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Abstract— The accurate prediction of quality from an end-user
perspective has received increased attention with the growing
demand for compression and communication of digital image and
video services over wired and wireless networks. The existing
quality assessment methods and metrics have a vast reach
from computational and memory efficient numerical methods
to highly complex models incorporating aspects of the human
visual system. It is hence crucial to classify these methods in
order to find the favorable approach for an intended application.
In this paper a survey and classification of contemporary image
and video quality metrics is therefore presented along with the
favorable quality assessment methodologies. Emphasis is given to
those metrics that can be related to the quality as perceived by
the end-user. As such, these perceptual-based image and video
quality metrics may build a bridge between the assessment of
quality as experienced by the end-user and the quality of service
parameters that are usually deployed to quantify service integrity.

I. INTRODUCTION

Multimedia applications are experiencing a tremendous
growth in popularity in recent years due to the evolution
of both wired and wireless communication systems, namely,
the Internet and third generation mobile radio networks [1].
Despite the advances of communication and coding technolo-
gies one problem remains unchanged, the transmitted data
suffers from impairments through both lossy source encoding
and transmission over error prone channels. This results in
a degradation of quality of the multimedia content. In order
to combat these losses they need to be measured utilising
appropriate quality indicators. Traditionally, this has been done
with measures like signal-to-noise ratio (SNR), bit error rate
(BER), or peak signal-to noise ratio (PSNR). It has been shown
that those measures do not necessarily correlate well with
quality as it would be perceived by an end-user [2].

Maximising service quality at a given cost is a main concern
of network operators and content providers. Due to this,
concepts such as Quality of Service (QoS) and Quality of Ex-
perience (QoE) [3], [4] have been introduced giving operators
and service providers the capability of better exploitation of
network resources that satisfy user expectations. In contrast
to already standardised perceptual quality metrics for audio
[5] and speech [6], the standardisation process for image and
video seemed to have proceeded somewhat slower. This issue
has also been recognised and addressed by the International
Telecommunications Union (ITU). In 1997, two independent
sectors of the ITU, the Telecommunication sector (ITU-T)

and the Radiocommunication sector (ITU-R), chose to co-
operate in the search for appropriate image and video quality
measures suitable for standardisation. A group of experts
from both sections was formed known as the Video Quality
Experts Group (VQEG) [7]. The efforts which the VQEG
has performed and the results are reported in [8], [9]. The
application area for quality metrics is wide and can include
in-service monitoring of transmission quality and optimisation
of compression algorithms.

In this paper a survey and classification of contemporary im-
age and video quality metrics is presented. A broad overview
of available methodologies applicable to assess quality degra-
dation occurring in communication networks is given. The
survey is understood as a guide to find favorable metrics for
an intended application but also as an overview of the different
methodologies that have been used in quality assessment.
Emphasis is given to those metrics that can be related to the
quality as perceived by the end-user. As such, these perceptual-
based metrics may build a bridge between QoE as seen by the
end-user and QoS parameters quantifying service integrity.

The paper is organised as follows. In Section II classification
aspects of quality measures are discussed. In Section III a
class of metrics is reviewed that uses solely the received
image respectively video for the quality evaluation. Similarly,
in Section IV a class of metrics is considered that additionally
utilises reference information from the original image respec-
tively video. Finally, conclusions are drawn in Section V.

II. CLASSIFICATION OF QUALITY EVALUATION METHODS

A. Subjective and objective methods

The evaluation of quality may be divided into two classes,
subjective and objective methods. Intuitively one can say that
the best judge of quality is the human himself. That is why
subjective methods are said to be the most precise measures of
perceptual quality and to date subjective experiments are the
only widely recognized method of judging perceived quality
[2]. In these experiments humans are involved who have
to vote for the quality of a medium in a controlled test
environment. This can be done by simply providing a distorted
medium of which the quality has to be evaluated by the
subject. Another way is to additionally provide a reference
medium which the subject can use to determine the relative
quality of the distorted medium. These different methods are
specified for television sized pictures by ITU-R [10] and



