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Abstract—Nonverbal behaviors serve as a rich source of
information in inter human communication. In particular, motion
cues can reveal details on a person’s current physical and mental
state. Research has shown, that people do not only interpret
motion cues of humans in these terms, but also the motion
of animals and inanimate devices such as robots. In order to
successfully integrate mobile robots in domestic environments,
designers have therefore to take into account how the device will
be perceived by the user.

In this study we analyzed the relationship between motion
characteristics of a robot and perceived affect. Based on a
literature study we selected two motion characteristics, namely
acceleration and curvature, which appear to be most influential
for how motion is perceived. We systematically varied these
motion parameters and recorded participants interpretations in
terms of affective content. Our results suggest a strong relation
between motion parameters and attribution of affect, while the
type of embodiment had no effect. Furthermore, we found that
the level of acceleration can be used to predict perceived arousal
and that valence information is at least partly encoded in an
interaction between acceleration and curvature. These findings
are important for the design of behaviors for future autonomous
household robots.

Index Terms—Expressive robotic behavior, nonverbal commu-
nication, affective communication

I. INTRODUCTION

The development of autonomous household robots raises

new design issues. Multiple studies have stressed the impact of

a robotic device on the social life [31], [10], [30]. These results

also suggest that the success of a robotic platform depends

on more than the mere task performance. For example, a

robot that is optimized for speed and cleaning performance

with rapid movements can easily perceived as aggressive or

nervous. In order to successfully integrate robots in close

social proximity of our every day life, we have to understand

how these machines and their behaviors are perceived and

interpreted by their users.

In this study we focus on the problem of designing

expressive behavior for robots, in particular on designing

expressive movements. Non-verbal communication through

gestures plays an important role for human communication.

For example Heider and Simmel have demonstrated already

in 1944 that people are naturally biased to interpret motion

patterns in terms of social or emotional terms [13].

Designing expressive movements for robots aims at using

motion as modality to convey information, e.g., about the

status, and to improve the overall perception of the device.

It has been shown that already subtle differences in the

movement trajectories can a have a significant effect on how

the robot is perceived [23], [24]. For designing expressive

and communicative behaviors it is important to know which

features cause the interpretation of intentions and emotions

[11].

Up to now, the focus of research has mainly been on identi-

fying the motion features that cause the attribution of animacy

[29], [3]. In this study we investigate the relation between

motion features and perceived emotion, i.e., the emotion that

people attribute to the motion pattern when observing a robot.

In particular, we derive from literature two motion features,

namely acceleration and curvature, which appear to be relevant

for the perception of emotion and vary them systematically.

The hypothesis is that varying these motion features has

also an effect of the perceived emotion. In particular, we

systematically analyze this relationship by constructing three

levels for both, curvature and acceleration. Furthermore, we

compare two different embodiments with different physical

setups.

In the following, we first introduce the emotional model

and affect assessment tools that have been adopted for this

study, before we later discuss the implementation of the motion

characteristics.

II. PERCEPTION OF EMOTION

Several models have been developed for explaining the

ability of people to perceive emotions based on observations.

An evolutionary model suggests that the ability has evolved

because it has been an advantage to correctly recognize the

intentions of a potential predator. For example Blythe et al.

give the example of observing a mountain lion, i.e., judging if

the lion is aggressive and searching for prey, mating or relaxed

wandering [3].

Another model for interpretation of motion patterns is that

social reasoning helps to make sense of an observation. If

objects change direction without an obvious reason, people

tend to use their social reasoning to explain the phenomenon,

i.e., by internal drives and needs including emotional states

[16].

A. Emotional model

A number of different psychological models for the cogni-

tive structure of emotions have been proposed. An extensive
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discussions on emotional models and the experience of emo-

tions can be found in [20], [1], [6]. In general, two models

have found wide acceptance and are supported by empirical

evidence.

The first describes emotions as a combination of basic

emotions. Ekman found that facial expressions for the six

emotions of anger, surprise, disgust, happy, sad and fear

are universally recognized [9]. Each of these basic emotions

describes an unipolar dimension containing the activation of

a particular basic emotion. However, it is not clear which

emotions make the basic set of which all other emotions can

be constructed [14].

