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Wide band digital audio signals have a very high data-rate associated with them due to their complex nature and demand for high-
quality reproduction. Although recent technological advancements have significantly reduced the cost of bandwidth and minia-
turized storage facilities, the rapid increase in the volume of digital audio content constantly compels the need for better compres-
sion algorithms. Over the years various perceptually lossless compression techniques have been introduced, and transform-based
compression techniques have made a significant impact in recent years. In this paper, we propose one such transform-based com-
pression technique, where the joint time-frequency (TF) properties of the nonstationary nature of the audio signals were exploited
in creating a compact energy representation of the signal in fewer coefficients. The decomposition coefficients were processed and
perceptually filtered to retain only the relevant coefficients. Perceptual filtering (psychoacoustics) was applied in a novel way by
analyzing and performing TF specific psychoacoustics experiments. An added advantage of the proposed technique is that, due
to its signal adaptive nature, it does not need predetermined segmentation of audio signals for processing. Eight stereo audio sig-
nal samples of different varieties were used in the study. Subjective (mean opinion score—MOS) listening tests were performed
and the subjective difference grades (SDG) were used to compare the performance of the proposed coder with MP3, AAC, and
HE-AAC encoders. Compression ratios in the range of 8 to 40 were achieved by the proposed technique with subjective difference
grades (SDG) ranging from –0.53 to –2.27.

Copyright © 2007 K. Umapathy and S. Krishnan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The proposed audio coding technique falls under the trans-
form coder category. The usual methodology of a transform-
based coding technique involves the following steps: (i)
transforming the audio signal into frequency domain coef-
ficients, (ii) processing the coefficients using psychoacous-
tic models and computing the audio masking thresholds,
(iii) controlling the quantizer resolution using the masking
thresholds, (iv) applying intelligent bit allocation schemes,
and (v) enhancing the compression ratio with further loss-
less compression schemes. A comprehensive review of many
existing audio coding techniques can be found in the works
of Painter and Spanias [1]. The proposed technique nearly
follows the above general transform coder methodology
however, unlike the existing techniques, the major part of
the compression was achieved by exploiting the joint time-
frequency (TF) properties of the audio signals. Hence, the
main focus of this work would be in demonstrating the
benefits of using an adaptive time-frequency transformation

(ATFT) for coding the audio signals (i.e., improvement and
novelty in step (i)) and developing a psychoacoustic model
(i.e., improvement and novelty in step (ii)) adapted to TF
functions.

The block diagram of the proposed technique is shown
in Figure 1. The ATFT used in this work was based on the
matching pursuit algorithm [2]. The Matching pursuit algo-
rithm is a general framework where any given signal can be
modeled/decomposed into a collection of iteratively selected,
best matching signal functions from a redundant dictionary.
The basis functions chosen to form the redundant dictio-
nary determine the nature of the modeling/decomposition.
When the redundant dictionary is formed using TF func-
tions, the matching pursuit yields an ATFT [2]. The ATFT
approach provides higher TF resolution than the existing TF
techniques such as wavelets and wavelet packets [2]. This
high-resolution sparse decomposition enables us to achieve a
compact representation of the audio signal in the transform
domain itself. Also, due to the adaptive nature of the ATFT,
there was no need for signal segmentation.
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Figure 1: Block diagram of the ATFT audio coder.

Psychoacoustics was applied in a novel way [3, 4] on the
TF decomposition parameters to achieve further compres-
sion. In most of the existing audio coding techniques, the
fundamental decomposition components or building blocks
are in the frequency domain with corresponding energy as-
sociated with them. This makes it much easier for them to
adapt the conventional, well-modeled psychoacoustics tech-
niques into their encoding schemes. In few existing tech-
niques [5, 6] based on sinusoidal modeling using matching
pursuits, psychoacoustics was applied either by scaling the
dictionary elements or by defining a psychoacoustic adap-
tive norm in the signal space. As the modeling was done us-
ing a dictionary of sinusoids and segment-by-segment ba-
sis approach [7, 8], these techniques do not qualify as a true
adaptive time-frequency transformation. Also, due to the fact
that sinusoids were used in the modeling process, it was eas-
ier to incorporate the existing psychoacoustics models into
these techniques. On the other hand, in ATFT, the signal
was modeled using TF functions which have a definite time
and frequency resolution (i.e., each individual TF function
is time limited and band limited), hence the existing psy-
choacoustics models need to be adapted to apply on the TF
functions.

The audio coding research is very dynamic and fast
changing. There are a variety of applications (offline, IP
streaming, embedding in video, etc.) and situations (network
traffic, multicast, conferencing, etc.) for which many spe-
cific compression techniques were introduced. A universal
comparison of the proposed technique with all audio cod-
ing techniques would be out of the scope of this paper. The
objective of this paper is to demonstrate the application of
ATFT for coding audio signals with some modifications to
the conventional blocks of transform-based coders. Hence
we restrict our comparison only with the two commonly
known audio codecs MP3 and MPEG-4 AAC/HE-AAC [9–
12]. These comparisons merely assess the performance of the
proposed technique in terms of compression ratio achieved
under similar conditions against the mean opinion scores
(MOS) [13].

Eight reference wideband audio signals (ACDC, DEFLE,
ENYA, HARP, HARPSICHORD, PIANO, TUBULARBELL,
VISIT) of different categories were used for our analysis.
Each was a stereo signal of 20-second duration extracted
from CD quality digital audio sampled at 44.1 kHz. The
ACDC and DEFLE were rapidly varying rock-like audio sig-
nals, ENYA and VISIT were signals with voice and hum-
ming components, PIANO and HARP were slowly varying
classical-like signals, HARPSICHORD and TUBULARBELL
were fast varying stringed instrumental audio signals. The

ACDC, DEFLE, ENYA, and VISIT are polyphonic sounds
with many sound sources.

The paper is organized as follows: Section 2 covers the
ATFT algorithm, Section 3 describes the implementation of
psychoacoustics, Sections 4 and 5 cover quantization, com-
pression ratios and reconstruction process, Section 6 ex-
plains the quality assessment of the proposed coder, Section 7
covers results and discussion, and Section 8 summarizes the
conclusions.

