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During the last decade, CD-quality digital audio has essentially
replaced analog audio. Emerging digital audio applications for net-
work, wireless, and multimedia computing systems face a series of
constraints such as reduced channel bandwidth, limited storage ca-
pacity, and low cost. These new applications have created a de-
mand for high-quality digital audio delivery at low bit rates. In
response to this need, considerable research has been devoted to
the development of algorithms for perceptually transparent coding
of high-fidelity (CD-quality) digital audio. As a result, many algo-
rithms have been proposed, and several have now become inter-
national and/or commercial product standards. This paper reviews
algorithms for perceptually transparent coding of CD-quality dig-
ital audio, including both research and standardization activities.

This paper is organized as follows. First, psychoacoustic princi-
ples are described, with the MPEG psychoacoustic signal analysis
model 1 discussed in some detail. Next, filter bank design issues
and algorithms are addressed, with a particular emphasis placed
on the modified discrete cosine transform, a perfect reconstruction
cosine-modulated filter bank that has become of central importance
in perceptual audio coding. Then, we review methodologies that
achieve perceptually transparent coding of FM- and CD-quality

audio signals, including algorithms that manipulate transform
components, subband signal decompositions, sinusoidal signal
components, and linear prediction parameters, as well as hybrid
algorithms that make use of more than one signal model. These
discussions concentrate on architectures and applications of those
techniques that utilize psychoacoustic models to exploit efficiently
masking characteristics of the human receiver. Several algorithms
that have become international and/or commercial standards
receive in-depth treatment, including the ISO/IEC MPEG family
(�1, �2, �4), the Lucent Technologies PAC/EPAC/MPAC, the
Dolby1 AC-2/AC-3, and the Sony ATRAC/SDDS algorithms. Then,
we describe subjective evaluation methodologies in some detail,
including the ITU-R BS.1116 recommendation on subjective
measurements of small impairments. This paper concludes with a
discussion of future research directions.
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I. INTRODUCTION

Audio coding or audio compression algorithms are used

to obtain compact digital representations of high-fidelity

(wideband) audio signals for the purpose of efficient trans-

mission or storage. The central objective in audio coding is

to represent the signal with a minimum number of bits while

achieving transparent signal reproduction, i.e., generating

output audio that cannot be distinguished from the original

input, even by a sensitive listener (“golden ears”). This

paper gives a review of algorithms for transparent coding of

high-fidelity audio.

The introduction of the compact disc (CD) in the early

1980’s [1] brought to the fore all of the advantages of digital

audio representation, including unprecedented high fidelity,

dynamic range, and robustness. These advantages, however,

came at the expense of high data rates. Conventional CD

and digital audio tape (DAT) systems are typically sampled

at either 44.1 or 48 kHz using pulse code modulation (PCM)

with a 16-bit sample resolution. This results in uncom-

pressed data rates of 705.6/768 kbits per second (kb/s) for a

monaural channel, or 1.41/1.54 Mbits per second (Mb/s) for

a stereo pair at 44.1/48 kHz, respectively. Although high,

these data rates were accommodated successfully in first

generation digital audio applications such as CD and DAT.

Unfortunately, second-generation multimedia applications

and wireless systems in particular are often subject to

bandwidth and cost constraints that are incompatible with

high data rates. Because of the success enjoyed by the

first generation, however, end users have come to expect

“CD-quality” audio reproduction from any digital system.

Therefore, new network and wireless multimedia digital

audio systems must reduce data rates without compromising

reproduction quality. These and other considerations have

motivated considerable research during the last decade

toward formulation of compression schemes that can satisfy

simultaneously the conflicting demands of high compression

ratios and transparent reproduction quality for high-fidelity

audio signals [2]–[11]. As a result, several standards have

been developed [12]–[15], particularly in the last five years
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Fig. 1. Generic perceptual audio encoder.

[16]–[19], and several are now being deployed commercially

[359], [362], [365], [367] (Table 4).

A. Generic Perceptual Audio Coding Architecture

This review considers several classes of analysis–syn-

thesis data compression algorithms, including those that

manipulate transform components, time-domain sequences

from critically sampled banks of bandpass filters, sinusoidal

signal components, linear predictive coding (LPC) model

parameters, or some hybrid parametric set. Within each

algorithm class, either lossless or lossy compression is

possible. A lossless or noiseless coding system is able to

reconstruct perfectly the samples of the original signal from

the coded (compressed) representation. In contrast, a coding

scheme incapable of perfect reconstruction from the coded

representation is denoted lossy. For most audio program

material, lossy schemes offer the advantage of lower bit

rates (e.g., less than 1 bit per sample) relative to lossless

schemes (e.g., 10 bits per sample). Although the enormous

capacity of new storage media such as digital versatile disc

(DVD) can accommodate lossless audio coding [20], [21],

the research interest and hence all of the algorithms we

describe are lossy compression schemes that seek to exploit

the psychoacoustic principles described in Section II. Natu-

rally, there is a debate over the quality limitations associated

with lossy compression. In fact, some experts believe that

uncompressed digital CD-quality audio (44.1 kHz/16 bit) is

intrinsically inferior to the analog original. They contend

that sample rates above 55 kHz and word lengths greater

than 20 bits [21] are necessary to achieve transparency in

the absence of any compression. The latter debate is beyond

the scope of this review.

