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Perceptual-Based Image

Fusion for Hyperspectral Data
Terry A. Wilson, Steven K. Rogers, Senior Member, IEEE, and Matthew Kabrisky, Life Senior Member, IEEE

Abstract— Three hierarchical multiresolution image fusion
techniques are implemented and tested using image data from
the Airborne Visual/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral sensor. The methods presented focus on combining
multiple images from the AVIRIS sensor into a smaller subset
of images while maintaining the visual information necessary
for human analysis. Two of the techniques are published
algorithms that were originally designed to combine images
from multiple sensors, but are shown to work well on multiple
images from the same sensor. The third method presented was
developed specifically to fuse hyperspectral images for visual
analysis. This new method uses the spatial frequency response
(contrast sensitivity) of the human visual system to determine
which features in the input images need to be preserved in
the composite image(s) thus ensuring the composite image
maintains the visually relevant features from each input image.
The image fusion algorithms are analyzed using test images with
known image characteristics and image data from the AVIRIS
hyperspectral sensor. After analyzing the signal-to-noise ratios
and visual aesthetics of the fused images, contrast sensitivity
based fusion is shown to provide excellent fusion results and, in
every case, outperformed the other two methods.

I. INTRODUCTION

D
EVELOPMENT of new imaging sensors created a need

for image processing techniques that can fuse images

from different sensors or from multiple images produced by

the same sensor [1]–[7]. For example, the Air Force uses

information from multiple sensors to obtain a multispectral

signature of potential targets. The advantage of multispectral

data is that it provides better target detection and identification

than a single wide-band sensor and it allows flexibility in

choosing a particular narrow-spectral-band for individual types

of targets [4], [8]. The disadvantage with multiple sensors is

that it is difficult and sometimes impossible to fully register

the different input sources. Usually there are differences in

scale, rotation, and shift between the outputs of each sensor.

To overcome some of the multisensor problems, research

is being conducted with single sensors that simultaneously

collect data in several bands. The Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS), which is described in the

next section, is an example of a sensor that simultaneously

records information in hundreds of spectral bands [8]–[11].

However, there is a price to pay for the fully registered
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hyperspectral data. Two particular problems will be addressed

in this article.

The first problem is caused by the large amount of infor-

mation generated by hyperspectral sensors. For example, a

single pass over a target area with an AVIRIS sensor produces

224 separate images; one for each of the 224 spectral bands

measured. This requires approximately 140 megabytes of disk

storage. However, only a fraction of that data provides unique

or usable visual information about a specific area of interest.

The rest is redundant information along multiple bands or is

noise due to the atmosphere. Therefore, it would be beneficial

to extract the relevant information/features from a set of

hyperspectral images to form a reduced set of images.

The second problem is caused by the need to have human

photo analysts analyze hyperspectral sensor data. Since human

operators cannot physically or mentally integrate information

from multiple source images [5]–[7], a method to fuse the

relevant information into a single image, or at least a smaller

subset of images, would alleviate this problem.

The scope of this article is to investigate image fusion

algorithms that produce images intended for human analysis.

The idea is to extract a composite image from a set of

input images that increases the visual information to a human

observer, or at least preserves the visually relevant information

from the source images. Three methods are presented, one

developed by Burt and Kolczynski [4], another by Toet [5]–[7],

and the third is a new fusion method based upon the human

visual system.

The algorithms are evaluated in two different ways. First

the algorithms’ performances will be evaluated by fusing a

set of test images. Second, the algorithms’ ability to fuse

different spectral bands from the AVIRIS hyperspectral sensor

will be evaluated. It is assumed that the images to be fused will

either come from a single sensor that produces fully registered

images, or from multiple sensors that have been preregistered.

It is also assumed that the data produced from the sensors may

be treated as image data and that contrast sensitivity, which

is discussed in Section II-B, is the key for determining the

important features of an image [12]–[15]. Furthermore, it is

assumed that the key to multi-image fusion is to fuse based

upon pattern primitives (groups of pixels) and not at the pixel

level alone [1]–[7].