2. ATFT ALGORITHM

Audio signals are highly nonstationary in nature and the
best way to analyze them is to use a joint TF approach. TF
transformations can be performed either decomposing a sig-
nal into a set of scaled, modulated, and translated versions
of a TF basis function or by computing the bilinear energy
distributions (Cohen’s class) [14, 15]. TF distributions are
nonparametric and mainly used for visualisation purposes.
For the application in hand, the automatic choice would
be a parametric decomposition approach. There are vari-
ety of TF decomposition techniques with different TF res-
olution properties. Some examples in the increasing order
of TF resolution superiority are short-time Fourier trans-
form (STFT), wavelets, wavelet packets, pursuit-based algo-
rithms [14]. As explained in Section 1, the proposed ATFT
technique was based on the matching pursuit algorithm with
time-frequency dictionaries. ATFT has excellent TF reso-
lution properties (better than wavelets and wavelet pack-
ets) and due to its adaptive nature (handling nonstation-
arity), there is no need for signal segmentations. Flexible
signal representations can be achieved as accurate as pos-
sible depending upon the characteristics of the TF dictio-
nary.

In the ATFT algorithm, any signal x(t) is decomposed
into a linear combination of TF functions gγn(t) selected
from a redundant dictionary of TF functions [2]. In this con-
text, redundant dictionary means that the dictionary is over-
complete and contains much more than the minimum re-
quired basis functions, that is, a collection of nonorthogonal
basis functions, that is, much larger than the minimum re-
quired basis functions to span the given signal space. Using
ATFT, we can model any given signal x(t) as

x(t) =
∞
∑

n=0

angγn(t), (1)
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where

gγn(t) = 1√
sn
g

(

t − pn
sn

)

exp
{

j
(

2π fnt + φn
)}

(2)

and an are the expansion coefficients.
The scale factor sn, also called as octave parameter, is used

to control the width of the window function, and the param-
eter pn controls the temporal placement. The parameters fn
and φn are the frequency and phase of the exponential func-
tion, respectively. The index γn represents a particular com-
bination of the TF decomposition parameters (sn, pn, fn, and
φn). The signal x(t) is projected over a redundant dictionary
of TF functions with all possible combinations of scaling,
translations, and modulations. The dictionary of TF func-
tions can either suitably be modified or selected based on the
application in hand. When x(t) is real and discrete, like the
audio signals in the proposed technique, we use a dictionary
of real and discrete TF functions. Due to the redundant or
overcomplete nature of the dictionary it gives extreme flex-
ibility to choose the best fit for the local signal structures
(local optimisation) [2]. This extreme flexibility enables to
model a signal as accurate as possible with the minimum
number of TF functions providing a compact approximation
of the signal.

In our technique, we used the Gabor dictionary (Gaus-
sian functions) which has the best TF localization proper-
ties [15]. At each iteration, the best correlated TF function
was selected from the Gabor dictionary. The remaining signal
called the residue was further decomposed in the same way
at each iteration subdividing them into TF functions. After
M iterations, signal x(t) could be expressed as

x(t) =
M−1
∑

n=0

〈

Rnx, gγn
〉

gγn(t) + RMx(t), (3)

where the first part of (3) is the decomposed TF functions
until M iterations, and the second part is the residue which
will be decomposed in the subsequent iterations. This pro-
cess was repeated till all the energy of the signal was decom-
posed. At each iteration, some portion of the signal energy
was modeled with an optimal TF resolution in the TF plane.
Over iterations, it can be observed that the captured energy
increases and the residue energy falls. Based on the signal
content, the value of M could be very high for a complete
decomposition (i.e., residue energy = 0). Examples of Gaus-
sian TF functions with different scale and modulation pa-
rameters are shown in Figure 2. The order of computational
complexity for one iteration of the ATFT algorithm is given
by O(N logN) where N is the length of the signal samples.
The time complexity of the ATFT algorithm increases with
the increase in the number of iterations required to model
a signal, which in turn depends on the nature of the signal.
Compared to this, the computational complexity of MDCT
(in MP3 and AAC) is only O(N logN) (same as FFT).

Any signal could be expressed as a combination of coher-
ent and noncoherent signal structures. Here the term “co-
herent signal structures” means those signal structures that
have a definite TF localisation (or) exhibit high correlation

Time position
pn

Center frequency

fn

Higher

center frequency

TF functions with
smaller scale

Scale or octave
sn

Figure 2: Gaussian TF function with different scale and modulation
parameters.

with the TF dictionary elements. In general, the ATFT al-
gorithm models the coherent signal structures well within
the first few 100 iterations, which in most cases contribute
to > 90% of the signal energy. On the other hand, the non-
coherent noise like structures cannot be easily modeled since
they do not have a definite TF localisation or correlation with
dictionary elements. Hence, these noncoherent structures are
broken down by the ATFT into smaller components to search
for coherent structures. This process repeats until the whole
residue information is diluted across the whole TF dictionary
[2]. From a compression point of view, it would be desirable
to keep the number of iterations (M ≪ N) as low as possible
and at the same time sufficient enough to model the signal
without introducing perceptual distortions. Considering this
requirement, an adaptive limit has to be set for controlling
the number of iterations. The energy capture rate (signal en-
ergy capture rate per iteration) could be used to achieve this.
By monitoring the cumulative energy capture over iterations
we could set a limit to stop the decomposition when a par-
ticular amount of signal energy was captured. The minimum
number of iterations required to model a signal without in-
troducing perceptual distortions depends on the signal com-
position and the length of the signal.

In theory, due to the adaptive nature of the ATFT decom-
position, it is not necessary to segment the signals. However,
due to the computational resource limitations (Pentium III,
933 MHZ with 1 GB RAM), we decomposed the signals in
5-seconds durations. The larger the duration decomposed,
the more efficient is the ATFT modeling. This is because if
the signal is not sufficiently long, we cannot efficiently uti-
lize longer TF functions (highest possible scale) to approxi-
mate the signal. As the longer TF functions cover larger sig-
nal segments and also capture more signal energy in the ini-
tial iterations, they help to reduce the total number of TF
functions required to model a signal. Each TF function has a
definite time and frequency localization, which means all the
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Figure 3: Energy cutoff of a sample signal (au:arbitrary units).

information about the occurrences of each of the TF func-
tions in time and frequency of the signal is available. This
flexibility helps us later in our processing to group the TF
functions corresponding to any short time segments of the
signal for computing the psychoacoustic thresholds. In other
words, the complete length of the audio signal can be first
decomposed into TF functions and later the TF functions
corresponding to any short time segment of the signal can
be grouped together. In comparison, most of the DCT- and
MDCT-based existing techniques have to segment the sig-
nals into time frames and process them sequentially. This is
needed to account for the nonstationarity associated with the
audio signals and also to maintain a low-signal delay in en-
coding and decoding.