The second model represents experiences of emotions as

points in a continuous two dimensional space. Russell found

that most of the variance of emotional perception can be

accounted for in a two dimensional space with the axis of

arousal and valance. This model is referred to as circumplex

model of affect [26]. The results of Russell have been repeated

in several other studies that found the same axis or rotational

variants and resulted in the development of multiple scales to

measure different degrees of affect in this two dimensional

space [7], [22]. Some studies have extended the model, for

example by a third dimension representing dominance [17].

B. Assessing affect

For our research, we adopted a similar approach as Pollick

et al. [25] and Lee et al. [19] and measured emotion according

to a two dimensional parameterized model of emotion. Pollick

et al. found that emotions perceived from arm motion can

be clustered in a space with the two main axis of valence

and arousal similar to Russell’s circumplex model of affect

[25]. We also followed Pollick’s argumentation that similar

measurements can be used both for measuring one’s own

experiences of emotion as well as assessing the emotional

state of someone else. An overview of assessment methods

for affect can be found in [14].

We selected the PANAS [33] and the “Self assessment

manikins” (SAM) [17], [4] scales to fit best our needs. First

of all, plenty of studies have been reported using the PANAS

and the results showed high validity and reliability (Cronbach’s

α = 0.89) for a general population [7]. The scale and rating

instructions are freely available and are quick to administer.

Furthermore, the PANAS has also been administered to rate

the affective state of other persons, not only to assess the

emotional experiences of oneself. For example, it has been

successfully administered to mothers to assess affect of their

children [8]. The PANAS scale measures a dimensional model

of emotions, which allows to parameterize an emotional state

by a coordinate in a two dimensional space. It measures

positive affect and negative affect which consist of 10 items

for every of the two constructs (see Fig 1).

The SAM scale assesses three independent dimensions

pleasure, arousal and dominance (PAD) [21]. Both the PANAS

and the PAD models are rotational variants in the same two

dimensional space [18]. The advantage of the SAM scale is

that it is fast to administer and are not subject to language
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Fig. 1: Simplified version of a two dimensional space of

affect(derived from Larsen and Diener [18])

misinterpretations [4]. We expected that an iconic represen-

tation of emotions might be easier to understand and apply

to inanimate beings such as a robot. However, to the authors

knowledge, the SAM have not generally been administered to

assess affective states of others. For our case this is essential,

because we are interested in what affective state participants

perceive in the robot motion.

III. SELECTION OF MOTION FEATURES

In literature, several studies have been published that an-

alyze the perception of particular motion characteristics. In

order to determine which motion features are most influential

for the perception of emotion, we analyzed the main effects of

several studies that investigated the perception of motion. For

example, Tremoulet and Feldman have shown that already two

cues are enough to give an impression of animacy: 1) change

in speed and 2) change in direction [32]. In the following we

give an overview of the field.

Camurri et al. aimed to automate the recognition of emo-

tional content of expressive gestures made by dance per-

formances [5]. They asked actors to perform a dance with

four different emotional expressions: anger, fear, grief and

joy and computed motion features derived from Laban Move-

ment Analysis: overall duration, contraction index, quantity

of motion, and motion fluency. They found main effects for

example for duration and quantity of motion which are related

to changes in speed and trajectory.

Similarly, Gaur et al. aimed at automating the recognition of

animate and inanimate characteristics solely based on motion

features [11]. They analyzed motion features, including mean

distance, mean rotation, range of distance, range of rotation,

variance of distance, variance of rotation, spline coefficients

representing the sharpness, and an energy metric that calcu-

lates the energy that the objects gains to give the impression

of being animated. They found that a combination of spline

coefficients, change in velocity and direction together with

the energy feature hold the most information for classifying

a motion as either animate or inanimate. The absolute values

seemed to be of less importance.
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Bethel and Murphy reviewed different methods for affective

expressions, among others using motion [2]. They found that

depression is connected with slow and hesitating movements

while elation is connected to fast expansive motions.

