 the	 agent’s	 behavior	
(prescribed	 by	 its	 generative	 model)	 in	 a	 series	 of	 five	 simulations.	 These	 simulations	
illustrate	the	functioning	of	Active	Inference	and	how	maladaptive	parametrizations	of	the	
generative	model	give	rise	to	various	manifestations	of	panic	disorders.	

	
First	simulation:	correct	inference	of	(not	having)	a	panic	attack	

The	 first	 simulation	 illustrates	 a	 case	 of	 correct	 inference	 that	 one	 is	 not	 actually	
experiencing	a	panic	attack.	The	simulation	uses	the	generative	model	 illustrated	in	Figure	
1.	The	agent	always	begins	 from	 the	 start	 state	 in	 the	 “no	panic	attack”	 context	 (i.e.,	 the	
initial	hidden	state	encoded	in	S	 is	state	6	in	Figure	1)	and	samples	a	sensory	observation.	
Importantly,	while	the	agent	knows	it	is	in	the	start	state,	it	does	not	know	in	which	context	
it	is	(i.e.,	having	or	not	having	a	panic	attack).	This	corresponds	to	the	fact	that	the	D	values	
for	 the	 two	 contexts	 are	 equal	 (0.5)	 and	 the	 observation	 it	 samples	 in	 the	 start	 state	 is	
uninformative.	This	simulation	illustrates	that	before	being	able	to	select	the	optimal	action	
(which	in	this	case	is	not	taking	the	medication),	it	has	to	firstly	infer	in	which	context	it	is	
("no	 panic	 attack")	 –	 and	 this	 epistemic	 behavior	 is	 automatically	 derived	 in	 Active	
Inference.	The	parameters	used	in	this	and	the	following	simulations	are	shown	in	Table	A1.	

The	agent	can	select	amongst	multiple	2-step	policies	(i.e.,	sequences	of	2	actions),	
such	 as	 those	 illustrated	 in	 Figure	 1,	 e.g.,	 attending	 to	 heart	 pounding	 and	 then	 taking	
medicine;	 attending	 to	 heart	 pounding	 and	 then	 not	 taking	 medicine;	 taking	 medicine	
directly;	not	taking	medicine	directly.	This	choice	guides	transitions	between	hidden	states	
(as	described	in	the	matrix	B)	and	the	sampling	of	observations	(as	described	in	the	matrix	
A),	 resulting	 in	 a	 "feeling	 normal"	 sensation	 if	 the	 agent	 has	 not	 taken	 medicine	 and	 a	
"feeling	strange"	sensation	 if	 the	agent	has	 taken	medicine.	Note	 that	while	entire	2-step	
policies	are	evaluated	at	the	first	time	step,	only	their	first	action	is	selected	and	executed.	
After	selecting	an	action,	the	agent	does	a	(deterministic)	transition	to	a	new	hidden	state,	
collects	an	observation,	re-does	the	policy	selection,	and	then	selects	the	second	action.		

The	simulation	 results	of	 the	Active	 Inference	agent	are	 illustrated	 in	Figure	2A.	 In	
this	 and	 the	 subsequent	 figures,	 the	 results	 are	 the	 average	 of	 128	 simulations,	with	 the	
same	initial	conditions	(which	is	useful	to	explore	the	diversity	of	the	possible	solutions,	as	
some	aspects	of	the	simulation	are	stochastic).	The	top	panel	shows	the	proportion	of	times	
the	agent	is	in	the	five	task	situations	(ordinate)	during	the	tree	time	steps	of	the	simulation	
(abscissa).	 At	 the	 first	 time	 step,	 the	 agent	 always	 starts	 from	 the	 task	 situation	 1	 (initial	
situation).	It	can	be	appreciated	that,	in	most	cases,	the	agent	selects	the	epistemic	policy	to	
first	 attend	 to	 the	most	 diagnostic	 source	 of	 information	 (heart	 pounding)	 to	 resolve	 his	
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uncertainty;	and	then	not	to	take	the	medicine,	hence	often	achieving	the	desired	"feeling	
normal"	sensation.	This	epistemic	behavior	 is	necessary	because	 initially,	 the	agent	 is	only	
certain	 about	 its	 task	 state	 (see	 first	 column	 of	 top	 panel),	 but	 not	 its	 context	 (see	 first	
column	of	center	panel).	 In	most	cases,	the	agent	selects	an	epistemic	action	to	go	to	the	
"heart	 pounding	 attended"	 state	 (second	 column	 of	 top	 panel),	 where	 it	 receives	 an	
informative	bodily	sensation	(i.e.,	not	having	heart	pounding),	with	high	probability.	In	turn,	
this	bodily	sensation	increases	the	agent's	belief	that	he	is	in	the	"no	panic	attack"	context	
(second	column	of	center	panel).	At	this	point,	it	can	confidently	select	a	pragmatic	action,	
to	 go	 to	 the	 "medicine	 not	 taken"	 state	 (third	 column	 of	 top	 panel)	 and	 hence	 "feeling	
normal"	most	of	the	time	(not	shown).		

The	center	panel	shows	which	context	(panic	or	not	panic)	the	agent	infers	being	in	
during	the	simulation.	The	agent	is	initially	fully	uncertain	about	context	but	its	uncertainty	
drastically	reduces	after	the	first	choice	(i.e.,	at	the	second	time	step),	because	it	frequently	
selects	 the	 epistemic	 action	 to	 attend	 heart	 pounding	 -	 and	 hence	 gathers	 informative	
interoceptive	sensations.	Furthermore,	the	agent's	contextual	uncertainty	reduces	again	at	
the	third	time	step,	as	it	usually	gathers	a	"feeling	normal"	sensation	at	the	terminal	state	
that	is	informative	about	context.		

The	bottom	panel	shows	the	average	pragmatic	(utility	maximization)	and	epistemic	
(uncertainty	 reducing)	 values	 of	 the	 states	 actually	 visited	 by	 the	 agent	 during	 the	 three	
time	 steps.	 It	 can	 be	 appreciated	 that	 the	 agent's	 first	 choice	 (after	 the	 first	 time	 step)	
brings	 greater	 epistemic	 value	 and	 resolves	most	of	 the	 agent's	 uncertainty;	whereas	 the	
agent's	second	choice	(after	the	second	time	step)	has	greater	utility.		

	
Figure	2.	Results	of	the	first	simulation.	(A)	Results	of	the	Active	Inference	model.	The	

top	panel	shows	in	ordinate	in	which	of	the	five	hidden	task	situations	the	agent	is	in,	from	
top	to	bottom	(i:	 initial	state;	hp:	heart	pounding	attended;	b:	breathlessness	attended;	m:	
medicine	 taken;	 nm:	 medicine	 not	 taken)	 and	 in	 abscissa	 the	 three	 time	 steps	 of	 the	
simulation	(left:	first;	center:	second;	right:	third	time	step).	Colors	denote	probabilities,	with	
darker	 colors	 corresponding	 to	 higher	 probabilities.	 The	 center	 panel	 shows	 the	 hidden	
context	(having	or	not	having	a	panic	attack)	 inferred	by	the	agent.	Note	that	the	agent	is	
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uncertain	about	its	context	during	the	first	time	step;	it	becomes	more	certain	at	the	second	
time	step	and	it	fully	resolves	its	uncertainty	at	the	third	time	step.	The	bottom	panel	shows	
the	average	pragmatic	(utility	maximization)	and	epistemic	(uncertainty	reducing)	values	of	
the	states	actually	visited	by	the	agent	during	the	three	time	steps.	These	are	the	two	terms	
of	Expected	Free	Energy	 illustrated	 in	 the	Appendix.	 (B)	Results	of	 the	utility	maximization	
model	that	lacks	the	epistemic	component.	See	the	main	text	for	explanation.	

	
This	 first	 simulation	 illustrates	 two	 main	 things.	 First,	 while	 deciding	 under	

uncertainty,	 it	 is	 optimal	 to	 firstly	 execute	 an	 epistemic	 action	 (to	 attend	 to	 a	 bodily	
sensation)	 to	 disambiguate	 the	 context,	 and	 then	 make	 the	 second,	 pragmatic	 action	
(whether	or	not	to	take	medicine)	with	high	confidence.	Second,	the	selection	of	a	specific	
epistemic	action	depends	on	the	informativeness	of	the	information	sources;	because	in	our	
simulations	heart	pounding	is	more	diagnostic	than	breathlessness	(i.e.,	its	column	in	the	A	
matrix	has	lower	entropy),	it	is	attended	to	more	often.	

An	 important	 peculiarity	 of	 Active	 Inference	 compared	 to	 traditional	 models	 of	
decision-making	as	utility	maximization	 in	 (neuro)economics	 (Glimcher	&	Rustichini,	2004;	
Loewenstein	et	al.,	2007)	 is	 that	 it	automatically	balances	pragmatic	 (utility	maximization)	
and	 epistemic	 (uncertainty	 minimization)	 components	 of	 choice	 -	 which	 are	 two	 equally	
important	parts	of	the	expected	free	energy	equation	used	for	planning	(see	the	Appendix).	
The	importance	of	jointly	considering	pragmatic	and	epistemic	components	of	choice	can	be	
appreciated	 by	 comparing	 the	 performance	 of	 the	Active	 Inference	 agent	with	 a	 classical	
utility	maximization	agent.	The	latter	can	derived	from	the	Active	Inference	agent	by	simply	
removing	the	"epistemic	value"	component	of	the	free	energy	equation,	see	(K.	Friston	et	
al.,	2015).	The	simulation	results	of	the	utility	maximization	agent	are	shown	in	Figure	2B.	
While	 the	Active	 Inference	agent	 tends	 to	 select	 the	 state	having	highest	epistemic	 value	
(e.g.,	attend	to	heart	pounding)	at	 the	 first	 time	step,	 the	utility	maximization	agent	does	
not	 consider	 the	 epistemic	 value	 of	 attending	 to	 heart	 pounding,	 but	 only	 its	 slightly	
negative	 value	 -	 and	 hence	 rarely	 selects	 it.	 	 As	 a	 consequence,	 the	 utility	maximization	
agent	remains	more	uncertain	about	its	context	(panic	or	not	panic;	see	the	second	panel	of	
Figure	 2B)	 and	makes	 less	 informed	 choices	 -	 selecting	 the	wrong	 action	 (take	medicine)	
almost	half	of	the	times.	This	comparison	illustrates	that	making	decisions	in	an	ambiguous	
context	 (e.g.,	 without	 knowing	 in	 advance	 whether	 or	 not	 it	 is	 having	 a	 panic	 attack)	
requires	 going	 beyond	 classical	 utility	 maximization	 schemes,	 to	 also	 include	 uncertainty	
minimization.	Indeed,	epistemic	actions	that	resolve	uncertainty	are	important	prerequisites	
to	 increase	utility	afterwards.	While	 it	 is	certainly	possible	to	add	external	 incentives	(e.g.,	
novelty	or	curiosity	bonuses)	to	classical	utility	maximizing	agents,	Active	Inference	realizes	
the	 integration	of	pragmatic	and	epistemic	 imperatives	 in	a	principled	way	 -	as	 they	both	
stem	from	the	same	free	energy	minimization	imperative.		