In the proposed technique for a signal duration of 5-
second, the limit was set to be the number of iterations
needed to capture 99.5% of the signal energy or to a maxi-
mum of 10 000 iterations. For a signal with less noncoherent
structures, 99.5% of signal energy could be modeled with a
lower number of TF functions than a signal with more non-
coherent structures. In most cases, a 99.5% of energy cap-
ture nearly characterizes the audio signal completely. The
upper limit of the iterations is fixed to 10 000 iterations to
reduce the computational load. Figure 3 demonstrates the
number of TF functions needed for a sample signal. In the
figure, the right panel (b) shows the energy capture curve
for the sample signal in the left panel (a) with number of TF
functions in the X-axis and the normalized energy in the Y-
axis. On average, it was observed that 6000 TF functions are
needed to represent a signal of 5-second-duration sampled at
44.1 kHz. Using the above procedure, all eight (ACDC, DE-
FLE, ENYA, HARP, HARPSICHORD, PIANO, TUBULAR-
BELL, VISIT) reference wideband audio signals were decom-
posed into their respective number of TF functions.

3. IMPLEMENTATION OF PSYCHOACOUSTICS

In this work, psychoacoustics was applied in a novel way on
the TF functions obtained by decomposition. In the conven-
tional method, the signal is segmented into short time seg-
ments and transformed into frequency domain coefficients.
These individual frequency components are used to compute
the psychoacoustic masking thresholds and accordingly their
quantization resolutions are controlled. In contrast, in our

approach we computed the psychoacoustic masking prop-
erties of individual TF functions and used them to decide
whether a TF function with certain energy was perceptually
relevant or not based on its time occurrence with other TF
functions. TF functions are the basic components of the pro-
posed technique and each TF function has a certain time and
frequency support in the TF plane. So their psychoacoustical
properties have to be studied by taking them as a whole to
arrive at a suitable psychoacoustical model.

3.1. Threshold-in-quiet (TiQ)

TiQ is the minimum audible threshold below which we do
not perceive a signal component. TF functions form fun-
damental building blocks of the proposed coder and they
can take all possible combinations of time duration and fre-
quency. However in the ATFT algorithm implementation,
they could take any time width between 22 samples (90 mi-
croseconds) to 214 samples (0.4 second) in steps with any fre-
quency between 0 and 22 050 Hz (max frequency). The time
support of a frequency component also plays an important
role in the hearing process. From our experiments we ob-
served that longer duration TF functions were heard much
better even with lower energy levels than the shorter dura-
tion TF functions. Hence, out of all the possible durations of
the TF functions, the highest possible time duration of 16 384
samples corresponding to the octave 14 (the term octave is
from the implementation nomenclature, i.e., the scale factor
doubles in each step) was the most sensitive TF function for
different combinations of frequencies. This forms the worst
case TF function in our modeling for which our ears are more
sensitive. So it is obvious that this TF function has to be used
to obtain the worst case threshold in quiet (TiQ) curve for
our model. The curve obtained in this way will hold good for
all other TF functions with all possible combinations of time-
widths and center frequencies. Figure 4 demonstrates the dif-
ferent modulated versions of the TF function with maximum
time-width (octave 14).

3.2. Experimental setup

Experiments were performed with 5 listeners to arrive at
the TiQ curve for the above-mentioned TF function with
maximum time width. The experimental setup consisted
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(a) (b) (c) (d)

Figure 4: TF function with time width of 16 384 samples modulated at different center frequencies.

of a Windows 2000 PC (Intel Pentium III 933 MHz), cre-
ative sound blaster PCI card, high-quality head phones
(Sennheiser HD490), and Matlab software package.

The TF functions (duration 0.4 seconds) with different
center frequencies were played to each of the listeners. It
should be noted that the “frequency” here means the center
frequency of the TF function and not the absolute frequency
as used in regular psychoacoustics experiments. In general,
each of the TF functions will have a center frequency and
a frequency spread based on the time width they can take.
For this experiment as we are using only the TF function
with the longest width (duration 0.4 second), the frequency
spread is fixed. For each frequency setting the amplitude of
the TF function was reduced in steps until the listener could
no longer hear the TF function anymore. Once this point is
reached, the amplitude of the TF function is increased and
played back to the listener to confirm the correct point of
minimum audibility. This is repeated for the following values
of center frequencies: 10 Hz, 100 Hz, 500 Hz, 1 kHz, 2 kHz,
4 kHz, 6 kHz, 8 kHz, 10 kHz, 12 kHz, 16 kHz, and 20 kHz.
The minimum audible amplitude level for each frequency
setting was recorded. The values obtained from 5 listeners
were averaged to obtain the absolute threshold of audibility
for TF functions.

To reduce the computational complexity, the frequency
range is divided into three bands of low frequency (500 Hz
and below), sensitive frequencies (500 Hz to 15 kHz), and
high frequencies (15 kHz and above). The experimental
values were averaged to get uniform thresholding for the
low- and high-frequency bands. In the middle or sensitive
band, the lowest averaged experimental value was selected as
threshold of audibility throughout the band. Figure 5 illus-
trates the averaged TiQ curve superimposed on the actual
TiQ curve. The TF functions are grouped into the above-
mentioned three frequency groups. Amplitude values of the
TF functions are calculated from their energy and octave val-
ues. These amplitude values are checked with the TiQ average
values. The TF functions whose amplitude values fall below
the averaged TiQ values were discarded.

3.3. Audio masking applied to TF functions

Similar to TiQ, the existing masking techniques cannot be
used directly on the proposed coder for the same reasons ex-
plained earlier. So masking experiments were conducted to
arrive at masking thresholds for TF functions with different
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Figure 5: Average thresholding applied to TiQ curve. Solid line
denotes the actual TiQ curve and dashed line denotes the applied
threshold. (au:arbitrary units).

time-widths with a similar experimental setup as described
in Section 3.2. The possible time duration of TF functions
varies between 22 to 214 in steps of powers of 2, each of the
time width TF function was examined for its masking prop-
erties. Each of this different duration TF functions, can oc-
cur at any point in time with frequencies between 20 Hz to
20 kHz. Out of the possible durations of the TF functions
the shorter durations (22 to 27) are transient-like structures
which have larger bandwidths but little time support. Re-
moving these TF functions in the process of masking will in-
troduce more tonal artifacts in the reconstructed signal. This
happens because the complex frequency pattern of the sig-
nal is disturbed to some extent. Hence, these functions were
preserved and not used for masking purposes.

