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Abstract

In this article, we propose a new set of acoustic features for automatic emotion recognition from audio. The

features are based on the perceptual quality metrics that are given in perceptual evaluation of audio quality known

as ITU BS.1387 recommendation. Starting from the outer and middle ear models of the auditory system, we base

our features on the masked perceptual loudness which defines relatively objective criteria for emotion detection.

The features computed in critical bands based on the reference concept include the partial loudness of the

emotional difference, emotional difference-to-perceptual mask ratio, measures of alterations of temporal envelopes,

measures of harmonics of the emotional difference, the occurrence probability of emotional blocks, and perceptual

bandwidth. A soft-majority voting decision rule that strengthens the conventional majority voting is proposed to

assess the classifier outputs. Compared to the state-of-the-art systems including Munich Open-Source Emotion and

Affect Recognition Toolkit, Hidden Markov Toolkit, and Generalized Discriminant Analysis, it is shown that the

emotion recognition rates are improved between 7-16% for EMO-DB and 7-11% in VAM for “all” and “valence”

tasks.
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1. Introduction
It is well known that human speech contains not only

the linguistic content, but also the emotion of the

speaker. The emotion may play a key role in many

applications like in entertainment electronics to gather

emotional user behaviors, in Automatic Speech Recogni-

tion to resolve “how it was said” other than “what it was

said”, and in text-to-speech systems to synthesize emo-

tionally more natural speech. Therefore, in human-

machine interaction applications, it is important that

emotional states in human speech are fully perceived by

computers [1,2].

However, detecting the emotion content of an audio

signal has several challenges. The main difficulties stem

from the fact that it is quite difficult to define what

emotion means and how it can be categorized in a pre-

cise way [3]. There are ongoing debates concerning how

many emotion categories exist, whether the categories

should classically be represented in a discrete (i.e., sad,

happy) or continuous manner and how to approach

long-term and short-term transitions of emotional states

and debates as to how to seek measurable correlates of

emotions. Therefore, different approaches exist to model

emotions in the psychological literature [4], details of

which will be provided in Section 6. In this study, we

use two-dimensional continuous space, which is com-

monly used with the purpose of benchmarking among

various emotion corpora which are already mapped

onto diverse emotion groups [5].

Another critical research challenge in the emotion-

detection problem is to determine the features that

influence the recognition of emotion in speech [6]. The

precise feature extraction from subjective patterns such

as emotion is a highly challenging issue and depends

strongly on the application and database at hand. There

is considerable uncertainty as to the best feature set for

classifying emotional data and which classifiers to use.

The existence of different contents, genders, speakers,

and speaking styles raise complications because these

properties have direct affect on the features such as

pitch, and energy contours [2].

Existing emotion-detection methods make use of

acoustic features which are mostly related to speech

recognition; fundamental frequency or pitch, energy,

speaking rate, and spectral coefficients such as Mel-fre-

quency cepstral coefficients (MFCCs) [2,6]. There are

two standard popular and freely available toolkits using

these generic feature sets: the Munich Open-Source
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Emotion and Affect Recognition Toolkit (openEAR) and

the Hidden Markov Toolkit (HTK). HTK [7] is a very

basic approach employing the features that is used for a

very broad selection of speech and general audio-recog-

nition tasks. The openEAR is a more specifically tailored

emotion-detection tool [8], which extracts more than

4,000 features by 39 functionals of 56 acoustic low-level

descriptors (LLDs) and corresponding first- and second-

order delta regression coefficients. Recently, a General-

ized Discriminant Analysis (GerDa) method is proposed

based on deep neural networks [9]. GerDa is able to

learn 2D features extracted from 6552-dimensional

openEAR features. However, it requires a semi-super-

vised pre-optimization of the several free parameters

corresponding to hidden layers of the GerDa deep

neural network.

Since the conventional features are originally proposed

for speech recognition, they may not fully model the

emotion perception of the human ear [10,11]. This is

because a vast majority of the traditional features, such

as MFCC, are generated for short speech frames to

decode the phonemes. However, the emotional state of

the speaker is unlikely to change as fast as phonemes

[11,12]. Consequently, until now, a high performance

emotion detector could only be achieved by using very

large feature sets [5,7] or small feature sets in combina-

tion with highly complex classifiers [9]. The results in

the literature verify that existing features are not ade-

quate especially in the valence domain where dimen-

sions categorize emotions according to them being

pleasant or unpleasant.

In this article, we propose a set of acoustic features

which are designed to detect the perceptual content of

the speech rather than the conventional features that

are targeted for speech recognition. Thus, we define a

new method which is more compliant with the subjec-

tive nature of the human emotion depending on the

perceptual evaluation of human auditory system. The

proposed set referred as perceptual feature set consists

of a 9-dimensional feature vector with 7 low level and 2

statistical descriptors. We use support vector machine

(SVM) and Gaussian mixture model (GMM) as the pri-

mary classifiers which efficiently model diverse statistics

of the emotional data. Preliminary version of the percep-

tual feature set is presented as a conference paper in

[13]; however, in this study, a new decision rule that

improves the recognition rate is designed and used for

the emotion recognition. The new decision rule referred

as soft-majority voting (S-MV) forces the classification

as a combination of minimum variance with the highest

posterior probabilities for each category thus strength-

ens the majority voting.

We benchmarked our emotion classification perfor-

mance with the performance reported in [5,9,14], which

is achieved by HTK [7], openEAR [8], and GerDa [9]

tools, for comparison purposes. We report the results

on two databases, i.e., EMO-DB [15] and VAM [16].

Our test results demonstrate that on the average, the

perceptual feature set outperforms the legacy features in

terms of classification accuracy for valence. The rest of

this article is organized as follows. The related study is

summarized in Section 2. The emotional datasets used

in tests are described in Sections 3. The concept of

emotional variances and the mathematical derivation of

the perceptual features are, respectively, introduced in

Sections 4 and 5. The test results are summarized in

Sections 6. Finally, conclusions are given in Section 7.

2. Related study
In this section, we provide an overview on the conven-

tional features and the emotional category definitions in

the literature. We also point out the problems encoun-

tered in existing emotion-recognition systems. Our

initial consideration is the emotional categorization

methods where the interpretation accuracy of expres-

sions and physiological responses is challenging. Later,

we will look into the conventional features employed in

emotion detection and will discuss the associated

problems.

2.1. Emotion representation in discrete and continuous

spaces

According to research in psychology, three major

approaches are of concern that affect emotion modeling:

categorical, dimensional, and appraisal-based approach.

Since the appraisal-based approach is not prevalently

used because of its complex and sophisticated measure-

ments of change [4], we concentrate on the mostly

employed categories; the categorical and the dimen-

sional approaches.

Categorical approach considers the definition of

diverse emotion classes that are basic and popular uni-

versally, called basic emotions. Six basic emotions are

defined by Ekman [17] which we are familiar with; hap-

piness, sadness, anger, fear, surprise, and disgust. How-

ever, people may reveal rather complex emotional

modes; therefore, a single label or discrete class may not

reflect the actual affective state [4].

An alternative methodology is the utilization of con-

tinuous emotion dimensions. The use of dimensional

description of human affect defines the dependency of

the categories of one another; rather than their depen-

dency as in categorical description. A three-dimensional

emotion space is proposed: arousal (activation), potency

(power), and valence (pleasure) evaluation [18]. Another

alternative is simpler two-dimensional emotion space:

arousal and valence. Yet, the most widely used dimen-

sional model is based on the assumption of Russell [19]
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that each basic emotion is represented by a bipolar

entity being a part of the same emotional dimension in

two-dimensional emotion space. The proposed poles are

relaxed versus aroused for the arousal and pleasant ver-

sus unpleasant for the valence. We can conclude that as

the categorical approach discretizes the emotion space

model into classical fragments, the dimensional method

defines a continuous emotion space which is accepted

more associated with the real life experiences. According

to these findings, we have used dimensional approach as

will be further described in Section 6.