are, respectively, referred to as single stimulus continuous
quality evaluation (SSCQE) and double stimulus continuous
quality-scale (DSCQS). Similar, for multimedia applications
an absolute category rating (ACR) and degradation category
rating (DCR) are recommended by ITU-T [11]. Common to
all procedures is the pooling of the votes into a mean opinion
score (MOS) which provides a measure of subjective quality
on the media in the given test set. Clearly, subjective quality
assessment is expensive and tedious as it has to be performed
with great care in order to obtain meaningful results. Also,
subjective methods are in general not applicable in environ-
ments which require real-time processing. Hence, automated
methods are needed which attempt to predict the quality as it
would be perceived by a human observer. We refer to them
as objective perceptual quality metrics. The existing methods
have a vast reach from computationally and memory efficient
numerical methods to highly complex models incorporating
aspects of the human visual system (HVS) [12].

B. Psychophysical and engineering approach

Two general approaches have been followed in design of
objective quality metrics which in [13] are referred to as
the psychophysical approach and the engineering approach.
Metric design following the former approach is mainly based
on incorporation of various aspects of the HVS which are
considered crucial for visual perception. This can include
modeling of contrast and orientation sensitivity, spatial and
temporal masking effects, frequency selectivity and colour
perception. Due to the complexity of the HVS these models,
and therewith the metrics, can become very complex and
computationally expensive. On the other hand, they usually
correlate very well with human perception and are usable in a
wide range of applications. Fundamental work following the
psychophysical approach has been performed in [14]–[20].
Methods following the engineering approach are primarily
based on image analysis and feature extraction, which does not
exclude that certain aspects of the HVS are considered in the
design as well. The methods span from simple, numerical mea-
sures [21] to more complex extraction and analysis algorithms.
The extracted features and artifacts can be of different kinds
such as spatial and temporal information, codec parameters,
or content classifiers. Simple methods are based on measuring
single features whereas more complex algorithms combine
various measures in a meaningful way. In any case, the metric
outcomes can be connected to human visual perception by
relating them to MOS obtained in subjective experiments.

C. Reference-based classification

Finally, we can classify quality metrics regarding their
dependency on available reference information at the quality
assessment equipment. The different methods that will be
discussed are shown in Fig. 1.

In general, it is no problem for the HVS to judge the
quality of a distorted visual medium without having any
reference available. However, what seems to be so easy for
the HVS is a highly complex task for a machine. Metrics
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Fig. 1. Quality assessment methods: (a) No-reference method, (b) Reduced-
reference method, (c) Full-reference method.

following the approach of judging perceptual quality only
based on the distorted medium are called no-reference (NR)
or “blind” methods. These methods are readily applicable
in a communication system as they would base the quality
prediction solely on the received medium.

In order to quantify whether a change in quality between a
reference and distorted medium has occurred, some degree of
knowledge about the original medium would ease the related
evaluation compared to using an NR method. This can be
achieved by reduced-reference (RR) methods. Here, only a
set of features from the reference medium is needed at the
quality evaluation equipment instead of the whole medium
itself. This set of features can then be transmitted piggy-backed
with the medium or over an ancillary channel. At the receiver,
the features can then be extracted from the medium and used
along with the reference features for the quality prediction.

In cases where the reference is available at the evaluation
equipment, one can use a full-reference (FR) method. These
methods use the reference to predict the quality degradation
of the distorted medium which eases the process substantially
and provides in general superior quality prediction perfor-
mance. It should be noted that most existing metrics following
the psychophysical approach are FR methods [22]–[27]. The
drawback of FR methods in a communication environment is
that the reference is not available at the receiver where the
quality assessment is performed. In the sequel, only existing
NR and RR methods will be reviewed due to their applicability
in communication systems.