	
Second	simulation:	the	role	of	prior	information	

In	the	first	simulation,	we	considered	a	situation	in	which	the	agent	was	completely	
uncertain	(or	had	flat	prior	belief)	about	the	possibility	of	having	a	panic	attack.	However,	an	
agent	can	also	start	with	a	more	informative	prior	about	it,	either	correct	or	incorrect.	For	
example,	 one	 can	 consider	 that	 it	 is	 a	 priori	 more	 (or	 less)	 likely	 to	 have	 a	 panic	 attack	
because	one	is	for	example	in	a	public	place	(or	at	home).	In	this	second	simulation,	we	vary	
such	 prior	 information	 (encoded	 in	 the	 agent's	 D	 vector),	 to	 see	 how	 its	 initial	 belief	
influences	his	plans.	Figure	3	shows	the	results	of	the	simulations,	with	five	different	levels	
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of	 initial	 belief	 about	 being	 in	 a	 "panic	 attack"	 context;	 one	 column	 for	 each	 simulation.	
Note	that	like	in	the	first	simulation	the	agent’s	“true”	but	unknown	context	(encoded	in	the	
S	vector)	is	always	"no	panic	attack".	

The	 first	 column	shows	 the	 results	of	a	 simulation	with	an	 initially	very	high	belief	
(0.9)	about	having	a	panic	attack.	This	high	prior	may	occur,	for	example,	when	a	person	is	
in	a	place	where	he	had	a	panic	attack	in	the	past	(and	shows	some	form	of	conditioning).	In	
the	case	of	a	high	prior	about	having	a	panic	attack,	different	 from	our	 first	 simulation,	 it	
becomes	optimal	 for	the	agent	to	select	a	pragmatic	policy,	 to	take	the	medicine	directly.	
Note	 that	 in	 this	 case,	 the	 prior	 belief	 was	 completely	 misleading	 (as	 the	 agent’s	 true	
context	is	"no	panic	attack");	and	hence	the	performance	of	the	agent	is	very	poor	(bottom	
panel).	 The	 fifth	 column	 shows	 a	 similar	 situation,	 with	 an	 initially	 very	 high	 belief	 (0.9)	
about	 not	 having	 a	 panic	 attack.	 Even	 in	 this	 case,	 the	 agent	 selects	 directly	 a	 pragmatic	
policy	 –	 not	 to	 take	 the	 medicine	 –	 that	 yields	 the	 desired	 results,	 as	 the	 prior	 belief	
matches	the	“true”	context.	These	two	simulations	show	that	high	levels	of	prior	belief	favor	
the	selection	of	pragmatic	policies,	which	can	be	more	or	less	effective	depending	on	how	
appropriate	 the	 prior	 belief	 is.	 Because	 most	 contextual	 uncertainty	 has	 been	 already	
minimized,	epistemic	actions	 (to	attend	 to	heart	pounding	or	breathlessness)	 cease	 to	be	
informative	and	are	not	selected.	This	contrasts	with	our	first	simulation	(whose	results	are	
reproduced	 in	 the	 third	 column	of	 Figure	 3,	 for	 the	 sake	of	 the	 reader),	where	 epistemic	
actions	are	required	to	reduce	uncertainty	before	the	agent	can	confidently	select	whether	
or	not	to	take	the	medicine.		

The	second	and	 fourth	columns	of	Figure	4	show	 intermediate	situations,	 in	which	
the	agent	is	endowed	with	a	moderate	(0.6)	prior	that	he	is	about	to	have,	or	not	to	have,	a	
panic	attack.	These	situations	are	akin	to	the	first	simulation	and	illustrate	the	importance	
of	resolving	uncertainty	(by	selecting	an	epistemic	action)	before	a	pragmatic	choice	can	be	
made	confidently.	

	
Figure	3.	Results	of	the	second	simulation.	The	five	columns	show	five	parameterizations	of	
the	agent’s	prior	belief	about	its	hidden	context,	from	0.9	(first	column)	to	0.1	(last	column)	
probability	 of	 being	 in	 "no	panic	 attack"	 context,	 as	 encoded	 in	 the	agent’s	D	 vector.	 The	
meaning	of	symbols	is	the	same	as	the	first	simulation.	
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In	sum,	this	second	simulation	illustrates	that	an	agent's	prior	belief	influences	both	
hidden	 state	 estimation	 and	 policy	 selection.	 The	 former	 occurs	 because	 high	 (or	 very	
precise)	 priors	 may	 easily	 dominate	 over	 evidence	 during	 hidden	 state	 estimation.	 In	
keeping,	 several	 active	 inference	 treatments	 of	 psychopathology	 highlight	 the	 potential	
maladaptive	roles	of	excessively	high	(or	excessively	precise)	priors	in	perceptual	inference	
and	 hidden	 state	 estimation.	 A	 standard	 assumption	 of	 Bayesian	 (and	 predictive	 coding)	
models	of	perception	is	that	what	an	agent	actually	perceives	corresponds	to	the	hypothesis	
having	 the	highest	probability.	 In	our	example,	an	agent	 that	assigns	a	high	probability	 to	
the	 "panic	 attack"	 context	 would	 actually	 perceive	 that	 he	 is	 in	 a	 panic-related	 somatic	
state,	 which	 (if	 one	 assumes	 a	 hierarchical	 agent	 model)	 in	 a	 cascade	 would	 entail	 the	
perception	 of	 heart	 pounding	while	 they	 are	 actually	 not	 there,	 and	 possibly	 other	 panic	
symptoms.	 If	 an	 excessively	 high	 (or	 precise)	 prior	 dominates	 the	 inference,	 it	 can	
automatically	determine	the	(mis)perception	of	bodily	symptoms.		

However,	 our	 simulation	 goes	 beyond	 predictive	 coding	 and	 mere	 perceptual	
processing.	In	Active	Inference	(as	opposed	to	predictive	coding)	the	inference	of	the	most	
likely	 context	 does	 not	 only	 determine	 what	 is	 perceived	 but	 also	 action	 and	 policy	
selection,	 in	 two	ways:	by	determining	 the	 final	choice	 (e.g.,	about	 the	medicine)	and	 the	
selection	of	epistemic	versus	pragmatic	policies.	Hence,	not	only	an	agent	endowed	with	a	
strong	 prior	 about	 having	 a	 panic	 attack	 would	 misperceive	 its	 bodily	 symptoms,	 but	 it	
would	also	favor	policies	that	take	the	medicine	and	disfavor	epistemic	policies.	The	reason	
for	 the	 latter	 is	 that	 strong	and/or	excessively	precise	priors	would	be	hardly	 changed	by	
novel	information	-	and	hence	by	definition,	this	novel	information	acquires	low	information	
gain,	 rendering	 epistemic	 policies	 unnecessary.	 But	 in	 turn,	 disfavoring	 epistemic	 actions	
may	 render	 priors	 largely	 impermeable	 to	 novel	 evidence	 –	 as	 observed	 in	
psychopathological	conditions	(Van	den	Bergh	et	al.,	2017).	
	
Third	simulation:	uninformative	bodily	states	(and	the	suppression	of	epistemic	actions)	
In	 this	 third	 simulation,	we	 consider	 the	 case	 of	 an	 agent	 endowed	with	 non-informative	
bodily	 sensations.	 While	 in	 the	 previous	 simulations	 we	 considered	 heart	 pounding	
sensation	to	be	highly	informative	and	diagnostic	about	having	or	not	having	a	panic	attack,	
here	we	render	 these	streams	 less	 informative,	by	 increasing	 the	entropy	 (i.e.,	decreasing	
the	precision)	of	their	associated	columns	in	the	A	matrix.	Specifically,	the	only	parts	of	the	
A	matrix	that	we	changed	(become	more	entropic)	compared	to	the	previous	simulation	is	
the	 mapping	 between	 hidden	 contexts	 (having	 or	 not	 having	 a	 panic	 attack)	 to	 bodily	
sensations	 (heart	 pounding	 and	 breathlessness).	 This	 implies	 that	 whatever	 the	 bodily	
sensation	 (e.g.,	 perceiving	 or	 not	 perceiving	 heart	 pounding),	 the	 hidden	 context	 would	
remain	uncertain.	We	consider	the	case	of	an	agent	endowed	with	five	levels	of	prior	belief	
(see	 the	 five	 columns	of	 Figure	4),	 from	0.9	 to	0.1,	 in	 favor	of	 the	hypothesis	of	having	a	
panic	attack.	
	 The	simulation	results	show	that	with	non-informative	bodily	sensations,	epistemic	
actions	are	largely	ignored	(they	are	only	selected	infrequently	in	the	case	of	uncertain	prior	
beliefs,	 third	 column	of	 Figure	 4).	 This	 situation	 can	 be	 compared	with	 the	 results	 of	 the	
second	 simulation,	 when	 epistemic	 actions	 were	 much	 more	 frequent,	 especially	 with	
uncertain	 prior	 beliefs.	 Of	 course,	 the	 absence	 of	 informative	 bodily	 sensations	 also	
prevents	the	agent	to	make	appropriate	decisions,	thus	lowering	its	performance.	
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Figure	4.	Results	of	the	third	simulation.	An	agent	is	endowed	with	a	matrix	A	 in	which	the	
mapping	between	the	two	contexts	(having	or	not	having	a	panic	attack)	and	the	two	bodily	
sensations	(heart	pounding	and	breathlessness)	has	high	entropy.	The	mapping	between	the	
two	contexts	and	the	two	final	feelings	(feeling	normal	or	strange)	has	instead	low	entropy,	
as	in	the	previous	simulations.	The	five	columns	show	simulations	with	different	prior	beliefs	
about	having	a	panic	attack,	from	0.9	(first	column)	to	0.1	(last	column).		
	

The	simulation	illustrated	here	shows	that	precise	sensory	(here,	bodily	or	somatic)	
sensations	 are	 key	 to	 accurate	 inference.	 In	 Bayesian	 treatments	 of	 perception	 (and	
predictive	coding),	prior	information	and	evidence	are	integrated	in	an	optimal	fashion	and	
weighted	 according	 to	 their	 relative	 precision;	 hence	 imprecise	 sensory	 information	 only	
influences	perceptual	inference	to	a	minor	extent.	

Active	Inference	adds	an	active	(attention	modulation)	component	to	this	idea.	Since	
an	Active	 Inference	agent	 is	 free	 to	select	whether	or	not	 to	attend	to	specific	 sources	of	
information,	 it	will	 tend	 to	 ignore	 imprecise	 sources	of	 information	 (as	 indexed	by	a	high	
entropy	of	the	A	matrix),	as	they	have	little	information	gain.	In	other	words,	patients	who	
perceive	their	interoceptive	channels	to	be	imprecise	(either	because	they	really	are,	due	to	
some	physiological	dysfunction;	or	because	the	patient's	model	includes	incorrect	precision	
parameters)	 will	 systematically	 fail	 to	 attend	 to	 informative	 signals	 from	 their	 bodies.	 In	
psychopathological	 conditions,	 this	 (rational)	 inattention	 prevents	 a	 patient's	 internal	
models	to	be	correctly	updated	in	the	light	of	novel	evidence	and	hence	can	contribute	to	
maintain	incorrect	priors,	and	lower	the	awareness	of	one’s	bodily	condition	(Barrett	et	al.,	
2016;	Seth	&	Tsakiris,	2018;	Smith	et	al.,	2020).	