2.2. Conventional features in audio emotion detection

A proper selection of features plays a substantial role in

the classification performance, since pattern recognition

techniques are generally dependent on the problem

domain. Therefore, selection of the suitable features is

an important issue in the design of an audio emotion

detection system.

Acoustical speech features reported in the literature

are shown in Figure 1[2]. Existing systems use a number

of integrated continuous, qualitative, spectral as well as

the Teager energy operator (TEO)-based features.

Energy and pitch are the primary continuous acoustical

features which are heavily used in emotion recognition.

Since arousal refers to the amount of energy required to

express a certain emotion, according to the studies

reported in [2], the arousal state of the speaker affects

the overall energy, energy distribution across the fre-

quency spectrum, and the frequency and duration of

pauses of speech signal. On the other hand, since the

short-term speech energy is closely related with activa-

tion or arousal dimension of the emotion, its usage in

the conventional features contributes to the classifica-

tion of emotions which have similar arousal level [20].

Other continuous features are related to the funda-

mental frequency (F0), the articulation rate, and the

spectral information in voiced and unvoiced portions of

speech. The fundamental frequency that is produced by

the pitch signal, also known as the glottal waveform,

carries emotional information because of its dependency

on the tension of the vocal folds and the subglottal air

pressure. The vibration of the vocal folds is the source

of the pitch signal. The time elapsed between two suc-

cessive vocal fold openings is called pitch period T,

while the vibration rate of the vocal folds is the funda-

mental frequency of the phonation F0 or pitch fre-

quency [6]. High glottal volume velocity indicates a

music like speech like joy or surprise and low velocity

stands for modes such as anger or disgust.

Numerous features are applied to describe the shape

of the vocal tract which is modified by the emotional

modes. Formants are one of the leading features which

represent vocal tract resonances that form the spectrum

[6]. On the other hand, the emotional content of an

utterance is strongly related to its voice quality [1,2,6].

According to Cowie et al. [1], the voice quality features

are grouped into four measurement categories: (i) voice

level, (ii) voice pitch, (iii) phrase, phoneme, word, and

feature boundaries; (iv) temporal structures. However,

Continuous 

Speech 

Features 

TEO-based Qualitative Spectral 

Pitch 

Energy 

Formants 

Voice quality: 

harsh, tense,  

breathy 

LPC 

MFCC 

LFPC 

TEO-FM-Var 

TEO-Auto-Env 

TEO-CB-Auto-Env

Figure 1 Categories of speech features [8]. Examples of features reported in the literature can be grouped into four categories [8]: continuous

features, qualitative features, spectral features, and TEO-based features.
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there is ambiguity and subjectivity in the description of

voice quality terms such as tense, harsh, and breathy.

Various research studies trigger an ongoing debate

whether tense voice is associated with anger, joy, and

fear; lax voice is associated with sadness and breathy

voice is associated with both anger and happiness

whereas sadness is associated with a ‘resonant’ voice

quality.

In addition to time-dependent features such as pitch

and energy, spectral features are often selected as a

short-time representation for speech signal. In order to

comply with spectral distribution of the auditory system,

the estimated spectrum is often passed through band-

pass filters or critical bands. The Bark scale, the Mel-fre-

quency scale, the modified Mel-frequency scale, and the

ExpoLog scale are the commonly used auditory filter

bands. MFCC is a frequently used spectral feature which

exploits the human auditory frequency response with

the help of Mel-Scale frequency response [12]. It is hard

to mention an agreement among the experimental

results whether MFCCs achieve poor or robust emotion

detection [2,12,20,21]. Alternative to MFCC, the log-fre-

quency power coefficients which include the pitch infor-

mation are considered for emotion detection as well [6].

The number of harmonics that is produced by the

nonlinear air flow in the vocal tract is another useful

feature for emotion detection [6,11]. The emotional

state of the highly activated modes of anger or stressed

speech is caused by the fast air flow which causes vor-

tices located near the false vocal folds providing addi-

tional excitation signals other than the pitch. Additional

excitation signals in the spectrum are named as harmo-

nics and cross harmonics which form the basis for TEO

[2].

It is concluded from the related study that the con-

ventional features have a robust performance in arousal

dimension rather than the valence domain. This is

because it is confirmed that pitch appears to be an

index into arousal [2]. Another well-accepted finding in

[2,22] is that mean of the fundamental frequency (F0),

mean intensity, speech rate, as well as pitch range, blar-

ing timbre, and high-frequency energy are positively

correlated with the arousal dimension as well. Shorter

pauses and interbreath stretches are indicative of higher

activation [9,14]. It is also reported that the unweighted

recognition performances achieved for valence mode is

highly lower than the arousal. Particularly, TEO features,

continuous features such as the fundamental frequency

and the pitch features are recommended for classifying

high-arousal versus low-arousal emotions [2]. Conse-

quently, it is obvious that there is a strong need for the

definition of features which can distinguish different

emotions which are arousally similar and valencely dif-

ferent (i.e., angry, fear or sad, bored). Another important

issue that needs to be pointed out is the specification of

optimal number of features [23]. Existing emotion

detection systems mostly employ a variety of features to

improve the recognition accuracy without deeply exam-

ining the impact of individual features. This is mainly

because the conventional features are optimized for

speech/speaker recognition rather than the emotional

content, hence deal with the structure in spite of

perception.

In this article, we propose a new set of acoustic per-

ceptual features for automatic emotion recognition from

speech signals. The features are based on the perceptual

evaluation of audio quality (PEAQ) standard known

from ITU specifications [24,25]. Starting from the outer

and middle ear models of the auditory system, we base

our features on the masked loudness and perceptual

loudness difference concept which defines relatively

objective criteria, reference, and emotional difference,

for emotion detection. The features include the partial

loudness of the emotional difference, emotional differ-

ence-to-mask ratio, measures of alterations of temporal

envelopes, harmonic structure of the emotional differ-

ence, the occurrence probability of emotional blocks,

and perceptual bandwidth of emotional audio. It is

shown that the novel perceptual features in addition to

the introduced reference and emotional difference con-

cepts provide an improved recognition performance in

general and particularly for valence.

3. Representation of the emotional content
As it is mentioned in the previous section, among

acoustic features energy and loudness play an important

role to correlate the speech with the underlying emo-

tion. Most researchers believe that prosody continuous

features such as energy and loudness convey much of

the emotional content of an utterance [1,12,26].

In the light of this information, we base the principles

of our proposed features on the energy and loudness

which involves modeling the excitation pattern on the

basilar membrane by simulating the acoustic signal

transformations in the ear according to the perceptual

model of the human auditory system. Unlike the exist-

ing features, we emphasize the perceptual features

which better highlight the perceptual nature of the audi-

tory system [13,24]. This is achieved by detecting the

emotional differences which are derived by masking the

excitation patterns of emotional signals. In order to take

advantage of resemblance, we also make brief compari-

sons between the aforementioned legacy and the percep-

tual features.

In order to model the emotional content, we intro-

duce nine features that can be categorized as a fusion of

the continuous, spectral, and TEO-based features under

the perceptual voice quality framework. If we briefly

Sezgin et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:16

http://asmp.eurasipjournals.com/content/2012/1/16

Page 4 of 21



present the features, we propose perceptual bandwidth

of the emotional signal as a feature that can be linked

with the fundamental frequency. The emotional signals

alter according to the perceived timbre, dullness, or

muffling effects. To measure this effect, we compute a

rough estimate of the bandwidth with respect to an

adaptively computed noise floor on the high-frequency

bands of the spectrum. Perceptual bandwidth behaves

like sort of an adaptive noise floor threshold finder

which makes perceptual bandwidth closely related with

the overall distribution of the spectrum.