The remaining TF functions with time widths (28 to 214)
were used for the masking experiments. TF functions with
each of these time widths (durations from 256 to 16 384 sam-
ples) were tested for their masking capabilities with other
time-width TF functions at various energies and frequencies.
The TF functions were first grouped into equivalents of 400
time samples (10 milliseconds). This is possible as each of the
TF functions has the precise information about its time oc-
currence. Once they were grouped into time slots equivalent
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Figure 6: (a) Illustration of few possible time occurrences of two TF functions as masker and maskee, (b) possible masking conditions that
can occur within the 10 milliseconds time slot.

to 10 milliseconds, the TF functions falling in each time slot
were divided into 25 critical bands based on their center fre-
quencies. In each critical band, the TF function with high-
est energy was located. Relative energy difference of this TF
function with the remaining TF functions in the same crit-
ical band was computed. Using a lookup table, each of the
remaining TF functions was verified if it would be masked
by the relative energy difference with the TF function having
the highest energy. The experimental procedure for comput-
ing the lookup table of masking thresholds will be explained
in subsequent paragraphs. The TF functions which fall be-
low the masking threshold defined by the lookup tables will
be discarded.

As shown in Figure 6(a) within the 10 milliseconds du-
ration the location of masker and maskee TF functions can
occur anywhere. The worst case situation would be when the
masker TF function occurs at the beginning of the time slot,
and the maskee TF function occurs at the end of the time slot
or vice versa. So all of our testing was done for this worst case
scenario by placing the masker TF function and the maskee
TF function at the maximum distance of 10 milliseconds.

Based on the duration of masker and maskee TF func-
tions, one of the following could occur as depicted in
Figure 6(b).

(1) Masker and maskee are apart in time within the 10 mil-
liseconds, in which case they do not occur simultane-
ously. In this situation masking is achieved due to tem-
poral masking effects where a strong occurring masker
masks preceding and following weak signals in time
domain.

(2) Masker duration is large enough that the maskee du-
ration falls within the masker (two scenarios shown in
Figure 6(b)) even after a 400 samples shift. In this case,
simultaneous masking occurs.

(3) Masker duration is shorter than the maskee duration.
In this case, both simultaneous and temporal mask-
ings are achieved. The simultaneous masking occurs

during the duration of the masker when the maskee is
also present. Temporal masking occurs before and af-
ter the duration of the masker.

Four sets of experiments were conducted with masker TF
function (normalized in amplitude) taking center frequency
of 150 Hz, 1 kHz, 4.8 kHz, and 10.5 kHz (critical band center
frequencies) and the maskee TF function taking center fre-
quency of 200 Hz, 1.1 kHz, 5.3 kHz, and 12 kHz (correspond-
ing critical band upper limits), respectively. As the mask-
ing thresholds depend also on the frequency separation of
masker and maskee, maximum separation from the critical
band center frequency was taken for our experiments for
maskee TF functions. TF functions of each time width were
used as maskers to measure their masking capabilities on the
remaining of each time width TF functions for all the above 4
different frequency sets. Both (masker and maskee TF func-
tions) were placed apart with 10 millisecond duration and
played to the listeners. Each time the amplitude of the mas-
kee TF function was reduced till the listener perceived only
the masker TF function, or in other words, until there was no
difference observed between the masker TF function played
individually or played together with the maskee TF function.
At this point, the masker TF function’s energy was sufficient
to mask the maskee TF function. The difference in their ener-
gies is calculated in dB and used as the masking threshold for
the particular time-width maskee TF function when occur-
ring simultaneously with that particular time-width masker
TF function. Once all the measurements were finished, each
time-width TF function was analyzed as a maskee against all
the remaining time-width TF functions as masker. An av-
erage energy difference was computed for each time-width
TF function below which they will be masked by any other
time-width TF functions. Five different listeners participated
in the test and their average masking curves for each time-
width of TF functions were computed. Figure 7 shows the
different masking curves obtained for different durations of
TF functions. The X-axis represents the different time-width
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TF functions and the Y-axis represents the relative energy
difference with the masker in dB.

The masking curve obtained for critical band center fre-
quency 10.5 kHz deviates from the remaining curves consid-
erably. This is due to the fact that the frequency separation
between the masker and the maskee becomes very high at this
band. This is because we use for all our experiments the up-
per limit of the critical band as the maskee frequency to sim-
ulate the worst case scenario. To demonstrate this frequency
separation dependence on masking performance, a second
masking curve was obtained for the critical band with a cen-
ter frequency of 10.5 kHz for masker but this time the fre-
quency separation between masker and maskee was reduced
by half. The curve dropped down explaining the increase in
masking performance, that is, when the frequency separation
between the masker and maskee was reduced, the average rel-
ative dB difference required for masking also reduces.

From these curves it could be observed that the mask-
ing curves of critical bands with center frequencies 150 Hz,
1 kHz, and 4.8 kHz remain almost the same. Hence, the
masking curve obtained for 1 kHz was used as the lookup
table for the first 20 critical bands. The remaining 5 crit-
ical bands use the masking curve obtained for the critical
band with a centre frequency of 10.5 kHz (with 12 kHz up-
per limit) as the lookup table. These lookup tables were used
to verify if a TF function will be masked by the relative dB
difference of it with the TF function having highest energy
within the same critical band.

The flow chart in Figure 8 gives an overview of the mask-
ing implementation used in the proposed coder.

4. QUANTIZATION

Most of the existing transform-based coders rely on con-
trolling the quantizer resolution based on psychoacoustic
thresholds to achieve compression. Unlike this, the proposed
technique achieves a major part of the compression in the
transformation itself followed by perceptual filtering. That is,

TF functions

Sort the TF
functions into
time slots of

10 ms

TF functions in each time slot are divided into
25 critical bands based on their center frequency

Verification of each TF function with the
masking threshold based on lookup tables

Lookup

tables

Store index
of TF functions
to be removed

Check if
all time slots

processed

No

Yes

Discard the TF
functions &
proceed to

quantization

· · · 25 critical bands · · ·

Figure 8: Flow chart of the masking procedure.

when the number of iterations M needed to model a signal
is very low compared to the length of the signal, we just need
M×L bits. Where L is the number of bits needed to quantize
the 5 TF parameters that represent a TF function. Hence, we
limit our research work to scalar quantizers as the focus of
the research mainly lies on the TF transformation block and
the psychoacoustics block rather than the usual subblocks of
the data-compression application.

