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Perceptual blur and ringing metrics: application to JPEG2000
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Abstract

We present a full- and no-reference blur metric as well as a full-reference ringing metric. These metrics are based on
an analysis of the edges and adjacent regions in an image and have very low computational complexity. As blur and
ringing are typical artifacts of wavelet compression, the metrics are then applied to JPEG2000 coded images. Their
perceptual significance is corroborated through a number of subjective experiments. The results show that the proposed
metrics perform well over a wide range of image content and distortion levels. Potential applications include source
coding optimization and network resource management.
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1. Introduction

Tremendous advances in computer and com-
munication technologies have led to a proliferation
of digital media content. However, digital images
and video are still demanding in terms of proces-
sing power and bandwidth, and thus are often
impaired by various types of artifacts such as
noise, blockiness, blur, ringing, etc. [17]. In order
to optimize imaging systems and to improve the
perceptual quality of delivered content, metrics are
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needed to identify and measure these various
artifacts.

Several perceptual metrics have already been
developed for some of these artifacts. We can
distinguish two categories of metrics: full-reference
and no-reference. In the former case, a processed
image is compared to a reference (e.g. the
original). In the latter case, the metric is not
relative to a reference image, but rather an
absolute value associated to any given image.
Much of the research up to now has been on
metrics falling in the full-reference category.
Quality assessment without a reference is intrinsi-
cally difficult, because the distinction between
image features and artifacts is often ambiguous.
Most existing no-reference metrics focus on
blockiness, which is still relatively easy to detect
due to its regular structure—see e.g. [14] for a
comparison of three such metrics. More recently,
we presented results on video quality assessment
for Internet streaming [12] and mobile applications
[13] using a no-reference quality metric.
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In this paper, we are interested in two types of
artifacts, namely blur and ringing. Blur is due to
the attenuation of the high spatial frequencies in
the image, and ringing is caused by the quantiza-
tion of high frequency coefficients in transform
coding. Blur is characterized by a smearing of
edges and a general loss of detail, whereas ringing
introduces ripples around sharp edges.

We present both full-reference (FR) and no-
reference (NR) metrics that measure the percep-
tual amount of blur as well as a full-reference
metric that measures the amount of ringing. The
proposed metrics are defined in the spatial domain
and are based on the analysis of the edges in an
image. The blur metric measures the spread of
edges, and the ringing metric measures oscillations
around edges. No assumptions are made on the
type of content or the particular blurring and
ringing process. These objective measures correlate
well with the perception of blur and ringing. The
proposed metrics also have the advantage of a very
low complexity and can therefore be used to
analyze video quality in real-time [12,13].

Image coding aims at minimizing the distortion
of a compressed image for a given bit rate
(alternatively, one can minimize the bit-rate for a
given distortion level). This requires methods for
accurately measuring the distortion or quality of a
coded image. The distortion is often evaluated by
simple fidelity metrics such as mean square error
(MSE) or peak signal-to-noise ratio (PSNR).
Unfortunately, such metrics do not correlate well
with human perception. Therefore, perceptual
metrics are needed for a more relevant measure-
ment of image quality, the ultimate goal being
encoder optimization based on these metrics.
However, different coding schemes are character-
ized by very different types of artifacts. For
instance, the coding techniques based on the
discrete cosine transform (DCT), such as those
used in JPEG and MPEG, mostly bring about
blockiness artifacts. Conversely, the new
JPEG2000 standard [8,11], which is based on a
wavelet transform, mostly introduces blur and
ringing artifacts.

In this paper, the proposed blur and ringing
metrics are applied to measure the quality in
JPEG2000 coded images. Note that the use of no-

reference metrics is especially interesting for the
case of JPEG2000. Indeed, thanks to its scalable
properties, a JPEG2000 bitstream can be decoded
at multiple quality levels and/or resolutions. In the
latter case, an original may not exist, which makes
it impossible to use a full-reference metric.

The paper is structured as follows. In Section 2,
we illustrate the origins of blur and ringing
artifacts. We then describe the perceptual blur
metric, which was initially defined in [7], and use it
in the design of a new ringing metric. In Section 3,
we validate each of our perceptual metrics via
subjective experiments and analyze the agreement
between the metrics’ predictions and the observer
ratings. Finally, we draw some conclusions in
Section 4.