Before considering different classes of audio coding al-

gorithms, we note the architectural similarities that charac-

terize most perceptual audio coders. The lossy compression

systems described throughout the remainder of this review

achieve coding gain by exploiting both perceptual irrelevan-

cies and statistical redundancies. Most of these algorithms

are based on the generic architecture shown in Fig. 1. The

coders typically segment input signals into quasistationary

frames ranging from 2 to 50 ms in duration. Then, a time-fre-

quency analysis section estimates the temporal and spectral

components on each frame. Often, the time-frequency map-

ping is matched to the analysis properties of the human audi-

tory system, although this is not always the case. Either way,

the ultimate objective is to extract from the input audio a set

of time-frequency parameters that is amenable to quantiza-

tion and encoding in accordance with a perceptual distortion

metric. Depending on overall system objectives and design

philosophy, the time-frequency analysis section might con-

tain a:

• unitary transform;

• time-invariant bank of critically sampled, uniform, or

nonuniform bandpass filters;

• time-varying (signal-adaptive) bank of critically sam-

pled, uniform, or nonuniform bandpass filters;

• harmonic/sinusoidal analyzer;

• source-system analysis (LPC/multipulse excitation);

• hybrid transform/filter bank/sinusoidal/LPC signal an-

alyzer.

The choice of time-frequency analysis methodology always

involves a fundamental tradeoff between time and frequency

resolution requirements. Perceptual distortion control is

achieved by a psychoacoustic signal analysis section that

estimates signal masking power based on psychoacoustic

principles (see Section II). The psychoacoustic model

delivers masking thresholds that quantify the maximum

amount of distortion at each point in the time-frequency

plane such that quantization of the time-frequency parame-

ters does not introduce audible artifacts. The psychoacoustic

model therefore allows the quantization and encoding sec-

tion to exploit perceptual irrelevancies in the time-frequency

parameter set. The quantization and encoding section

can also exploit statistical redundancies through classical

techniques such as differential pulse code modulation

(DPCM) or adaptive DPCM (ADPCM). Quantization can

be uniform or probability density function (pdf)-optimized

(Lloyd–Max), and it might be performed on either scalar

or vector data (VQ). Once a quantized compact parametric

set has been formed, remaining redundancies are typically

removed through noiseless run-length (RL) and entropy

(e.g., Huffman [22], arithmetic [23], or Lempel, Ziv, and

Welch (LZW) [24], [25]) coding techniques. Since the

output of the psychoacoustic distortion control model is

signal dependent, most algorithms are inherently variable

rate. Fixed channel rate requirements are usually satisfied

through buffer feedback schemes, which often introduce

encoding delays.

The study of perceptual entropy (PE) suggests that trans-

parent coding is possible in the neighborhood of 2 bits per

sample [117] for most for high-fidelity audio sources ( 88

kpbs given 44.1-kHz sampling). The lossy perceptual coding

algorithms discussed in the remainder of this paper confirm
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this possibility. In fact, several coders approach transparency

in the neighborhood of just 1 bit per sample. Regardless of

design details, all perceptual audio coders seek to achieve

transparent quality at low bit rates with tractable complexity

and manageable delay. The discussion of algorithms given

in Sections IV–VIII brings to light many of the tradeoffs in-

volved with the various coder design philosophies.

B. Paper Organization

This paper is organized as follows. In Section II, psy-

choacoustic principles are described. Johnston’s notion of

perceptual entropy [45] is presented as a measure of the

fundamental limit of transparent compression for audio,

and the ISO/IEC MPEG-1 psychoacoustic analysis model

1 is presented. Section III explores filter bank design issues

and algorithms, with a particular emphasis placed on the

modified discrete cosine transform (MDCT), a perfect

reconstruction (PR) cosine-modulated filter bank that is

widely used in current perceptual audio coding algorithms.

Section III also addresses pre-echo artifacts and control

strategies. Sections IV–VII review established and emerging

techniques for transparent coding of FM- and CD-quality

audio signals, including several algorithms that have become

international standards. Transform coding methodologies

are described in Section IV, subband coding algorithms are

addressed in Section V, sinusoidal algorithms are presented

in Section VI, and LPC-based algorithms appear in Sec-

tion VII. In addition to methods based on uniform bandwidth

filter banks, Section V covers coding methods that utilize

discrete wavelet transforms (DWT’s), discrete wavelet

packet transforms (DWPT’s), and other nonuniform filter

banks. Examples of hybrid algorithms that make use of more

than one signal model appear throughout Sections IV–VII.