As explained earlier, each of the five parameters energy
(an), centre frequency ( fn), time position (pn), octave (sn),
and phase (φn) are needed to represent a TF function and
thereby the signal itself. These five parameters were to be
quantized in such a way that the quantization error intro-
duced was imperceptible while, at the same time, obtaining
good compression. Each of the five parameters has different
characteristics and dynamic range. After careful analysis of
them, the following bit allocations were made. In arriving at
the final bit allocations informal MOS tests were conducted
to compare the quality of the 8 audio samples before and af-
ter quantization stage.

In total, 54 bits are needed to represent each TF func-
tion without introducing significant perceptual quantization
noise in the reconstructed signal. The final form of data for
M TF functions will contain the following:

(1) energy parameter (log companded) =M ∗ 12 bits;

(2) time position parameter =M ∗ 15 bits;

(3) center frequency parameter =M ∗ 13 bits;
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Figure 9: Log companded original and curve-fitted energy curve
for a sample signal (au:arbitrary units).

(4) phase parameter =M ∗ 10 bits;

(5) octave parameter =M ∗ 4 bits.

The sum of all the above (= 54 ∗ M bits) will be the total
number of bits transmitted or stored representing an audio
segment of duration 5 seconds. The energy parameter after
log companding was observed to be a very smooth curve
as shown in Figure 9. Fitting a curve to the energy param-
eter further reduces the bitrate. Nearly 90% of the energy
is present in the first few 100 TF functions and hence they
are not used for curve fitting. The remaining number of TF
functions is divided into equal lengths of 50 points on the
curve. Only the values corresponding to these 50 points need
to be sent with the first few original 100 values. The distance
between these 50 points can be treated as linear comparing
the spread of total number of TF functions. In the recon-
struction stage, these 50 points can be interpolated linearly
to the original number of points. The error introduced in
this procedure was very small due to the smooth slope of
the curve. Moreover, this error was introduced only in the
10% energy of the signal which was not perceived. To bet-
ter explain the benefit of the proposed curve fitting approach
in reducing the bitrate, let us take an example of transmit-
ting 5000 TF functions. To transmit the energy parameter
for 5000 TF functions (without applying curve fitting) will
require 5000 ∗ 12 bits = 60 000 bits. With curve fitting, say
we preserve the energy parameter for the first 150 TF func-
tions and thereafter select the energy parameter from every
50th TF function in the remaining 4850 TF functions. This
will result in [150 + (4850/50 = 97)] = 247 values of the en-
ergy parameter requiring only 247∗12 = 2964 bits for trans-
mission. We see a massive reduction in bits due to curve fit-
ting. Figure 9 demonstrates the original curve superimposed
with the fitted curve. Every kth point in the compressed curve
corresponds to actually the (3 + k)∗ 50th point in the origi-
nal curve. A correlation value of 1 was achieved between the
original curve and the interpolated reconstructed curve.

With just a simple scalar quantizer and curve fitting of
the energy parameter, the proposed coder achieves high com-
pression ratios. Although a scalar quantizer was used to re-
duce the computational complexity of the proposed coder,
sophisticated vector quantization techniques can be easily in-
corporated to further increase the coding efficiency. The 5
parameters of the TF function can be treated as one vec-
tor and accordingly quantized using predefined codebooks.
Once the vector is quantized, only the index of the codebook
needs to be transmitted for each set of TF parameters result-
ing in a large reduction of the total number of bits. How-
ever, designing the codebooks would be challenging as the
dynamic ranges of the 5 TF parameters are drastically differ-
ent. Apart from reducing the number of total bits, the quan-
tization stage can also be utilized to control the bitrates suit-
able for constant bitrate (CBR) applications.

5. COMPRESSION RATIOS

Compression ratios achieved by the proposed coder were
computed for the eight sample signals as described below.

(1) As explained earlier, the total number of bits needed to
represent each TF function is 54.

(2) The energy parameter is curve fitted and only the first
150 points in addition to the curve-fitted point need to
be coded.

(3) So the total number of bits needed for M iterations for
a 5 second duration of the signal is TB1 = (M ∗ 42) +
((150+C)∗12), where C is the number of curve-fitted
points, and M is the number of perceptually important
functions.

(4) The total number of bits needed for a CD quality 16 bit
PCM technique for a 5 second duration of the signal
sampled at 44 100 Hz is TB2 = 44 100 ∗ 5 ∗ 16 =
3 528 000.

(5) The compression ratio can be expressed as the ratio of
the number of bits needed by the proposed coder to the
number of bits needed by the CD quality 16 bit PCM
technique for the same length of the signal, that is,

Compression ratio = TB2

TB1
. (4)

(6) The overall compression ratio for a signal was then cal-
culated by averaging all the 5 seconds duration seg-
ments of the signal for both the channels.

The proposed coder is based on an adaptive signal transfor-
mation technique, that is, the content of the signal and the
dictionary of basis functions used to model the signal play an
important role in determining how compact a signal can be
represented (compressed). Hence, variable bitrate (VBR) is
the best way to present the performance benefit of using an
adaptive decomposition approach. The inherent variability
introduced in the number of TF functions required to model
a signal and thereby the compression is one of the highlights
of using ATFT. Although VBR would be more appropriate to
present the performance benefit of the proposed coder, CBR
mode has its own advantages when used with applications
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that demand network transmissions over constant bitrate
channels with limited delays. The proposed coder can also be
used in CBR mode by fixing the number of TF functions used
for representing signal segments, however due to the signal
adaptive nature of the proposed coder, this would compro-
mise the quality at instances where signal segments demand
a higher number of TF functions for perceptually lossless re-
production. Hence, we choose to present the results of the
proposed coder using only the VBR mode.