II. BACKGROUND

A. AVIRIS Hyperspectral Data

AVIRIS is an imaging spectrometer that simultaneously

collects spectral information in the visible to infrared ranges.

U.S. Government work not protected by U.S. Copyright
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Fig. 1. Hyperspectral image cube representation taken from the AVIRIS
sensor.

It records information in 224 spectral bands that range from

400 m to 2500 m in approximately 10 m increments with a

pixel resolution (instantaneous field of view) of roughly 20 m

at operational altitude. The AVIRIS sensor is a “whisk broom”

type spectral sensor that collects 614 pixels (a swath width

over 10 km wide) of data with each sweep. The number of lines

of data that can be collected over an area is only limited by the

amount of on-board data storage. The AVIRIS data presented

here are all 512 lines. Thus, a single image represents visual

information about an area of ground that is roughly 126 km

[8]–[11].

Creating images from the hyperspectral data is a two step

process. First, a spectrometer measures the electromagnetic

energy reflected or emitted from a surface. The intensity values

produced by the spectrometer are stored as pixel values that

represent a single intensity value associated with a physical

location in the target area in the band being sampled. The

pixel values are used to form an image cube, where the

and axis of the cube represent the pixel location,

and the axis represents the spectral band or associated

wavelength (Fig. 1). The hyperspectral data used in this article

is radiometrically calibrated radiance data that was provided

by the Jet Propulsion Laboratories (JPL) Pasadena, CA. The

particular scene that was used is from an AVIRIS sensor that

was flown over Moffett Field, CA.

The image, on the face of Fig. 1, is the picture from band

30. Band 30, which represents the spectral information in the

600 m to 680 m bandpass range, clearly shows the unique

reflectance for the different types of materials: land, water,

runway, etc.

B. Hierarchical Image Fusion Techniques

The two image fusion techniques currently proposed in

the literature, which will be implemented in this article, are

described here. The first is a method proposed by Toet [5]–[7].

Toet’s method is a multiresolution pyramidal technique that

uses the maximum contrast information in the Ratio of Low

Pass (ROLP) pyramids to determine what features are salient

(important) in the images to be fused [5]–[7]. The input

images are converted into a multiresolution ratio pyramid in

which the values in the pyramid represent what Toet calls the

contrast details, where contrast is described in the next section.

Then the ratio pyramids are compared point-by-point and the

maximum value is retained for the composite pyramid. Once

the composite ratio pyramid is formed the process of creating

the ratio pyramid is reversed to recover the reconstructed

composite.

Toet defends the decision to select the details for the

composite image based upon maximum contrast by arguing

that human vision is based upon contrast and that, by selecting

details with maximum contrast, the resulting fused image will

provide better details for the human analyst. Although this is

sound reasoning based upon the desire to present the human

analyst with the best visual image, it does not account for the

fact that a noisy image is typically of higher contrast than an

image that is not. Therefore, Toet’s method would select the

noisier parts of the images to be retained in the composite,

which presents a potential loss of information about desired

targets. Thus, a method for selection that is based upon the

perceptual sensitivity of the human visual system and not just

pure contrast is needed.

The second method is a technique developed by Burt

and Kolczynski [3], [4]. Burt and Kolczynski’s method is

also a multiresolution pyramidal technique, but unlike Toet’s

method, Burt and Kolczynski have a more complex criteria

to determine the salient features in the input images to be

fused. Burt and Kolczynski use a match and saliency metric to

determine which details are salient. The match value compares

two regions in the input images and provides a number that

describes if they are similar or match and the salience metric

measures the energy in the oriented gradients of the input

images. If the input image details are similar (within some

threshold) then the details are averaged. If the input images

are not similar enough (beyond the threshold) then the details

from the image that are more salient are retained for the

composite gradient pyramid. Once the fused gradient pyramid

is formed, the reconstruction is performed to recover the

composite image.