Section VIII is concerned with standardization activities in

audio coding. It describes recently adopted standards such

as the ISO/IEC MPEG family ( 1 “.MP1/2/3,” 2, 4),

the Phillips’ Digital Compact Cassette (DCC), the Sony

Minidisk (ATRAC), the cinematic Sony SDDS, the Lucent

Technologies Perceptual Audio Coder (PAC)/Enhanced Per-

ceptual Audio Coder (EPAC)/Multichannel PAC (MPAC),

and the Dolby AC-2/AC-3. Included in this discussion, Sec-

tion VIII-A gives complete details on the “.MP3” system,

which has been popularized in World Wide Web (WWW)

and handheld media applications (e.g., Diamond RIO).

Note that the “.MP3” label denotes the MPEG-1, Layer

III algorithm. Following the description of the standards,

Section IX provides information on subjective quality

measures for perceptual codecs. The five-point absolute and

differential subjective grading scales are addressed, as well

as the subjective test methodologies specified in the ITU-R

Recommendation BS.1116. A set of subjective benchmarks

is provided for the various standards in both stereophonic

and multichannel modes to facilitate interalgorithm com-

parisons. This paper concludes with a discussion of future

research directions.

As an aside, the reader should be aware that the distinc-

tion drawn between transform and subband coding in this

paper (Sections IV and V) and in the literature is nowadays

largely artificial. Although subband versus transform coding

class distinctions were justified for the early algorithms that

were based on either unitary transforms (e.g., DFT, DCT) or

subband filters [e.g., tree-structured quadrature mirror filter

(QMF)], the same distinction is not valid for modern algo-

rithms that make use of modulated filter banks such as the

MDCT or pseudo-QMF (PQMF). The block transform real-

izations typically used for the MDCT and PQMF filter banks

have been partially responsible for this semantic confusion.

A consistent feature of algorithms erroneously lumped into

the transform class is that they often make use of very high-

resolution filter banks such as a 512-, 1024-, or even 2048-

channel MDCT (e.g., ASPEC or DPAC, Sections IV-E and

IV-F). Algorithms typically lumped into the subband class

tend to make use of lower resolution filter banks, such as

a discrete wavelet packet transform with the decomposition

tree structured to emulate a critical bandwidth analysis with

only 24 subbands (e.g., coders described in Sections V-C and

V-D). These consistent (mis)classifications have inspired the

logical proposal that the subband/transform class labels for

modern coders should be replaced with the classifications of

“low-resolution” and “high-resolution” subband coding [33].

The importance of this discussion will become more apparent

later in this paper.

For additional information on perceptual coding, one

can also refer to informative reviews of recent progress in

wideband and high-fidelity audio coding that have appeared

in the literature. Discussions of audio signal characteristics

and the application of psychoacoustic principles to audio

coding can be found in [26]–[28]. Jayant et al. of Bell Labs

also considered perceptual models and their applications

to speech, video, and audio signal compression [29]. Noll

describes current algorithms in [30] and [31], including

the ISO/MPEG audio compression standards. A recent

treatment of the ISO/MPEG algorithms appeared in [75].

Also recently, excellent tutorial perspectives on audio

coding fundamentals [32], [62], as well as signal-processing

advances [33] central to audio coding, were provided by

Brandenburg and Johnston, respectively. In addition, two

collections of papers on the current audio coding standards,

as well as psychoacoustics, performance measures, and

applications, appeared in [34]–[36].

Throughout the remainder of this paper, bit rates will

correspond to single-channel or monaural coding, unless

otherwise specified. In addition, subjective quality measure-

ments are specified in terms of either the five-point mean

opinion score (MOS) or the 41-point subjective difference

grade (SDG). These measures are defined in Section IX-A.

II. PSYCHOACOUSTIC PRINCIPLES

High-precision engineering models for high-fidelity audio

currently do not exist. Therefore, audio coding algorithms

must rely upon generalized receiver models to optimize

coding efficiency. In the case of audio, the receiver is ulti-

mately the human ear and sound perception is affected by its

masking properties. The field of psychoacoustics [37]–[43]

has made significant progress toward characterizing human
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Fig. 2. The absolute threshold of hearing in quiet. Across the audio spectrum, it quantifies the SPL
required at each frequency such that an average listener will detect a pure tone stimulus in a noiseless
environment.

auditory perception and particularly the time-frequency

analysis capabilities of the inner ear. Although applying

perceptual rules to signal coding is not a new idea [44], most

current audio coders achieve compression by exploiting the

fact that “irrelevant” signal information is not detectable

by even a well trained or sensitive listener. Irrelevant infor-

mation is identified during signal analysis by incorporating

into the coder several psychoacoustic principles, including

absolute hearing thresholds, critical band frequency anal-

ysis, simultaneous masking, the spread of masking along

the basilar membrane, and temporal masking. Combining

these psychoacoustic notions with basic properties of signal

quantization has also led to the theory of perceptual entropy

[45], a quantitative estimate of the fundamental limit of

transparent audio signal compression. This section reviews

psychoacoustic fundamentals and perceptual entropy, and

then gives as an application example some details of the

ISO/MPEG psychoacoustic model one.