III. NO-REFERENCE QUALITY METRICS

The task of NR quality assessment is very complex as
no information about the original, undistorted medium is
available. Therewith, a NR method is an absolute measure
of features and properties in the distorted medium which have
to be related to perceived quality. An overview of NR metrics



TABLE I

OVERVIEW OF NO-REFERENCE QUALITY METRICS

Ref Features/Artifacts Domain Medium Image size

[28] Blocking DCT JPEG 512 × 512
[29] Blocking Spatial JPEG 240 × 480
[30] Blocking Frequency MPEG-2 720 × 576
[31] Blocking Spatial MPEG-1 352 × 288 (CIF)
[32] Blur Spatial Image 768 × 512
[33] Blur DCT MPEG, JPEG -
[34], [35] Sharpness Spatial/DCT Video 720 × 576
[36] Frame-freeze Temporal Video 352 × 288 (CIF)
[37] Motion vector information Temporal/Spatial MPEG-2 525 & 625 line [38]
[39] Blocking, blur Spatial JPEG Various
[40] Blocking, blur, noise Spatial/DFT MPEG-2 -
[41] Blocking, blur, jerkiness - MPEG-4 -
[42] Natural scene statistics DWT JPEG2000 768 × 512
[43] Frame rate, bit rate, fSI13 Temporal/Spatial H.263 176 × 144 (QCIF)
[44] Bit rate, max/min quality levels Temporal MPEG-4 QCIF & CIF
[45] Mean square error Spatial/DCT MPEG-2 720 × 486
[46] DFT coefficient cross-correlations Frequency Image -

that can be expected to perform favorable within the context of
QoS engineering in wired and wireless networks is provided
in Table I and will be discussed in the following.

A. Single feature metrics

Due to the difficulty in designing NR quality metrics, many
metrics solely measure single spatial features such as blocking
and blur. The former is among the most common artifacts in
compression standards using discrete cosine transform (DCT),
e.g. JPEG and H.263. On the other hand, blur and ringing are
major artifacts in compression algorithms which are based on
discrete wavelet transform (DWT) such as JPEG2000.

In [28] a method is proposed which for the reason of com-
putational efficiency measures blocking artifacts entirely in the
DCT domain. The blocking is modeled as two-dimensional (2-
D) step functions and properties of the HVS are included by
introducing visibility threshold relating to activity masking.

In [29] subjective experiments have revealed that blocking,
blur, and ringing all correlate strongly with perceived quality.
Based on this observation a quality measure for JPEG images
was developed exclusively based on the blocking artifact. The
decision was also motivated by the fact that blocking occurs
as horizontal and vertical edges unlike blur and ringing which
can have arbitrary shape and due to that would be harder to
measure. The blocking model is divided into three steps. A
front-end processing models luminance adaptation of the HVS.
Then a block boundary estimation is performed based on the
Gaussian blurred edge model. Finally, in an integration stage
the estimated edge amplitudes are collapsed into a single scalar
blocking value.

A blocking measure for video sequences has been proposed
in [30] which is said to be insensitive to other artifacts. Here,
each frame is partitioned into blocks and further sampled into
subimages. These subimages are pairwise correlated within
(intra-block) and across block boundaries (inter-block) to
obtain similarity measures within and between the blocks,
respectively. The correlation measures are performed on the
frequency representation of each subimage. The final blocking

measure is given by the ratio of intra-block to inter-block
similarity. Values close to unity indicate low blocking while
values significantly larger than unity yield strong blocking.

A generalized block-edge impairment metric (GBIM) for
image and video coding is reported in [31]. It is the successor
of the block-edge impairment metric (BIM). With BIM hori-
zontally and vertically differences at 8 × 8 block boundaries
are measured which by GBIM are perceptually weighted
according to luminance masking properties of the HVS.

A blur metric is proposed in [32] which does not make
any assumptions about the type or origin of the blur. The
metric works in the spatial domain where basically an edge
image is obtained by using a Sobel edge detector. Then either
horizontal or vertical edge widths are measured and identified
as local blur measures. An overall blur measure is attained
by averaging the local blur values over all edge locations. The
quality prediction performance of the metric has been testified
with subjective experiments on a set of Gaussian blurred
images and JPEG2000 compressed images. The Pearson linear
correlation and Spearman rank order correlation show good
agreement of the predicted and the subjective quality.