The importance of the harmonics is mentioned in Sec-

tion 2. In our system, the harmonic structure of the emo-

tional audio is measured with a cepstrum-like analysis

which gives a tonal content measure referred as average

harmonic structure of magnitude (AHSM). Another impor-

tant emotional cue is excitation level extracted based on the

perceptual masking model. Average number of emotional

blocks (AEB) as a feature provides a measure for the occur-

rence of high excitation levels through successive frame

groups analyzed in Bark scale. Loudness is also a frequently

used asset in speech where our normalized emotional dif-

ference (NED) feature remarks the “local loudness” level in

addition to the “loudness”. Another useful feature is the

normalized spectral envelope (NSE). The NSE enables us to

model the envelope of loudness variations between emo-

tional categories through successive frames.

The main divergence and advantage of our features

rely on the perceptual preprocessing steps that are used

to model the human auditory system. These perceptual

processes cover concepts such as, weighting the spectral

components of the audio with the frequency response of

the outer and middle ear, using masking models includ-

ing hearing threshold, and forward and backward mask-

ing models. Using these processes, we reformat the

energy in a perceptual manner which becomes more

compliant to the human auditory system.

The proposed features also have similarities to the

MPEG7 descriptors [12] because both intend to repre-

sent perceptual audio content thus aim not to rely on

speech context. MPEG7 comprises a series of 18 generic

LLDs including audio spectrum envelope, harmonic

ratio, MFCCs, audio spectrum flatness-centroid-spread,

spectral roll of frequency, spectral flux, zero crossing

rate, and higher-order statistics derived from the LLDs.

The MPEG7 descriptors can be interpreted as a com-

promised feature set between the conventional features

and the perceptual features. However, unlike the pro-

posed features, the MPEG 7 features are derived based

on simple hearing threshold of auditory system rather

than a perceptual auditory model, hence does not reflect

the emotional content efficiently. Detailed formulation

of the introduced features is presented in Section 5.

4. Modeling emotional variances
Before giving the formulation of the feature set in this

section, we should remark that the subjective nature of

the emotion forces researchers to employ a reference

criteria which scales the effect of this subjectivity. Con-

ventionally, features such as harmonics-to-noise ratio

[27] and preprocessing methods like database normali-

zation involving speaker, corpus, language, or gender are

used to cope with the need of defining a reference cri-

teria [14] in emotion detection. It is known that the

normalization increases the speaker, corpus, language,

or gender dependency while increasing the emotion

recognition rate. On the other hand, the measurement

of perceptual voice quality differences has been achieved

by performing a kind of normalization or noise level

estimation to quantify the difference with respect to a

reference [24,25].

In a similar manner, we propose the hypothesis that

the emotional differences (or variances) are more dis-

criminative than the emotional data itself where the

emotional differences are determined through percep-

tual masking. We can undertake this argument as

handling the energy difference between emotional

modes is a more robust method in comparison to

studying solely on the energy of a single emotional

mode. To lay over this theoretical approach on a prac-

tical basis, we make use of a reference concept to dis-

tinguish emotional modes with respect to another

emotional category. Our proposed feature vector

reflects the variations of every emotional audio sample

from the reference audio set. The resulting feature vec-

tor is called the perceptual feature vector since we use

ITU perceptual model in feature extraction. The

frame-wise computation of the perceptual features is

given in Figure 2. Let M denote the dimension of the

perceptual feature vector which is set to 9 in this

study. In order to efficiently model the characteristic

of an emotional mode, the perceptual difference fea-

tures computed in each audio frame are averaged over

Y frames and a single average feature vector is estab-

lished for the relevant emotional and reference audio

signal pair, as it is shown in Figure 2.

In our system, emotional variances of both the train-

ing and test audio sets are modeled with respect to the

same reference set. Data belonging to test speaker is not

included in the reference set, thus there is no need for a

priori information about all emotional categories of the

test speaker. This is an advantage of the proposed

method regarding real-time applications. It is also not

necessary to use all reference records during classifica-

tion. Although our tests demonstrate that the emotional

category of the reference set does not play a major role

in emotion recognition performance, the reference audio
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set is chosen in such a way that to highlight between

class variations. Note that size of the reference set

should be appropriate as in the case of all training prac-

tices. The role of the reference set is depicted in Figure

3. Let N be the size of the reference set. An emotional

utterance, i.e., an utterance with mode angry shown in

Figure 3, is modeled by N feature vectors each including

M features.

frame1 reference 

audio 

emotional 

audio 

feature 1 

feature 2 
 

 

feature 9 

time 

time 

frame Y 

feature 1 

feature 2 
 

 

feature 9 
 

perceptual 

feature vector 43 ms 43 ms 

feature 1 

feature 2 
 

 

feature 9 

frame1 frame Y 

averaging 

Figure 2 Frame-based perceptual feature extraction. In order to efficiently model the characteristic of an emotional mode, the perceptual

features computed in each frame are averaged over Y overlapping frames. Hence, a single M-dimensional average feature vector is extracted

from each emotional and reference audio pair and is used as a training or test vector.

ref (1) – ANG(1)  

ANG (1) 

ref (1) 

ref (N) 

emotional  

audio 

= 

N feature vectors 

for each utterance

N reference  

audio 

emotional 

difference 

reference  

audio set 

ref (N) - ANG(1) 

[  f
11 , ... , f1M ]  

[ f
N1 , ... , fNM ]  

perceptual 

feature vectors 

Figure 3 Coupled reference set and the perceptual features. An utterance is represented by N perceptual feature vectors each extracted

with respect to a reference audio sample. Hence, the perceptual feature vectors reflect the variation of every emotional audio sample from the

reference set.
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The perceptual vectors representing each utterance

are exposed to the SVM/GMM classifier and each test

utterance is classified on the assessment of the posterior

probabilities from the emotional classes. The architec-

ture of the proposed system is shown in Figure 4. In

our previous study [13], we applied majority voting to

improve the recognition rate by the way of maximizing

the probability on the instance base. The drawback with

this procedure is the partial utilization of the posterior

probabilities as the category probabilities are close to

each other.

In this study, we propose a decision rule which can be

interpreted as an S-MV rule. The new approach

enriches the support factors for decision boundaries

thus providing a more robust and immune structure

involving the selection of the reference set. Equations

(1) to (4) define the new decision rule stemming from

the statistics of the posterior probabilities generated by

the SVM/GMM classifier. Let j be the index for emotion

categories where j = 1,2 for pairwise classification that

we employed. wj stands for the class label j, xi is the ith

perceptual feature vector where p(wj|x
i) is the condi-

tional probability of feature vector xi being classified

with class label wj.

We decide on a final score in S-MV for emotional

labels. We try to force the achieved conditional prob-

abilities p(wj|x
i) to a higher level with a decision rule.

Pi
jfinal in Equation (1) is the trivariate decision metric,

which provides the final score of decision

Pi
jFinal = Pi

jPr + Pi
jVar + Pi

jV (1)

The final score is computed for each category j based

on feature vector xi of each utterance. The category

with the highest score Pi
jFinal is assigned to the vector

xi. In the breakdown of the final score, Pi
jPr shown in

Equation (2) governs the mean of the conditional prob-

abilities where N is the size of the reference set. This

subcriterion enables the emotion labeling with the

higher posterior probability

Pi
jPr =

1

N

N
∑

i=1

p(wj|x
i), (2)

where j = 1, 2, and
∑

j P
i
jPr = 1.

We also favor perceptual vectors with the lower var-

iance value, Pi
jVar as given in Equation (3), where ξj is

the variance of p(wj|x
i) and T is the sum of all the var-

iance values through j categories. Thereby, we reward

the category having lower variance among the condi-

tional probabilities generated by SVM/GMM

Pi
jVar = 1 −

ξj

T
, (3)

Soft 

majority 

voting 

Feature 

extraction 

Training 

perceptual features 

Classifier 

GMM / SVM 

Feature 

extraction 

Test 

perceptual features 

Reference 

test  

audio files 

training  

audio files 

reference 

audio files 

emotion 

category

Figure 4 Architecture of the perceptual feature extraction and the classification system. The reference set is shared by both the training

and the test datasets. For each training/test audio utterance, N perceptual vectors are extracted and fed into a classifier. Classifier design has

been performed based on the perceptual features extracted from the training data. Similarly, the test features are derived from the test data. S-

MV has been used for the category labeling.
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where

j = 1, 2, ξj =
1

N

∑N
i=1

(

p(wj|x
i) − Pi

jPr

)2
T =

∑2
j=1 ξj,

and
∑

j P
i
jVar = 1 .