	
Fourth	simulation:	imprecise	transition	model	and	hypervigilance	
The	 previous	 simulations	 illustrated	 the	 importance	 of	 having	 a	 flexible	 prior	 (D)	 and	 an	
appropriate	likelihood	model	(A	matrix),	with	a	precise	mapping	between	hidden	states	and	
observations.	This	is	because	imprecise	mappings	prevent	a	person	from	correctly	updating	
their	 beliefs	 and	 selecting	 informative	 (epistemic)	 actions.	 Here,	 we	 illustrate	 the	
importance	 of	 having	 a	 sufficiently	 precise	 transition	 model	 (B	 matrix),	 to	 maintain	
knowledge	about	the	correct	context	over	time.	 In	all	 the	above	simulations,	we	assumed	
that	the	transitions	between	hidden	states	were	deterministic	(given	the	agent’s	choice	of	
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action),	and	the	agent	maintained	a	perfect	knowledge	of	his	previous	context	(or	did	not	
consider	 that	 the	 context	 has	 changed).	 This	 implies	 that	 the	 agent	 automatically	 carries	
over	his	previous	knowledge	about	his	current	context	(e.g.,	having	a	panic	attack),	across	
consecutive	 time	steps,	and	once	he	becomes	 sufficiently	 confident	about	 it,	he	does	not	
need	to	check	it	anymore.	However,	if	the	mapping	between	consecutive	hidden	states	was	
imprecise	 –	 meaning	 that	 the	 agent	 has	 no	 perfect	 (working)	 memory	 of	 his	 previous	
estimates	 or,	 equivalently,	 considers	 that	 the	 context	 has	 changed	 in	 the	meantime	 –	 he	
would	 experience	 a	 loss	 of	 information	 over	 consecutive	 trials	 (Parr	 &	 Friston,	 2017a).	
Therefore,	even	if	the	agent	acquired	sufficient	confidence	that	he	was	not	having	a	panic	
attack,	he	would	need	to	continuously	confirm	this	belief,	by	continuing	executing	epistemic	
actions	that	perceive	bodily	sensations	–	hence	indulging	in	a	form	of	hypervigilance.	

This	situation	is	illustrated	in	the	simulations	shown	in	Figure	5,	which	compares	the	
agent's	 behavior	 endowed	 with	 a	 B	 matrix	 that	 has	 low	 entropy,	 analogous	 to	 the	 first	
simulation	(Figure	5A),	and	with	a	B	matrix	that	has	high	entropy	(Figure	5B).	Note	that	to	
better	appreciate	the	retention	or	loss	of	information	over	time	as	a	function	of	the	entropy	
of	 the	 B	 matrix,	 the	 simulations	 shown	 in	 Figure	 5	 have	 five	 steps,	 not	 three	 as	 in	 the	
previous	simulations.	When	an	agent	is	endowed	with	a	B	matrix	that	has	low	entropy,	he	
resolves	his	uncertainty	 (and	 reaches	one	of	 the	 two	 terminal	 states,	 taking	or	not	 taking	
the	medicine)	after	one	epistemic	action,	in	the	majority	of	cases.	Rather,	when	the	agent	is	
endowed	with	a	B	matrix	that	has	high	entropy,	his	uncertainty	decreases	less	steeply	(as	he	
considers	 the	 possibility	 that	 the	 context	 will	 change	 after	 each	 action)	 and	 hence	 he	
continues	executing	epistemic	actions	also	during	successive	time	steps.		

								

	
Figure	5.	Results	of	the	fourth	simulation,	(A)	when	the	agent	is	endowed	with	a	B	matrix	
that	has	low	entropy,	as	in	the	first	simulation;	and	(B)	when	it	is	endowed	with	a	B	matrix	
that	has	high	entropy.	Note	that	in	this	last	case,	the	generative	process	that	governs	the	

agent's	“true”	transitions	is	the	same	as	in	the	previous	simulations	(i.e.,	it	has	low	entropy);	
it	is	only	the	agent's	generative	model	(B	matrix)	that	has	high	entropy.	
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The	 simulation	 illustrated	 here	 shows	 that	 an	 imprecise	 mapping	 between	 successive	
hidden	 states	 (i.e.,	 a	 B	 matrix	 having	 high	 entropy	 in	 the	 context-to-context	 transitions)	
endows	the	agent	with	a	 limited	working	memory	about	 the	context	he	 is	 in.	This	 implies	
that	 the	 agent	 can	 never	 resolve	 his	 contextual	 uncertainty	 and	 needs	 to	 continuously	
monitor	his	bodily	state,	hence	showing	a	form	of	hypervigilance,	which	is	common	in	some	
psychopathological	conditions,	 including	panic	disorder.	The	Active	Inference	model	shows	
that	hypervigilance	may	emerge	as	 an	adaptive	 solution	 to	 the	 loss	of	 information	within	
high-entropy	generative	models.		
	 While	we	described	this	loss	of	information	as	a	failure	of	working	memory,	it	could	
be	equally	considered	as	an	expectation	that	the	current	context	will	not	remain	stable	for	
long	-	and	hence	the	future	context	is	uncertain.	In	Active	Inference,	contextual	uncertainty	
or	 the	 expectation	 of	 a	 contextual	 change	 raises	 attention,	 by	 increasing	 the	 salience	 of	
diagnostic	 cues	 (Parr	&	Friston,	2017a).	 In	keeping,	 the	anticipation	of	an	 imminent	panic	
attack	 and	 the	 impossibility	 to	 fully	 resolve	 contextual	 uncertainty	may	 keep	 a	 person	 in	
constant	 alertness,	 to	 detect	 (for	 example)	 initial	 sensations	 of	 heart	 pounding.	 As	 this	
increased	 alertness	 requires	 extra	 mental	 resources	 —	 or	 an	 "allostatic	 load"	 —	 it	 may	
create	stress	and	brain	malfunctions	(Peters	et	al.,	2017).	Furthermore,	in	clinical	conditions,	
the	 constant	 search	 for	 safety	 can	 "escalate",	 producing	 excessive	 safety	 behavior	 even	
when	unnecessary.	We	address	this	point	in	our	next	simulation.	
	
Fifth	simulation:	an	escalation	to	excessive	clinging	to	safety	
A	common	clinical	issue	in	panic	disorder	is	an	excessive	search	for	safety,	which	escalates	
over	 time.	 For	 example,	 patients	 may	 develop	 clinging	 and	 psychological	 dependence	 to	
their	alprazolam:	they	strongly	prefer	having	it	with	them	all	the	time	as	a	safety	signal	or	
also	consume	it	when	unnecessary.		
	 The	next	simulation	shows	how	in	Active	Inference,	the	escalation	of	excessive	safety	
behavior	may	 stem	 from	 statistical	 learning	 in	 aversive	 environmental	 conditions.	 This	 is	
illustrated	 in	 Figure	 6,	where	 an	Active	 Inference	 agent	 experiences	 frequent	 episodes	 of	
panic	 attack	 in	 a	 specific	 place	 or	 situation	 (e.g.,	 at	 work)	 for	 45	 trials;	 and	 it	 evolves	 a	
conditioned	(appetitive)	response	to	having	alprazolam	—	which	does	not	disappear,	even	if	
panic	 attacks	 cease	 afterwards.	 Figure	 6A	 shows	 a	 single,	 representative	Active	 Inference	
agent;	 whereas	 Figure	 6B	 shows	 the	 average	 behavior	 of	 128	 agents	 initialized	 with	 the	
same	 parameters,	 but	 which	 experience	 slightly	 different	 learning	 trajectories	 (since	 the	
generative	process	is	stochastic).	
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Figure	6.	Results	of	the	fifth	simulation,	in	which	Active	Inference	agents	learn	in	an	aversive	
situation,	in	which	panic	attacks	are	frequent	(occur	90%	of	the	times)	for	45	consecutive	
trials.	After	the	first	45	trials,	panic	attacks	cease	for	both	agents.	The	contextual	change	is	
marked	by	the	vertical	dotted	bar.	(A)	A	single	representative	Active	Inference	agent.	(B)	
Average	behavior	of	128	Active	Inference	agents	initialized	with	the	same	parameters.	See	

the	main	text	for	explanation.	
	

This	 simulation	 uses	 the	 same	 generative	 model	 as	 in	 the	 first	 stimulation,	 with	 two	
differences.	First,	we	removed	the	uninformative	breathlessness	 sensation	and	the	hidden	
state	 of	 having	 attended	 to	 breathlessness,	 which	 (as	 shown	 in	 the	 first	 simulation)	 are	
irrelevant.	Second,	and	crucially,	the	agent	can	learn	preferences	over	its	four	exteroceptive	
sensations,	one	 for	each	 its	hidden	states,	and	which	we	 label	 “initial	 state	 reached”	 (not	
shown	in	the	figures),		“heart	attended",	"medicine	with	me"	and	"	medicine	not	with	me".	
While	 in	previous	 simulations	 these	exteroceptive	 sensations	had	neutral	 value	 (i.e.,	 their	
value	 in	 the	C	matrix	was	 fixed	to	zero	and	could	not	change),	 in	 this	simulation	they	can	
acquire	value	as	an	effect	of	learning	(i.e.,	their	value	in	the	C	matrix	can	change	over	time).	
Conceptually,	 this	 form	 of	 valence	 learning	 is	 realized	 by	 endowing	 the	model	with	 prior	
beliefs	 about	 the	 parameters	 of	 C	 and	 treating	 learning	 as	 another	 form	 of	 Bayesian	
inference:	the	passage	from	prior	to	posterior	beliefs	about	the	parameters	of	C.	We	follow	
the	 standard	 approach	 in	 statistical	 theory	 to	 choose	 a	 Dirichlet	 distribution	 (i.e.,	 a	
multivariate	probability	distribution	that	is	the	conjugate	prior	of	the	categorical	distribution	
used	 for	C)	 as	 prior.	 The	 posterior	 is	 another	Dirichlet	 distribution	with	 updated	 pseudo-
counts	(i.e.,	whose	parameter	values	are	increased	with	counts	of	all	the	new	observations),	
see	the	Appendix	and	(Bishop,	2006).	