Before proceeding, however, it is necessary to define the

sound pressure level (SPL), a standard metric that quan-

tifies the intensity of an acoustical stimulus [42]. Nearly

all of the auditory psychophysical phenomena addressed

in this paper are treated in terms of SPL. The SPL gives

the level (intensity) of sound pressure in decibels (dB)

relative to an internationally defined reference level, i.e.,

dB, where is the SPL of a

stimulus, is the sound pressure of the stimulus in Pascals

[Pa—equivalent to Newtons per square meter (N/m )], and

is the standard reference level of Pa, or 2 10

N/m [309]. About 150-dB SPL spans the dynamic range of

intensity for the human auditory system, from the limits of

detection for low-intensity (quiet) stimuli up to the threshold

of pain for high-intensity (loud) stimuli. The SPL reference

level is calibrated such that the frequency-dependent abso-

lute threshold of hearing in quiet (Section II-A) tends to

measure in the vicinity of 0-dB SPL. On the other hand, a

stimulus level of 140-dB SPL is typically at or above the

threshold of pain. Each of the phenomena addressed in the

remainder of this section is characterized in terms of SPL.

A. Absolute Threshold of Hearing

The absolute threshold of hearing characterizes the

amount of energy needed in a pure tone such that it can

be detected by a listener in a noiseless environment. The

absolute threshold is typically expressed in terms of dB SPL.

The frequency dependence of this threshold was quantified

as early as 1940, when Fletcher [37] reported test results

for a range of listeners that were generated in a National

Institutes of Health study of typical American hearing

acuity. The quiet (absolute) threshold is well approximated

[46] by the nonlinear function

(dB SPL) (1)

which is representative of a young listener with acute

hearing. When applied to signal compression, could

be interpreted naively as a maximum allowable energy level

for coding distortions introduced in the frequency domain

(Fig. 2). At least two caveats must govern this practice,

however. First, whereas the thresholds captured in Fig. 2

are associated with pure tone stimuli, the quantization noise

in perceptual coders tends to be spectrally complex rather

than tonal. Second, it is important to realize that algorithm
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Fig. 3. The frequency-to-place transformation along the basilar membrane. The picture gives a
schematic representation of the traveling wave envelopes (measured in terms of vertical membrane
displacement) that occur in response to an acoustic tone complex containing sinusoids of 400, 1600,
and 6400 Hz. Peak responses for each sinusoid are localized along the membrane surface, with
each peak occurring at a particular distance from the oval window (cochlear “input”). Thus, each
component of the complex stimulus evokes strong responses only from the neural receptors associated
with frequency-specific loci (after [42]).

designers have no a priori knowledge regarding actual play-

back levels (SPL), and therefore the curve is often referenced

to the coding system by equating the lowest point (i.e., near

4 kHz) to the energy in 1 bit of signal amplitude. In other

words, it is assumed that the playback level (volume control)

on a typical decoder will be set such that the smallest pos-

sible output signal will be presented close to 0-dB SPL. This

assumption is conservative for quiet to moderate listening

levels in uncontrolled open-air listening environments, and

therefore this referencing practice is commonly found in

algorithms that utilize the absolute threshold of hearing.

We note that the absolute hearing threshold is related to

a commonly encountered acoustical metric other than

SPL, namely, dB sensation level (dB SL). Sensation Level

denotes the intensity level difference for a stimulus relative

to a listener’s individual unmasked detection threshold for

the stimulus [309]. Hence, “equal SL” signal components

may have markedly different absolute SPL’s, but all equal

SL components will have equal suprathreshold margins.

The motivation for the use of SL measurements is that SL

quantifies listener-specific audibility rather than an absolute

level. Whether the target metric is SPL or SL, perceptual

coders must eventually reference the internal PCM data to

a physical scale. A detailed example of this referencing for

SPL is given in Section II-F.

B. Critical Bands

Using the absolute threshold of hearing to shape the

coding distortion spectrum represents the first step toward

perceptual coding. Considered on its own, however, the

absolute threshold is of limited value in the coding context.

The detection threshold for spectrally complex quantization

noise is a modified version of the absolute threshold, with

its shape determined by the stimuli present at any given

time. Since stimuli are in general time-varying, the detection

threshold is also a time-varying function of the input signal.

In order to estimate this threshold, we must first understand

how the ear performs spectral analysis. A frequency-to-place

transformation takes place in the cochlea (inner ear), along

the basilar membrane [42]. The transformation works as

follows. A sound wave generated by an acoustic stimulus

moves the eardrum and the attached ossicular bones, which

in turn transfer the mechanical vibrations to the cochlea, a

spiral-shaped, fluid-filled structure that contains the coiled

basilar membrane. Once excited by mechanical vibrations

at its oval window (the input), the cochlear structure induces

traveling waves along the length of the basilar membrane.

Neural receptors are connected along the length of the basilar

membrane. The traveling waves generate peak responses

at frequency-specific membrane positions, and therefore

different neural receptors are effectively “tuned” to different

frequency bands according to their locations. For sinusoidal

stimuli, the traveling wave on the basilar membrane propa-

gates from the oval window until it nears the region with a

resonant frequency near that of the stimulus frequency. The

wave then slows, and the magnitude increases to a peak.