However, our study revealed that additional mechan-

isms are necessary to avoid the confusion on the cate-

gory borders, particularly for valence. The primary need

comes from the limited size of the reference set N refer-

ring to the sparse data. The voting score PjV in Equation

(4) applies a voting system which makes use of the rela-

tive probability values of the categories by a quantifica-

tion linear function g(p(wj| x
i)).

Pi
jV =

1

N

N
∑

i=1

g
(

p(wj|x
i)
)

, (4)

where g
(

p(wj|x
i)
)

=

⎧

⎪

⎨

⎪

⎩

1 arg

{

max
j

(

p(wj|x
i)
)

}

0 otherwise

and

∑

j
Pi

jV = 1

The size of the reference set plays an important role

for the S-MV. As the size of the reference set N

increases, the amount of statistical data explored is

increased as well thus more precise performance can be

reported. On the other hand, higher the N, higher the

computational complexity. Hence, for each corpus, we

have specified the N heuristically considering this trade-

off.

We call this overall approach S-MV that takes greater

amount of statistical data into consideration with regard

to applying solely majority voting as in our previous

study [13].

5. Formulation of the perceptual features
In this section, we first give the notation and summarize

the basic preprocessing steps of perceptual masking.

Later, we present the mathematical formulation to

describe how we derived each feature.

5.1. Preprocessing

In the preprocessing step, time signals sampled at 16

kHz are divided into frames of 43 ms with 50% overlap

where the emotional audio signal behaves in a stationary

manner by which we can better model its statistics. Let

sn[kt, n] denote the temporal domain signal where n is

the index of time-frames and kt is the time sample

index. In order to apply short-time Fourier Transform

(STFT), the windowed audio frame can be represented

as

sw[kt , n] = hw[kt]sn[kt , n], (5)

by using the Hann window

hw[kt] =
1

2

√

8

3

[

1 − cos

(

2πkt

NFT − 1

)]

, (6)

where NFT is the is the size of the DFT which is equal

to 2048 in this study.

Successive frames of the time-domain signal are trans-

formed to a basilar membrane representation based on

the PEAQ psycho-acoustic model [24,25]. Hence, first

each windowed frame is transformed to the frequency

domain by taking STFT. Let the transformed and wind-

owed audio frame be expressed as

F[kf , n] =
1

NFT

NFT−1
∑

kt = 0

sw [kt , n] e
− j

2π

NFT
kf kt

, (7)

where kf is the frequency bin index. In order to extract

the perceptual components of the audio spectrum, a

mapping reflecting the outer and middle ear frequency

responses is applied on the spectral components, yield-

ing the “Outer ear weighted DFT outputs“ given as

Fe[kf, n] =
∣

∣F[kf, n]
∣

∣ · 10

W[kf]

20 .
(8)

The weighting function W[kf] shown in Equation (8)

represents the effect of the ear canal and the middle ear

frequency response [24,25]. The outer middle ear fre-

quency response is formulated as

W[kf] = −0.6 · 3.64 · kf
−0.8 + 6.5 · e−0.6·(kf−3.3)2

− 10−3 · (kf)
3.6 (9)

where kf denotes the frequency bin index.

Note that these weights enable us to filter the spectral

components according to the human auditory system,

because both the outer and middle ears act as band pass

filters. Hence, the outer and middle ear transfer func-

tions limit the ability to detect low-amplitude audio sig-

nals and affect the absolute threshold of hearing [24,25].

According to the frequency response of the outer and

middle ears, the absolute threshold of hearing tend to

be lowest in the 2-3 kHz band and increases with

increased or decreased frequency. The frequency com-

ponents lower than 1 kHz are drastically attenuated and

the components between 3 and 4 kHz become stronger

and perceived better. The frequency borders of the band

pass filter range from 80 to 18000 Hz.

Unlike the conventional audio feature extraction mod-

ules that mostly operates in Mel scale, in which speech

contents are efficiently modeled rather than emotion,

we propose working on perceptual spectrums derived in

Bark scale. Hence, a mapping from the frequency

domain to Bark scale is performed. Such an
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approximation leads to the notion of critical bands or

perceptual scales in other words. Hence, the frequency

bins of the attenuated spectral energy values are

grouped into z = 109 critical bands as in the basic ver-

sion of the PEAQ model. The attenuated spectral energy

values are mapped from frequency domain and grouped

into a pitch (Bark) scale by the following approximation

as

z(Bark) ≈ 7 · arsinh

(

f

650

)

. (10)

It can be seen from Equation (10) that the Bark scale

frequency bands are almost linear below 1 kHz while

they grow exponentially above 1 kHz that yields a per-

ceptual filter bank.

Let Fp[kf, n] be the energy representation of the

“Outer ear weighted FFT outputs” and Pe[k, n] is the

Bark representation of Fp[kf, n] = |Fe[kf, n]|
2. Note that

the frequency index kf in Hz is replaced by k after map-

ping to Bark scale. The energy components which are

transformed to Bark domain are convolved with a

spreading function SdB(.) to simulate the dispersion of

energy along the basilar membrane and to model the

spectral masking effects in the Bark domain. The pitch

patterns, Pe[k, n], are smeared out over frequency using

the level dependent spreading function. Conventionally,

SdB(i, k, n, Pe) the spreading function of band i for an

energy component at band k is defined as a two-sided

exponential

SdB(i, k, n, Pe) =

⎧

⎪

⎨

⎪

⎩

27(i − k)�z ; k < i
[

−24 −
230

fc
+ 2log10

(

Pe(k, n)
)

]

(i − k)�z ; k > i
, (11)

where ∆z = i-k = 1/4 for the basic version of PEAQ.

Smearing the spectral energy over frequency gives the

frequency domain spreading function, Es[k, n] which is

called as the “unsmeared excitation pattern” [24,25],

Es[k, n] =

(

Nc−1
∑

k=0

Pe[k, n]SdB(i, k, n, Pe[k, n])0.4

)

1

0.4

Bs[i, k, n]
,

(12)

where Bs[i, k, n] is a normalizing factor which is calcu-

lated for a reference level of 0 dB and can be pre-com-

puted since it does not depend on the data.

The feature extraction process is then followed by a

time domain spreading that accounts for forward mask-

ing effects. In spite of the conventional time masking

functions commonly used in audio compression, we pre-

fer using the one introduced in PEAQ that enables us

tracking emotional variances of successive frames.

Hence, to model forward masking, the energy levels in

each critical band are smeared out over time according

to Equation (13) as

Ē[k, n] = a · Ē[k, n − 1] + (1 − a) · Es[k, n]0.3 , (13)

where a is a time constant depending on the center

frequency of each critical band. The excitation pattern,

E[k, n], shown in Equation (13) is calculated as

E[k, n] = max
(

Ē(k, n), Es(k, n)
)

, (14)

where n is the actual frame number, k is the band

index and Ē[k, 0] = 0 .

Briefly, we observed the perceptual effect of our

method in means of both the proposed features and the

perceptual intermediate steps which are applied prior to

feature extraction. In Figure 5, the impact of the prepro-

cessing steps is provided comparatively for two audio

records taken from VAM. Note that perceptual masking

in Bark scale highlights the emotional differences.

5.2. Perceptual features

The preprocessing stages detailed in the previous sec-

tion are employed in the system in order to model phy-

siological and perceptual effects of the human ear. The

preprocessing is followed by feature extraction process.

The proposed perceptual feature set consists of seven

low level and two statistical descriptors. These features

are formulated in the following sections.