The blur metric in [33] is based on histogram computations
of DCT coefficients and can therefore instantly be applied in
the compressed domain of JPEG images or MPEG frames.
The idea behind this is to take advantage of image analysis
which has already been performed in the compression process.
In a three step process, first the DCT information of the
entire image is gathered, then it is evaluated with respect to
contained DCT values that are equal to zero, and finally the
measure is normalised to remove dependance on the image
size. The prediction performance is validated with subjective
experiments on a set of MPEG coded video sequences.

Intuitively one could consider image sharpness as an oppo-
site measure to image blur. A content independent sharpness
metric has been proposed in [34]. It is motivated by observa-
tions on statistical measures of image frequency distributions.
Specifically, the kurtosis, as a measure of peakedness of a



signal distribution relative to the normal distribution, has been
identified as a precise measure of image sharpness. The basic
steps of the algorithm are composed of the creation of an edge
image using a Canny edge detector, an assignment of 8 × 8
blocks to each edge pixel and transformation into the DCT
domain, the calculation of the probability density function
(PDF) of each block, and finally the computation of a 2-D
kurtosis on the PDF. A good prediction performance has been
verified with subjective experiments. The kurtosis method has
been adopted in [35] but is said to provide more robustness
to noisy images by computation solely in the wavelet domain
using a 3-level discrete dyadic wavelet transform (DDWT).

In video sequences, distortions do not only occur in the
spatial domain but also in the temporal domain. Common
artifacts include jitter, which are abrupt variations resulting
from asynchronous acquisition of video frames, and jerkiness,
the perception of still images in a video sequence resulting
from too low frame rates. The loss of entire frames is called
frame-loss whereas a frame that is repeated in consecutive
time instants is referred to as frame-freeze.

A quality measure for real-time video streams over Internet,
exclusively measuring temporal artifacts, is reported in [36].
Here, temporal discontinuities, or frame-freeze, are object
to quality prediction. They are detected when the temporal
derivative of the frame luminance is null. A frame-freeze is
considered perceptible when its duration exceeds a certain
threshold. Furthermore, the model accounts for the regularity
and density of the occurring discontinuities and also for their
burst sizes. Abrupt scene changes and object displacements af-
ter frozen frames are also taken into account. The performance
of the metric has been verified in subjective experiments
achieving high correlations with perceived quality.

In [37] the assumption is made, that quality degradation in
MPEG-2 is correlated to the accuracy of motion vector esti-
mation. Specifically, the authors state that motion estimation is
highly related to the mean absolute error (MAE), computed by
subtracting each pel in a block with its corresponding motion
compensated reference block, and to spatial activity (SA), as
the amount of texture in a macro-block. A probability surface
is established with the variables MAE and SA allowing for
classification of macro-blocks into the categories well pre-
dicted, badly predicted, or uncertainly predicted. An additional
measure looks into the spatial and temporal neighbourhood of
macro-blocks and provides supportive information for a final
probability measure of how well a macro-block is predicted.
A final criticality index is then established as an average of
the probabilities over all macro-blocks.

B. Metrics of combined features and structural information

Perceptual quality prediction based on structural properties
of images, respectively video frames, is a common approach
and is motivated by the fact that the HVS is highly adapted to
the extraction of structural information [25]. Usually, this is
achieved by quantifying different features in an image and
combining them in a certain way. The weights for feature
quantification are often derived from subjective experiments to

find better accordance to perceived quality. In comparison to
single-feature metrics, such multi-feature metrics offer more
insight into the structural information of an image and also
more robustness to different types of artifacts. A good example
of a multi-feature metric for JPEG images utilising perceptual
based weightings is proposed in [39].