2. Artifacts and metrics

Blur in an image is due to the attenuation of the
high spatial frequencies, which commonly occurs
during filtering or visual data compression. While
measuring the perceptual blur in an image or a
video sequence has not yet been investigated,
related research topics include blur identification
[6], blur estimation [4,2], image deblurring [1] and
blind deconvolution [5]. In practice most of these
methods require iterative solving algorithms,
which are computationally demanding.

Ringing in an image is also caused by the
quantization or truncation of the high frequency
transform coefficients resulting from DCT- or
wavelet-based coding. In the spatial domain this
causes ripples or oscillations around sharp edges
or contours in the image. This is also known as the
Gibbs phenomenon. The problem of removing
ringing artifacts is considered in [15] and solved
using a maximum-likelihood approach. A method
for the detection of image regions that exhibit
ringing is presented in [16] as part of a blockiness
measurement technique.

In the lossy JPEG2000 compression scheme
[8,11] for example, the standard filter used for the
wavelet decomposition is the Daubechies (9,7).
Since the decomposition is done in a separable
manner, i.e., first on the rows and then on the
columns, it suffices to show the effect of these
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Fig. 1. Effect of Daubechies (9,7) filter on a sharp edge.

filters in 1D. Fig. 1 illustrates the effects of blur
and ringing on a sharp edge.

Most of the papers cited above do not attempt
to measure the perceptual impact of these artifacts.
However, it is of great importance to be able to
objectively quantify the perceived blur and ringing
in an image. The goal is to establish metrics which
correlate with the human visual experience by
mapping the objective measurements onto sub-
jective test results.

Our blur and ringing metrics are defined in the
spatial domain. Both artifacts appear mostly along
edges or in textured areas. The proposed blur
metric thus attempts to measure the spread of the
edges, whereas the ringing metric measures the
ripples or oscillations around these edges.

For color images, blur and ringing are measured
on the luminance component. While the algo-
rithms consider primarily still images, it is
straightforward to extend the techniques to digital
video by measuring the artifacts in every frame
[12,13]. The low algorithmic complexity is essential
in this case in order to be able to measure the
distortions in real time.

2.1. Blur metric

Our technique for measuring blur is based on
the smoothing or smearing effect of filtering or
compression on sharp edges, and consequently
attempts to measure the spread of the edges. The
algorithm is summarized in Fig. 2.

First we apply an edge detector (e.g., a Sobel
filter) to the luminance component of the image.
Noise and insignificant edges are removed by
applying a threshold to the gradient image. We
then scan each row of the processed image. For
pixels corresponding to an edge location, the start
and end positions of the edge are defined as the

Find strong vertical edges in the original image

J

For each corresponding edge in the processed image:
Find the start and end positions of the egde
(local maximum and local minimum)

l

Calculate edgewidth (local blur)

|

Sum of all edgewidths
Number of edges

Blur Measure =

Fig. 2. Flow chart of the full-reference blur metric. In the no-
reference case, the processed image replaces the original image
in the first box.
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Fig. 3. One row of the blurred image. The detected edges are
indicated by the dashed lines, and local minima and maxima
around the edge by dotted lines. The edge width at Pl is
P2 — P2.

locations of the local luminance extrema closest to
the edge. The spread of the edge is then given by
the distance between the end and start positions,
and is identified as the local blur measure for this
edge location. The global blur measure for the
whole image is obtained by averaging the local
blur values over all edges found.

An example of a row in an image is illustrated in
Fig. 3. For the edge location PI, the local
maximum P2 defines the start position, while the
local minimum P2’ corresponds to the end
position. The spread of the edge is P2’ — P2 =11
pixels in this example. Similarly, for the edge P3,
the local minimum P4 is the start position, the
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local maximum P4’ is the end position, and
P4’ — P4 = 6 pixels is again the spread.

In the algorithm described above, only vertical
edges are considered. This is done mostly for
performance reasons. It is obviously an approx-
imation, as only the blur projected onto the
horizontal direction is measured. The algorithm
can easily be extended to the horizontal edges by
filtering with a horizontal Sobel filter and then
scanning each column. It is also possible to
measure blur along the actual local edge gradients
by taking into account the gradient orientation.
However, our tests showed that this does not
improve the measurements; using the vertical
edges is sufficient in practice.