The wave decays rapidly beyond the peak. The location of

the peak is referred to as the “best place” or “character-

istic place” for the stimulus frequency, and the frequency

that best excites a particular place [47], [48] is called the

“best frequency” or “characteristic frequency.” Thus, a fre-

quency-to-place transformation occurs. An example is given

in Fig. 3 for a three-tone stimulus. The interested reader

can also find on-line a number of high-quality animations

demonstrating this aspect of cochlear mechanics [49]. As a

result of the frequency-to-place transformation, the cochlea

can be viewed from a signal-processing perspective as a

bank of highly overlapping bandpass filters. The magnitude

responses are asymmetric and nonlinear (level dependent).

Moreover, the cochlear filter passbands are of nonuniform

bandwidth, and the bandwidths increase with increasing fre-

quency. The “critical bandwidth” is a function of frequency

that quantifies the cochlear filter passbands. Empirical work

by several observers led to the modern notion of critical

bands [37]–[40]. We will consider two typical examples.

In one scenario, the loudness (perceived intensity) remains

constant for a narrow-band noise source presented at a

constant SPL even as the noise bandwidth is increased up to

the critical bandwidth. For any increase beyond the critical

bandwidth, the loudness then begins to increase. In this

case, one can imagine that loudness remains constant as

long as the noise energy is present within only one cochlear
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“channel” (critical bandwidth), and then that the loudness

increases as soon as the noise energy is forced into adjacent

cochlear “channels.” Critical bandwidth can also be viewed

as the result of auditory detection efficacy in terms of a

signal-to-noise ratio (SNR) criterion. The power spectrum

model of hearing assumes that masked threshold for a given

listener will occur at a constant, listener-specific SNR [50].

In the critical bandwidth measurement experiments, the de-

tection threshold for a narrow-band noise source presented

between two masking tones remains constant as long as

the frequency separation between the tones remains within

a critical bandwidth [Fig. 4(a)]. Beyond this bandwidth,

the threshold rapidly decreases [Fig. 4(c)]. From the SNR

viewpoint, one can imagine that as long as the masking

tones are presented within the passband of the auditory filter

(critical bandwidth) that is tuned to the probe noise, the SNR

presented to the auditory system remains constant, and hence

the detection threshold does not change. As the tones spread

further apart and transition into the filter stopband, however,

the SNR presented to the auditory system improves, and

hence the detection task becomes easier. In order to maintain

a constant SNR at threshold for a particular listener, the

power spectrum model calls for a reduction in the probe

noise commensurate with the reduction in the energy of the

masking tones as they transition out of the auditory filter

passband. Thus, beyond critical bandwidth, the detection

threshold for the probe tones decreases, and the threshold

SNR remains constant.

A notched-noise experiment with a similar interpretation

can be constructed with masker and maskee roles reversed

[Fig. 4(b) and (d)]. Critical bandwidth tends to remain con-

stant (about 100 Hz) up to 500 Hz, and increases to approxi-

mately 20% of the center frequency above 500 Hz. For an av-

erage listener, critical bandwidth [Fig. 5(b)] is conveniently

approximated [42] by

(Hz) (2)

Although the function is continuous, it is useful when

building practical systems to treat the ear as a discrete set of

bandpass filters that conforms to (2). Table 1 gives an ideal-

ized filter bank that corresponds to the discrete points labeled

on the curve in Fig. 5(a) and (b). A distance of one critical

band is commonly referred to as “one Bark” in the literature.

The function [42]

(Bark) (3)

is often used to convert from frequency in hertz to the Bark

scale [Fig. 5(a)]. Corresponding to the center frequencies of

the Table 1 filter bank, the numbered points in Fig. 5(a) il-

lustrate that the nonuniform Hertz spacing of the filter bank

(Fig. 6) is actually uniform on a Bark scale. Thus, one critical

bandwidth (CB) comprises one Bark.

Although the critical bandwidth captured in (2) is widely

used in perceptual models for audio coding, we note that

(a) (b)

(c) (d)

Fig. 4. Critical band measurement methods: (a) and (c) detection
threshold decreases as masking tones transition from auditory filter
passband into stopband, thus improving detection SNR, and (b) and
(d) same interpretation with roles reversed (after [42]).

there are alternative expressions. In particular, the equivalent

rectangular bandwidth (ERB) scale emerged from research

directed toward measurement of auditory filter shapes. In

this work, experimental data are obtained typically from

notched noise masking procedures. Then, investigators fit

the masking data with parametric weighting functions that

represent the spectral shaping properties of the auditory fil-

ters [50]. Rounded exponential models with one or two free

parameters are popular. For example, the single-parameter

“roex(p)” model is given by

(4)

where

normalized frequency;

center frequency of the filter;

frequency in hertz.