5.2.1. Average harmonic structure magnitude of the

emotional difference

Our motivation of using AHSM of the emotional differ-

ence as a representative feature is to highlight the har-

monic structure of emotional speech that is much more

similar to a periodical signal with stable harmonics with

respect to unemotional speech. Depending on the fact

that emotion does not change as fast as the phonemes,

we prefer to use the correlation of the logarithmic

power spectrum rather than the spectrum of signal

itself. So, AHSM emphasizes the harmonic pattern and

reflects the variations in the fundamental frequency.

AHSM is a useful feature to discriminate the speech on

the valence dimension where a sample for q2-q3 pair-

wise discrimination is shown in Figure 6.

The harmonic structure of the signal is evaluated in

linear frequency spectrum rather than Bark, since non-

linear frequency transformation would smear the har-

monic structure. Extraction of the feature AHSM can

briefly be summarized as follows. First, we compute the

emotional differences for each critical band. Then, the

autocorrelation function of emotional differences

through the critical bands is obtained. Fundamental fre-

quency is estimated from the log-spectrum of the auto-

correlation function. Average value of the fundamental
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(d) 

Figure 5 The perceptual preprocessing steps in various emotional modes. Prior to feature extraction, we perform preprocessing on

utterances to highlight the perceptual content of the audio. To make this procedure apparent, q4 (high arousal) (first column) and q2 (low

arousal) (second column) modes are considered from VAM. The first two rows illustrate time domain and power spectrum of the files taken

from, respectively, q4 and q2 categories. The spectral properties are shaped by an auditory filter bank, resembling the hearing threshold of the

outer ear (third row). The disparity stemming from the emotional characteristics improve after perceptual masking performed in Bark domain

(fourth row).
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frequencies estimated for successive Y audio frames is

reported as AHSM. Conventionally, fundamental fre-

quency is estimated from the log-spectrum of autocorre-

lation function of audio signal [6]. Unlike these

methods, we use the correlation of emotional differences

through critical bands instead of time domain audio sig-

nal itself.

To formulate the AHSM, let the emotional difference

PEDiff[kf, n] of frame n in spectral index kf refer to the

variations from the reference set within that band. PEDiff
[kf, n] in Equation (15) is calculated in the frequency

domain as the log spectra of the ratio of magnitudes of

the emotional and the reference audio signals spectral

energy FeE[kf, n] and FeR[kf, n], respectively. Note that

the spectral energy obtained after outer and middle ear

filtering of the STFT spectrum is calculated by Equation

(8)

PEDiff[kf, n] = log
(

∣

∣FeE[kf, n]
∣

∣

2
)

− log
(

∣

∣FeR [kf, n]
∣

∣

2
)

= log

∣

∣FeE[kf, n]
∣

∣

2

∣

∣FeR[kf, n]
∣

∣

2
= Pkf

. (15)

Let Pkf denote the row vector obtained by grouping

the energies of the emotional differences at critical

bands kf through successive 256 frames. The normalized

autocorrelation function C[l] is calculated in a defined

neighborhood of l = 256. Hence, the normalized auto-

correlation function C[l] of gathering emotional differ-

ences in M groups within a defined neighborhood l is

calculated as

C[l] =
Pkf

.Pkf+l
√

|Pkf |
2
|Pkf+l|

2
. (16)

The power spectrum S[kf] of the normalized autocor-

relation function is calculated by

S[kf] =

∣

∣

∣

∣

∣

1

256

256
∑

i=1

C[l]ej2πkf l/256

∣

∣

∣

∣

∣

2

, (17)

and its maximum peak specifies the harmonic magni-

tude EHmax[n]. AHSM is the average of the magnitudes

0 25 50
0

0.02

0.04
AHSM 

Time

 

 

q2

q3

Figure 6 Distribution of the feature AHSM versus time for two audio utterances sampled, respectively, from q2 and q3 modes of VAM

[16]. q2 and q3 locate at the positive and the negative sides of the valence dimension, respectively. It can be observable that the feature AHSM

provides a clear distinction between q2-q3 on the valence dimension. q3 is more likely to have tonation fluctuations in negative valence mode

(i.e., sadness) which avoids q3 mode to have a harmonic structure as smooth as the q2 signal (i.e., neutral). The periodicity in q2 plainly appears

from AHSM values in contrary to the fluctuating harmonics of q3. If the speech utterance has a periodicity, it can be evaluated based on the

AHSM.
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estimated through Y successive audio frames and calcu-

lated as

AHSM =
1000

Y

Y−1
∑

n=0

EH max[n] (18)

5.2.2. Average number of emotional blocks

The excitation patterns of different emotional audio sig-

nals are processed and stored in the brain. The brain

keeps the brief initial audio information in a short-term

memory. Subjective evaluation of the emotional signals

depends on this short-term memory [25]. Hence, the

feature AEB provides a measure for the occurrence of

high excitation levels through successive frame groups

analyzed in Bark scale. To calculate the expected num-

ber of emotional blocks within a time interval, a prob-

abilistic approach that estimates the number of

excitation patterns remaining above a loudness thresh-

old is applied [24].

AEB provides a measure for the occurrence of high

excitation levels through successive Y frames analyzed

in Bark scale. Specification of Y is directly related to the

granularity of the system and it is set to Y = 70 in this

study. In order to calculate the expected number of

emotional blocks within a time interval, we have applied

a probabilistic approach that estimates the number of

excitation patterns remaining above a loudness

threshold.

Let e[k, n] denote the difference between the excita-

tion levels of reference and emotional audio computed

in Bark scale k for audio frame n in dB as

e[k, n] = 10log10

(

EsE[k, n]

EsR[k, n]

)

. (19)

Our aim is specifying frames in which the excitation

level difference above a threshold [24,25]. Probability of

an excitation pattern remaining above a loudness

threshold can be modeled by [24]

p[k, n] = 1 −

(

1

2

)

⎛

⎝

e[k, n]

s[k, n]

⎞

⎠

b

,
(20)

where b is a constant equal to 6 and where s[k, n] is a

normalizing coefficient. Hence, assuming that the

observed frames are uncorrelated, the total probability of

declaring the frame n as emotional can be calculated by

P[n] = 1 –
∏

∀k

(

1 − p[k, n]
)

. (21)

Basically, the feature AEB is computed as the average

number of blocks declared as emotional within 1 s. It

can be shown that P[n] becomes greater than 0.5 for

these frames. Since both probability of detection and

number of steps remaining above the loudness threshold

are dependent on the excitation patterns, we can expect

the excitation pattern of the audio in mode happy to

have higher peaks with respect to the mode bored

which are, respectively, located on the positive and

negative scales of arousal. The discrimination capability

of the feature AEB is promising as it can be seen in Fig-

ure 7 for the pairwise training set of bored and happy

modes.

5.2.3. Perceptual bandwidth

The perceptual bandwidth of emotional audio varies

according to the perceived timbre, dullness, or muffling

effects. To measure this effect, the maximum of the fre-

quency spectrum in upper frequency range is obtained.

This is used as an estimate of the noise floor. Then,

beginning from higher frequencies and scanning the

highest frequency component which exceeds the noise

floor by at least 10 dB toward lower frequencies is

defined as the estimated perceptual bandwidth. This fea-

ture aims to classify emotional states based on the varia-

tions in signal bandwidth. Hence, a rough estimate of

the observed emotional signal bandwidth is computed

for each audio frame with 43 ms. To do this, first the

maximum W1[n] of the spectrum of the emotional

audio signal obtained within a frequency band from 14.4

to 16 kHz is specified as the noise floor by using

W1[n] = max
kf

{

F[kf, n]
}

, 14.4 kHz < kf < 16 kHz. (22)

0 20 40 60 80
3.1

3.2

3.3

 

 

number of audio utterances

A
E

B

BORED

HAPPY

Figure 7 A pairwise distinction for bored and happy modes

from EMO-DB [15]can be modeled by the feature AEB. The

features have a heterogeneous effect on emotional modes in

pairwise classification. A sample distribution of the perceptual

feature is given where AEB plays an important role in bored-happy

pairwise classification.
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The first frequency component where the spectral

energy exceeds the noise floor at least by 10 dB in the

reference audio signal is reported as the bandwidth of

the emotional audio for the nth frame and it is denoted

by W2[n] and calculated as

W2[n] = arg
kf

{

F[kf, n] > 10 log
(

F
[

W1[n],n
])}

,

3 kHz < kf < 14.4 kHz.