Blythe et al. analyzed motion patterns for basic behavior

patterns of pursue, evade, fight, court, be courted and play

[3]. An interesting result was that participants were even able

to judge the behavior when the target of the motion was taken

away. These results stress that the informational content of

motion is independent from the context. Furthermore, they

analyzing the relevance of motion features for classification in

terms of behavior and found the following order of importance

of the features: (1) absolute velocity, (2) relative angle, (3)

relative velocity, (4) relative heading, (5) relative vorticity, (6)

absolute vorticity and (7) relative distance.

Pollick et al. calculated from a point light display of human

body motion [25] the following movement features: (1) wrist

kinematics (2) average velocity, (3) peak velocity, (4) peak

acceleration, (5) peak deceleration and (6) jerk index. They

found that kinematic features correlated with the activation

dimension of arousal and valance. Energetic motions were

positively correlated with shorter duration, acceleration, jerk,

greater magnitudes of average velocity, and peak velocity.

Lee et al. presented a relational framework between motion

features and emotions [19] for which they used a two dimen-

sional emotional model with the axis of valance and arousal.

They varied the degree smoothness, speed and openness and

found a positive correlation between velocity and activation

axis and a positive correlation between pleasantness and

smoothness, but they could not find an effect for openness.

From the above results it appears that especially relative

motion features hold important information for categorizing a

motion trajectory. In all studies changes of speed and changes

of direction had an effect, while the absolute values seemed

to be of less importance. Only the study of Blythe et al.

found absolute velocity to carry most information, but they

also found that the absolute ordering of the features was of less

importance. The study of Gaur et al. found the absolute values

explicitly of less importance [11]. Based on these results

we chose to focus our study on the motion parameters of

acceleration (representing differences in speed) and curvature

(representing differences in direction).

Furthermore, we expect these parameters to influence how

the motion is perceived in emotional terms. High energy

motions that often change direction or velocity should be

interpreted as more active. However, the existing studies re-

main inconclusive how these parameters influence the valence

dimension. Some studies reported that the smoothness has an

effect on the valence, but the type of the relationship remains

unclear.

In the following, we describe our experimental setup in

which we systematically vary the two motion parameters

acceleration and curvature in the behavior of a robotic em-

bodiment.

Roomba

iCat
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B

table

table

table

E

3 m

7
 m

S

door

Fig. 2: Experimental setup of the room indicating the move-

ment of Roomba, starting from position S. In the Roomba

condition participants were placed in position A and in the

iCat condition in position B. The experimenter was placed at

position E.

IV. MEASURING PERCEPTION OF MOTION

In order to display a robotic motion characteristic, the move-

ments need to be implemented on a robotic embodiment. The

concrete display of a motion feature naturally also depends on

the concrete embodiment.

Depending on the physical setup of a robotic embodiment,

two different types of motion are possible, that we refer to as

external motion and internal motion. With external motion we

refer to motion ‘external’ to the embodiment, i.e., movement of

an object itself a defined space. With internal motion we refer

to posture changes internal to the embodiment, i.e., movement

of the limbs.

Based on these observations, we chose for our study two

embodiments with two different types of motion, namely

the iCat robot for implementing the internal motion and the

Roomba robot for implementing the external motion. These

two platforms are introduced in the following.

A. Robotic embodiments

The iCat robot is a robotic research platform developed by

Philips Research for human machine interactions. The robot is

depicted in Fig. 3. The iCat robot has the shape of a cat and is

approximately 40cm tall. It has an animated mechanical face

with 13 degrees of freedom to express basic emotions, such as

happiness, sadness or disgust. For our experiment we focused

on the pan and tilt of the head. The expression of the face

was kept neutral in order to avoid an interpretation of iCat

based on the symbolic expression of the face rather than the

impression of the movement patterns.

The Roomba robot is a commercially available vacuum

cleaning robot developed by iRobot. The robot is depicted in

Fig. 4. Roomba has a circular shape with a radius of approx-

imately 15cm. It has a differential drive system, consisting of

two velocity controlled wheels that can be controlled via a
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Fig. 3: Sample interaction in the iCat condition.

serial interface. We tested and evaluated the drive accuracy of

the robot as described in [27].