Although the roex(p) model does not capture filter asym-

metry, asymmetric filter shapes are possible if two roex(p)

models are used independently for the high and low fre-

quency filter skirts. Two parameter models such as the

roex(p, r) are also used to gain additional degrees of freedom

[50] in order to improve the accuracy of the filter shape

estimates. After curve fitting, an ERB estimate is obtained

directly from the parametric filter shape. For the roex(p)

model, it can be shown easily that the equivalent rectangular

bandwidth is given by

ERB (5)

We note that some texts denote ERB by “equivalent noise

bandwidth.” An example is given in Fig. 7. The solid line

in Fig. 7(a) shows an example roex(p) filter estimated for

a center frequency of 1 kHz, while the dashed line shows

the ERB associated with the given roex(p) filter shape. In

[51] and [52], Moore and Glasberg summarized experimental
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Table 1

Idealized Critical Band Filter Bank (After [40]). Band Edges and Center Frequencies for a Collection
of 25 Critical Bandwidth Auditory Filters That Span the Audio Spectrum. Note That This Idealized
Filter Bank Reflects Critical Bandwidth of (2), Not the ERB of (6)

(a)

(b)

Fig. 5. Two views of critical bandwidth: (a) critical band rate
z(f) maps from Hertz to Barks and (b) critical bandwidthBW (f)
expresses critical bandwidth as a function of center frequency, in
Hertz. The X’s denote the center frequencies of the idealized critical
band filter bank given in Table 1.

ERB measurements for roex(p,r) models obtained over a pe-

riod of several years by a number of different investigators.

Given a collection of ERB measurements on center frequen-

cies across the audio spectrum, a curve fitting on the data set

yielded the following expression for ERB as a function of

center frequency:

ERB (6)

As shown in Fig. 7(b), the function specified by (6) differs

from the critical bandwidth of (2). Of particular interest for

perceptual codec designers, the ERB scale implies that audi-

tory filter bandwidths decrease below 500 Hz, whereas the

critical bandwidth remains essentially flat. The apparent in-

creased frequency selectivity of the auditory system below

500 Hz has implications for optimal filter bank design, as

well as for perceptual bit allocation strategies. These impli-

cations are addressed later in this paper.

Regardless or whether it is best characterized in terms

of critical bandwidth or ERB, the frequency resolution

of the auditory filter bank largely determines which por-

tions of a signal are perceptually irrelevant. The auditory

time-frequency analysis that occurs in the critical band filter

bank induces simultaneous and nonsimultaneous masking

phenomena that are routinely used by modern audio coders

to shape the coding distortion spectrum. In particular, the

perceptual models allocate bits for signal components such

that the quantization noise is shaped to exploit the detection

thresholds for a complex sound (e.g., quantization noise).

These thresholds are determined by the energy within a crit-

ical band [53]. Masking properties and masking thresholds

are described next.

C. Simultaneous Masking, Masking Asymmetry, and the

Spread of Masking

Masking refers to a process where one sound is rendered

inaudible because of the presence of another sound. Simul-

taneous masking may occur whenever two or more stimuli

are simultaneously presented to the auditory system. From

a frequency-domain point of view, the relative shapes of the

masker and maskee magnitude spectra determine to what

extent the presence of certain spectral energy will mask

the presence of other spectral energy. From a time-domain

perspective, phase relationships between stimuli can also

affect masking outcomes. A simplified explanation of the

mechanism underlying simultaneous masking phenomena is
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Fig. 6. Idealized critical band filter bank. Illustrates magnitude
responses from Table 1. Note that this idealized filter bank reflects
critical bandwidth of (2), not the ERB of (6).

that the presence of a strong noise or tone masker creates an

excitation of sufficient strength on the basilar membrane at

the critical band location to block effectively detection of a

weaker signal. Although arbitrary audio spectra may contain

complex simultaneous masking scenarios, for the purposes

of shaping coding distortions it is convenient to distinguish

between only three types of simultaneous masking, namely,

noise-masking-tone (NMT) [40], tone-masking-noise

(TMN) [41], and noise-masking-noise (NMN) [54]. A

tutorial treatment of these phenomena and their particular

relevance to perceptual coding appeared recently in [54].

Some essential characteristics are described next.

1) Noise-Masking-Tone: In the NMT scenario

[Fig. 8(a)], a narrow-band noise (e.g., having 1 Bark

bandwidth) masks a tone within the same critical band,

provided that the intensity of the masked tone is below a

predictable threshold directly related to the intensity—and,

to a lesser extent, the center frequency—of the masking

noise. Numerous studies characterizing NMT for random

noise and pure tone stimuli have appeared since the 1930’s

(e.g., [55] and [56]). At the threshold of detection for the

masked tone, the minimum signal-to-mask ratio (SMR), i.e.,

the smallest difference between the intensity (SPL) of the

masking noise (“signal”) and the intensity of the masked

tone (“mask”) occurs when the frequency of the masked tone

is close to the masker’s center frequency. In most studies,

the minimum SMR tends to lie between 5 and 5 dB.

For example, a sample threshold SMR result from the NMT

investigation [56] is schematically represented in Fig. 8(a).