In [40] experiments with videos are reported in which sub-
jects had to vote for the annoyance of three different artifacts,
blockiness, blurriness and noisiness, resulting in mean annoy-
ance values (MAV) for each sequence. The artifacts were intro-
duced into three different spatial regions (top/middle/bottom)
in video frames to prevent the test subjects from learning the
artifact locations. Feature metrics have been used to measure
the strength of each of the artifacts. Finally, the weighted
Minkowski metric, also referred to as LP-norm of pth order,
has been used as a combination rule of the artifacts. It has
been observed that the simple linear model for p = 1 provides
as good correlations as higher order models.

The aforementioned metrics all presume that artifacts in
images and video frames are perceived equally annoying no
matter in which location they appear. The metric designed
in [41], however, besides extraction of blocking, blur and
jerkiness, also considers higher order aspects of the HVS in
terms of semantic segmentation. This is motivated by the fact
that there are usually regions in visual content that are of
higher interest and others of lower interest. It is then stated
that artifacts in regions of interest (ROI) appear more annoying
than in the rest of the image. Of course, the ROI is subject and
content dependent but generally two important aspects can be
pointed out: the focus of attention and object tracking. The
former explains the phenomenon that there are certain objects
which attract everyone’s attention in an image, for example
faces. The latter phenomenon emphasizes that motion attracts
peoples attention. Based on these two aspects the image is
divided into semantic segments of different importance using
a-priori knowledge about the objects to be segmented, for
instance face colour or motion information. In the pooling
process the features measured in the regions with semantically
higher importance are then given higher weights.

Considering the metrics discussed so far, blur and blocking,
seem to have received strong attention as perceptually impor-
tant image and video artifacts. A totally different approach
has been examined in [42]. Instead of obtaining structural
information as a combination of artifacts, a two state natural
scene statistics (NSS) model is proposed for quality evaluation
of natural scenes. The authors philosophy is that all images,
regardless of content, are initially perfect unless distorted dur-
ing acquisition, processing, or reproduction. Most distortions
that are prevalent in image and video processing systems are
not natural in terms of NSS. The method is designed for
quality assessment of images compressed with a wavelet based
encoder such as JPEG2000. Natural scenes contain nonlinear
dependencies which are disturbed by the compression process.
This disturbance is quantified based on significance analysis
of wavelet coefficient magnitudes and related to human quality
perception by conduction of subjective experiments.



C. Metrics incorporating codec parameter settings

In the sequel, metrics are discussed that base quality pre-
diction partly on a set of codec specific objective parameters.
This is thought to reduce computational complexity by using
readily available information provided by the source encoder.

The goal of modelling a low complexity metric for H.263
encoded video sequences is pursued in [43]. The quality evalu-
ation is based on compression settings and content features. A
total of nine features is evaluated regarding their suitability
for quality prediction. Five of them are recommended by
the American National Standards Institute (ANSI) [47]. All
measures were performed on five video sequences representing
different content classes. Additionally, subjective experiments
have been performed to obtain MOS for the different se-
quences. In order to reduce the dimension of the parameter
space, principal component analysis (PCA) has been used to
determine the relationship between MOS and the objective
parameters. The result is a reduced set of three parameters
frame rate, bit rate, and fSI13, a parameter for overall spatial
information. The set represents a trade-off between computa-
tional complexity and prediction performance.

A method for objectively evaluating perceived quality of
service (PQoS) for MPEG-4 coded video content is reported
in [44]. The design is based on observations of data from
subjective experiments revealing that over a certain threshold
bit rates do not impact on perceived quality (PQ) anymore
and below a certain threshold PQ drops drastically. The bit
rate thresholds have been found to be highly dependent on the
dynamics in the video content. The data from the subjective
experiments is used to derive an exponential function which
is proposed for objective prediction of PQ. This method was
verified to work well on common intermediate format (CIF)
and quarter CIF (QCIF) sized sequences.