Even though both embodiments are very different from each

other, both have demonstrated their ability to elicit emotions

[10], [12]. People are able to recognize motion features of

very abstract shapes [13].

B. Motion pattern generation

For generating the motion patterns, we used graphical ani-

mation tools as described in [28]. They generate animations,

which is a sequence of actions that can be executed by the

robot. These tools furthermore allow to parameterize a motion

trajectory and systematically vary the behavior of the robots.

Three different values for curvature and acceleration were

created for both embodiments, resulting in 9 movements for

every embodiment. Both robots were assigned a simple task.

For Roomba, we defined a circular trajectory through the

room as depicted in Fig. 2 so that the robot would start

from a defined home position S, drives through the room

on the indicated trajectory and returns to the home position

afterwards. On this route, Roomba passes the participant at

position A. An example picture with Roomba is depicted in

Fig. 4.

In the iCat condition we placed two objects in front of

iCat and defined an animation to look at both objects. The

robot started from a central position, looked first at the left

object then at the right object and finally returned to a central

position. The participants were seated with an approximate

distance of 80 cm to iCat, in Fig. 2 marked as position B. A

sample picture from the iCat condition is shown in Fig. 3.

We calculated the values for acceleration and curvature

separately for both embodiments as follows. We first ap-

proximated the first and second derivatives based on the

motion trajectories from the editors. In the current version, the

iCat robot updates the motor positions 10 times per second.

Therefore, the velocity v of an actuator can be approximated

by the difference in position of two consecutive frames and in

an analogous manner the acceleration a can be approximated

as the difference of two consecutive velocities:

v = ṡ =
si+1 − si

t
(1)

a = s̈ = v̇ =
vi+1 − vi

t
(2)

Fig. 4: Sample interaction in the Roomba condition.

For an animation the average acceleration ā was calculated

over the number of frames F as:

ā =
1

F

F
∑

i=1

ai (3)

In the same manner also the average velocity of the Roomba

robot was calculated, but with the difference that the velocity

did not have to be approximated because the serial interface

directly accepts a target velocity as a parameter, which was

used for the calculation.

As a measurement for curvature we calculated the extrinsic

curvature κ. If the radius is known, the curvature can directly

be calculated by:

κ =
1

r
(4)

For the Roomba robot we could directly apply this definition,

because it always moves in circular segments. In order to

calculate the curvature of the movements of iCat, we analyzed

the path in space of the center of iCat’s face as it moved the

head to accomplish the task. The center is given by the tip of

the nose and moves on an ellipsoid surface, which is defined by

the radius for the pan and tilt axes. The shape of the ellipsoid

is parameterized by the equatorial radii a, b and c along the

axes of the coordinate system

x2

a2
+

y2

b2
+

z2

c2
= 1 (5)

The parameters are given by the iCat embodiment as a = b =
10.5cm and c = 12.5cm, assuming that z is the vertical axis

and the x-y plane is parallel to the table. The control signal

of the motors can be directly converted to viewing angles.

The pan angle Φ is controlled by the value that is sent to the

actuator labeled “body” and the tilt angle Θ is controlled by the

actuator labeled “neck”. The maximum viewing angles for Φ
and Θ are in the range of −45 ≤ Φ ≤ 45 and −25 ≤ Θ ≤ 25,
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Robot mean acceleration mean curvature
Condition low medium high low medium high

iCat 0.33 0.81 1.19 0.46 0.56 1.41
Roomba 0.18 0.60 1.10 0.85 1.50 2.20

TABLE I: Values of acceleration and curvature for the three

levels low, medium and high.

respectively. With these parameters the three dimensional path

is parameterized by

x = a sin (Φ) cos (Θ) (6)

y = b sin (Φ) sin (Θ) (7)

z = c cos (Φ) (8)

The curvature of a parameterized curve in a three dimensional

space is given by:

κ =

√

(ẋ2 + ẏ2 + ż2)(ẍ2 + ÿ2 + z̈2) − (ẋẍ + ẏÿ + żz̈)2

(ẋ2 + ẏ2 + ż2)3
(9)

The values for the curvature and acceleration are summarized

in Table I.