The algorithm described here lends itself to both
a full-reference and a no-reference implementa-
tion. In the full-reference blur metric, we use the
edges of the original image to determine the edge
locations. For the no-reference blur metric, the
edges are obtained directly from the processed/
compressed image [7]. While this affects the
precision of edge detection to a certain extent
(depending on the amount of compression or
distortion), it is still possible to achieve good
correlations with perceived blur, as will be shown
in Section 3.

In addition to encoder optimization applica-
tions, the blur metric can also be used for
autofocusing an image capturing device.

2.2. Ringing metric

The ringing metric is based on and makes use of
the blur metric described in the previous section.
The algorithm is summarized in Fig. 4.

Similar to the blur metric, the ringing metric is
defined for each important vertical edge. It first
finds the vertical edges in the original image (weak
edges and noise are again discarded by means of
thresholding) and calculates the difference between
the processed image and the reference. It then
scans each row in the processed image and
measures the ringing around each edge.

We define a left and a right ring measurement.
Furthermore, we define the ringing support as a
fixed ringwidth (given a priori from the effects of
the wavelet decomposition filters, cf. Fig. 1) minus

‘ Find strong vertical edges in the original image

l

‘ Calculate left and right edgewidth ‘

l

For each corresponding edge location in processed image:
Left ringwidth = fixed ringwidth - left edgewidth
Right ringwidth = fixed ringwidth - right edgewidth

I

Calculate the difference image
d = processed image - reference image

l

Left ring measure = left ringwidth * | max(d) - min(d) |
Right ring measure = right ringwidth * | (max(d) - min(d) |

I

Sum of left and right ring measures
Number of edges

Ring Measure =

Fig. 4. Flow chart of the full-reference ringing metric.

the edge width due to blur (as defined in the blur
measurement in the previous section). Then we
take the difference between the minimum and the
maximum of the difference image inside this
support and multiply by the ringing support width.
We add the left and right ring measures and take
an average over all edges to obtain the global
ringing measurement.

The ringing along an image row with two sharp
edges is illustrated in Fig. 5. The left edgewidth as
defined previously is |[P3 — P1|. The left ringwidth
is |P3' — P3|, where P3' = Pl+ fixed ringwidth.
The left ring measurement is calculated as
|[max(L1 — L2) — min(L1 — L2)|x|P3' — P3|, where
the maximum and minimum of the difference
between reference and processed are computed
over the left ring support between P3’ and P3. The
same quantities are computed on the right side of
the edge.

3. Experiments and results

To corroborate the perceptual relevance of our
metrics, we carried out two sets of subjective
experiments. We asked ten expert viewers to
evaluate—in separate sessions—the blur and the
ringing perceived in a set of test images. The
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images are shown in random order, and the
observers are asked to quantify the amount of
the respective distortion for each image on a scale
from O (no distortion visible) to 10 (maximum
distortion). The average observer ratings are then
compared to the predictions of the blur and
ringing metrics. Finally, in Section 3.3 we use
our metrics to predict the overall quality of
JPEG2000-coded images and evaluate the predic-
tion performance with the help of the LIVE image
quality assessment database [9].
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Fig. 5. The dotted line L1 is one row of the original image. The

solid line L2 is the same row of the JPEG2000 coded image.

Ringing can be observed around the edge at P1 between P3 and
P3' as well as P2 and P2'.

3.1. Perceived blur

We consider the five 24-bit color images of size
768 x 512 shown in Figs. 6 and 7(a). Blur is
induced in two ways:

® The images are compressed in JPEG2000

with  five different compression ratios
Cre{40,80,120,160,200}, yielding 25 test
images.

® The images are filtered with a Gaussian filter
with five different standard deviations
0€{0.4,0.8,1.2,1.6,2} pixels, yielding another
25 test images.

We thus obtain a total of 55 test images
(including the originals). Figs. 7(b, ¢) show
examples of maximum JPEG2000 compression
and maximum Gaussian blur, respectively.

Fig. 8 illustrates the behavior of the blur
metric across distortion levels. The strong
linear relationship is consistent for all the test
images.