The fusion algorithm proposed by Burt and Kolczynski has

several advantages over the method proposed by Toet. Since

it averages similar input sources, instead of just picking some

maximum value, it offers a potential for better noise reduction.

It also allows the low contrast details to be preserved, if

they are the salient features. The main disadvantage is that

a template (weight matrix ) is needed to decide which

features are salient. Since there are always problems with

size, orientation, translation, etc., finding a template that

will work well as a salient measure, will be very difficult

if not impossible. One possible weight matrix , proposed

by Burt and Kolczynski, is a 3 3 matrix of ones; this

allows the saliency to be based upon the local energy in the

details. Although this provides a measure that has some useful

applications, local energy in the details of some images may

reflect a high value strictly due to noise in the image. Also,
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Fig. 2. Stage I of the three stage multiresolution pyramid algorithm.

energy in the images that may not fall within human perception

may play a large part in the decision of how the images will be

fused. Therefore, a method that uses the strengths of Burt and

Kolczynski’s fusion scheme, and still addresses the human

visual system, is needed.

A third method for image fusion, which relies on the

frequency response (contrast sensitivity) of the human visual

system, is developed and presented in the next section. Math-

ematically, contrast sensitivity (which is a measure of how

a person responds to contrast at threshold) is defined as the

reciprocal of contrast [13], [16], where contrast is a measure

of the difference in brightness across an image or scene.

The measure of how the human visual system responds

to contrast, i.e., contrast sensitivity, is a function of spatial

frequency [13], [16]. For example, it has been shown that

the human visual system responds better, or is more contrast

sensitive, to low spatial frequency components than it is to

high spatial frequency components [16]. For instance, contrast

sensitivity peaks for the frequency ranges from 2 to 10 cycles

per degree (cpd) and then falls off sharply [13], [16].

Because standard human visual acuity tests only measure

the high frequency response, contrast sensitivity is becoming

a more acceptable measurement criteria. For instance, Stager

and Hameluck showed that contrast sensitivity was better in

determining a person’s ability to perform air-to-ground search

than standard visual acuity tests [17].

The contrast sensitivity response used here is from the 95

percentile curve [16]. An experimentally derived contrast sen-

sitivity function (CSF) of the human visual system developed

by Mannos and Sakrison [18] is also available. While some

research shows that an individual’s perception of contrast will

be different for contrasts that are above threshold [12], [14],

[15], the fusion method proposed here is based upon the

threshold frequency response.

III. HIERARCHICAL IMAGE FUSION WITH

CONTRAST SENSITIVITY SALIENCY

This section describes an image fusion technique based

upon previously successful multiresolution decomposition and

reconstruction methods [1], [4]–[7], [19], with an added abil-

ity to tailor the selection criteria (i.e., what is salient be-

tween images) to the contrast sensitivity of the photo ana-

lyst. Another method, which is similar to the approach here,

but which is based upon a Daubachies wavelet decompo-

sition/reconstruction is presented in [20]. The basic method

employs a multiresolution algorithm that uses three stages:

decomposition, fusion, and reconstruction.

A. Image Decomposition

The first step in image decomposition is constructing the

reduction or Gaussian pyramid. The reduce function, shown

in Fig. 2, is defined as a filter and down-sample. First the

5 5 Gaussian kernel shown below, which is the same

kernel used by Burt and Kolczynski [4], is used to filter an

input image.

(1)
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Fig. 3. Stages II and III of the three stage multiresolution pyramid algorithm.

is the convolution operator and

(2)

Next the filtered image is down-sampled by a factor of two

by selecting every other point in the filtered image. The

filtering operation is simply a convolution of the input with the

Gaussian kernel . The output of the reduce function is used

as the input to the next stage of reduction. By successively

filtering and down-sampling, an image pyramid that has the

original image as the pyramid base with successive levels that

are low-pass filtered and down-sampled versions of the level

below is generated, see the Reduction Pyramid in Fig. 2.