In the figure, a critical band noise masker centered at 410 Hz

with an intensity of 80-dB SPL masks a 410-Hz tone, and the

resulting SMR at the threshold of detection is 4 dB. Masking

power decreases (i.e., SMR increases) for probe tones above

and below the frequency of the minimum SMR tone, in

accordance with a level- and frequency-dependent spreading

function that is described later. We note that temporal factors

(a)

(b)

Fig. 7. (a) Example ERB for a roex(p) single-parameter estimate
of the shape of the auditory filter centered at 1 kHz. The solid
line represents an estimated spectral weighting function for
a single-parameter fit to data from a notched noise masking
experiment; the dashed line represents the equivalent rectangular
bandwidth. (b) ERB versus critical bandwidth—the ERB of (6)
(solid) versus critical bandwidth of (2) (dashed) as a function of
center frequency.

also affect simultaneous masking. For example, in the NMT

scenario, an overshoot effect is possible when the probe tone

onset occurs within a short interval immediately following

masker onset. Overshoot can boost simultaneous masking

(i.e., decrease the threshold minimum SMR) by as much as

10 dB over a brief time span [42]. Section II-D addresses

other temporal masking factors.

2) Tone-Masking-Noise: In the case of TMN [Fig. 8(b)],

a pure tone occurring at the center of a critical band masks

noise of any subcritical bandwidth or shape, provided the

noise spectrum is below a predictable threshold directly

related to the strength—and, to a lesser extent, the center

frequency—of the masking tone. In contrast to NMT,

relatively few studies have attempted to characterize TMN.

At the threshold of detection for a noise band masked by a
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(a)

(b)

Fig. 8. Example to illustrate the asymmetry of simultaneous
masking. (a) Noise-masking-tone—at the threshold of detection,
a 410-Hz pure tone presented at 76-dB SPL is just masked by a
critical bandwidth narrow-band noise centered at 410 Hz (90-Hz
BW) of overall intensity 80-dB SPL. This corresponds to a
threshold minimum SMR of 4 dB. The threshold SMR increases
as the probe tone is shifted either above or below 410 Hz. (b)
Tone-masking-noise—at the threshold of detection, a 1-kHz pure
tone presented at 80-dB SPL just masks a critical-band narrow-band
noise centered at 1 kHz of overall intensity 56-dB SPL. This
corresponds to a threshold minimum SMR of 24 dB. As for the
NMT experiment, threshold SMR for the TMN increases as the
masking tone is shifted either above or below the noise center
frequency 1 kHz. When comparing (a) to (b), it is important to
notice the apparent “masking asymmetry,” namely, that NMT
produces a significantly smaller threshold minimum SMR (4 dB)
than does TMN (24 dB). In other words, significantly greater
masking power is associated with noise maskers than with tonal
maskers. Masking asymmetry is treated in greater depth in [54] and
[58].

pure tone, however, it was found in both [41] and [44] that

the minimum SMR, i.e., the smallest difference between the

intensity of the masking tone (“signal”) and the intensity

of the masked noise (“mask”), occurs when the masker

frequency is close to the center frequency of the probe noise,

and that the minimum SMR for TMN tends lie between

21–28 dB. A sample result from the TMN study [44] is given

in Fig. 8(b). In the figure, a narrow-band noise of one Bark

bandwidth centered at 1 kHz is masked by a 1-kHz tone of

intensity 80-dB SPL. The resulting SMR at the threshold of

detection is 24 dB. As with NMT, the TMN masking power

decreases for critical bandwidth probe noises centered above

and below the minimum SMR probe noise.

3) Noise-Masking-Noise: The NMN scenario, in which

a narrow-band noise masks another narrow-band noise, is

more difficult to characterize than either NMT or TMN be-

cause of the confounding influence of phase relationships

between the masker and maskee [54]. Essentially, different

relative phases between the components of each can lead to

different threshold SMR’s. The results from one study of in-

tensity difference detection thresholds for wide-band noises

[57] produced threshold SMR’s of nearly 26 dB for NMN

[54].

4) Asymmetry of Masking: The NMT and TMN exam-

ples in Fig. 8 clearly show an asymmetry in masking

power between the noise masker and the tone masker.

In spite of the fact that both maskers are presented at

a level of 80-dB SPL, the associated threshold SMR’s

differ by 20 dB. This asymmetry motivates our interest

in both the TMN and NMT masking paradigms, as well

as NMN. In fact, knowledge of all three is critical to suc-

cess in the task of shaping coding distortion such that it

is undetectable by the human auditory system. For each

temporal analysis interval, a codec’s perceptual model

should identify across the frequency spectrum noise-like

and tone-like components within both the audio signal

and the coding distortion. Next, the model should apply

the appropriate masking relationships in a frequency-spe-

cific manner. In conjunction with the spread of masking

(below), NMT, NMN, and TMN properties can then be

used to construct a global masking threshold. Although

current methods for masking threshold estimation have

proven effective, we note that a deeper understanding of

masking asymmetry may provide opportunities for im-

proved perceptual models. In particular, Hall [58] has re-

cently shown that masking asymmetry can be explained

in terms of relative masker/maskee bandwidths, and not

necessarily exclusively in terms of absolute masker prop-

erties. Ultimately, this implies that the de facto stan-

dard energy-based schemes for masking power estimation

among perceptual codecs may be valid only so long as

the masker bandwidth equals or exceeds maskee (probe)

bandwidth. In cases where the probe bandwidth exceeds

the masker bandwidth, an envelope-based measure should

be embedded in the masking calculation [54], [58].