(23)

Furthermore, searching downward from W2[n], the

first value which exceeds W1[n] by 5 dB in the emo-

tional audio signal is recorded as W3[n]

W3[n] = arg
k

f

{

F[kf, n] > 5 log
(

F
[

W2[n],n
])}

{

F[kf, n] > 5 log
(

F
[

W2[n],n
])}

, kf < W2[n].

(24)

The perceptual bandwidth of the emotional audio is

extracted by calculating the mean value over Y succes-

sive frames as

WE =
1

N

Y−1
∑

n=0

W2[n] (25)

Discrimination capability of the feature WE can be

seen from Figure 8 that plots the distribution of band-

width estimates through the samples taken from q4 and

q1 modes. Perceptual bandwidth of the reference audio

is extracted by calculating the mean value over Y suc-

cessive frames as

WE1 =
1

N

Y−1
∑

n=0

W3[n] (26)

5.2.4. Normalized spectral envelope

The term spectral envelope refers to the normalized

amplitude variations of loudness that arise from the

emotional differences of successive frames. NSE NSE[k,

n] formulated in Equation (27)

NSE[k, n] =
Ēder[k, n]

1 + (Ē[k, n]/0.3)
, (27)

and NSE difference NSEDiff[k, n] given as

NSEDiff[k, n] = w ·

∣

∣NSEE[k, n] − NSER[k, n]
∣

∣

β + NSEE[k, n]
(28)

to quantify local variations in energy through time.

Ēder[k, n] , shown in Equation (27), is calculated by

Ēder[k, n] = a · Ēder[k, n − 1] + (1 − a)·
∣

∣

∣
ES[k, n]0.3

− ES[k, n − 1]0.3
∣

∣

∣
,

(29)

where ES[k, n] is the unsmeared excitation pattern for-

mulated in Equation (12).

As it can be seen, Ēder[k, n] models the envelope

changes through successive frames. The parameter a (0

<a < 1) shown in Equation (29) reflects the impact of

the past frames to current nth frame gradually. The

frame which has maximum effect on Ēder[k, n] other

than nth frame is the previous (n - 1)th frame. The sca-

lar a behaves like an attenuation parameter which both

reflects the impact of the past and reduces the effect of

the past gradually. This concept precisely models the

time spreading energy effect which is based on the per-

ceptual effect of the sequential speech tones. A sample

case is given in Figure 9 for angry and bored modes.

The term Ēder , Ē[k, n] shown in Equation (27)

denotes the average loudness that effects as an adaptive

normalization term on the loudness and is calculated

according to

Ē[k, n] = a · Ē[k, n − 1] + (1 − a) · ES[k, n]0.3 . (30)
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Figure 8 Effectiveness of the feature perceptual bandwidth on

the pairwise distinction of modes q1 and q4 from VAM [16].

The perceptual bandwidth is closely related with the overall

distribution of the spectrum. If spectral components of the

emotional signal are dominant at high-frequency bands, the

bandwidth tends to be at the lower frequencies because the noise

floor is high as well. Otherwise, if the emotional signal has

dominant lower-frequency components, then the noise floor tends

to be lower and the bandwidth parameter probably takes a

relatively greater value. Perceptual bandwidth behaves like sort of

an adaptive noise floor threshold finder. Also shows that q4 and q1

are positively arousal modes. q4 which is in the negative valence

domain owns a greater noise floor that yields a lower perceptual

bandwidth with regard to q1 signal. As the perceptual bandwidth

range of the q1 signal is mostly on the 6-7 kHz band where q4

signal is scattered on the 5-6 kHz band.
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5.2.5. Normalized emotional difference

The perceived loudness of an emotional audio signal

depends on its duration and its temporal and spectral

structure. The local loudness of an emotional signal is

the perceived loudness after it has been reduced by a

masker [25]. The masker induces the loudness to be

perceived at different frequency bands. The masker is

effective in the low frequencies, thus the locality is

established by adaptively masking the low-frequency

components. This masking describes the effect by

which an audible signal becomes inaudible when a

louder signal masks it. We refer the reference audio

signal as masker and compute a local loudness other

than conventional loudness values. In conclusion, we

evaluate a localized loudness with respect to a refer-

ence set.

The NED is formulated as the ratio of the emotional

difference PEDiff[kf, n] given by Equation (15) to the

masking threshold M[k, n]. We use the total NED that

is calculated as the average (expressed in dB) of the

NED values computed at the bark scales,

NEDtot = 10log10

1

Y

Y
∑

n=1

(

1

Z

z−1
∑

k=0

PEDiff[k, n]

M[k, n]

)

, (31)

where Z = 109, k denotes the number of critical bands

and n refers to the frame number.

The masking threshold M[k, n] formulated below

M[k, n] =
E[k, n]

10

m[k]

10

(32)

is calculated by weighting the excitation patterns E[k,

n] with the masking offset m[k] as given in

m[k] =

{

3.0

0.25 · k · �z

for k · �z ≤ 12

for k · �z > 12
. (33)

The masking offset is plotted in Figure 10. Since

masking offset is placed at the denominator of both the

masking threshold, M[k, n], and the NED, it effects as a

high pass filter. Hence, the expectation from the feature

NED is to emphasize the distinction between emotional

categories at higher frequencies as shown in Figure 11.

5.2.6. Emotional loudness

We propose using the overall loudness of the emotional

differences as a representative feature of the emotional

modes. The specific loudness pattern for a signal can be

formulated as

L[k, n] = const ·

(

1

s[k]
·

EIN[k]

104

)0.23

·

[

(

1 − s[k] +
s[k] · E[k, n]

EIN[k]

)0.23

− 1

]

, (34)

where EIN is the internal noise of the ear. The thresh-

old index s[k] is calculated according to

s[k] = 10

1

10

⎛

⎝−2−2.05·atn

⎛

⎝

f

4000

⎞

⎠−0.75·atn

⎛

⎝

⎛

⎝

f

1600

⎞

⎠

2⎞

⎠

⎞

⎠

.
(35)

The overall loudness of the signal Ltotal is calculated as

the sum across all filter channels of all specific loudness

values above zero, as

Ltotal[n] =
24

Z
·

Z−1
∑

k=0

max
(

L[k, n], 0
)

. (36)
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Figure 9 Distribution of the feature NSE [k, n] in time-frequency domain for angry and bored modes from EMO-DB [15]. The normalized

amplitude variations of loudness in angry mode are expected to be higher because of sudden rise and falls in the utterance. The distribution

clearly shows that the NSE[k, n] between successive time frames through the Bark scales are higher for the mode angry.
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An example of the effect captured with this feature is

shown in Figure 12.

6. Test results
The popular emotion databases cover a vast diversity

beginning from naturalistic and spontaneous datasets in

comparison to acted datasets which contain pre-defined

phrases spoken by actors and actresses in a studio envir-

onment. It is obvious that the naturalistic datasets

address the realistic problems of emotion recognition in

everyday life. Among a number of databases, we have

used well-known EMO-DB [15] and VAM [16] as,

respectively, acted and spontaneous database. EMO-DB

corpus covers pre-defined sentences spoken by ten

actors in seven emotions; anger, boredom, disgust, fear,

joy, neutral, and sadness. VAM consists of audio record-

ings from a German TV show including spontaneous

and emotionally colored phrases from 47 guests. Being

different from EMO-DB, VAM data are labeled by 17

human labelers on a 5-point scale for three dimensions

(valence, activation, and dominance). The applied map-

ping method given in Figure 13 is a biased assumption

other than being straight forward. The assumption is

required from the need of standardizing diverse emo-

tions of different databases.