We compare the proposed coder with two existing pop-
ular and state-of-the-art audio coders viz MP3 (MPEG 1
layer 3) and MPEG-4 AAC/HE-AAC. Advanced audio cod-
ing (AAC) is the current industrial standard which was ini-
tially developed for multichannel surround signals (MPEG-2
AAC [16]). The transformation technique used is the mod-
ified discrete cosine transform (MDCT). Compared to mp3
which uses a polyphase filter bank and an MDCT, new cod-
ing tools were introduced to enhance the performance. The
core of MPEG-4 AAC is basically the MPEG-2 AAC but
with added tools to incorporate additional coding enhance-
ments and MPEG-4 features so that a broad range of appli-
cations are covered. There are many application specific pro-
files that can be chosen to adaptively configure the MPEG-4
audio for the user needs. It is claimed that at 128 kbps the
MPEG-4 AAC is indistinguishable from the original audio
signal [17]. As there are ample studies in the literature [9, 11,
12, 16, 18, 19] available for both MP3 and MPEG-2/4 AAC,
more details about these techniques are not provided in this
paper.

As the proposed coder is of VBR type, in our first com-
parison we compare the proposed coder with both the MP3
and MPEG-4 AAC coders in VBR mode. All eight sam-
ple signals were MP3 coded using the Lame MP3 encoder
(version 1.2, Engine 3.88 Alpha 8) in VBR mode [20, 21].
For the MPEG-4 AAC, we used the AAC encoder devel-
oped by PysTel research (currently ahead software). As there
are many profiles possible in AAC, we choose the following
suitable profile for our comparison-VBR high quality with
main long-term prediction (LTP) [10]. All eight signals were
MPEG-4 AAC encoded. The average bitrates for each sig-
nal for both MP3 and MPEG-4 AAC was found using the
Winamp decoder [22]. These average bitrates were used to
calculate the compression ratio as described below.

(1) Bitrate for a CD quality 16 bit PCM technique for 1-
second stereo signal is given by TB3 = 2∗ 44 100∗ 16.

(2) The average bitrate/s achieved by (MP3 or MPEG-4
AAC) in VBR mode = TB4.

(3) Compression ratio achieved by (MP3 or MPEG-4
AAC) = TB3/TB4.

The 2nd, 4th, and 6th columns of Table 1 show the com-
pression ratio (CR) achieved by the MP3, MPEG-4 AAC,
and the proposed ATFT coders for the set of 8 sample au-
dio files. It is evident from the table that the proposed coder
has better compression ratios than MP3. When comparing
with MPEG-4 AAC, 5 out of 8 signals are either comparable
or have better compression ratios than the MPEG-4 AAC. It
is noteworthy to mention that for slow music (classical type),

the ATFT coder provides 3 to 4 times better comparison than
MPEG-4 AAC or MP3. The compression ratio alone cannot
be used to evaluate an audio coder. The compressed audio
signals has to undergo a subjective evaluation to compare
the quality achieved with respect to the original signal. The
combination of the subjective rating and the compression ra-
tio will provide a true evaluation of the coder performance.
A second comparison was also performed by comparing the
HE-AAC profile of the MPEG-4 audio at the same bitrates to
that was achieved by the ATFT coder in the VBR mode. More
details on the HE-AAC profile of the MPEG-4 audio will be
discussed in the subsequent sections. A subjective evaluation
was performed as will be explained in Section 6.

Before performing the subjective evaluation, the signal
has to be reconstructed. The reconstruction process is a
straight forward process of linearly adding all the TF func-
tions with their corresponding five TF parameters. In order
to do that, first the TF parameters modified for reducing the
bitrates have to be expanded back to their original forms.
The log-compressed energy curve was log expanded after re-
covering back all the curve points using interpolation on the
equally placed 50 length points. The energy curve was multi-
plied with the normalization factor to bring the energy pa-
rameter as it was during the decomposition of the signal.
The restored parameters (energy, time-position, centre fre-
quency, phase, and octave) were fed to the ATFT algorithm
to reconstruct the signal. The reconstructed signal was then
smoothed using a third order Savitzky-Golay [23] filter and
saved in a playable format.

Figure 10 demonstrates a sample signal (/“HARP”/) and
its reconstructed version and the corresponding spectro-
grams. It can be clearly observed from the reconstructed sig-
nal spectrogram compared with the original signal spectro-
gram, how accurately the ATFT technique has filtered out
the irrelevant components from the signal (evident from
Table 1-(/“HARP”/)-high compression ratio vs. acceptable
quality). The accuracy in adaptive filtering of the irrelevant
components is made possible by the TF resolution provided
by the ATFT algorithm.

6. QUALITY ASSESSMENT OF THE PROPOSED CODER

6.1. Subjective evaluation of ATFT coder

Subjective evaluation of audio quality is needed to assess
the audio codec performance. We use the subjective evalu-
ation method recommended by ITU-R standards (BS. 1116).
It is called a “double blind triple stimulus with hidden ref-
erence” [1, 13]. In this method, listeners are provided with
three stimuli A, B, and C for each sample under test. A is the
reference/original signal, B and C are assigned to either of
the reference/original signal or the compressed signal under
test. Basically the reference signal is hidden in either B or C
and the other choice is assigned to the compressed (or im-
paired) signal. The choice of reference or compressed signal
for B and C is completely randomized. For each sample au-
dio signal, listeners listen to all three (A, B, C) stimuli, and
compare A with B and A with C. After each comparison of A
with B, and A with C, they grade the quality of the B and C
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Table 1: Compression ratio (CR) and subjective difference grades (SDG). MP3-moving picture experts group I layer 3, AAC-MPEG-4 AAC,
moving picture experts group 4 advanced audio coding-VBR main LTP profile, ATFT:adaptive time-frequency transform.

Samples MP3 AAC ATFT

— CR SDG CR SDG CR SDG

ACDC 7.5 0.067 9.3 −0.067 8.4 −0.93

DEFLE 7.7 −0.2 9.5 −0.067 8.3 −1.73

ENYA 9 0 9.6 −0.133 20.6 −0.8

HARP 11 −0.067 9.4 −0.067 36.3 −1

HARPSICHORD 8.5 −0.067 10.2 0.33 9.3 −0.73

PIANO 13.6 0.067 9.6 −0.2 40 −0.8

TUBULARBELL 8.3 0 10.1 0.067 10.5 −0.53

VISIT 8.4 −0.067 11.5 0 11.6 −2.27

Average 9.3 −0.03 9.9 −0.02 18.3 −1.1
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Figure 10: Example of a sample original (/“HARP”/) and the reconstructed signal with their respective spectrograms. X-axes for the original
and reconstructed signal are in time samples, and X-axes for the spectrogram of the original and the reconstructed signal are in equivalent
time in seconds. Note that the sampling frequency = 44.1 kHz (au:arbitrary units).

signals with respect to A in 5 levels from 1 to 5. The levels 1
to 5 corresponds to (1) unsatisfactory (or) very annoying, (2)
poor (or) annoying, (3) fair (or) slightly annoying, (4) good
(or) perceptible but not annoying, and (5) excellent (or) im-
perceptible [1, 13]. A subjective difference grade (SDG) [1]

is computed by subtracting the absolute score assigned to
the hidden reference from the absolute score assigned to the
compressed signal. It is given by

SDG = Grade{compressed} −Grade{reference}. (5)
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Figure 11: Block diagram explaining MOS choices A, B, and C for the subjective evaluation of perceptual filtering and quantization stages.