C. Participants

We recruited participants through the J. F. Schouten School

participant database [15]. The database contains people of

all age groups who are interested to participate in scientific

research experiments. Healthy adult participants, aged 20-

45 years, were randomly selected and recruited from this

database. All participants were reimbursed for their partic-

ipation in the experiment. In total, we collected collected

complete data from 18 participants, 10 male and 8 female

for our analysis.

D. Procedure

The experiment took approximately 45 min and consisted

of three parts: (1) Intake (5̃ min), (2) Rating of conditions (3̃5

min) and (3) Final interview (5̃min). A session started with

a short introduction after which the participants were given

an informed consent form to sign before they observed the

robots.

In total 18 conditions were shown to the participants. We

followed a repeated measure design with three independent

variables: acceleration (three levels), curvature (three levels)

and embodiment (two levels). This setup resulted in 3x3x2

independent variables and 5 measures of emotions as depen-

dent variables, i.e., two from the PANAS (positive affect and

negative affect) and three from the SAM (arousal, valance and

dominance).

The participants were randomly assigned to see either the

iCat or the Roomba embodiment first. Every robot performed

nine animations, one for every combination of acceleration and

curvature for the values of low, medium and high, respectively.

The order of the nine animations was randomized. After

every behavior the participants filled in the PANAS and SAM

questionnaires. Most of the participants gave spontaneous

comments in a think-out-loud fashion, which were also noted

down. After the completion of all conditions, a semi-structured

acc. cur. valence arousal dominance positive negative

affect affect

low low 4.89/0.32 6.00/0.20 4.33/0.18 21.00/1.10 15.50/1.00

low med. 4.11/0.29 6.06/0.30 4.11/0.24 20.61/1.35 14.50/0.85

low high 5.44/0.28 5.17/0.32 3.94/0.24 21.56/1.57 17.72/0.89

med. low 5.67/0.31 5.28/0.29 3.78/0.28 20.78/1.26 17.06/0.85

med. med. 4.56/0.27 5.17/0.22 4.00/0.34 21.00/1.61 14.56/0.83

med. high 3.89/0.25 4.33/0.23 4.11/0.27 24.06/1.89 16.00/1.15

high low 5.39/0.37 3.11/0.20 5.22/0.29 24.44/1.57 19.50/1.14

high med. 3.67/0.26 3.61/0.28 5.11/0.35 26.56/1.54 16.78/1.04

high high 5.00/0.28 2.67/0.29 4.11/0.14 27.11/1.37 20.28/1.51

Average 4.73/0.29 4.60/0.26 4.30/0.26 23.01/1.47 16.88/1.03

(a) Mean and standard deviation for Roomba (N=18)

acc. cur. valence arousal dominance positive negative

affect affect

low low 5.39/0.29 6.39/0.27 3.89/0.18 16.11/1.26 16.67/1.13

low med. 3.83/0.34 5.72/0.21 4.17/0.19 22.89/1.18 15.17/0.70

low high 5.06/0.30 5.61/0.29 3.94/0.25 18.61/2.03 14.89/1.08

med. low 5.17/0.22 5.22/0.25 4.22/0.24 20.33/0.71 14.67/0.63

med. med. 3.94/0.24 5.17/0.22 4.17/0.28 22.50/1.64 13.89/1.00

med. high 4.39/0.29 3.56/0.29 4.11/0.36 26.89/1.04 17.28/1.00

high low 4.44/0.37 3.28/0.21 5.44/0.35 28.67/1.01 13.94/1.00

high med. 4.17/0.25 3.83/0.22 4.61/0.18 25.44/1.08 19.33/0.96

high high 4.78/0.31 3.11/0.27 3.89/0.29 25.17/1.23 17.89/1.37

Average 4.57/0.29 4.65/0.25 4.27/0.26 22.96/1.24 15.97/0.99

(b) Mean and standard deviation for iCat (N=18)

TABLE II: Mean and standard deviations. Reported in the

format: mean/std. dev. (acc. = acceleration, cur. = curvature)

interview was performed in which the participants were asked:

1) to give their general impressions on the behaviors, 2) to

describe the differences and similarities of the behaviors,

3) to indicate a preference for behaviors and to elaborate

why and 4) to compare the observed behaviors with behaviors

they would expect from a commercial product. At last the

participants received a small reimbursement according to the

guidelines of the J.F. Shouten participant database.