The weighted (WA) and unweighted (UA) average of

class-based recall rates are assessed as evaluation mea-

sures on the pairwise multiclass discrimination. EMO-

DB and VAM covers a total of seven and four emotional

categories, respectively. Number of audio utterances

used in training and test for the relevant emotional cate-

gory are listed in Tables 1 and 2 for EMO-DB and

VAM, respectively. The reference audio is the number

of audio samples used in the reference set for computing

the emotional difference. The reference audio stands for

the computed emotional differences between the train-

ing and the reference audio sets. The number of patterns

in the reference under training is approximately the pro-

duct of the training and the reference excluding the con-

tent belonging to the same person. For VAM class, q1 is

specified as the reference set while it is switched to the

emotional class neutral for EMO-DB corpus. Hence, 71

audio files from neutral mode in EMO-DB and 21 audio

files from q1 category have been used as the reference

set.
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Figure 10 The masking offset function as a function of

frequency. The masking offset behaves linearly until 2 kHz while it

augments the spectral components above 2 kHz. The markers in the

figure indicate the Bark center frequencies [24].
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Figure 11 NED for happy and neutral samples taken from EMO-DB [15]. The higher-frequency components of happy and neutral become

more discriminative with the help of NED in Bark scale.
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In this study, we use a new decision rule, S-MV

(explained in Section 4 with Equations 1-4) for the deci-

sion of the emotional class replacing the previous rule,

majority voting (MV). Basically, the proposed system

gives a decision on each observed feature vector based

on its variations from the reference set; hence, the S-

MV approach exploits all of the posterior probabilities

assigned to each observed feature vector. Therefore, the
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Figure 12 Loudness of the emotional data in time-Bark scale for q1 and q4. The figure illustrates the distribution of emotional loudness for

q1 and q4 type speech data at each Bark scale through time. As expected, the loudness of q4, which is arousally more powerful, is dominant at

higher frequencies, as loudness of q1 mainly remains at a lower frequency band.

Figure 13 Two-dimensional emotion space mapping. The discrete emotions of EMO-DB are located on the arousal and valence axes.

Regarding VAM, four quadrants are considered to evaluate the continuous emotion nature of the database on the arousal-valence axis. The

mentioned quadrant’s are assigned as “happy/excited” (q1), “angry/anxious” (q2), “sad/bored” (q3), and “relaxed/serene” (q4) [6,30].
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number of vectors that needs to be considered for a

decision is equal to the size of the reference set which

enables to make a decision based on a broad statistical

information about the data (recall that the size of refer-

ence set is 21 for VAM and 71 for EMO-DB). Taking

greater amount of statistical data into consideration for

a decision is the main advantage of the S-MV that

makes it superior to MV.

At the classification stage, the perceptual feature vec-

tors representing each test utterance are exposed to the

classifiers, which have been trained prior to the classifi-

cation. The posterior probabilities contributing to each

reference set are evaluated for each category. The pos-

terior probabilities for each reference are compared

among categories and the category having the highest

Pi
jfinal, j = 1, 2 score is decided for the relevant audio sig-

nal. As it is explained in Section 4, this enables us to

assign the class label of the category which has the

higher posterior with a smaller variance.

In the test cases, we applied Leave One Speaker Out

(LOSO) and Leave One Speaker Group Out (LOSGO)

strategies to evaluate speaker independency in EMO-DB

and VAM, respectively. The main benefit of using

LOGO and LOSGO methods is to be able to perform

the test cases in a comparable environment with the

state-of-the-art methods [5,9].

For our tests, we employ two types of classifiers for

emotion detection, the GMM which has been imple-

mented in MATLAB and the SVM using LibSVM [28]

tool in WEKA [29]. We use GMM method because of

its efficiency in modeling diverse statistics of the

observed emotional categories. We also provide SVM to

benchmark with openEAR [5]. Since LOSO and LOSGO

methods are used and the utterances recorded in data-

bases are not distributed equally between the speakers,

the average number of training and test samples varies

for each class. Tables 1 and 2, respectively, report the

average number of the EMO-DB and VAM feature vec-

tors used for the training and tests by the proposed sys-

tem as well as the openEAR tool.

In the training phase, the 9-d feature vectors are

extracted from the training patterns. To evaluate the

recognition rate achieved using mixture models, the fea-

ture vectors are fed into the GMM/SVM classifier. Itera-

tive expectation maximization algorithm is used to

estimate the parameters of the mixture of Gaussian den-

sity functions representing each emotional class. The

number of mixtures is determined as j = 3 on the basis of

empirical evidences. It needs to be noted that the off

diagonal components converge to small values when

compared to the diagonal components; therefore, diago-

nal covariance matrices are employed at classification

stage to reduce the computational complexity. Classifica-

tion has been performed by using a Bayesian classifier

with the help of S-MV. On the other hand, for the train-

ing of SVM classifier, a third-degree radial basis function

has been used in the LibSVM tool with the parameters;

“cost 100, gamma 10, loss 0.1 and nu 0.5”. The number

of support vectors learned by the SVM classifier is equal

to approximately half of the training patterns.

Table 1 Number of training and test samples in EMO-DB [15]

Emotional classes Training Test

Number of feature vectors Number of feature vectors

openEAR (6,556 features) 9-d perceptual feature vectors openEAR (6,556 features) 9-d perceptual feature vectors

Angry 114 8128 13 902

Bored 73 4669 9 619

Happy 64 4546 7 502

Sad 56 3968 6 440

Neutral 70 5024 8 540

Disgusted 41 2917 5 447

Fear 90 6397 10 1264

Table 2 Number of training and test samples in VAM [16]

Emotional classes Training Test

Number of feature vectors Number of feature vectors

openEAR (6,556 features) 9-d perceptual feature vectors openEAR (6,556 features) 9-d perceptual feature vectors

q1 12 232 9 189

q2 39 819 11 231

q3 366 7686 85 1785

q4 350 7350 74 1554
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There is an obvious imbalance between the perceptual

features and conventional openEAR and HTK tools

from the point of features and training test set sizes. As

the perceptual model employs only 9 features, openEAR

toolkit extracts 6,552 features as 39 functionals of 56

acoustic LLDs. A recent study [9] extracts 2D features

from the reported 6,552 features with a GerDa. GerDa

is denoted as a multilayer artificial neural network with

many hidden layers and millions of free parameters

learning discriminant features among a large set of

acoustic features. High number of parameters may be a

probable drawback of GerDa. On the other side in

respect to low sized 9-d perceptual feature vectors, our

reference set expands the size of the training and test

sets proportional to the reference set size. This fact can

be observable from the number of test and training

samples reported in Tables 1 and 2.

Another key criterion that should be mentioned is

that the audio files belonging to the test users are not

included either in the training or the reference sets.

This criterion is compliant with the practical cases

where the test user has no data existing in the training

or the reference sets. Similarly, while establishing the

reference set, the emotional differences of the audio pat-

terns belonging to different speakers are employed.

We have first evaluated the optimality of our feature

set. In this study, we concentrate on the introduced

nine perceptual features and we try to find the impact

of these features on each emotional category by the help

of sequential floating forward feature selection (SFFS)

and forward feature selection (FFS). The feature subset

selection methods are applied on both databases (VAM,

EMO-DB). The evaluator of SFFS and FFS has been

used to select the features having higher correlation

with the emotion labels by the help of the ‘CfsSubsetE-

val’ option in WEKA. The SVM classifier is run for each

category pairs in the databases and consequently an

assumption is carried out for the best feature order. The

affect of each feature on the performance can be seen in

Figure 14.

As a result of feature subset evaluation, it is concluded

that the nine perceptual features have different order of

importance involving different databases hence all of

them should be used to achieve high classification accu-

racy. It is also concluded that the required number of

audio descriptors shows variations among categories.