The next step in image decomposition is performed by

extracting the orientation gradient details and a gross ap-

proximation from the multiresolution pyramid. The orientation

gradient details are extracted by using the filters, defined be-

low, on each level (except the top) of the reduction (Gaussian)

pyramid created in the previous step (Fig. 2). The top level is

kept as the gross approximation. Burt calls this step creating

the orientation gradient pyramid [4]. It is called the orientation

gradient because the basis functions used for detail extraction

are gradients of Gaussian patterns. The gradient filters

through , defined below, are used to extract information

from the reduced (Gaussian) pyramid. The following equations

define this stage of the decomposition:

(3)

(4)

where is the convolution operator, are the details for

level and orientation , is the level input from the

reduced image pyramid, and through are the oriented

gradient filters. The index is the level of the resolution from

the Gaussian pyramid and the orientation is simply the index

of the through filter used.

B. Detail Pyramid Fusion

Now that the oriented gradient pyramid has been formed for

each input image, Stage II (detail fusion) is performed (Fig. 3).

This is where the main difference lies between the contrast

sensitivity method proposed here and Burt and Kolczynski’s

method [4]. Burt uses a match and saliency measure, which

is based upon the weighted energy in the detail domain, to

decide how the oriented gradient pyramids will be combined.

The contrast sensitivity method presented here uses an idea

similar to Burt and Kolczynski’s match and saliency, but

instead of using localized energy in the detail domain to

compute the weighted averages, it uses a weighted energy in

the perceptual domain; where the perceptual domain is based

upon the frequency response (i.e., contrast sensitivity) of the

human visual system.

When evaluating whether two images would be perceived

as different (determining a match value), and deciding which

details are more important (determining a saliency value), we

need to base the evaluation on the perceptual model of the

human observer. Thus, the criteria to decide which parts of the

input images will be averaged to form the composite image and

which ones will not is determined by the contrast sensitivity

response of the human analyst.

The fusion stage is performed in the following manner:

1) Corresponding neighborhoods from the orientation gra-

dient pyramids to be fused will be compared using the

contrast sensitivity response.

2) If the corresponding neighborhoods differ by more than

some threshold, the one that is more salient (i.e., has
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more energy in the contrast sensitivity weighted fre-

quency domain or “perceptual domain”) will be retained

in the fused orientation gradient pyramid.

3) If the perceived difference is less than some threshold,

the two neighborhoods will be summed according to a

weighted average.

First a relative perceptual contrast is computed for each

layer of the detail pyramid.

(5)

where is the percent difference and , are the

saliencies computed for a neighborhood from level and

orientation of the detail pyramids and , respectively.

Saliency is computed as the amount of perceptual energy in

a given set of details, as related to the frequency response of

the human visual system [16]. Saliency is defined by

(6)

where is the contrast sensitivity weight matrix representing

the two-dimensional median response of the human visual

system [16], [20], [21] and is the magnitude of the energy

normalized low frequency two-dimensional Fourier compo-

nents from some neighborhood at level and orientation

of the detail pyramid. The indices are defined by the

desired window size.

The method for extracting the saliency is to first energy

normalize each level and orientation of the detail pyramids

by dividing by the square root of the sum of the squares at

each level and orientation. Next, extract the magnitude of the

Fourier coefficients of an sliding window over each input

level and orientation. The size of the window and the step size

may vary. A 40 40 window and a step size that varied with

the resolution was used. To extract the Fourier coefficients,

the 40 40 window is passed over the image, according to

the step size, and the Fourier transform is computed for each.

Then, the frequency components are energy normalized.

After the percent difference is computed, it is compared

to some threshold . If the difference is greater than , the

input detail with the higher saliency value will be retained for

the fused detail pyramid and the other detail will not. If the

perceived difference is not greater than the threshold , the

input details will receive the following weights:

(7)

The fused detail pyramid is created by summing the

weighted details from image A and image B (Fig. 3). The

weighted sum is defined as follows:

(8)

where is the fused detail, and are the appropriate

weight matrices (7), and are the details from the detail

pyramids (3) from image and (7). The weighting is per-

formed by a point-by-point multiplication of the weight matrix

and the detail matrix (not by the typical matrix multiplication

operation).