V. RESULTS

A. Gender effects

First of all, we tested whether gender had an effect. We

performed an analysis of variance with the sex as independent

variable and tested if there is a significant effect on any

combination of acceleration and curvature for the Roomba

and the iCat condition. All combinations summed up to

a total of 90 measurements (three levels for acceleration,

three levels for curvature, two levels for embodiment and

five measurements for valence, arousal, dominance, positive

affect and negative effect). Neither significant main effects nor

significant interactions were found for gender. Hence gender

could be excluded from the following measurements.

B. Perception of affect

In order to test whether the motion features had an impact

on the perception of affect we performed a repeated measure

analysis with the independent variables curvature, acceleration,

embodiment and the dependent variables valence, arousal,

dominance, positive affect and negative affect. The mean

and standard deviation for the measurements for Roomba are

summarized in Table IIa and the according values for iCat are

summarized in Table IIb. The significance levels and partial

eta square effect sizes for the main and interaction effects are

reported in Tables IVa and IVb. Mauchly’s test indicated that
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Fig. 5: Marginal means for acceleration, curvature and embod-

iment using the SAM scale.

sphericity was for none of the cases violated, therefore degrees

of freedom did not have to be corrected.

From Table IVa it can be seen that the embodiment had no

main effect on the measurements, but that in general accel-

eration and curvature showed significant effects. Interestingly,

acceleration had no effect on valance. The marginal means

for acceleration, curvature and embodiment are exemplary

visualized for the SAM scale in Fig. 5. From the graphs it

can be seen that acceleration is correlated to arousal, but that

there is no effect on valance. In contrast, curvature has an

influence on all three measures, even though not all levels

differed significantly from each other.

We compared the results from the PANAS and SAM scales

and found both to be similarly responsive to the manipulations

of the independent variables. In our repeated measure design,

we calculated for every experimental condition a correlation

table for the five measurements, resulting in 18 tables with 5x5

entries. We calculated a mean correlation table by averaging

over the factors. The mean correlation values are reported

valence arousal dominance PA NA

V 1.00 0.11 -0.17 -0.38 0.30
A 0.11 1.00 -0.10 -0.28 0.05
D -0.17 -0.10 1.00 0.28 -0.19
PA -0.38 -0.28 0.28 1.00 0.02
NA 0.30 0.05 -0.19 0.02 1.00

TABLE III: Mean correlation values of the PAD and PA-NA

space. (PA = positive affect, NA = negative affect)

in Table III. The highest absolute value was found between

valence and positive affect. However, comparing the signifi-

cance values, the PAD model indicated that acceleration has

no effect on the perceived valence, which was not visible

when expressed in the positive and negative affect dimensions.

Additionally, there was some discrepancy in the interaction

between acceleration and curvature. While in the PAD space

all dimensions showed a significant interaction, this could not

be reported on the negative affect axis. Furthermore, in the

PAD space there was no interaction between curvature and

embodiment visible. A similar observation can be made when

analyzing the three way interaction of acceleration, curvature

and embodiment. Only along the valence axis this interaction

was significant, while both, the positive and negative dimen-

sions showed significance.

C. Relation of motion features to perceived affect

In order to estimate a relation between the motion and

affective space, we performed a linear regression analysis. As

model parameters we used the linear and squared terms of

acceleration and curvature as well as the linear interaction

between those two. We did not include the embodiment,

because it did not have a main effect in the previous analysis.