The	effect	of	this	learning	process	is	an	increase	of	the	value	of	"medicine	with	me"	
in	 the	 C	 matrix	 when	 the	 agent	 executes	 policies	 to	 avoid	 panic	 attacks	 by	 taking	 the	
medicine—	 and	 receives	 corresponding	 exteroceptive	 sensations	 of	 "medicine	 with	 me".	
This	 is	 a	 form	 of	 evaluative	 conditioning,	 which	 refers	 to	 a	 change	 in	 the	 valence	 of	 a	
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(conditioned)	 stimulus	 CS	 that	 results	 from	 pairing	 it	 with	 another,	 positive	 or	 negative	
(unconditioned)	stimulus	US	(Baeyens	et	al.,	1992;	Hofmann	et	al.,	2010).	Here,	the	initially	
neutral	stimulus	of	having	“medicine	with	me”	acquires	valence	in	virtue	of	the	fact	of	being	
part	 of	 a	 goal-directed	 policy	 that	 successfully	 avoids	 panic	 attacks	 and	 hence	 achieves	 a	
valued	outcome	(“feeling	normal”).	In	other	words,	having	experienced	the	positive	effects	
of	 alprazolam	 in	 an	 aversive	 situation	 (i.e.,	 the	 avoidance	 of	 a	 panic	 attack)	 may	 cause	
substantial	evaluative	shifts	in	the	value	of	the	medicine;	and	subsequently,	just	having	the	
medicine	around	(even	without	taking	it)	may	induce	safety	feelings.		
	 The	first	panel	of	Figure	6A	shows	the	policies	selected	by	the	agent	over	time,	when	
it	 starts	 from	 the	 same	 uncertain	 contextual	 belief	 as	 in	 the	 first	 simulation	 (i.e.,	 the	D	
values	for	having	or	not	having	panic	attack	are	both	0.5).	The	key	thing	to	appreciate	is	the	
crucial	difference	between	 the	epistemic	policy	 of	 firstly	 attending	 to	heart	pounding	and	
then	taking	the	medicine	(policy	3),	which	is	selected	more	frequently	in	the	first	part	of	the	
simulation,	for	about	20	trials;	and	the	pragmatic	policy	to	take	the	medicine	immediately	
and	 then	waiting	 (policy	 5),	which	 is	 selected	 afterwards	—	and	 persists	 despite	 after	 45	
trials	panic	attacks	cease.	Note	that	in	this	simulation,	we	could	interpret	the	action	to	take	
medicine	equivalently	as	 “bring	 the	medicine”,	 to	 consider	 that	one	 can	evolve	a	 form	of	
conditioning	 to	 an	 exteroceptive	 sensation	 (e.g.,	 the	 presence	 of	 the	 medicine)	 and	
experience	 safety	 feelings	 (or	 the	 reduction	 of	 anticipatory	 fear)	 without	 necessarily	
consuming	it.	The	agent	selects	the	other	five	policies	less	frequently	(policy	1:	staying	in	the	
initial	state	and	then	taking	the	medicine;	policy	2:	staying	in	the	initial	state	and	then	not	
taking	 the	 medicine;	 policy	 4:	 attending	 to	 heart	 pounding	 and	 then	 not	 taking	 the	
medicine;	policy	6:	 taking	 the	medicine	 immediately	and	 then	wait;	policy	7:	attending	 to	
heart	pounding	twice).	
	 The	 second	 and	 third	 panels	 show	 the	 exteroceptive	 and	 interoceptive	 outcomes	
observed	by	the	agent,	respectively	(top:	blue	is	"medicine	with	me",	cyan	is	"medicine	not	
with	me";	bottom:	green	is	"feel	good",	red	is	"feel	strange")	and	its	performance	in	terms	
of	utility	and	epistemic	value,	which	are	calculated	at	 the	end	of	each	 trial	 rather	 than	at	
each	 time	 step,	 as	 in	 the	 previous	 simulations.	 The	 fourth	 panel	 shows	 how	 the	 learned	
prior	 preferences	 over	 exteroceptive	 sensations	 ("heart	 attended",	 "having	 the	 medicine	
with	me"	and	"not	having	the	medicine	with	me")	change	over	time	(black	is	low	probability,	
white	 is	 high	 probability).	 The	 prior	 preference	 for	 heart	 pounding	 increases	 transiently	
during	 the	 first	 trials,	 and	 then	 decreases.	 The	 prior	 preference	 for	 having	 the	medicine	
increases	over	 time	 (and	 symmetrically,	 the	prior	 preference	 for	 not	 having	 the	medicine	
decreases)	during	all	the	simulation.	
	 This	 preference	 learning	mechanism	 is	 crucial	 to	 establish	 a	 form	 of	 conditioning,	
which	 imbues	 an	 initially	 neutral	 sensation	 (the	 presence	 of	 the	medicine)	with	 value.	 In	
turn,	 this	 produces	 an	 escalation	 of	 safety	 behavior.	While	 during	 the	 first	 few	 trials	 the	
agent	 shows	 the	 same	 epistemic	 behavior	 illustrated	 in	 the	 first	 simulation	 (Figure	 2A),	
afterwards	 it	 starts	 selecting	 more	 rigidly	 a	 policy	 to	 take	 (or	 have)	 the	 medicine.	 This	
happens	for	two	fundamental	reasons.	First,	after	preference	learning,	the	value	of	having	
the	medicine	is	sufficient	to	favor	the	direct	selection	of	a	policy	to	take	(or	have)	it.	While	
in	this	context	having	the	medicine	may	seem	instrumental	to	relieve	from	panic,	this	is	not	
the	case:	the	policy	is	selected	because	the	exteroceptive	sensation	of	having	the	medicine	
has	 acquired	 some	 value	 per	 se,	 not	 because	 it	 is	 instrumental	 for	 the	 final	 outcome	 of	
"feeling	normal".	As	the	value	of	the	medicine	has	become	independent	from	the	value	of	
the	initial	goal	of	relieving	from	panic,	the	policy	to	have	the	medicine	would	not	fully	meet	
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the	 criteria	 for	 goal-directedness	 in	 associative	 learning	 theories	 (Dickinson	 &	 Balleine,	
1994)	 –	 or	 at	 least	 one	 should	 consider	 that	 the	 agent's	 goal	 has	 shifted	 from	 "feeling	
normal"	to	"having	the	medicine	with	me".		

Second,	and	equally	importantly,	the	direct	selection	of	a	policy	to	take	the	medicine	
abolishes	epistemic	actions	–	which	implies	that	the	agent	remains	largely	uncertain	about	
its	context	(panic	or	no	panic)	and	cannot	confidently	select	instrumental	actions.		
	 The	combined	effect	of	these	two	problems	(i.e.,	the	fact	that	having	the	medicine	
acquires	conditioned	value	and	the	abolition	of	epistemic	behavior)	becomes	evident	if	one	
considers	 that	 the	 remaining	of	 the	 simulation,	when	 the	context	 changes	 (after	 trial	45),	
the	agent	continues	to	select	the	policy	to	take	a	medicine,	despite	its	panic	attacks	cease.	
Given	 that	 it	 does	 not	 execute	 epistemic	 actions,	 the	 agent	 cannot	 fully	 resolve	 its	
uncertainty	 about	 having	 (or	 not	 having)	 a	 panic	 attack.	 Furthermore,	 it	 suffers	 from	 a	
"sampling	 bias":	 because	 it	 keeps	 selecting	 always	 the	 same	 policy,	 it	 does	 not	 have	 the	
chance	 to	discover	 that	not	 taking	 the	medicine	 is	beneficial;	 and	 this	does	not	allow	 the	
agent	to	recover	efficiently	from	the	initial	maladaptive	learning.		
	 In	 sum,	 this	 simulation	 shows	 that	 an	 escalation	 of	 excessive	 safety	 behavior	 can	
arise	 from	 statistical	 learning	 and	 conditioning	 in	 aversive	 conditions.	 This	 is	 because	 the	
learning	 process	 converges	 prematurely	 to	 a	 poor	 solution	 -	 a	 phenomenon	 sometimes	
called	 "bad	 bootstrap"	 in	 machine	 learning,	 see	 (Tschantz	 et	 al.,	 2020)	 -	 and	 the	 model	
"overfits"	 to	 the	 current	 situation	 (frequent	 panic	 attacks)	 and	 fails	 to	 generalize	 to	
subsequent	situations	(absence	of	panic	attacks).		
	 This	situation	can	be	contrasted	with	that	of	another	Active	Inference	agent,	which	
learns	in	a	significantly	less	aversive	situation,	where	panic	attacks	occur	40%	of	the	times.	
Similar	to	Figures	6A	and	6B,	also	Figures	7A	and	7B	show	the	behavior	of	a	single	agent	and	
the	average	behavior	of	128	identical	agents,	respectively.	In	this	situation,	Active	Inference	
agents	 do	 not	 "overfit"	 but	 are	 sensitive	 to	 the	 contextual	 change.	 This	 is	 evident	 by	
considering	 that	 after	 the	 contextual	 change,	 they	 tend	 to	 select	 the	 epistemic	 policy	 to	
attend	to	heart	pounding	and	then	take	the	medicine	(policy	4)	or	the	pragmatic	policy	not	
to	take	the	medicine	(policy	6)	-	contrary	to	the	agents	shown	in	Figure	6,	which	tended	to	
select	the	pragmatic	policy	to	take	the	medicine	(policy	5)	instead.		
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Figure	7.	Results	of	the	fifth	simulation.	This	Figure	is	analogous	to	Figure	6	but	shows	the	
behavior	of	(A)	a	single	Active	Inference	agent	and	(B)	the	average	behavior	of	128	Active	
Inference	agents	that	learn	in	less	aversive	situations,	where	panic	attacks	occur	40%	of	the	

times.	See	the	main	text	for	explanation.	
	
Note	 that	 the	agent	shown	 in	Figure	7A	develops	not	 just	a	preference	 for	"no	medicine"	
but	 also	 a	 preference	 for	 "heart	 pounding"	 -	 which	 may	 potentially	 result	 in	 forms	 of	
hypervigilance.	This	preference	is	however	is	not	prevalent	in	the	larger	population	of	128	
agents	(Figure	7B),	where	the	preference	for	"no	medicine"	largely	dominates.	This	example	
illustrates	 that	 single	 (initially	 identical)	 agents	 can	 accidentally	 develop	 preferences	 and	
behavioral	 policies	 that	 are	 slightly	 different	 from	 their	 "group",	 depending	 on	 small	
differences	 in	 their	 statistical	 history	 (despite	 their	 broad	 behavioral	 patterns	 would	 not	
tend	to	diverge	too	much).	Hence,	idiosyncratic	deficits	and	individual	differences	in	patient	
populations	may	depend	on	statistical	history	and	not	just	on	a	different	parametrizations	of	
the	patients'	generative	models	-	a	fact	that	is	very	difficult	to	unveil	experimentally.	
	
Discussion	and	Clinical	Relevance		

We	 presented	 an	 Active	 Inference	model	 of	 the	 perception	 and	misperception	 of	
bodily	 symptoms	 in	 the	 context	 of	 panic	 disorders.	 While	 previous	 predictive	 coding	
accounts	 of	 psychopathological	 conditions	 focus	 on	 perceptual	 processing,	 the	 Active	
Inference	framework	goes	beyond	perception	and	also	considers	action	and	planning	–	and	
treats	 all	 of	 the	 above	 cognitive	 operations	 as	 complementary	 ways	 to	 fulfill	 a	 unique	
normative	imperative:	free	energy	minimization	(K.	J.	Friston,	2010).		

In	 the	 decision-making	 domain,	 Active	 Inference	 can	 be	 considered	 as	 a	 bounded	
rational	model,	because	it	uses	approximate	(variational)	Bayesian	inference	and	it	departs	
from	 a	 purely	 utility	 maximization	 scheme,	 to	 consider	 the	 importance	 of	 two	
complementary	 kinds	 of	 actions:	 utilitarian	 actions	 that	 achieve	 preferred	 states	 or	 goals	
(called	 pragmatic	 actions,	 e.g.,	 take	 or	 not	 take	 the	 medicine)	 and	 actions	 that	 resolve	



	 	 21	

uncertainty	(called	epistemic	actions,	e.g.,	attend	to	or	perceive	bodily	sensations	to	resolve	
uncertainty	 about	 having	 or	 not	 having	 a	 panic	 attack).	 Our	 simulations	 –	 and	 the	
comparison	 between	Active	 Inference	 and	 a	 traditional	 (neuro)economic	model	 that	 only	
optimizes	 utility	 –	 show	 that	 adaptive	 regulation	 requires	 correctly	 balancing	 and	
sequencing	the	two	kinds	of	actions	(e.g.,	resolving	uncertainty	before	deciding	whether	to	
take	 a	 medicine).	 Note	 that	 while	 most	 accounts	 of	 perceptual	 processing	 (and	
psychopathology)	 treat	 perception	 as	 a	 passive	 process,	 here	 we	 treated	 the	 act	 of	
attending	to	one's	own	bodily	sensations	as	a	form	of	choice.	While	it	may	be	assumed	that,	
at	some	level,	the	peripheral	system	continuously	 informs	the	brain	about	the	body	state,	
here	we	wanted	to	model	a	more	subtle	process:	the	decision	to	attend	to	one's	own	bodily	
signals,	to	render	them	more	precise	and	hence	informative.	