C. Fused Image Reconstruction

Once the gross approximation and detail pyramids have

been fused into a single pyramid, stage III is performed. This

is the reconstruction phase. Reconstruction is performed by

combining the four layers of details into a single layer and

then combining the gross approximation with the different

levels of details (Fig. 3), to form the composite image. The

order of reconstruction is:

1) Convert the oriented gradient pyramid into the second

derivative pyramid, or what Burt and Kolczynski call

the oriented Laplacian pyramid [4].

2) Convert the oriented Laplacian pyramid into the FSD

(filter-subtract-decimate) Laplacian pyramid [2].

3) Convert the FSD Laplacian pyramid into the RE (reduce-

expand) Laplacian pyramid.

4) Convert the RE Laplacian pyramid into the Gaussian

pyramid.

5) Recover the composite image from the Gaussian.

Converting the oriented gradient pyramid into the oriented

Laplacian pyramid is represented by

(9)

where is the level and orientation of the oriented

Laplacian pyramid, is one of the detail filters described

above for through , and is the input level and

orientation from the oriented gradient pyramid.

Converting the oriented Laplacian pyramid into the FSD

Laplacian pyramid is represented by

(10)

where is the level of the FSD Laplacian pyramid.

Converting the FSD Laplacian pyramid into the RE (reduce-

expand) Laplacian pyramid is defined as

(11)

where is the level of the reduce-expand (RE) Laplacian

pyramid, is the 5 5 Gaussian filter (1), and is defined as

(12)

Converting the RE Laplacian pyramid into the Gaussian

pyramid and then recovering the composite image from the

Gaussian, is performed by repeatedly applying

(13)

where is the level of reconstruction and repre-

sents an up-sampling of the layer above to match the

resolution of the current layer of the RE Laplacian pyramid.

If the formula has been applied enough times to successfully
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TABLE I
SIGNAL-TO-NOISE RATIOS (SNR) FOR THE BAND 30 MODIFIED TEST IMAGES

recover , it will be the reconstructed composite image. The

up-sampling (expand function) is represented by

(14)

where represents the expanded output level,

represents the input level, and only integer indexes contribute

to the sum. The expand function is accomplished by padding

every other column and row with zeros and then convolving

the zero padded image with the weight matrix . In effect, an

up-sampling by a factor of two is being accomplished.

D. Test Images

In order to evaluate the capabilities of the three fusion

algorithms presented, multiple test images are generated with

varying signal-to-noise ratios (SNR’s) and types of back-

grounds. The SNR’s in decibels (dB) were computed as

SNR (15)

where is the sum of the squares of the pixel

values in the original image and is the sum of

the squares of the Random noise. This yields a SNR in dB.

The corresponding SNR in terms of : 1 is computed from

the dB value as

SNR (16)

To create the test images, noise with a uniform distribution

on the interval (0.0, 1.0), is scaled by a constant and is

then added to various locations in the images. The image

used was from band 30 from an AVIRIS data set acquired

at Moffett Field, CA (see Fig. 1). The Moffett field image

was chosen because it contains natural scenes (water, trees,

fields) and urban structure (streets, runway, buildings). Band

30 was simply chosen arbitrarily.

Correlated or uncorrelated noise was added to the test

images in three different regions (target types), thus creating

sets of three images to be fused. The correlated noise was

generated by convolving the uncorrelated noise with a low-

pass filter [22]. The level of correlation was computed as

the full-width-half-max of the maximum amplitude of the

autocorrelation of the low-pass filter. The full-width-half-max

value used here was 4 pixels. Fig. 4 provides an example of

three images containing correlated noise with a SNR of 3.16 1

(5 dB), within the area the noise was added. Table I provides

a listing of the SNR’s for the test images using band 30.