Furthermore, we only analyzed a relationship dependent on

the levels of acceleration and curvature in order to be able

to compare between the different embodiments. From the

resulting five parameters, we searched for the best predictors

using a stepwise selection in a linear regression. That is, in

every step the predictor that contributed the most to minimize

the residual error was chosen. The results are summarized in

Table V. The first column gives the order of the predictors,

the second column gives the quality of the approximation,

i.e., how much of the variance is accounted for by the model

the third column gives the corresponding ANOVA results for

testing the approximation. First, from these values it can be

seen that most of the information for perceived arousal is

carried in the acceleration parameter of the motion. Secondly,

even if all ANOVAs report significant results, only small

percentages of the variance could be predicted with these

simple models. This is most evident for the PA-NA space in

which the variance of the negative affect dimension cannot

conclusive be explained with the calculated models.

During the final interview, all but one participant reported

that they had the impression that the robots clearly had differ-

ent emotions or were in particular moods. When asked to de-

scribe the observed behaviors, all participants used emotional

adjectives to describe the robots’ behavior, e.g., “. . . this one

was a little moody. It seemed to be not very happy with what
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acceleration curvature embodiment

F p p.η
2 F p p.η

2 F p p.η
2

V .755 .478 .043 15.726 .000 .481 2.018 .174 .106

A 114.112 .000 .870 19.546 .000 .535 .230 .638 .013

D 11.255 .000 .398 4.687 .016 .216 .084 .776 .005

PA 28.061 .000 .623 4.336 .021 .203 .014 .909 .001

NA 9.457 .001 .357 3.857 .031 .031 3.871 .066 .185

(a) Main effects of acceleration, curvature and embodiment

acc.*cur. acc.*emb. cur.*emb. acc.*cur.*emb.

F p p.η
2 F p p.η

2 F p p.η
2 F p p.η

2

4.331 .004 .203 .146 .865 .009 .381 .686 .022 4.215 .004 .199

3.109 .021 .155 1.708 .196 .091 .704 .502 .040 1.708 .158 .091

4.157 .005 .196 .727 .491 .041 .173 .842 .010 1.019 .404 .057

2.843 .031 .143 2.077 .141 .109 1.027 .369 .057 3.747 .008 .181

1.990 .106 .105 1.033 .367 .057 4.005 .027 .191 5.202 .001 .234

(b) Interaction effects of acceleration, curvature and embodiment

TABLE IV: Significance values for the effects of the independent variables on the measurements and and partial η2 effect

sizes. (N=18) V =Valence, A=Arousal, D=dominance, PA=positive affect, NA=negative affect

predictors Adjusted R2 ANOVA

V (1) a ∗ κ 0.10 F(1,616)=7.26, p = 0.07

A (1) a2(2) κ2(3) a ∗ κ 0.471 F(3,614)=184.03, p < 0.001

D (1) a2(2) a ∗ κ(3) κ 0.10 F(3,614)=23.86, p < 0.001

PA (1) a2(2) κ 0.106 F(2,615)=37.70, p < 0.001

NA (1) a2(2) a(3) κ2(4) κ 0.063 F(4,613)=11.41, p < 0.001

TABLE V: Stepwise linear regression results.

he was doing.”(participant 6). All participants consistently

attributed animacy and almost all participants perceived some

type of personality.

VI. DISCUSSION

The first reaction of all participants after the experiment

has been that they were surprised by the variety of emotions

expressed by the devices. They reported to have almost always

an immediate impression on how the robot felt in a given

condition, and had no difficulties in filling in the scales.

Most interestingly, the above results suggest that there is no

significant difference between the embodiments, despite their

very different physical setup. For both embodiments and in

both scales, participants interpreted the motion patterns in the

same emotional categories. This result has interesting implica-

tions on the design of robotic behavior, because it suggests that

motion design tools can be used across embodiments. Even

more specific, the results show that acceleration is correlated

with the perceived arousal. Therefore, the perceived arousal

can be controlled by varying the acceleration parameter of

the motion. However, no such direct relationship between

acceleration or curvature and valence could be found.