Fig. 9 illustrates the correlation between the
subjective blur ratings and the proposed full-
reference and no-reference blur metrics. We obtain
87% linear correlation and 85% rank-order
correlation between our full-reference blur metric
and perceived blur. For the no-reference blur
metric, the correlations decrease to 73% and 81%,
respectively (see also Table 1). This is mainly due
to the problem of reliably detecting the edges in

Fig. 6. Test images.
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(b)

(c)

Fig. 7. Motocross test image demonstrating the maximum
distortion levels: (a) original image; (b) maximum JPEG2000
compression (Cr = 200); (¢) maximum Gaussian blur (¢ = 2).

the processed image: as blur increases, the number
of edges found by the Sobel filters goes down,
which reduces the number of local blur measure-
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Fig. 8. Behavior of blur metric for the motocross test image: (a)
blur measurement versus JPEG2000 compression ratio; (b) blur
measurement versus standard deviation of the Gaussian
blurring filter.

ments. This is one of the weak points of the NR
metric, and using a more advanced edge detection
method would certainly make it more robust.
However, low complexity was one of our prime
objectives in the design of these metrics.

In general, the difficulty lies mainly in predicting
the perceived blur for two distinct blur sources
(Gaussian filtering and JPEG2000 compression)
with a common metric, as can be seen from the
plots. If we analyze the metrics’ predictions for
these two sets separately, we can obtain correla-
tions as high as 98%. The additional artifacts
introduced by JPEG2000 compression change the
observers’ perception of blur with respect to the
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Gaussian case and thus affect the overall predic-
tion performance of our metrics.

3.2. Perceived ringing

Here we extend the original test set from the
previous section to include the additional images
shown in Fig. 10 for a total of nine original
images. They are compressed in JPEG2000 with
the same five compression ratios as in Section 3.1,
namely Cr € {40, 80, 120, 160,200}. We thus obtain
a total of 54 test images, including the originals.

Fig. 11 illustrates the subjective ring ratings
versus the perceptual full-reference ringing metric
with correlations of approximately 85%. The
lower correlations (compared to the blur metric)
can partly be explained by the fact that the viewers
found it more difficult to evaluate the ringing
artifacts in the JPEG2000 coded images. Further-
more, the effects of ringing are not always as well-
behaved as in Fig. 5, which affects the ringing
measurements, and also thwarted our efforts to
use the metric in the no-reference case.

The correlations between the subjective blur/
ringing ratings and the proposed blur/ringing
metrics are summarized in Table 1.

3.3. Perceived quality of JPEG2000 images

In addition to the artifact-specific experiments
for blur and ringing described above, we also test
the performance of our metrics as a predictor of
overall perceived image quality. For this we use
the subjectively rated JPEG2000-coded images
from LIVE image quality assessment database
[9], which was made available recently by the
University of Texas at Austin.

The test images in this database were created by
compressing 29 RGB color images (typically of
size 768 x 512 pixels) using Kakadu’s JPEG2000
encoder. Compression ratios range from 7.5 to
800, yielding a total of 169 compressed images.
The subjective experiments were conducted in two
separate sessions with 29 and 25 observers,
respectively; the original uncompressed images
were included in both. Observers provided their
quality ratings on a continuous linear scale from 1
(lowest quality) to 100 (highest quality), which was

marked with the adjectives “bad”, “poor”, “fair”,
“good” and ‘‘excellent”. Refer to [9] for more
information about the experiments.

We screened the subjective ratings for outliers
according to ITU-R Rec. BT.500 [3]. For our
analysis, we combined the data from the two test
sessions and computed the mean opinion scores
(MOS) and the corresponding 95% confidence
intervals. Thanks to the large number of observers,
the average confidence interval size is only 4.2 (on
the 1-100 scale).

As shown in Fig. 12, PSNR is already an
excellent predictor of perceived quality for this
database: the correlation with MOS is about 91%.
These good results can be attributed largely to the
fact that the database contains exclusively images
created with a single type of encoder (JPEG2000)
and thus only varying degrees of the same
distortions. Note the saturation of the scatter plot
towards high PSNR—this indicates that the
database includes a number of compressed images
in which subjects were unable to discern any
quality degradation.

