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Abstract. Visual perception of transformation invariance, such as trans-
lation, rotation and scaling, is one of the important functions of processing
visual information in the Brain. To simulate this perception property, we
propose a computational model for perception of transformation. First,
we briefly introduce the transformation-invariant basis functions learned
from natural scenes using Independent Component Analysis (ICA). Then
we use these basis functions to construct the perceptual model. By us-
ing the correlation coefficients of two neural responses as the measure of
transformation-invariance, the model is able to perform the task of per-
ception of transformation. Comparisons with Bilinear Sparse Coding pre-
sented by Grimes and Rao and Topo-ICA by Hayvarinen show that the
proposed perceptual model has some advantages such as simple to imple-
ment and more robust to transformation invariance. Computer simulation
results demonstrate that the model successfully simulates the mechanism
for visual perception of transformation invariance.

1 Introduction

We can recognize an object regardless of its distance, position or rotation. In the
mathematical term, object recognition is not influenced by its transformation,
such as translation, rotation or scaling. Many recent researches in the fields of
neuroscience, neurophysiology and psychology show that such a transformation-
invariant preprocessing could be a necessary step to achieve transformation in-
variant classification or detection in a hierarchical computational system. In this
paper, we will focus on the computational mechanism for transformation invari-
ance. We will propose a hierarchical model that simulates the mechanism in the
visual pathway. On the other hand, due to biological evolution from nature in the
long term, this mechanism has an important correlation with statistical proper-
ties of natural scenes. Following this way, Barlow[1,2] found that the role of early
sensory neurons in the visual pathway is to remove statistical redundancy in the
sensory inputs, suggesting that Redundancy Reduction is an important process-
ing principle in the neural system. Based on this principle, Gabor-like features
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resembling the receptive fields of simple cells in the primary visual cortex(V1)
have been derived either by imposing sparse over-complete representations[6] or
statistical independence as in Independent Component Analysis(ICA)[8].

However, these studies have not taken transformation invariance into account,
and the question is how well this line of research predicts the full spatiotempo-
ral receptive fields of simple cells. For example, when an image rotates within
receptive fields of simple cells, how do the simple cells and complex cells re-
sponse? Some researchers have begun to bring this question into consideration.
Hyvarinen and Hoyer[9,10] modelled receptive fields of complex cells and Van
Hateren [12]obtained spatiotemporal receptive fields of complex cells. Grimes and
Rao[14] proposed a bilinear generative model to study the translation-invariance.
Berkes[7] investigated temporal slowness as a learning principle for receptive
fields using slow feature analysis. However, there are few models in the literatures
perceiving transformations of objects or images. To investigate the problem, we
apply ICA to learning from natural scenes the transformation-invariant features,
and then use these features to construct a model for transformation-invariant
perception. The goal of the model is to perceive transformation of patches from
natural images.

The rest of the paper is organized as follows. Section 2 introduces a method
for learning transformation-invariant basis functions and then propose a model
for perception of transformation invariance. In section 3, we will demonstrate
these basis functions and perceptual simulation results. The final section gives
the comparison with other related works and models.

2 The Invariance Perception Model

In this section, we first introduce the method for learning the transformation-
invariant basis functions. Then we propose a perceptual model for perception of
transformation invariance.

2.1 Method for Learning Invariant Basis Functions

To obtain transformation-invariant basis functions, the training data sets should
have the possession of transformational properties. The method for generat-
ing the training data will be introduced in section 3.1. Applying ICA on the
training data, sequences of patches with the parameter αi(i = 1, ..., M), yields
transformation-invariant basis functions with parameters same as patches. For
simple explanation of the method, shown in Fig.1, we use the rotation transfor-
mation and the resulting rotation basis functions.

We briefly introduce the learning algorithm of ICA for training sparse basis
functions. For the standard ICA model x = Wu, Cichocki et al.[5] used the
Kullback-Leibler divergence between the distribution p(x;W) of obtained by
the actual value W and the reference distribution q(x) to give the cost function
as

R(x,W) = −1
2

log |det(WWT )| −
n∑

i=1

Elog qi(xi). (1)
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Fig. 1. Method for learning transformation-invariant basis functions. The input data
is a set of natural images. Patches selected from the images are transformed and feed
to the ICA algorithm.