Pollick et al. estimated that most of the information on the

valence axis is encoded in the frequency relations between

limb movements [25]. However, in our experiment the Roomba

robot did not possess limbs, but participants were still able

to perceive different levels of affect. Our results suggest that

the valence information is at least partly encoded in the

interaction between acceleration and curvature. However, this

model did not explain a sufficient amount of the variance to

be conclusive. Analysis of further motion features and models

is required to isolate the valence information from motion

signals.

The significant interaction between acceleration and cur-

vature suggests that these parameters are not perceived in-

dependently from each other. Even though the dimensions

of acceleration and curvature are independent in movement

space and the dimensions valance, arousal and dominance are

independent in affect space. They interfere in the cognitive

process that transforms between the two spaces. This interac-

tion is also influenced by the embodiment, as can be seen in

the three way interaction between acceleration, curvature and

embodiment (see IVb). Based on the spontaneous responses

of the participants, we assume that this effect resulted mainly

from the expectations that the participant had regarding the

behavior of the robots. However, the change of perception can

be mainly attributed to the change of the motion characteristics

and has similar tendency for both embodiments. For example,

leaving the curvature constant but changing the acceleration

from low to high was interpreted in the Roomba condition

as a change from “careful”(participant 27), “moving like

a cat that wants attention”(participant 6), “not determined

wandering around” (participant 9) to “stressed”(participant 4),

“aggressive; guarding an area”(participant 25) or even “very

proud, exhibiting a macho kind of behavior” (participant 7).

The same manipulation in the iCat condition resulted in a

change from “falling asleep” (participant 4) and “calm and

relaxed” (participant 19) to “nervously searching” (participant

16) and “very chaotic and unorganized” (participant 6). More

research needs to be done to clarify the exact structure of the

manipulations.

It furthermore remains to be tested if discrepancies between

the PAD space and positive-negative affect space can be

explained by being a rotational variant of the same space.

For example, Mehrabian claimed that the PANAS model lacks

validity, because it does not capture certain aspects of the

affective space [22]. Furthermore, some participants reported

that they missed words on the PANAS scale such as “happy”,

“tired”, “moody”, “confused” or “disinterested” and therefore

rated the other items lower, because they did not seem to fit

their impression. A specialized questionnaire would have to

be developed that captures possible interpretations of motion

patterns better than the PANAS. In contrast there were no

problems with the SAM scale.

VII. CONCLUSIONS

In this study we investigated the relation between robot

motion and the perceived affective state of the robot. From

literature we derived two motion characteristics that seemed

to be most influential for the perceived affective state, namely

acceleration and curvature. We systematically varied both con-

ditions and tested the perceived affect with two embodiments.

For assessing affect we selected the PANAS and SAM scales,
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which are supposed to be rotational variants of the same space.

With our variations we were able to trigger the perception of

different emotions.

We found that both parameters, acceleration and curvature,

have a significant effect on the perceived affective state. How-

ever, there were slight differences between the two emotional

models that were difficult to explain by being a rotational

variant. In general, we found the SAM to be more appropriate,

because all participants were able to report their general

impression according to the pictographic representation of the

self-assessment manikins.

Furthermore, we found that the embodiment had no signifi-

cant main effect on the perceived affective state, stressing the

importance for carefully designed robot behaviors. Analyzing

the relationship in more detail, we found that acceleration car-

ries most of the information for perceived arousal. However, no

such simple relationship could be found for the dimensions of

valence and dominance or for the dimensions of positive affect

and negative affect. Our results indicate that the information

for valence is at least partly carried by a linear interaction

between curvature and acceleration.

From these results we can derive design knowledge for the

design of movement behaviors of social robotic interfaces. If

the designer wants to convey different levels of arousal he can

adjust the acceleration parameter of the animation accordingly.

Motion can therefore be used as a design modality to induce a

desired perception. Even stronger, the effect of manipulations

also holds across embodiments. Therefore, tools for designing

motion trajectories can be generalized and applied to multiple

embodiments. Further research is needed to investigate such a

model for valence. Especially if a designer intends to convey a

positive or negative emotion it has to be analyzed what motion

features carry this valence information in order to be able to

predict user responses.
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