In	our	simulation,	the	inference	about	the	context	corresponds	to	the	perception	(or	
misperception)	of	one's	own	bodily	state.	This	is	in	keeping	with	the	standard	assumption	of	
Bayesian	theories	of	perception,	where	the	"percept"	 is	 the	hypothesis	having	the	highest	
probability.	One	can	also	consider	that	inferring	that	one	is	about	to	have	a	panic	attack	also	
entails	 the	 perception	 (or	 misperception)	 of	 panic-associated	 bodily	 sensations,	 such	 as	
heart	 pounding	 or	 breathlessness,	 even	 when	 they	 are	 not	 there.	 This	 is	 because	 an	
assumption	of	the	Bayesian	framework	 is	that	the	(generative)	architecture	of	the	brain	 is	
continuously	 generating	 predictions	 about	 incoming	 sensory	 observations	 (e.g.,	 heart	
pounding)	that	are	to	be	expected	under	the	current	hypothesis	(e.g.,	that	one	is	about	to	
have	a	panic	attack).	Under	normal	conditions,	when	 incorrect	 (top-down)	predictions	are	
generated,	these	would	be	rapidly	falsified	by	checking	with	(bottom-up)	sensory	streams;	
and	 in	 turn,	 this	would	 permit	 to	 revise	 the	 incorrect	 hypothesis	 that	 has	motivated	 the	
prediction	in	the	first	place	(i.e.,	the	hypothesis	that	one	is	having	a	panic	attack).	However,	
this	 process	 can	 go	 awry	 in	 several	 ways,	 possibly	 producing	 maladaptive	 inference	 and	
action	selection,	and	biased	perception	of	the	bodily	state.		

The	 latter	 is	 more	 the	 rule	 than	 the	 exception.	 An	 analysis	 of	 clinical	 data	 on	
heartbeat	 perception	 in	 panic	 disorder	 showed	 that	 most	 perceptions	 are	 inaccurate,	
suggesting	that	“once	a	patient	with	panic	disorder	perceives	a	situation	as	threatening,	an	
`anxiety'	 schema	 is	 activated,	 and	 that	 perception	 of	 symptoms	 is	 more	 guided	 by	 the	
schema	 (that	 is,	 by	 past	 information)	 than	 based	 upon	 present	 physiological	 status.	 This	
hypothetical	 anxiety	 schema	 would	 include	 shifting	 of	 attentional	 focus,	 selective	
perception,	high	HR,	other	arousal	symptoms	and	anxiety”	(Van	der	Does	et	al.,	2000,	p.	61).	
Also	 excessive	 safety	 behaviors	 (e.g.	 clinging	 to	 benzodiazepines,	 unnecessarily	 taking	
medicine)	are	well-known	in	panic	disorder	(Fujii	et	al.,	2015;	Hamm	et	al.,	2014).	

Our	simulations	illustrated	various	situations	that	are	strikingly	consistent	with	these	
clinical	 phenomena.	We	 considered	 four	main	 causes	 of	 suboptimal	 inference	 underlying	
these	 clinical	 features.	 The	 first	 three	 causes	 correspond	 to	 incorrect	 parametrizations	 of	
the	 generative	model;	 and	 namely,	 an	 incorrect	 prior	 belief	which	 can	 produce	 rigid	 and	
uninformed	decisions;	an	 incorrect	mapping	between	hidden	states	and	bodily	 sensations	
which	 can	 produce	 the	 disappearance	 of	 epistemic	 behavior;	 and	 an	 incorrect	 mapping	
between	 hidden	 states	 at	 consecutive	 time	 steps	 which	 can	 produce	 hypervigilance.	 The	
fourth	 cause	 of	 suboptimal	 inference	 is	 the	 over-exposure	 to	 an	 aversive	 learning	
environment,	which	 can	 produce	 excessive	 safety	 behavior.	We	 discuss	 these	 four	 points	
and	their	importance	for	psychopathology	in	the	next	four	paragraphs.		

Incorrect	 prior	 belief.	 Theories	 of	 psychopathological	 conditions	 and	 interoceptive	
processing	 framed	 within	 the	 predictive	 coding	 framework	 highlighted	 that	 when	 prior	
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beliefs	are	excessively	strong	or	are	assigned	excessively	high	precision,	they	can	dominate	
the	inference,	thus	preventing	sensory	information	to	be	correctly	integrated	-	and	possibly	
generating	maladaptive	inference,	 illusions	or	disorders	of	the	body	schema	(Adams	et	al.,	
2013;	Barca	&	Pezzulo,	2020;	Barrett	et	al.,	2016;	Edwards	et	al.,	2012;	Iodice	et	al.,	2019;	
Janssens	et	al.,	2009;	Pezzulo,	2013;	Pezzulo	et	al.,	2015;	Pezzulo,	Iodice,	et	al.,	2018;	Seth,	
2013;	 Stephan	 et	 al.,	 2016;	 Sterzer	 et	 al.,	 2018;	 Van	 den	 Bergh	 et	 al.,	 2017).	 The	 Active	
Inference	approach	adopted	in	this	study	extends	predictive	coding	to	the	domains	of	action	
selection	 and	 planning,	 and	 highlights	 how	 incorrect	 priors	 could	 produce	 maladaptive	
behavior	 and	 not	 just	 maladaptive	 perception.	 Specifically,	 an	 excessively	 high	 prior	
(corresponding	to	the	agent’s	D	vector)	prevents	epistemic	actions	to	correctly	 infer	one’s	
state.	 It	 promotes,	 for	 example,	 false	 heartbeat	 perceptions	 and	 favors	 rigid	 and	
uninformed	decisions	(e.g.,	taking	a	medicine	even	when	one	is	not	having	a	panic	attack).	
Note	 that	 there	 are	 two	 subtle	 differences	 between	 previous	 treatments	 of	 priors	 in	
predictive	coding	and	our	treatment	in	active	inference.	First,	in	active	inference,	there	are	
two	kinds	of	priors:	priors	over	initial	states	(in	the	D	vector)	and	over	observations	(in	the	C	
vector).	The	 latter	plays	 the	 role	of	preferred	 states	and	goals;	 in	our	 simulation,	 it	 is	 the	
prior	of	"feeling	normal"	 that	motivates	action.	Second,	predictive	coding	 is	 formulated	 in	
continuous	 time;	 and	 priors	 have	 a	 precision	 that,	 if	 the	 distribution	 is	 Gaussian,	
corresponds	to	the	inverse	of	the	variance	of	the	distribution.	The	Active	Inference	system	
that	we	 used	works	 in	 discrete	 time,	 as	 a	Markov	 decision	 process;	 and	 the	 precision	 of	
priors	 cannot	be	defined	 in	 the	 same	way	as	 in	 continuous	 time	predictive	 coding.	 In	our	
simulations,	we	have	assumed	that	the	prior	over	observations,	which	corresponds	roughly	
to	 prior	 preferences	 (C	 vector),	 cannot	 change;	 whereas	 the	 priors	 over	 initial	 states	 (D	
vector)	are	used	to	infer	in	which	state	the	agent	is,	along	with	observations,	according	to	
Bayes	rule.	Bayes	rule	combines	prior	 information	and	observations	by	assigning	the	same	
weight	(so	to	say)	to	both;	which	would	be	analogous	to	having	the	same	precision	for	prior	
and	observations	in	continuous	time	formulations.	

Incorrect	 mapping	 between	 hidden	 states	 and	 observations.	 This	 cause	 of	
suboptimal	behavior	corresponds	to	the	precision	of	the	agent’s	A	matrix,	and	in	particular	
the	causes	of	heart	pounding	and	breathlessness	sensations.	This	incorrect	mapping	reduces	
epistemic	actions	when	its	entropy	is	too	high	and	increases	them	when	its	entropy	is	too	
low.	 These	 examples	 show	 that	 setting	 accurate	 precision	 levels	 is	 essential	 to	 adaptive	
inference.	Note	that	in	our	simulations,	epistemic	actions	are	limited	to	attending	to	bodily	
sensations,	but	 in	practice,	 they	encompass	 any	 information	gathering	action,	 such	as	 for	
example	 visually	 attending	 or	 enquiring	 somebody	 to	 obtain	 relevant	 information	 for	 a	
decision	 at	 hand.	 This	 implies	 that	 the	model	 presented	 here	 can	 be	 readily	 extended	 to	
include	 additional	 attention	 dynamics.	 For	 example,	 it	 is	 known	 that	 panic	 disorder	 with	
agoraphobia	 often	 develops	 as	 a	 complication	 of	 panic	 disorder.	 Patients	 learn	 to	 pay	
attention	not	only	to	bodily	sensations,	but	also	to	any	other	external	event	that	is	relevant	
to	 the	 inference	 about	 panic	 attack,	 such	 as	 places	 and	 situations	 where	 previous	
experiences	 of	 panic	 took	 place,	 could	 potentially	 happen	 or	 would	 have	more	 dramatic	
consequences	(Starcevic	et	al.,	1993).	

Incorrect	mapping	between	hidden	contexts	at	consecutive	time	steps.	This	cause	
of	 suboptimal	 behavior	 corresponds	 to	 the	 precision	 of	 the	 agent’s	 B	 matrix,	 and	 in	
particular	the	context-to-context	mappings.	This	incorrect	mapping	implies	that	the	agent's	
confidence	about	its	current	context	(e.g.	being	in	a	“no	panic”	context)	decreases	with	time	
and	 hence	 the	 agent	 needs	 to	 continuously	monitor	 its	 bodily	 states	 (hypervigilance),	 by	
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executing	an	excessive	number	of	epistemic	actions.	This	sort	of	hypervigilance	may	seem	
odd	but	 is,	 in	 fact,	an	optimal	behavior	mandated	by	excessive	uncertainty	 in	 the	 internal	
(transition)	model.	It	is	typically	observed	in	panic	disorder	(Schmidt	et	al.,	1997).	

Miscalibration	 of	 the	 parameters	 of	 the	 generative	 model.	 This	 last	 source	 of	
suboptimal	 behavior	 can	 arise	 from	 over-exposure	 to	 aversive	 learning	 conditions	
dominated	 by	 frequent	 negative	 events	 (e.g.,	 frequent	 panic	 attacks	 at	 work).	 In	 such	
conditions,	 it	 is	adaptive	 to	 recalibrate	 the	parameters	of	 the	generative	model	 to	expect	
more	aversive	events	(e.g.,	set	thresholds	for	aversive	events	to	 lower	 levels)	and	prepare	
policies	to	deal	with	them		(e.g.,	prepare	to	take	a	medicine).	 In	our	simulations,	we	have	
illustrated	 this	 recalibration	 by	 giving	 the	 agent	 the	 possibility	 to	 learn	 prior	 preferences	
over	 exteroceptive	 outcomes	 (but	 note	 that	 other	 forms	 of	 learning	 are	 possible;	 e.g.,	
learning	the	prior	probability	of	panic	attacks	in	specific	situations,	such	as	at	work).	In	any	
case,	 the	 recalibration	 of	 model	 parameters	 implies	 that	 aversive	 events	 may	 remain	
expected,	causing	the	agent	to	need	more	evidence	to	change	predictions	or	policies,	even	
when	the	situation	ceases	to	be	aversive	(e.g.,	when	the	panic	attacks	reduce	significantly).	
This	 fits	 in	with	overgeneralization	of	 fear	 learning	and	 impaired	 safety	 learning	 to	 safety	
cues,	which	has	been	extensively	documented	in	panic	disorder	(Lissek	et	al.,	2009,	2010).		