Applying the Natural Gradient rule to the cost function, the learning algo-
rithm of W(the corresponding basis functions A = W−1) can be described[3,4]
as

�W = −η(t)
∂R

∂W
WT W = η(t)[I − 〈ϕ[x(k)]xT (k)〉]W, (2)

where, ϕi(xi) = − q
′
i(xi)

qi(xi)
. q(xi) is a supergaussian probability distribution, for

instance, the Laplace pdf.

2.2 Model for Perception of Transformation Invariance

In this section, we will propose a model for transformation-invariant perception,
shown in Fig. 2. The invariance perception model consists of three layers. The
first layer is to receive the input patterns which are two patches with parameters
of αi and αj , respectively. Here, αi and αj belong to a same group of parameters.
For rotation, α is in the range of zero and three hundred sixty degree by an inter-
val of fifteen. For scaling, α in the range of from one to two times by ten percent.
And, for translation, α in the range of size of input images. For simplicity, we
only discuss in detail rotational samples and basis functions in the model. The
middle layer of the model is to sparsely represent input patterns with a group of
basis functions which is one of three groups respectively including translational,
rotational, and scaling bases, shown in Figs.{3,4,5}.

After the neurons respond to the stimuli uαi at time t1 and uαj at time
t2 , the final layer of the model calculates the correlation coefficients between
any two responses Xt1

αi
(i = 1, ..., M) and Xt2

αj
(j = 1, ..., M), and of which the

maximum is selected to determine the relative dispersion. The index (i, j) of
the maximum in coefficient matrix will tell us the relative dispersion such as
counter-clockwise rotation angle Δθ, translational distance Δd, and scaling ratio
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Fig. 2. Model for transformation-invariant perception. For example, the input patterns
are the rotational data. xt1

αi,k
(k = 1, 2, · · · , N) denotes the response of the k-th neuron

in the row αi responding to stimulus uαi at time t1 through the basis function αi,k. And
so does response xt2

αj,l
(l = 1, 2, · · · , N) at time t2. Xt1

αi
denotes the vector of responses

that the neurons in the row αi respond to stimulus uαi at time t1 through the subsets
αi of basis functions. Namely, Xt1

αi
= [xt1

αi,1 , xt1
αi,2 , · · · , xt1

αi,N
]T .

Δr. It is necessary to note that we only need the relative transformation, not
the absolute value of parameters of the stimuli. For rotation, if j ≥ i, Δθ =
(j − i) × 360/M ; otherwise, Δθ = (M + j − i) × 360/M . For translation, i and j
have their corresponding coordinates (xi, yi) and (xj , yj), respectively. We can
calculate the relative translation distance Δd =

√
(xi − xj)2 + (yi − yj)2 and

the moving direction according the relative position of coordinates (xi, yi) and
(xj , yj). For scaling, if j ≥ i, Δr = rj − ri; otherwise, Δr = ri − rj . Here, rj

and ri denote the scaling ratio of the j-th and i-th subsets of basis functions,
respectively.

3 Simulations and Results

We present experimental results to verify the performance of our proposed model
and the learning algorithm. First we present the basis functions of transformation
invariance including translation, rotation and scaling. Then, as an example, the
rotation-invariant perception is discussed.

3.1 Training Data

To learn basis functions from natural scenes, we sample a sequence of small
patches of size 10×10 from a set of big natural images by three methods of
transformations such as translating, rotating, and scaling. This three data sets
are used to learn transformation-invariant basis functions. For example, the sam-
pling method of rotational data set is described in detail as follows.

A sampling window is randomly located on a big natural scene and a patch
is selected. Then fix the same center, clockwise rotate the sampling window by
an interval of 15 degree, another patch is sampled. Again, rotate the window and
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sample next one, till twenty-four times. Similarly, the total twenty-four of patches
are sampled and then reshaped to one column vector as a sample, size of 2400-
by-1.

We select patches from a set of big natural images by the above sampling
methods and generate three data sets which are composed of 20000 samples
respectively. All data sets are then low-pass filtered by reducing the dimension
of the data vector by principle component analysis (PCA), retaining the 100
principal components with the largest variances, after which the data is whitened
by normalizing the variances of the principal components. These preprocessing
steps are essentially similar to those used in [6,9].

3.2 Transformation-Invariant Basis Functions

Respectively using the translational, scaling, and rotational training data to
learn transformation-invariant basis functions, the translation-, scaling-, and
rotation-invariant basis functions are yielded, shown in Figs.{3,4,5}. From these
figures, we note that the Gabor-like basis functions, which are localized, ori-
ented, and bandpass, resemble receptive fields of simple cells found in V1[13].
Meanwhile, there also are different characteristics, as follows, among three types
of basis functions.