Table 2: Average SDG for PFO and QO (PFO:perceptually filtered
output, QO:quantization output).

Samples PFO QO

ACDC −0.8 −0.4

DEFLEP −0.6 −0.6

ENYA −0.8 −1

HARP −0.8 −0.6

HARPSICHORD 0 −0.6

PIANO −0.2 −0.8

TUBULARBELL −0.6 −1.2

VISIT −0.2 −0.4

Average −0.5 −0.7

Accordingly, the scale of SDG will range from (−4 to 0)
with the following interpretation, (−4) unsatisfactory (or)
very annoying, (−3) poor (or) annoying, (−2) fair (or)
slightly annoying, (−1) good (or) perceptible but not an-
noying, and (0) excellent (or) imperceptible. Fifteen listen-
ers (randomly selected) participated in the MOS studies and
evaluated all the 3 audio coders (MP3, AAC, and ATFT in
VBR mode). The average SDG was computed for each of the
audio sample. The 3rd, 5th, and 7th columns of Table 1 show
the SDGs obtained for MP3, AAC, and ATFT coders, respec-
tively. MP3 and AAC SDGs fall very close to the Impercepti-
ble (0) region, whereas the proposed ATFT SDGs are spread
out between −0.53 to −2.27.

A second listening test was performed using the HE-
AAC v1/v2 (also known as MPEG-4 AAC v2, AAC PLUS v2)
encoder [12]. The HE-AAC encoder is an enhanced high-
efficiency version of the AAC with improved audio quality.
The HE-AAC v1 encoder comprises of the basic AAC and
spectral band replication (SBR) technologies whereas the v2
encoder comprises of AAC, SBR, and parametric stereo (PS)
coding technologies. The HE-AAC v2 encoder is rated as the
best audio codec at low bitrates. In the second test, SDG were
computed for the 8 audio samples by encoding them using
HE-AAC v1/v2 coder at the same bitrates/compression ratios
as that of the ATFT. Six listeners participated in the second
MOS study and the obtained SDG are shown in Table 3. De-
tailed discussion of the compression ratio versus subjective
evaluation scores is given in Section 7.

6.2. Subjective evaluation of perceptual filtering and
quantization stages

In order to evaluate the performance of the developed per-
ceptual model and the quantization stage, another listening

test was conducted with 5 listeners. The procedure as de-
scribed in Section 6.1 was repeated but the choices A, B, and
C were assigned as shown in Figure 11. The output of the
TF decomposition (TF modeling stage) forms the input to
the perceptual filtering module, hence the reference A was
assigned to the reconstructed signal at the output of the TF
modeling stage. Similarly, choice B was assigned to the re-
constructed signal at the output of the perceptual filtering
module and C to the reconstructed signal at the output of the
quantization stage. Listeners were asked to rate the choices B
(perceptual filtering output) and C (quantization stage out-
put) with the reference A (TF modeling output) on a scale of
1 to 5 as explained in Section 6.1.

The results were averaged for the five listeners and given
in Table 2. From Table 2, it can be observed on an average,
SDGs of −0.5 and −0.7 were achieved for the perceptual
filtering stage and the quantization stage, respectively. The
SDG scores indicate that the novel perceptual filtering tech-
nique proposed is performing exceedingly well with the eight
sample signals and the noise introduced in the process of
quantization affects the output quality minimally. Interest-
ingly, it can be noted from Table 2 that the signals ACDC,
DEFLEP, and VISIT have better SDG scores when the ref-
erence is the reconstructed output signal of the TF modeling
block than when the reference is the original signal. This gives
a valid clue that the low SDG scores achieved by these signals
(as seen in Table 1) are not due to the perceptual filtering or
the quantization stages but may be due to TF modeling with
symmetrical type Gaussian functions.

7. RESULTS AND DISCUSSION

7.1. Performance comparison in VBR mode

The compression ratios (CR) and the SDG for all three
coders (MP3, AAC, and ATFT) are shown in Table 1. All the
coders were tested in the VBR mode. For the proposed tech-
nique, VBR was the best way to present the performance ben-
efit of using an adaptive decomposition approach. In ATFT,
the type of the signal and the characteristics of the TF func-
tions (type of dictionary) control the number of transfor-
mation parameters required to approximate the signal and
thereby the compression ratio. The inherent variability intro-
duced in the number of TF functions required to model a sig-
nal is one of the highlights of using ATFT. Hence, we choose
to present comparison of the coders in the VBR mode.

The results show that the MP3 and AAC coders per-
form well with excellent SDG scores (Imperceptible) at a
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Table 3: SDG comparison of MPEG-4 AAC PLUS coder for the same compression ratio/bitrate achieved by the proposed ATFT coder.
Modes: 1. HE-high efficiency AAC v1 (AAC and spectral band replication (SBR)) and 2. HEv2-high efficiency AAC v2 (AAC, SBR and
parametric stereo (PS) coding).

Samples HE-AAC v1/2 ATFT

— MODE Kbps CR SDG SDG

ACDC HE 168 8.4 0.17 −0.93

DEFLE HE 170 8.3 0.17 −1.73

ENYA HEv2 68 20.6 −0.17 −0.8

HARP HEv2 38 36.3 0 −1

HARPSICHORD HE 151 9.3 −0.33 −0.73

PIANO HEv2 35 40 0.17 −0.8

TUBULARBELL HE 134 10.5 0 −0.53

VISIT HE 121 11.6 0.33 −2.27

Average — 111 18.3 0.04 −1.1
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Figure 12: Subjective difference grade (SDG) versus compression
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compression ratio around 10. The proposed coder does not
perform well with all of the eight samples. Out of the 8
samples, 6 samples have an SDG between −0.53 to −1
(imperceptible-perceptible but not annoying) and 2 samples
have SDG below −1. Out of the 6 samples with SDGs be-
tween (−0.53 and −1), 3 samples (ENYA, HARP, and PI-
ANO) have compression ratios 2 to 4 times higher than
MP3 and AAC and 3 samples (ACDC, HARPSICHORD, and
TUBULARBELL) have comparable compression ratios with
moderate SDGs.