The	model	advanced	here	is	in	many	ways	an	impoverished	description	of	the	clinical	
reality.	 Nevertheless,	 it	 shows	 that	 even	 a	 simple	 model	 is	 able	 to	 account	 for	 quite	 a	
number	 of	 relevant	 clinical	 features.	 For	 example,	 the	model	 describes	 the	 conditions	 in	
which	 one	 may	 progressively	 diminish	 attention	 to	 the	 body,	 when	 somatic	 information	
entails	 (or	 is	 expected	 to	 entail)	 poor	 information	 gain.	 The	 model	 also	 describes	 how	
hypervigilance	 will	 develop	 as	 an	 active	 form	 of	 epistemic	 foraging,	 given	 an	 excessive	
uncertainty	in	the	transition	model,	which	causes	beliefs	about	panic	attack	increasingly	less	
precise	with	time	(and	of	course	because	establishing	whether	or	not	one	is	about	to	have	a	
panic	attack	is	highly	important	for	the	agent).	Eventually,	maladaptive	patterns	of	behavior	
such	as	poor	somatic	attention	and	hypervigilance	may	also	become	chronic,	as	an	effect	of	
a	progressive	transition	from	goal-directed	to	more	habitual	forms	of	adaptive	control	(K.	J.	
Friston,	FitzGerald,	Rigoli,	Schwartenbeck,	O’Doherty,	et	al.,	2016),	as	an	effect	of	allostatic	
load	and	chronic	stress	(Peters	et	al.,	2017),	or	because	the	presence	of	highly	precise	prior	
beliefs	 about	 having	 a	 panic	 attack	 may	 render	 the	 agent	 rather	 impermeable	 for	 new	
conflicting	evidence	and,	hence,	for	adaptive	updating.		

	
Model	predictions		

This	 model	 makes	 also	 a	 number	 of	 predictions	 about	 the	 ways	 different	
manifestations	of	panic	disorders	arise	from	specific	(maladaptive)	parametrizations	of	the	
generative	model.	 	First,	 it	predicts	that	both	excessively	high	prior	beliefs	and	excessively	
low	precision	of	 interoceptive	 channels	 (or	 their	 combination)	 favor	 rigid	and	uninformed	
decisions.	 This	 is	 because	 misregulated	 prior	 or	 interoceptive	 precision	 parameters	 may	
prevent	interoceptive	channels	to	be	attended,	and	uncertainty	about	one's	condition	(e.g.,	
panic	or	not	panic)	 to	be	resolved,	before	a	choice	to	take	or	not	to	take	a	medicine.	The	
possible	 dysfunctions	 associated	 to	 imprecise	 interoceptive	 channels	 are	 currently	 under	
scrutiny,	 but	 further	 evidence	 is	 necessary	 to	 assess	 their	 roles	 in	 psychopathological	
conditions	(Barca	&	Pezzulo,	2020;	Smith	et	al.,	2020).	

Second,	 this	model	predicts	 that	hypervigilance	may	 stem	 from	an	 imprecise	 (high	
entropy)	 transition	 model,	 which	 causes	 a	 loss	 of	 confidence	 in	 the	 current	 contextual	
estimate,	 which	 results	 in	 an	 irresolvable	 contextual	 uncertainty	 (and	 in	 some	 cases,	 a	
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constant	expectation	of	imminent	panic	attacks).	The	excessive	monitoring	of	interoceptive	
states	may	result	from	the	urge	to	minimize	this	irresolvable	contextual	uncertainty.		

Third,	 the	 model	 predicts	 that	 an	 excessive	 concern	 for	 safety	 may	 emerge	 as	 a	
consequence	 of	 learning	 in	 aversive	 conditions,	 such	 as	 the	 experience	 of	 frequent	 panic	
attacks.	In	our	simulation,	the	excessive	concern	is	situation-specific:	it	arises	in	the	specific	
situation	(e.g.,	at	work)	where	frequent	panic	attacks	have	been	experienced.	For	this,	the	
model	 also	 allows	 understanding	 how	 context	 specificity	may	 become	 a	 feature	 of	 panic	
disorder	 (i.e.,	 avoiding	 some	 places).	 Note	 that	 the	model	 suggests	 that	 excessive	 safety	
behaviors	may	emerge	because	of	an	"overfit"	to	the	aversive	situation,	which	produces	an	
escalation	 of	 safety	 measures	 and	 a	 suppression	 of	 epistemic	 behavior.	 In	 turn,	 the	
suppression	 of	 epistemic	 behavior	makes	 a	 person	 unable	 to	 attend	 to	 (interoceptive	 or	
exteroceptive)	cues	that	may	signal	a	contextual	change.	The	model	therefore	suggests	that	
promoting	the	resurgence	of	epistemic	behavior	by	increasing	the	saliency	of	interoceptive	
cues	 may	 potentially	 help	 notice	 contextual	 changes	 and	 reduce	 the	 excessive	 safety	
behaviors.	 In	 fact,	 new	 epistemic	 behavior	 in	 different	 forms	 is	 promoted	 in	 exposure	
therapy	 resulting	 in	new	 (inhibitory)	 learning.	 Especially	 exposure	 to	 interoceptive	 cues	 is	
one	of	 the	most	effective	 therapies	 for	panic	disorder	 (Craske	et	al.,	2014;	Pompoli	et	al.,	
2018).		

It	is	worth	noting	that	our	model	is	intended	as	a	general	framework	to	explain	panic	
attacks,	 but	 it	 can	 be	 personalized	 to	 describe	 more	 specifically	 the	 idiosyncratic	
characteristics	 of	 different	 individuals	 within	 the	 overarching	 framework	 offered	 by	 the	
model.	 For	 example,	 in	 our	 simulations,	 we	 assumed	 that	 “feeling	 normal”	 is	 positive,	
whereas	 “feeling	 strange”	 is	 negative	 and	 the	 bodily	 sensations	 of	 heart	 pounding	 and	
breathlessness	are	slightly	aversive	as	they	are	in	reality.	Yet	the	specific	values	associated	
with	“feeling	normal”,	“feeling	strange”	and	the	bodily	sensations	are	person-specific.	Other	
parameters,	 such	 as	 the	 precisions	 of	 A	 and	 B	 matrices,	 are	 person-specific,	 too.	 This	
diversity	gives	room	to	include	in	the	model	individual	difference	variables	that	play	a	role	in	
panic	 disorder,	 such	 as	 anxiety	 sensitivity	 (McNally,	 2002)	 or	 intolerance	 for	 uncertainty	
(Carleton	et	al.,	2014).	The	former	can	be	represented	by	parameters	that	quantify	the	drive	
to	obtain	a	state	of	“feeling	normal”	 (or,	conversely,	 the	aversiveness	of	a	state	of	 feeling	
strange);	whereas	 the	 latter	 can	 be	 represented	by	 excessive	 entropy	 of	 the	B	matrix,	 as	
shown	in	the	fourth	simulation.	These	and	additional	individual	difference	variables	are	key	
to	characterize	quantitatively	the	behavior	(and	the	inference)	of	different	individuals	-	or	to		
"phenotype"	them	computationally	(P.	Schwartenbeck	&	Friston,	2016).	

Note	 that	 in	 the	simulations	 illustrated	 in	 this	paper,	 subjects	 can	cause	 their	own	
outcomes	and	sensations	through	taking	medicine	(or	not).	In	other	words,	they	can	engage	
certain	 behaviors	 to	 induce	 state	 transitions	 in	 the	 world	 (and	 body)	 generating	 sensory	
outcomes.	Crucially,	we	could	have	also	 included	autonomic	or	 interoceptive	actions	(e.g.,	
as	mediated	by	autonomic	reflexes)	based	upon	the	interoceptive	predictions	(Tschantz	et	
al.,	 2021).	 In	 other	words,	when	 attending	 to	 heart	 pounding	 in	 the	 presence	 of	 a	 panic	
attack,	the	subject	could	actually	induce	heart	pounding	in	a	way	that	is	not	dissimilar	from	
the	 simulations	 of	 tachycardia	 reported	 in	 (Allen	 et	 al.,	 2019).	 This	 raises	 the	 interesting	
opportunity	 to	 simulate	 the	 induction	 of	 a	 panic	 attack	 simply	 through	 aberrant	 belief	
updating	 in	 which	 the	 sensations	 that	 provide	 evidence	 for	 a	 panic	 attack	 is	 actually	
generated	during	the	process	of	inferring	whether	one	is	having	a	panic	attack.	In	fact,	such	
vicious	circle	dynamic	has	been	proposed	as	an	important	clinical	feature	of	panic	disorder	
(Bouton	et	al.,	2001).		
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Conclusions	

We	 presented	 a	 fully	 specified	 computational	model	 of	 adaptive	 and	maladaptive	
symptom	 perception	 and	 behavioral	 control	 in	 the	 context	 of	 panic	 disorder.	 This	model	
goes	 beyond	 most	 previous	 attempts	 to	 characterize	 psychopathological	 conditions	 that	
only	 focus	on	perception	dynamics	 (under	a	predictive	coding	 framework),	 to	also	 include	
action	control	and	attention	dynamics	(under	an	Active	Inference	framework).	Furthermore,	
the	 model	 goes	 beyond	 current	 theoretical	 (qualitative)	 attempts	 to	 describe	
psychopathologies,	as	 it	 is	able	 to	derive	quantitative	predictions	about	what	 factors	may	
determine	maladaptive	 inference	 and	 behavior	 and	 can	 be	 parameterized	 differently	 for	
different	individuals,	to	account	for	their	individual	differences.	Moving	from	qualitative	to	
quantitative	(and	personalized)	models	is	a	key	step	to	advance	the	field	of	computational	
psychiatry	from	theory	to	clinical	practice	(K.	J.	Friston,	FitzGerald,	Rigoli,	Schwartenbeck,	&	
Pezzulo,	2016;	Petzschner	et	al.,	2017;	Stephan	et	al.,	2016)		-	and	this	model	represents	a	
first	attempt	in	this	important	research	direction.	
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Appendix:	A	formal	introduction	to	Active	Inference	
	
Active	Inference	is	a	formal	framework	that	integrates	the	cybernetic	concepts	of	feedback	
and	 error	 control	 (Ashby,	 1952;	 W.	 T.	 Powers,	 1973;	 Wiener,	 1948)	 with	 a	 Bayesian	
inferential	scheme	(Pezzulo	et	al.,	2015;	Pezzulo,	Rigoli,	et	al.,	2018;	Seth,	2014).	 In	Active	
Inference,	 perception	 and	 action	 (or	 policy)	 selection	 form	 a	 closed-loop	 process,	 whose	
execution	can	be	cast	 in	 terms	of	approximate	Bayesian	 inference	 (Botvinick	&	Toussaint,	
2012;	 Donnarumma	 et	 al.,	 2016;	 Pezzulo	 et	 al.,	 2013,	 2017),	 which	 is	 rendered	 tractable	
using	a	variational	approximation	stemming	from	the	free-energy-minimization	principle	(K.	
Friston	et	al.,	2012).		
	 In	Active	Inference,	an	agent	adopts	an	 internal	generative	model	to	understand	its	
observations	and	how	they	may	be	generated	by	external,	environmental	dynamics	(called	
generative	 process	 in	 Active	 Inference).	 As	 shown	 in	 Figure	 A1,	 the	 generative	 model	
includes	hidden	states	𝑠	as	causes	of	the	observed	outcomes	𝑜.	Hidden	states	move	forward	
in	time	controlled	by	a	policy	(sequence	of	actions)	𝜋	that	depend	on	a	continuous	variable:	
the	precision	𝛾	of	the	policies.	
	 To	select	optimal	actions,	an	Active	Inference	agent	needs	to	evaluate	all	its	policies	
𝜋,	for	any	possible	future	state	an	agent	could	be	in.	That	means	computing	the	(negative)	
expected	free	energy	G!	of	each	policy	𝜋.	 In	turn,	this	requires	Active	 Inference	agents	to	
have	prior	beliefs	𝑃 𝑜! 	about	outcomes	𝑜!	it	will	experience,	and	their	likelihood	𝑃 𝑜! 𝑠! ,	
namely,	 the	 conditional	 distribution	 of	 outcomes	 under	 the	 (hidden)	 states.	 This	 allows	
formulating	G!	as:	