TABLE II
SIGNAL-TO-NOISE RATIOS (SNR) FOR THE FUSED

TEST IMAGES CONTAINING CORRELATED NOISE

IV. RESULTS

A. Hierarchical Image Fusion of AVIRIS Test Images

In this section, the results of fusing the test images described

in the previous section are presented. The test images were

fused using the algorithms by Burt and Kolczynski [4], Toet

[5]–[7], and the contrast sensitivity algorithm.

One set of results are presented here for visual reference.

Fig. 5 represents the results of fusing the three images shown

in Fig. 4 that use correlated noise. The overall fusion results

are presented in tabular form in Table II.

All of the image fusion that is reported in this article was

implemented in the following manner. Burt and Kolczyn-

ski’s fusion algorithm was implemented using the following

parameters:

1) Six layers of decomposition (i.e., five levels of details)

using Burt and Kolczynski’s recommended matrix and

through filters [4].

2) A 3 3 matrix of all ones.

3) An alpha of 0.9 [4].

Toet’s fusion algorithm was implemented using six layers

of decomposition and Toet’s recommended weight matrix

[5]–[7].

The method presented here was implemented using the

following parameters.

1) Six layers of decomposition (i.e., five levels of details)

using Burt and Kolczynski’s recommended matrix [4].

2) A window size of 40 40.

3) A shift of 8.

4) A threshold of 0.20.

Fig. 5 and Table II show that the method presented here

does a better job of de-emphasizing both uncorrelated or

correlated noise in the input images than either Burt and

Kolczynski’s or Toet’s methods. In most cases, the method

presented in this article even increased the SNR of the fused

results above that of any input image. However, even though

the fused SNR was better than either Burt and Kolczynski’s
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Fig. 4. Three AVIRIS test images of band 30 with correlated noise added at different locations in each test image.

or Toet’s results, the fusion method developed here did not

improve the SNR of the fused band 30 images over the SNR

of the band 30 input images. Two possible explanations for

the differences in the results are

1) The frequency of the added noise and the frequency

content of the band 30 images combined to provide

enough contrast sensitivity weighted energy to make that

area more salient.

2) The reconstruction error was larger due to the higher

energy content of the band 30 images, thus creating a

larger difference between the fused composite and the

ideal band 30 image.

It is also important to note that just because two images

differ in Euclidean distance, they may not be perceived as

different. How well changes in local contrast can be perceived

is a function of the contrast sensitivity [12], [13], [16].

Comparing Burt and Kolczynski’s method to Toet’s shows

that Burt and Kolczynski’s method provided better noise

reduction, but it still weighted the noisy parts of the images as

more salient than the non-noisy parts. It can also be seen from
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Fig. 5. Fusion results of test images using correlated noise added to band 30.

the fusion results that Toet’s method selected the high-energy

noisy parts of the input images to retain in the composite,

even though the lower frequency parts of the input images

contained the information desired. This loss of information in

the input images, due to selecting the high energy noisy parts

of the input images demonstrates the limitation of using pure

contrast as a selection criteria. The contrast sensitivity method

overcomes the previous methods’ sensitivity to noise.

B. Hierarchical Image Fusion of IR and Visible

Bands of AVIRIS Image Data

In this section, the results of fusing three bands of image

data from the AVIRIS hyperspectral sensor are presented. The

three bands include one image from the visible frequency

range and two from the infrared. Specifically, they are band

numbers 30, 60, and 90, which are centered at 677 m, 937 m,

and 1225 m, respectively. Fig. 6 displays the three original

(no added noise) AVIRIS input images.