Figure 12 shows the comparison of all three coders by
plotting the samples with their SDGs in X-axis and compres-
sion ratios in the Y-axis. If we can virtually divide this plot

in segments of SDGs (horizontally) and the compression ra-
tios (vertically), then the ideal desirable coder performance
should be in the right top corner of the plot (high compres-
sion ratios and excellent SDG scores). This is followed next
by the right bottom corner (low compression ratios and ex-
cellent SDG scores) and so on as we move from right to left
in the plot. Here, the terms “low” and “high” compression
ratios are used in a relative sense based on the compression
ratios achieved by all the 3 coders in this study. From the plot
it can be seen the MP3 and AAC coders occupy the right bot-
tom corner, whereas the samples from ATFT coder are spread
over. As mentioned earlier, 3 out the 8 samples of the ATFT
coder occupy the right top corner however only with mod-
erate SDGs that are much less than the MP3 and the AAC.
Three out of the remaining 5 samples of the ATFT coder oc-
cupy the right bottom corner, however again with only mod-
erate SDGs that are less than MP3 and AAC. The remain-
ing 2 samples perform the worst occupying the left bottom
corner.

We analyzed the poorly performing ATFT-coded signals
DEFLE and VISIT. DEFLE is a rapidly varying rock-like sig-
nal with minimal voice components and VISIT is a sig-
nal with dominant voice components. We observed that the
symmetrical and smooth Gaussian dictionary used in this
study does not model the transients well, which are the main
features of all rapidly varying signals like DEFLE. This ineffi-
cient modeling of transients by the symmetrical Gaussian TF
functions resulted in the poor SDG for the DEFLE. A more
appropriate dictionary would be a damped sinusoids dictio-
nary [24] which can better model the transient like decay-
ing structures in audio signals. However, a single dictionary
alone may not be sufficient to model all types of signal struc-
tures. The second signal VISIT has significant amount(s)
of voice components. Even though, the main voice compo-
nents are modeled well by the ATFT, the noise like hissing
and shrilling sounds (noncoherent structures) could not be
modeled within the decomposition limit of 10 000 iterations.
These hissing and shrilling sounds actually add to the pleas-
antness of the music. Any distortion in them is easily per-
ceived which could have reduced the SDG of the signal to the



K. Umapathy and S. Krishnan 13

lowest of the group −2.27. The poor performances with the
two audio sample cases could be addressed by using a hybrid
dictionary of TF functions and residue coding the noncoher-
ent structures separately. However, this would increase the
computational complexity of the coder and reduce the com-
pression ratios.

7.2. Performance comparison with same bitrates
(high-efficiency AAC)

In the second performance comparison of the ATFT coder,
we choose to test the high-efficiency profile of the MPEG-4
AAC v2 at the same bitrates as that of the ATFT coder. As
per [12], the HE-AAC v2 improves the coding gain of the
AAC by 4 times and outperforms most of the existing coders
in audio quality especially at low bitrates. All the 8 samples
were encoded using the HE-AAC v1/v2 encoder at the same
bitrates as that of the VBR bitrates of the ATFT. The choice
for the v1 or the v2 encoder was determined by the target bi-
trates (below 70 kbps v2 was used). From the SDGs obtained
as shown in Table 3, it is very evident that the HE-AAC pro-
files of the MPEG-4 audio codec outperforms the proposed
ATFT coder for the same bitrates. However, it would not be
fair to compare the HE-AAC directly with the ATFT, since
ATFT is a basic coder without the additional enhancements
achieved by SBR or any form of parametric coding.

Although we did not include standalone sinusoidal
coders in our comparison, the MPEG-4 HE-AAC v2 in-
cludes the parametric stereo coding based on the transient-
sinusoid-noise (TSN) model and is derived from the MPEG-
4 audio sinusoidal coding (also abbreviated as SSC) [25]. The
TSN model though in existence for quite some time for audio
and speech coding, received much attention recently with its
inclusion in the MPEG-4 audio standard for low-bitrate ap-
plications. The formal verification tests of the MPEG-4 SSC
indicate that the SSC coder performs either comparable to or
better than MPEG-4 AAC even at lower bitrates than MPEG-
4 AAC [25]. Another recent well-known family of sinusoidal
codec (the SiCAS codec and its variants) is from the research
group of Heusdens et al. and Philips Research Laboratories
[26]. It is shown that the psychoacoustics model used in this
family of codecs is better than the MPEG I Layer I-II psy-
choacoustics model [27]. The subjective listening tests indi-
cate that this family of codec performs equal to or better than
MPEG-4 at low bitrates (16 Kbps (HILN), 24 Kbps (SSC),
and 32 Kbps (AAC)) [26]. Various improvements have been
proposed for this codec family over the years with an in-
cremental performance gain [28, 29]. Interestingly, the im-
provements proposed in using amplitude modulated sinu-
soids over constant amplitude sinusoids indicate the migra-
tion of these approaches towards completely adaptive signal
decompositions such as the one proposed in the ATFT coder
[29].

8. CONCLUSIONS

This paper presented a novel ATFT coding technique for
wideband audio signals. The proposed approach demon-

strated the application of adaptive time-frequency transform
for audio coding and the development of a novel psychoa-
coustics model adapted to TF functions. The compression
strategy was changed from the conventional way of control-
ling quantizer resolution to achieving majority of the com-
pression in the transformation itself. Eight stereo sample sig-
nals were used in the study. Listening tests were conducted
and the performance comparison of the proposed coder with
MP3 and AAC coders was presented. From the preliminary
results, although the proposed coder achieves high com-
pression ratios, its SDG scores are well below the MP3 and
AAC family of coders. The proposed coder however performs
moderately well for slowly varying classical-like signals with
acceptable SDGs. The proposed coder is not as refined as the
state-of-the-art commercial coders, which to some extent ex-
plains its poor performance. Future work involves testing the
proposed coder with a hybrid dictionary of TF functions and
including professional refinements.
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