Fig. 3. Subsets of translation-invariant
basis functions

Fig. 4. Subsets of scaling-invariant ba-
sis functions

Translation-invariant basis functions. In Fig. 3, bigger rectangles composed
of 5 × 5 basis functions with the same orientation are similar to the receptive
fields of complex cells which activate while the same orientational contents are
moving within their receptive fields.

Scaling-invariant basis functions. Fig. 4 shows that basis functions in one
row represent the receptive field of a complex cell which performs the perception
of scaling invariance. Those in one row are subsets with the same scaling. The
scaling interval is 10%.

Rotation-invariant basis functions. In Fig. 5(Left), a group of basis func-
tions in one row is similar to the receptive field of a complex cell which performs
perception of rotation invariance. The neighboring basis functions in a row have
an interval of fifteen degree of counter-clockwise rotation. Basis functions in a
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Fig. 5. Subsets of rotation-invariant basis functions. Right : basis functions (in the left)
are rearranged in counter-clockwise along the circumference with an interval of fifteen
degree. Every circle includes basis functions in one row (left).

column are a group of which elements are used to reconstruct the input pat-
terns while given corresponding activities of simple cells. For the convenience of
viewing the regularity, these basis functions are arranged in counter-clockwise
along the circumference with an interval of fifteen degree, shown in Fig. 5(Right).
Every circle resembles the receptive field of a complex cell.

3.3 Perception Experiments

For anyone of three transformations: translation, rotation, and scaling, the same
experimental method is used and the invariant results are easy to obtain. Here,
the invariance means that complex cells maintain their existing states, while
a patch is moving, rotating and scaling within their receptive fields. In other
words, we can recognize the same object however it moves, rotates, and scales
within our field of vision.

An example of rotation perception is introduced and its goal is to calculate
the relative rotation angle. According the perception model in section 2.2, two
input patterns with different rotational angles are needed.

Randomly select two image patches uαi and uαj (i.e. i=6, j=11) from a
sample data which is composed of twenty-four patches, shown in Fig. 6. For
example, the sixth and eleventh of stimuli represents, respectively, rotational
angles of ninety and one hundred and sixty-five in degree. The sixth patch is
first input to the perception model at time t1and the eleventh is second at
time t2.

Computing the responses of neurons at time t1 and t2 and the matrix of the
correlation coefficients Coeff(Xt1

αk
, Xt2

αl
)(k, l=1, 2, · · · , M), here M=24. Find the

max value from any row in the matrix and obtain its corresponding index of its
row and column, i.e. at the first row, the index of max value is (1,6). So, we
know the relative rotation angle is (6-1)×15=75 degree. It is necessary to note
that we only need the relative transformation, not the absolute value of angles
of the stimuli.

In more detail, at time t1 and t2, the responses Xt1
α6

and Xt2
α11

are plotted
in the last column of Fig.6. It is easy to know Xt1

α6
and Xt2

α11
are very similar

to each other. The difference between Xt1
α6

and Xt2
α11

, plotted in Fig. 6, shows
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Fig. 6. Rotation-invariant perception

the rotation invariance of neuronal responses while the input pattern is rotating
from time t1 to t2.

4 Discussions and Conclusions

We have proposed a method for learning transformation-invariant basis functions
and a model for perception of transformation invariance. Computer simulation
results show that our proposed model do work well in simulating the perceptual
function of transformation invariance in the brain. Our proposed model has some
different properties compared with others such as bilinear generative models [14]
and Topo-ICA[11].

First, bilinear generative models[14] proposed by Grimes and Rao only study
the translation invariance and however, ours is able to provide more transforma-
tion invariant basis functions such as translational, rotational and scaling basis
functions. Our model also performs perception of the three types of transfor-
mations. On the other hand, our algorithm is much simpler whereas that of
the bilinear model is more complex. Second, the Topo-ICA model[11] provided
by Hyvarinen et al. considered the second-order correlation of responses of sim-
ple cells, but the Topo-ICA model cannot produce overcomplete basis functions
because of constrains of orthogonality.

Our future work will focus on learning other transformational basis functions
such as three dimensional geometry transformations and on transformational
perception of more complex stimuli. We are also going to extend the model
to a framework for learning other transformation-invariant basis functions and
perception of other transformation such as view changes.
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