G! = 𝐷!" 𝑄 𝑜|𝜋 ||𝑃 𝑜
!"#$

− E! !|! H 𝑃 𝑜|𝑠
!"#!$%!& !"#$%&$'(

	

	
where	 𝑠	 and	 𝑜	 are	 sequences	 of	 states	 and	 outcomes,	 respectively,	 determined	 by	 the	
application	of	the	policy	𝜋.	
	 Note	that	the	value	(or	quality)	of	a	policy	𝜋	 is	formally	the	sum	of	two	terms.	The	
former	(risk)	term	is	the	Kullback-Leibler	divergence	between	the	posteriors	𝑄 𝑜|𝜋 	and	the	
priors	 𝑃 𝑜 	 over	 the	 outcomes;	 and	 is	 related	 to	 the	 agent’s	 preferences.	 The	 second	
(expected	ambiguity)	 is	 the	entropy	H 𝑃 𝑜|𝑠 	expected	under	the	posteriors	over	hidden	
states	 𝑄 𝑠|𝜋 ,	 which	 represents	 the	 inaccuracy	 due	 to	 a	 mapping	 between	 states	 and	
outcomes	in	relation	to	the	posteriors	about	the	state	of	the	world	(K.	Friston	et	al.,	2015).	
One	can	consider	these	two	terms	as	the	extent	to	which	the	policy	will	allow	achieving	the	
agent's	 goals	 (“pragmatic	 value”)	 and	 the	 capacity	 of	 the	 policy	 to	 reduce	 uncertainty	
(“epistemic	value”)	by	disambiguating	states,	respectively.	In	other	words,	for	a	given	policy,	
the	 pragmatic	 value	measures	 the	 difference	 between	 predicted	 and	 preferred	 expected	
outcome	 in	 the	 future	while	 the	 epistemic	 value	quantifies	 how	much	expecting	 to	 be	 in	
future	 state	 diminishes	 uncertainty	 on	 future	 outcomes.	 From	 a	 machine	 learning	
perspective,	this	would	be	equivalent	to	say	that	G!	includes	a	“regularisation”	term,	which	
balances	between	exploitive	(pragmatic)	and	exploratory	(epistemic)	behaviour.	
	 Once	 every	 potential	 policy	 has	 been	 scored	 (and	 its	 associated	 “quality”	 value	 is	
set),	 the	 agent	 selects	 the	 action	 that	 minimises	 the	 expected	 divergence	 between	 the	
outcomes	predicted	at	 the	next	 times	step	through	the	policy	and	the	outcome	predicted	
after	each	action.	Hence,	in	Active	Inference,	an	action	is	the	result	of	an	inferential	process	
that	 scores	 possible	 futures.	 This	 Active	 Inference	 scheme	 has	 been	 used	 to	 address	 a	
variety	 of	 cognitive	 phenomena,	 including	 decision-making	 (K.	 Friston	 et	 al.,	 2013;	 K.	 J.	
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Friston,	 Schwartenbeck,	 et	 al.,	 2014),	 habitual	 behavior,	 salience	 and	 curiosity-driven	
planning	(K.	J.	Friston,	FitzGerald,	Rigoli,	Schwartenbeck,	O’Doherty,	et	al.,	2016;	Maisto	et	
al.,	 2019;	 Parr	 &	 Friston,	 2017b;	 Philipp	 Schwartenbeck	 et	 al.,	 2019),	 and	 in	 general	 to	
develop	 a	 process	 theory	 for	 neural	 computation	 (K.	 J.	 Friston,	 FitzGerald,	 Rigoli,	
Schwartenbeck,	 &	 Pezzulo,	 2016;	 Philipp	 Schwartenbeck	 et	 al.,	 2014)	 as	 well	 as	 for	
investigating	 psychiatric	 disorders	 (Barrett	 et	 al.,	 2016;	 Cullen	 et	 al.,	 2018;	 K.	 J.	 Friston,	
Stephan,	et	al.,	2014).	

	
	

Figure	A1.	Graphical	model	for	Active	Inference.	See	the	main	text	for	explanation.	
	
Formally,	the	discrete	version	of	Active	Inference	can	be	described	as	a	Partially	Observed	
Markov	Decision	Process	(POMDP)	represented	by	a	tuple	 𝑆,𝑂,𝑈,Θ,𝑅,𝑃,𝑄 	where:	

• 𝑆	 is	the	set	of	agent’s	hidden	states	𝑠	by	which	the	agent	infers	the	environmental	
state;	

• 𝑂	is	the	set	of	observations	𝑜;	
• 	𝑈	is	the	set	of	actions	𝑢.	A	sequence	of	actions	𝑢	is	called	policy	and	denoted	as	𝜋.	

Thus,	𝜋 = 𝑢! ,… ,𝑢! = 𝜋(𝑡),… ,𝜋(𝑇) ;	
• 𝛩 = 𝐴,𝐵,𝐶,𝐷,𝐸, 𝛾 	 is	a	tuple	of	additional	variables	introduced	to	regulate	the	𝑆,	

𝑂,	𝑈	distributions.	Their	expected	values	play	a	crucial	role	during	the	inference	and	
their	 priors	 are	 usually	 updated	 through	 the	 posteriors,	 at	 a	 slower	 timescale	
(corresponding	to	 learning	dynamics)	at	the	end	of	each	trial.	 In	all	the	simulations	
shown	in	this	paper	except	the	fifth,	the	distributions	of	the	variables	in	𝛩	are	static	
and	fixed	in	advance.	

• 𝑅 𝑜, 𝑠,𝑢 	 is	 a	 generative	 process	 defined	 over	 the	 outcomes,	 the	 states	 and	 the	
actions;	

• 𝑃 𝑜, 𝑠,𝜋,𝜃 	 is	 the	generative	model.	 It	 is	a	probabilistic	distribution	describing	 the	
agent’s	observations;	namely,	it	is	a	model	of	the	environment.	It	depends	on	the	set	
𝜃 = 𝒂,𝒃, 𝒄,𝒅, 𝒆,𝛽 	 of	 parameters	 provided	 by	 the	 model	 designer	 to	 shape	 the	
generative	model;	more	specifically	𝒂,𝒃, 𝒄,𝒅, 𝒆	have	to	be	fixed	to	set	the	Dirichlet	



	 	 34	

distributions	of	the	variables	𝐴,	𝐵,	𝐶,	𝐷,	𝐸,	and	𝛽	to	define	the	gamma	distribution		
of	the	precision	𝛾.	

Following	the	graphical	representation	in	Fig.	1A,	a	series	of	marginalisations	
permit	to	characterize	the	generative	model	as:		
	

𝑃 𝑜, 𝑠,𝜋,𝜃 = 𝑃 𝜋 𝛾,𝐶,𝐸 𝑃 𝛩 𝑃 𝑜! 𝑠! ,𝐴 𝑃 𝑠! 𝑠!!!,𝜋,𝐵,𝐷
!

!!!

	

	
where:	
	
𝑃 𝑜! 𝑠! ,𝐴 = 𝐶𝑎𝑡 𝐀 	
𝑃 𝑠! 𝑠!!!,𝜋,𝐵 =  𝐶𝑎𝑡 𝐁 𝑢 = 𝜋(𝑡) 				
𝑃 𝑠! 𝑠!,𝜋,𝐷 = 𝐶𝑎𝑡 𝐃 	
𝑃 𝜋 𝛾,𝐶,𝐸 = 𝜎 ln𝐄− 𝛾 ∙ 𝐆 	
𝐀~𝐷𝑖𝑟(𝒂)	
⋮	
𝐄~𝐷𝑖𝑟(𝒆)	

𝑃 𝛾 = Γ(1,𝛽)	
	
The	matrix	𝐀	 encodes	 the	 likelihood	 of	 observations	 given	 a	 hidden	 state,	

while	𝐂	represents	their	prior	distribution	or	(preferred)	outcomes.	State	transitions	
are	specified	by	𝐁,	the	prior	distribution	of	the	initial	state	is	given	by	𝐃,	while	the	
prior	 distribution	 over	 the	 policies	 is	 coded	 into	 𝐄.	 Furthermore,	 𝛽	 is	 the	 rate	
parameters	 of	 the	 gamma	 density	 that	 controls	 the	 precision	 𝛾.	 Finally,	 the	
parameters	𝒂,𝒃, 𝒄,𝒅, 𝒆	 are	 the	concentration	hyperparameters	of	 the	distributions	
from	which	the	model	generates	hidden	states,	outcomes,	and	policies.		

The	quantity	𝐆	can	be	considered	as	a	score	vector	for	the	policies	and	can	be	
viewed	 as	 a	 belief	 over	 the	 variable	 𝜋	 given	 future	 (expected)	 states	 and	
observations,	 together	 with	 the	 preferred	 outcomes	 (more	 details	 below	 in	 this	
Section).	𝐆	and	𝐄	 together	define	 the	 policy	 posterior	 as	 a	 a	Gibbs	 distribution	 (a	
softmax	function	𝜎)	with	𝛾	as	inverse	temperature	–	or	precision	–	parameter.	

• 𝑄𝝁 𝑠,𝜋,𝜃 	 is	 the	 approximate	 posterior	 distribution	 over	 states	 and	 parameters,	
with	 sufficient	 statistics	 𝝁 = 𝒔!!,… , 𝒔!" ,𝝅,𝒂,𝒃, 𝒄,𝒅,𝛽 .	 It	 makes	 it	 possible	 to	
invert	the	generative	model	using	variational	methods	for	approximate	 inference	–	
an	 operation	 that	 is	 otherwise	 intractable	 (Beal,	 2003).	 By	 using	 a	 mean-field	
assumption,	 the	 approximate	 posterior	 can	 be	 factorized	 over	 states,	 action,	 and	
precision,	as	follows:		
	

𝑄! 𝑠,𝜋,𝜃 = 𝑄 𝑠! 𝜋 …𝑄 𝑠! 𝜋 𝑄 𝜋 𝑄 𝐴 …𝑄(𝐸)𝑄 𝛾 	
	where:		
𝑄 𝑠! 𝜋 = 𝐶𝑎𝑡 𝒔!" 	
𝑄 𝜋 = 𝐶𝑎𝑡 𝜋 	
𝑄 𝐴 = 𝐷𝑖𝑟(𝒂)	
		 ⋮	
𝑄 𝐸 = 𝐷𝑖𝑟(𝒆)	
𝑄 𝛾 = Γ(1,𝛽)	
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A	 key	 aspect	 of	 Active	 Inference	 is	 the	 free	 energy	 minimization	 with	 respect	 to	 the	
sufficient	 statistics	 𝝁.	 By	 exploiting	 some	 mathematical	 identities,	 the	 variational	 free	
energy	 functional	 can	 be	 expressed	 in	 terms	 of	 the	 approximate	 beliefs	 𝑄	 and	 the	
generative	model	𝑃	as:	
	

𝐹 = 𝔼!! !,!,! ln𝑄! 𝑠,𝜋,𝜃 − ln𝑃 𝑠, 𝑜,𝜋,𝜃
  = 𝐷!" 𝑄! 𝑠,𝜋,𝜃 ||𝑃 𝑠,𝜋,𝜃 𝑜 − ln𝑃 𝑜
≥ − ln𝑃 𝑜                                                       

	

	
In	 these	 equations,	𝔼! ∙ 	 denotes	 an	 expected	 value	 under	𝑄,	𝐷!" ∙ || ∙ 	 is	 the	 Kullback-
Leibler	divergence,	that	estimates	the	difference	between	two	distributions,	and	− ln𝑃 𝑜 	
(i.e.,	 the	 negative	 logarithm	 of	 the	 model	 evidence	 𝑃 𝑜 )	 is	 called	 surprise.	 When	 the	
variational	 distribution	𝑄!(𝑠,𝜋,𝜃)	 tends	 to	 get	 closer	 to	 the	 posterior	 𝑃 𝑠,𝜋,𝜃 𝑜 ,	 free	
energy	decreases.	If	they	match	entirely,	and	their	divergence	is	zero,	free	energy	becomes	
the	same	as	surprise.	Therefore,	one	could	summarize	variational	 inference	by	saying	that	
minimizing	 free	 energy	 entails	 approximating	 the	 posterior	 using	 an	 approximate	
distribution.		
	 Note	 that	 variational	 Bayesian	 methods	 transform	 inference	 (namely,	 calculating	
posterior	from	prior	beliefs)	into	an	optimization	problem:	finding	sufficient	statistics	𝝁	such	
that	 the	 corresponding	 free	 energy	 is	minimum.	As	 explained	 in	 (K.	 J.	 Friston,	 FitzGerald,	
Rigoli,	Schwartenbeck,	&	Pezzulo,	2016),	 is	possible	 to	demonstrate	 that	 such	condition	 is	
verified	when	the	following	equations	are	used	to	define	the	sufficient	statistics	at	any	time	
𝜏:	
	
𝒔!" = 𝜎 ln𝐀 ⋅ 𝑜! + ln𝐁!"!! 𝒔!"!! + ln𝐁!" ⋅ 𝒔!"!! 	
𝝅 = 𝜎 ln𝐄− 𝐅− 𝛾 ⋅ 𝐆 	
𝛽 = 𝛽 + 𝝅− 𝝅! ⋅ 𝐆	

𝒂 =  𝒂+ 𝒐!  ⊗ 𝒔!"
!