It can be seen by comparing the fused images in Figs. 7–9

with the input images in Fig. 6 that all three methods do a

good job of preserving visual information from each input

image. However, comparing the three fused results to each

other, Toet’s fusion method does not have the same amount of

detail that is present in the other two. For example, looking at

the upper right hand corner of the fused images, it is easy to see

that Toet’s method causes the details to become washed out. In

order to make the details in this corner more distinguishable,

the overall intensity level of the image has to be reduced. The

reduction in intensity then causes the other areas of the image

to become less distinct. Also the runway and surrounding area
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Fig. 6. AVIRIS images representing bands 30, 60, and 90.

is more clear in Burt and Kolczynski’s method and the contrast

sensitivity method than it is in Toet’s fusion method.

Comparing the fusion results of the contrast sensitivity

method with Burt and Kolczynski’s shows that they both

have similar characteristics. Each method appears to preserve

features in the input images that are dominant. An example of

this preservation is observed by looking at the road that is a

dominant feature in bands 60 and 90 but not in band 30. The

road is located in the lower third of the image and extends

from the left edge of the image all the way to the right. It can

clearly be seen as a continuous road in bands 60 and 90, but it

is hard to distinguish in band 30. Looking at the fused results

in Figs. 7 and 9 it can be seen that the road is preserved in the

composite. Overall, the contrast sensitivity method provides

better results, both aesthetically and numerically (SNR), to

either Burt and Kolczynski’s or Toet’s methods.

An example of how fusion of the input bands provides better

detail in the composite than in the individual input images

alone is also shown in the fused images of all three methods.

The airport that can be seen in the lower right quadrant of the

input images has been combined in the composite image to

provide more detail than was in all three of the input images

separately.

C. Hierarchical Image Fusion of Multiple

Bands of AVIRIS Image Data

The fusion method developed in this article can also suc-

cessfully fuse many bands from the AVIRIS sensor without

causing loss of information or loss of dynamic range. The input

images are from bands 30 through 40 from the AVIRIS hyper-

spectral sensor. The combined band-pass range of the images

is from 670 m to 750 m. Fig. 10 shows the results of fusion.



1016 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 4, JULY 1997

Fig. 7. Burt and Kolczynski fusion results of AVIRIS bands 30, 60, and 90.

Fig. 8. Toet fusion results of AVIRIS bands 30, 60, and 90.

V. CONCLUSIONS

The fusion of various combinations of AVIRIS data, pre-

sented in the previous section, provides some examples of how

the fusion algorithms perform. The number of bands and which

bands are chosen will be a function of the desired information

to be obtained.

When human observers have to analyze many images from

a hyperspectral sensor they can quickly become inundated

with too much information. Also, many times it is helpful

to combine information from several spectral bands to get a

more complete picture of a scene. This is where the fusion

Fig. 9. Contrast sensitivity fusion results of AVIRIS bands 30, 60, and 90.

Fig. 10. Contrast sensitivity fusion results of AVIRIS bands 30 through 40.

algorithms can help. They can be used to combine the desired

set of bands in order to present the photo analyst with a

reduced set of images to analyze. This decreases the data for

the analyst and increases the information in a given image.

An added benefit of the contrast sensitivity based fusion

method is that it can be tuned to the contrast sensitivity of

a particular photo analyst. This ensures that details detectable

by the analyst in the source images will be maintained in the

composite.

An important point needs to be made about the distinction

between the fusion methods presented here and the principle
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components (PC) techniques that are often used to reduce

image data sets. The method presented here relies on a distance

metric in the perceptual space and not in the Euclidean space

as does PC. In other words, contrast sensitivity based fusion is

more concerned with how a human observer would perceive

the differences in two images and uses this to decide on

whether to average image details or to pick details from one

and discard the other. It is not trying to minimize some mean

squared error in Euclidean space as the PC does. The resultant

fused images are designed to reduce the number of images

that a human analyst has to analyze. They are not intended

for image compression.

Overall, the results of the previous section show that contrast

sensitivity based fusion is an excellent means of combining

multiple images from the AVIRIS hyperspectral sensor for

human analysis. Contrast sensitivity based fusion results in

improved signal-to-noise ratios over a wide range of noise

levels and backgrounds, and the results are independent of

the type (correlated versus uncorrelated) and strength of the

added noise.
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