D. Metrics using data hiding techniques

The following metrics make unconventional use of data
hiding procedures by means of watermarking. A watermark
is an image or pattern invisibly embedded into a host image
and has been traditionally used for purposes such as copyright
protection. In the following metrics, however, the watermark
is used to assess the quality of its host image based on the
assumption, that the host undergoes the same distortions as
the watermark. This requires that the transmitted watermark
is known at the receiver in order to perform the quality
evaluation. Therefore, this type of method is also referred to
as a pseudo no-reference method [46] since no information
about the reference is needed but instead information about
the embedded watermark. The choice of the right watermark
plays an important role because it has to be sufficiently robust
to be detectable after strong distortions but also fragile enough
to be degraded proportionally to the host image. The principle
system common to the discussed metrics is illustrated in
Fig. 2. Here, ht and wt denote the host and watermark to be
transmitted, respectively. The received versions are denoted
by hr and wr. Such a scenario allows for incorporating
compression and transmission artifacts in the medium.
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Fig. 2. Quality assessment system utilising watermark based methodology.

In [45] a metric is presented which embeds the watermark in
the DCT domain of each frame in a MPEG-2 video sequence.
The embedding procedure is summarised as follows. First,
a pseudo-noise image p(n) is generated for each frame of
the sequence to avoid visual latency. The watermark wi(n)
for a frame fi(n) at time instant n is then obtained by
multiplying p(n) with an image I(n). Finally, the watermark
is embedded in the mid-frequencies DCT coefficients of the
frame. Embedding in low frequencies would create visible
artifacts whereas embedding in high frequencies would cause
the watermark to be easily removed. The transmitted sequence
is given as Yi(n) = DCT{log[fi(n)]}+α ·wi(n) where α is
a scaling factor varying the strength of the watermark. For the
quality assessment the watermark is removed from its host.
The quality measure is then calculated as the mean square
error (MSE) of the transmitted image I(n) and received image
Ir(n). Using this technique enables to use FR methods such
as MSE to be used for NR assessment of the host presuming
that the embedded image I(n) is available at the receiver.

An empirical approach by means of a psychophysical ex-
periment has been used in [45] to evaluate the visibility of
the embedded watermark. To avoid this approach and instead
analytically control the watermarks visibility, an embedding
method based on a psychovisual model has recently been
proposed in [46]. The model provides different frequency and
orientation selective subbands. A watermark is then embedded
into each subband allowing for the quality metric to have
several measuring points on the frequency content. The final
quality score Q is attained from averaging of correlation
measures in high and middle frequency bands between original
and received watermark. A psychometric function is used to
translate the objective quality scores into predicted MOS.

IV. REDUCED-REFERENCE QUALITY ASSESSMENT

The RR approach makes the task of quality evaluation
comparably easier to NR techniques by providing information
about the reference to the assessment equipment. Therefore,
RR methods measure a change in features between the ref-
erence and distorted medium which in turn can be used
to assess quality degradation. However, this is done at the
cost of transmitting the features as side information over the
channel which makes the amount of overhead needed for
the RR information a crucial aspect of this type of metrics,
especially in low-bandwidth wireless channels. In general, RR
approaches are based on similar principles to the ones already



TABLE II

OVERVIEW OF REDUCED-REFERENCE QUALITY METRICS

Ref Features/Artifacts Domain Medium Image size

[48], [49] Blocking, blur, ringing, masking Spatial JPEG 512 × 512
[50] Spectral/Temporal content, blocking Spatial/Temporal MPEG-2 -
[51] Motion-related content descriptors Temporal MPEG-4 176 × 144 (QCIF)
[52] Wavelet-based HVS model Spatial/Temporal/DWT H.263 352 × 240
[53] Natural image statistics DWT JPEG, JPEG2000 768 × 512
[54] Temporal and spatial parameters Temporal/Spatial Various 525 & 625 line [38]

discussed in Section III but not as many metrics have been
proposed yet (see also Table II). Therefore, in this section the
metrics are not further classified according to their methods.