Contrary to the high arousal modes, emotional cate-

gories remaining at the positive side of the valence

mode need to be classified with a higher number of fea-

tures. On the other hand, the order of importance of

these features is not the same for EMO-DB and VAM,

probably because of the different content of acted and

natural emotional corpus. However, the features AHSM,

AEB, WE1, and WE2 have the highest impact on classifi-

cation. These features are derived from the perceptually

masked “harmonic structure”, “temporal distribution of

excitation levels”, and “perceptual bandwidth”.

We have also evaluated the improvement achieved by

the decision rule S-MV. In Table 3, the impact of the

new decision rule (S-MV) is presented in comparison to
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Figure 14 Outcomes of the FFS and SFFS evaluation performed on the VAM and EMO-DB. Recall rates achieved by the FFS and SFFS.

Gain of the perceptual features is ordered from higher to lower impact on the recognition.
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MV where the superiority of the S-MV with SVM classi-

fier can be observed. S-MV provides 1-6% improvement

for EMO-DB and 4-10% improvement for VAM in all,

arousal, and valence categories. It can be concluded that

the S-MV outperforms the MV mainly because it

enables us utilizing the statistical information stemming

from the reference set effectively.

Finally, the audio emotion recognition rates achieved

by the proposed perceptual features with various classi-

fiers are evaluated for the binary arousal (passive, active)

and valence (negative, positive) discrimination in VAM

and EMO-DB databases. The results obtained by SVM

and GMM classifiers using the perceptual features are,

respectively, reported as P-SVM and P-GMM in Table

4. The emotion recognition rates provided by the state-

of-the-art systems on the same databases are also

reported in Table 4. The first generic impression that

we get for all of the systems from Table 4 is that the

performance reported for EMO-DB outperforms the

recognition accuracy reached on VAM. This result is

expected since the difficulty of perceiving and classifying

natural spoken data is apparent. Another common point

is all the systems in both databases provide higher per-

formance in arousal with regard to valence. Unfortu-

nately, there is no agreement within researchers on how

acoustic features correlate with valence dimension. For

example, both the anger and the happiness correspond

to high arousal but they convey different affect which

can be characterized by the valence dimension. A recent

survey published in [2] confirms that the classification

between high-activation (also called high-arousal) emo-

tions and low-activation emotions can be achieved at

high accuracies; however, classification between different

emotions is still challenging. It is also reminded that

conventional features are efficient only in distinguishing

between high-arousal emotions, e.g., anger, fear, and joy,

versus low-arousal ones, e.g., sadness [2] which results

in inefficient performance for valence categories. These

findings reveal the difficulty in detecting the valence

mode.

A comparison of the P-SVM, and the P-GMM with

regard to state-of-the-art methods reported in the litera-

ture such as openEAR, HTK, and GerDa can be made

by looking at the emotion recognition rates reported in

Table 4. P-SVM and P-GMM outperform other classi-

fiers in all and valence tasks using the new decision rule

S-MV. The P-SVM with S-MV provides a 7-16%

improvement for EMO-DB and 7-11% in VAM for

valence as the improvement of P-GMM is between 4-

12% in EMO-DB and 6-10% in VAM for valence as

well. The main reason for this might be that perceptual

feature vectors model the valence axis more efficiently

relative to classical features. Similar to openEAR, HTK,

and GerDa, our perceptual features also uses energy and

loudness; however, the major contribution comes from

our perceptual model covering aspects such as spectral

masking, outer and middle ear acoustic transform mod-

els, perceptual loudness, and perceptual bandwidth

which all support the relatively more subjective position

in valence. However, on the arousal axis GerDa plays a

dominant role which is ahead of other classifiers (1-6%

in EMO-DB, 2-12% in VAM). These results might indi-

cate that GerDa may select compact and discriminative

features with its layered structure for arousal. On the

other hand, P-SVM and P-GMM express distinction in

the overall. The advantage of perceptual features coming

from valence detection might have an impact on the

overall results as well.

7. Conclusions
In this article, we introduced a novel 9-d perceptual fea-

ture set for the task of acoustic emotion recognition.

The proposed features show an improved recognition

performance particularly for valence. The improvement

in the performance is valid in both acted and natural

emotions evaluated on EMO-DB and VAM corpus,

Table 3 Performance achieved by the perceptual features

with soft majority voting in comparison to majority

voting

All (%) Arousal (%) Valence (%)

UA WA UA WA UA WA

EMO-DB

P-SVM S-MV 86.3 85.9 95.2 95.1 94.3 95.6

MV 85.2 86.1 91.3 92.7 88.0 88.1

VAM

P-SVM S-MV 61.3 76.2 69.4 71.7 59.9 83.3

MV 57.1 74.7 59.2 73.3 52.4 77.8

Table 4 Emotion recognition rates achieved by the

perceptual features and the state-of-the-art systems for

EMO-DB and VAM corpus

All (%) Arousal (%) Valence (%)

UA WA UA WA UA WA

EMO-DB

openEAR [8] 84.6 85.6 96.8 96.8 87.0 88.1

HTK [7] 73.2 77.1 91.5 91.5 78.0 80.4

GerDa [9] 79.1 81.9 97.6 97.4 82.2 87.5

P-SVM 86.3 85.9 95.2 95.1 94.3 95.6

P-GMM 92.5 90.4 92.1 90.0 91.9 95.2

VAM

openEAR [8] 37.6 65.0 72.4 72.4 48.1 85.4

HTK [7] 38.4 70.2 76.5 76.5 49.2 89.9

GerDa [9] 39.3 68.0 78.4 77.1 52.4 92.3

P-SVM 61.3 76.2 69.4 71.7 59.9 83.3

P-GMM 60.2 74.1 66.1 70.8 58.0 69.1
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respectively. We claim that this difference relies on the

perceptual aspects of our method such as spectral mask-

ing, outer and middle ear acoustic transform models,

besides the reference concept. Unlike the existing meth-

ods, the proposed perceptual feature vectors reflect the

variation of every emotional audio sample from the

“reference audio set”. Our proposal is based on the

hypothesis that the characteristic of the variations from

any emotional mode is much more discriminative than

the emotional data itself. This relatively objective criter-

ion provides a positive contribution to emotion detec-

tion efforts, particularly for the distinction of positive

and negative emotions.

We used our new feature set in a psychological emo-

tion dimension (arousal-valence) model. The emotion

recognition results over two popular databases illustrate

a noticeable improvement over the previously reported

baselines in “valence” and “all” categories. The P-SVM

and P-GMM outperform other classifiers in “all” and

“valence” tasks using the new decision rule S-MV. The

P-SVM provides an improvement changing between 7-

16% for EMO-DB and 7-11% in VAM for valence as the

P-GMM improvement is between 4-12% range in EMO-

DB and 6-10% range in VAM for valence. The main rea-

son for this might be that perceptual feature vectors

model the valence axis more efficiently relative to con-

ventional features. However, on the arousal axis GerDa

plays a dominant role which is ahead of (1-6% in EMO-

DB, 2-12% in VAM) other classifiers. These results indi-

cate that the nonlinear learning scheme of GerDa

enables may select compact and discriminative features

with its layered structure for arousal. The proposed P-

SVM and P-GMM express distinction in the task “all”.

Higher recognition rates achieved for “all” mainly arise

from the advantage of valence detection.

We have evaluated the impact of the perceptual fea-

tures on each emotion category by the help of the FFS

and the SFFS. As a result of feature subset selection, it

is concluded that the impact of nine perceptual features

are not the same on different emotional categories

hence all of them should be used to improve the recog-

nition accuracy. Despite of the high arousal modes,

emotional categories remaining at the positive side of

valence need to be classified with a higher number of

features. On the other hand, the order of importance of

these features is not the same for EMO-DB and VAM,

probably because of the different content of acted and

natural emotional corpus.

As the reference concept provides objectivity to the

subjective nature of the emotion, the future study will

pursuit the optimal reference set selection topic. The

outstanding characteristic of our method relative to the

conventional methods is the smaller number of features

with an uncomplicated classifier. However, there is a

computational complexity trade-off originating from the

reference set size which is a result of emotional differ-

ence computation. This computational complexity is a

vital issue to be investigated in the future study.
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