Combining our full-reference metrics for blur
and ringing to a full-reference quality metric, we
achieve a slight outperformance of PSNR (see
Table 2). However, given the good prediction
performance of PSNR in this example, which is
very close to the average correlation between
individual subjects and MOS, it would be difficult
to justify using any kind of more complex FR
metric. We therefore focus on a no-reference
solution based on the NR blur metric introduced
in Section 2.1 above. More specifically, its MOS
prediction is a simple non-linear transformation of
the measured blur.

To evaluate its prediction performance, we
separate the test images into a training set and a
test set, using 100 different random divisions of the
dataset. Fig. 13 shows the results for our no-
reference quality metric with the parameters
obtained in the training. The saturation in the
high quality regime is very similar to the behavior
of PSNR. It achieves correlations of around 85%
with MOS on the test sets, which is quite a good
prediction performance for an NR metric.

The most significant outliers are due to two
specific pictures, namely one close-up and one
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Fig. 9. Error-bar plots with 95% confidence intervals of
subjective blur ratings versus objective blur measurements for
Gaussian filtered images (small dots) and JPEG2000 coded
images (open circles): (a) full-reference blur metric; (b) no-
reference blur metric.

Table 1
Correlation between average observer ratings and the proposed
perceptual blur and ringing metrics

Correlations: Linear Rank-order
(%) (%)
Full-reference blur 87 85
No-reference blur 73 81
Full-reference ringing 85 86

macro shot with very small depths of field (they are
marked with crosses in Fig. 13). Since our blur
metric does not distinguish between blur as a

Fig. 10. Additional test images for the ringing experiment.

JPEG 2000 images
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Fig. 11. Error-bar plot with 95% confidence intervals of

subjective ring ratings versus the full-reference perceptual
ringing measurement for JPEG2000 coded images.

compression artifact and any other blur in the
image, its MOS predictions for these images are
too low in comparison to the observers’ ratings,
who do not consider this type of blur a degrada-
tion of quality. In one form or another, this
problem is intrinsic to any no-reference metric. An
added detector for distinguishing central objects
from the potentially blurred background could
help alleviate this problem when using our metric
for the assessment of compression artifacts. In
fact, when these two images are removed from the
test set, the prediction performance of our NR
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Fig. 12. Subjective MOS versus PSNR. The error bars indicate

the 95% confidence intervals of the subjective ratings. The

MOS values of the uncompressed images are plotted at
PSNR = 50dB.

Table 2

Prediction performance of the proposed quality metrics. The
bottom row refers to the exclusion of the images with very small
depth of field (see text)

Linear Rank-order Prediction
correlation correlation  error
(%) (%)
PSNR 91 92 9.7
Full-reference metric 94 93 9.5
No-reference metric 86 84 12.1
NR metric w/o outliers 90 88 10.1

metric approaches that of PSNR. All these results
are summarized in Table 2.

We can also compare these results with an NR
quality metric for JPEG2000-coded images de-
scribed in [10], which is based on a statistical
model for wavelet coefficients and their quantiza-
tion. Its design allows it to analyze the JPEG2000
image quality without decoding. This metric was
evaluated using the same database, albeit with a
slightly different computation of the mean ratings
[10]. Its predictions have an RMSE of 9.8; its
correlations are not reported, unfortunately. Since
this metric only looks for compression artifacts, it
does not suffer from the problem with images with
a small depth of field. On the other hand, it cannot

AT
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ol }@%
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NR metric predictions

Fig. 13. Subjective MOS versus NR quality metric. The error

bars indicate the 95% confidence intervals of the subjective

ratings. Crosses denote images with very small depth of field
(see text).

be used for images with blur coming from other
sources than JPEG2000 compression.

On a final note, the bitrate of the encoded
images alone is just as good an estimate of MOS as
PSNR for the given database, and could thus be
used for no-reference quality prediction here as
well.

4. Conclusions

We presented a full-reference and a no-reference
metric for perceived blur as well as a full-reference
metric for perceived ringing. The metrics are of
very low computational complexity and are shown
to be in good agreement with observer ratings
obtained in subjective experiments. Potential
applications of such metrics include source coding
optimization and network resource management.
Future research will focus on the measurement of
ringing without a reference, the consideration of
color, and other types of perceptual artifacts.
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