In [48] a metric for JPEG coded images is proposed com-
bining five structural features fi into a hybrid image quality
metric (HIQM). In particular, the features are blocking, blur,
edge-based image activity, gradient-based image activity, and
intensity masking. The overall perceptual quality measure is
then computed as a weighted sum of the extracted features

HIQM =
5∑

i=1

wi · fi (1)

where the weights wi are derived from subjective experiments
and reflect the impact of each of the features on perceptual
quality. The quality degradation of a received image as com-
pared to its related reference image can then be obtained as

∆HIQM = |HIQMt − HIQMr| (2)

with HIQMt and HIQMr, respectively, being the HIQM
values for the transmitted and received image. The method
provides good correlations with perceived quality despite the
fact that only a single number needs to be transmitted along
with the image. The drawback of this method, however, is
a non-uniform range for the different feature measures. This
issue has been addressed in [49] by introducing normalised
HIQM (NHIQM) which uses an extreme value normalisation
[1] of the feature measures in order for them to fall in
the interval [0, 1]. Similar as in (2) a measure for quality
degradation can be obtained. Beside NHIQM the weighted
LP-norm has been proposed for quality prediction

LP,W =

[
5∑

i=1

wP
i |ft,i − fr,i|P

] 1
P

(3)

where ft,i and fr,i are the transmitted and received normalised
features, respectively, and P is the order of the norm. The LP-
norm provides similar prediction performance as NHIQM with
the advantage that the different feature values are available
at the receiver as additional information about the structural
degradation in the image.

A quality metric for MPEG-2 video streams is proposed in
[50] taking into account both chromatic components and the
achromatic component of the Krauskopf colour space. A total
of four features is extracted on all three components resulting
in a set of twelve features for each video frame. In particular,
two features related to spectral content and one feature related

to temporal content are extracted in addition to the blocking
measure in [55]. Data from subjective experiments has been
used along with the feature measures to train and test a time
delay neural network (TDNN) which is said to preserve the se-
quential nature of the video stream unlike conventional multi-
layer perceptrons. Very good correlation of the objectively
predicted quality with subjective quality has been shown over
a range of different bit rates and video contents.

In [51] the concept of advanced video traces is introduced
for MPEG-4 video streams. The key idea is to extend the set
of available parameters in conventional video traces, which
provide for instance information on frame size (in bits) and
frame type (I/P/B), with a set of motion-related content
descriptors. These descriptors allow for evaluation on three
different temporal granularity levels; frame level, group of
pictures (GoP) level (a GoP are the frames between two intra-
coded I frames), and shot level. Quality predictors utilising
these descriptors are then proposed to quantify the quality
degradation due to loss of the different frame types. The
performance of the motion based measure has been extensively
evaluated with respect to the full-reference metric in [26]
which incorporates aspects of different levels of the HVS.

The continuous video quality evaluation (CVQE) metric
proposed in [52] is based on a perceptually motivated multi-
channel decomposition using the discrete wavelet transform
(DWT). A variable amount of coefficients to be transmitted
allows for a scalable overhead. A masking model based on
the generalised gain control formulation [20] is implemented
leading to the channel response

rk,Θ(m,n, t) =
wp

k(ak,Θ(m,n, t))p

b + wq
k

∑
Θ(ak,Θ(m,n, t))q

(4)

where ak,Θ(m,n, t) are the contrast values, k and Θ, respec-
tively, are scale and orientation of the DWT decomposition,
and wp

k is an excitatory and wq
k an inhibitory weight. The

distortions between reference and distorted frame at time
instant t are then computed as the absolute difference between
the channel responses

d(m,n, t) =
∣∣∣rref

k,Θ(m,n, t) − rdist
k,Θ (m,n, t)

∣∣∣ (5)

To obtain an objective measure of quality degradation, the dis-
tortions d(m,n, t) have been converted using a non-symmetric
function [10]. Subjective experiments data has been used to
evaluate the objective measures of CVQE concluding that the
metric performs better the higher the allocated bandwidth (by
means of DWT coefficients) for the reduced-reference is.