	

𝒃!" = 𝒃!" + 𝒔!" ⊗  𝒔!"!!
!

	

𝒄 = 𝒄+ 𝒐!
!

	

𝒅 = 𝒅+ 𝒔!!	
𝒆 = 𝒆+ 𝝅	

	
Here,	we	use	the	symbols	“⋅”	and	“⊗”	to	denote	respectively	the	inner	and	outer	products	
defined	as	𝐀 ⋅ 𝐁 = 𝐀!𝐁	and	𝐀⊗ 𝐁 = 𝐀𝐁!,	where	𝐀	and	𝐁	are	two	generic	matrices.	We	
use	the	vector	𝒐!,	with	all	the	elements	equal	to	zero	except	one,	as	an	“one-hot”	encoding	
to	represent	a	specific	outcome	at	the	time	𝜏.	In	the	second	equation,	the	letter	𝐅	refers	to	
the	 vector	whose	elements	F!	 represent	 the	 free	energy	under	 the	policy	𝜋.	 In	 the	 third	
equation	𝝅! = 𝜎 ln𝐄− 𝛾 ⋅ 𝐆 ,	and	𝛾 = 1/𝛽.		

Solving	 the	updating	equations	means	 finding	out	 the	posterior	expectations	 that	
minimise	 the	 variational	 free	 energy.	 It	 is	 possible	 split	 such	 a	 list	 of	 equations	 in	 two	
different	 groups,	 which	 have	 distinct	 functions	 and	 timescales.	 The	 first	 three	 equations	
support	the	Bayesian	estimation	of	the	hidden	states	(inference)	and	are	updated	at	a	faster	
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timescale,	 after	 each	 observation.	 The	 other	 equations	 support	 parameter	 learning	 by	
evidence	accumulation	and	are	only	updated	at	a	slower	timescale,	at	the	end	of	each	trial.	

The	first	of	the	three	 inference	equations	estimates	the	expected	hidden	state	and	
corresponds	 to	 that	 part	 in	 Active	 Inference	 related	 to	 perception,	 whilst	 the	 second	
equation	derives	from	a	Boltzmann	distribution	of	the	policies'	quality	values.	The	expected	
value	of	𝛾	is	the	sensitivity	(or	inverse	temperature	parameter)	of	the	distribution:	it	adjusts	
the	tendency	to	select	a	policy	with	greater	or	lesser	stochasticity.	The	third	equation	tunes	
the	value	of	the	expected	precision	on	the	base	of	the	values	of	the	policy	quality.		

The	other,	learning	equations	(from	the	fourth	to	the	last)	provide	a	simple	scheme	
to	update	the	hyperpriors	of	the	hidden	variables	𝐴,	𝐵,	𝐶,	𝐷,	and	𝐸	of	the	generative	model	
by	substituting	the	parameters	(pseudocounts)	of	their	prior	Dirichlet	distribution	with	their	
posteriors,	 computed	 over	 the	whole	 trial.	 This	mechanism	 resembles	 Hebbian	 plasticity:	
when	 an	 element	 occurs	 repeatedly,	 its	 probability	 increases,	 reflecting	 an	 implicit	
expectation	that	it	will	likely	happen	again	in	the	future.	

Finally,	 it	 is	 worth	 paying	 attention	 to	 𝐆:	 it	 is	 a	 vector	 whose	 elements	 are	 the	
“expected	free	energies”	G!	with	respect	to	the	expected	future	outcomes	and	states,	and	
they	 score	 the	 quality	 of	 the	 policies.	 One	 can	 formally	 calculate	 G!	 by	 integrating	 the	
(negative)	free	energy	expected	under	the	policy	𝜋,	 from	the	current	 instant	𝑡	 to	the	final	
one	𝑇:			

𝐆! =  G 𝜋, 𝜏
!

!!!

	

with:	
G 𝜋, 𝜏 = 𝐹! 𝜋 	

 =  𝔼! ln𝑄 𝑠! 𝜋 − ln𝑃 𝑜!, 𝑠! 𝜋,𝐶 	
=  𝔼! ln ln𝑄 𝑠! 𝜋 − ln𝑃 𝑠! 𝑜!,𝜋 − ln𝑃 𝑜! 𝐶 	
 ≥ 𝔼! ln𝑄 𝑠! 𝜋 − ln𝑄 𝑠! 𝑜!,𝜋 − 𝔼! ln𝑃 𝑜! 𝐶 	
 = 𝔼! ln𝑄 𝑜! 𝜋 − ln𝑄 𝑜! 𝑠!,𝜋 − 𝔼! ln𝑃 𝑜! 𝐶 	
 = −𝐷!" 𝑄 𝑜! 𝜋 ||𝑃 𝑜! − 𝔼! 𝐻 𝑃 𝑜! 𝑠! 	

	
where	𝔼! ∙ 	 is	 the	 expected	 value	 under	 the	 predicted	 posterior	 distribution	 defined	 as	
𝑄 = 𝑄 𝑜!, 𝑠! 𝜋 ≜ 𝑃 𝑜! 𝑠! 𝑄 𝑠! 𝜋 	 over	 hidden	 states	 and	 their	 outcomes	 under	 a	
particular	 policy	 and	 at	 a	 certain	 instant	 of	 time.	 The	 second	 identity,	 carried	 out	 by	
factorizing	𝑃 𝑜!, 𝑠! 𝜋 	can	be	bounded	down	(third	row)	by	using	the	variational	distribution	
𝑄 𝑠! 𝑜!,𝜋 	 to	 approximate	 the	 real	 posterior	 distribution	 𝑃 𝑠! 𝑜!,𝜋 	 over	 the	 hidden	
states.	The	fourth	identity	easily	derives	from	Bayes’	rule.	The	final	 identity	 is	the	same	as	
shown	at	the	beginning	of	this	Appendix:	it	provides	an	interpretation	of	the	expected	free	
energy	as	the	sum	of	a	term	representing	the	risk	of	using	𝑄 𝑜! 𝜋 	in	the	place	of	𝑃 𝑜! 𝐶 ,	
and	 another	 term	 representing	 the	 expected	 uncertainty	 due	 to	 the	 complexity	 of	 the	
generative	model.		

A	more	effective	 form	of	G!	 is	obtaining	by	considering	 the	equations	of	sufficient	
statistics	mentioned	above,	together	with	the	generative	model:	

	
G 𝜋, 𝜏 = 𝒐!" ⋅ ln𝒐!" − ln𝐂 + 𝒔!" ⋅ 𝐇	

with	
𝒐!" = 𝔼! 𝐴 ∙ 𝒔!"	
ln𝐂 = ln𝑃 𝑜!|𝐶 	



	 	 37	

𝐇 = −𝑑𝑖𝑎𝑔 𝔼! 𝐴 ⋅ 𝔼! ln𝐴 	
	
where	𝔼! 𝐴 = 𝒂×𝒂!!!,	 such	 that	𝐚!!" = 𝒂!"! .	 In	 this	 form	of	 the	expected	 free	energy,	
the	vectors	𝒐!",	ln𝐂,	and	the	diagonal	matrix	𝐇	represent	the	predicted	and	the	preferred	
future	outcomes	and	their	expected	entropy.	
	 The	 determination	 of	 𝐆	 is	 key	 for	 the	 agent's	 action	 selection	 process.	
Mathematically,	action	selection	can	be	expressed	as	the	minimization	of	prediction	errors	
about	the	outcomes:	
	

𝑢! = min
!
𝔼! 𝐷!" 𝑃 𝑜!!! 𝑠!!! ||𝑅(𝑜!!! |𝑠! ,𝑢) 	

= min
!
𝒐!!! ⋅ 𝜀!!!!                                               	

	
where:	
	
𝜀!!!! = ln𝒐!!! − ln𝒐!!!! 	
𝒐!!! = 𝐀𝒔𝐭!𝟏	
𝒐!!!! = 𝐀𝐁 𝑢 𝒔!	
𝒔! = 𝝅 ⋅ 𝒔𝝅𝒕

!
	

	 	
Thus,	in	Active	Inference,	actions	are	selected	to	minimize	prediction	errors	about	expected	
outcomes.	In	our	simulations,	we	used	the	variant	of	this	process	adopted	in	(K.	Friston	et	
al.,	2015),	where	the	action	is	sampled	as	posterior	of	the	sufficient	statistics	𝝅:	

	

𝑝 𝑢! 𝝅 = 𝑝 𝜋 𝑢!
!∶!!!!(!)

	

	
where	 we	 assumed	 that	 𝑢!	 was	 uniformly	 distributed	 and	 that	 𝝅 = 𝜋!,… ,𝜋! =
𝑢!!,… ,𝑢!! ,… , 𝑢!!,… ,𝑢!! .	
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	 First	

simulation	
Second	

simulation	
Third	

simulation	
Fourth	

simulation	
Fifth	

simulation	
Prior	for	

panic	context	
0.5	 From	0.9	to	

0.1	
From	0.9	to	

0.1	
0.5	 0.5	

Values	of	A	
matrix		

0.9	heart	
pound	

0.5	breathless	

0.9	heart	
pound	

0.5	breathless	

0.7	heart	
pound	

0.5	breathless	

0.9	heart	
pound	

0.5	
breathless	

0.9	heart	
pound	

	

Values	of	B	
matrix	

(transitions	
between	
contexts)	

0.9	 0.9	 0.9	 0.6	 0.9	

C	matrix	 2	feel	normal	

-2	feel	
strange	

-0.1	heart	
pound	

-0.1	
breathless	

2	feel	normal	

-2	feel	
strange	

-0.1	heart	
pound	

-0.1	
breathless	

2	feel	normal	

-2	feel	
strange	

-0.1	heart	
pound	

-0.1	
breathless	

2	feel	
normal	

-2	feel	
strange	

-0.1	heart	
pound	

-0.1	
breathless	

2	feel	normal	

-2	feel	
strange	

-0.1	heart	
pound	

-0.1	
breathless	

Learning	rate	 -	 -	 -	 -	 0.0025	
Percentage	of	
pain	in	the	
first	and	

second	blocks	

	 -	 -	 -	 -	 0.9	/	0	for	the	
first	agent;	

0.4	/	0	for	the	
second	agent	

Table	A1.		Parameters	used	in	the	simulations	