In [53] a quality metric has been proposed that is based on
a natural image statistic model in the wavelet domain. The
authors state that many image distortions lead to significant
changes in wavelet coefficient histograms. The method utilises
a 3-scale and 4-orientation steerable pyramid decomposition
[56] for the wavelet decomposition which avoids aliasing be-
tween the resulting twelve subbands. The PDF of the wavelet
coefficients are analysed in each subband for both reference
and received image. The Kullback Leibler distance (KLD)
can then be used to quantify the difference of the wavelet
coefficients between the two images based on the coefficient
histograms. Transmitting the histogram of the reference im-
age, however, might result in a large overhead by means
of the reduced-reference. Therefore, the reference histogram
is approximated with a two parameter generalised Gaussian
density (GGD) model. This means that only two parameters
and additionally an approximation error have to be transmitted.
At the receiver side the PDF does not get approximated since
due to distortions the image might not be natural and therewith
not fit the GGD anymore. The final distortion between the
received and the transmitted image is then calculated as

D = log2

(
1 +

1
D0

K∑
k=1

|d̂k(pk‖qk)|
)

(6)

where the constant D0 is used as a scaler of the distortion
measure, d̂k(pk‖qk) denotes the estimation of the Kullback-
Leibler distance between the probability density functions pk

and qk of the kth subband in the transmitted and received
image, and K is the number of subbands. Of the twelve
subbands only six are selected (two from each scale) to
reduce the overhead for the reduced-reference, which is then
composed of 18 different feature measures (162 bits). The
metric has been verified to work well on a set of images
processed to contain different types of distortions. However,
to avoid the problem of sending the features separate from the
reference over the channel, the interesting concept of quality
aware images has been introduced in [57]. As other methods
before, this one makes use of data hiding techniques, but in a
different respect. Instead of using the embedded watermark
for quality evaluation at the receiver side, the watermark
itself contains the quality measure as in (6) and only has
to be extracted. Therewith, no overhead is introduced and
no ancillary channel for transmission of side information is
needed. This solution might also be applicable to other RR
metrics previously discussed in this section.

Finally, the General Model of the video quality model
(VQM), developed by the National Telecommunications and
Information Administration (NTIA), is summarised in [54].
It has been extensively tested by the VQEG [9] and recently
been standardised by the American National Standards Insti-
tute (ANSI) [47]. The model is said to be general purpose
and applicable for various types of coding and transmission
systems. The reduced-reference is composed of the VQM and
a set of calibration parameters which have to be transmitted
over an ancillary channel. The ancillary channel has to provide

a total of 14% of the bandwidth of the uncompressed video
sequence whereof 9.3% are for the VQM parameters and
4.7% for the calibration parameters. The testing of VQM has
been organised by VQEG and performed in three independent
laboratories on 525 and 625 line [38] video test material. The
General Model of VQM has been found to be comparably
better than any other metric in the test. However, this has
been achieved at the cost of a high transmission overhead.

V. SUMMARY AND CONCLUSIONS

Given the growing interest in delivery of multimedia ser-
vices over wired and wireless networks along with the advent
of highly efficient image and video codecs, there is a strong
need for metrics being able to measure and quantify transmis-
sion and coding quality as perceived by the end-user. A survey
and classification of such image and video quality metrics and
favorable quality assessment methodologies was presented in
this paper.

It has been shown that most of the methodologies proposed
over the years are designed to perform best on a certain
medium and image size. This approach of application specific
quality evaluation is sensible since a “general purpose” metric
for various media types might be too complex due to need for
scalability. However, more research should be concentrated on
quality evaluation of recent image and video codecs, such as
H.264. Furthermore, by the number of proposed metrics it can
be observed that research in RR quality assessment seems to
lack behind the NR quality assessment. The authors opinion,
however, is that RR quality assessment methods should receive
stronger attention as they are a good compromise between FR
and NR methods. Their main advantage over NR methods is
the capability of providing a measure of quality degradation
instead of an absolute quality measure. On the other hand,
the overhead of the reduced-reference becomes a critical issue
in metric design. Finally, a fairly unexplored research field is
the assessment of combined effects of video quality and audio
quality [58]. In order to measure the overall quality of video
one needs to define a mutual measure of audiovisual quality.
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