5) The Spread of Masking: As alluded to earlier, the si-

multaneous masking effects characterized above by the sim-

plified paradigms of NMT, TMN, and NMN are not band-

limited to within the boundaries of a single critical band. In-

terband masking also occurs, i.e., a masker centered within

one critical band has some predictable effect on detection

thresholds in other critical bands. This effect, also known as

the spread of masking, is often modeled in coding applica-

tions by an approximately triangular spreading function that
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Fig. 9. Schematic representation of simultaneous masking (after
[30]).

has slopes of 25 and 10 dB per Bark. A convenient ana-

lytical expression [44] is given by

dB (7)

where has units of Barks and is expressed in dB.

After critical band analysis is done and the spread of masking

has been accounted for, masking thresholds in perceptual

coders are often established by the [59] decibel relations

(8)

and

(9)

where

and noise and tone masking thresholds, respec-

tively, due to TMN and NMT;

and critical band noise and tone masker energy

levels, respectively;

critical band number.

Depending upon the algorithm, the parameter has typi-

cally been set between 3 and 5 dB. Of course, the thresholds

of (8) and (9) capture only the contributions of individual

tone-like or noise-like maskers. In the actual coding sce-

nario, each frame typically contains a collection of both

masker types. One can see easily that (8) and (9) capture the

masking asymmetry described previously. After they have

been identified, these individual masking thresholds are

combined to form a global masking threshold. The global

masking threshold comprises an estimate of the level at

which quantization noise becomes just noticeable. Conse-

quently, the global masking threshold is sometimes referred

to as the level of “just noticeable distortion,” or “JND.” The

standard practice in perceptual coding involves first classi-

fying masking signals as either noise or tone, next computing

appropriate thresholds, then using this information to shape

the noise spectrum beneath JND. Two illustrated examples

are given in Sections II-E and II-F, which are on perceptual

entropy, and ISO/IEC MPEG Model 1, respectively. Note

that the absolute threshold ( ) of hearing is also considered

when shaping the noise spectra, and that MAX(JND, )

is most often used as the permissible distortion threshold.

Notions of critical bandwidth and simultaneous masking

in the audio coding context give rise to some convenient

terminology illustrated in Fig. 9, where we consider the case

of a single masking tone occurring at the center of a critical

band. All levels in the figure are given in terms of dB SPL.

A hypothetical masking tone occurs at some masking level.

This generates an excitation along the basilar membrane

that is modeled by a spreading function and a corresponding

masking threshold. For the band under consideration, the

minimum masking threshold denotes the spreading function

in-band minimum. Assuming the masker is quantized using

an -bit uniform scalar quantizer, noise might be introduced

at the level m. SMR and noise-to-mask ratio (NMR) denote

the log distances from the minimum masking threshold to

the masker and noise levels, respectively.

D. Nonsimultaneous Masking

As shown in Fig. 10, masking phenomena extend in time

beyond the window of simultaneous stimulus presentation.

In other words, for a masker of finite duration, nonsimulta-

neous (also sometimes denoted “temporal”) masking occurs

both prior to masker onset as well as after masker removal.

The skirts on both regions are schematically represented

in Fig. 10. Essentially, absolute audibility thresholds for

masked sounds are artificially increased prior to, during,

and following the occurrence of a masking signal. Whereas

significant premasking tends to last only about 1–2 ms,

postmasking will extend anywhere from 50 to 300 ms,

depending upon the strength and duration of the masker

[42]. Tutorial treatments of nonsimultaneous masking

have appeared in recent papers on psychoacoustics for

audio coding applications [50], [54]. Here we consider

key nonsimultaneous masking properties that should be

embedded in audio codec perceptual models. Of the two

nonsimultaneous masking modes, forward masking is better

understood. For masker and probe of the same frequency,

experimental studies have shown that the amount of forward

(post) masking depends in a predictable way on stimulus

frequency [60], masker intensity [60], probe delay after

masker cessation [60], and masker duration [50]. Forward

masking also exhibits frequency-dependent behavior similar

to simultaneous masking that can be observed when the

masker and probe frequency relationship is varied [61].

Although backward (pre) masking has also been the subject

of many studies, it is less well understood [50]. As shown

in Fig. 10, backward masking decays much more rapidly

than forward masking. For example, one study at Thomson

Consumer Electronics showed that only 2 ms prior to masker

onset, the masked threshold was already 25 dB below the

threshold of simultaneous masking [62]. We note, however,

that the literature lacks consensus over the maximum time

persistence of significant backward masking. Despite the in-

consistent results across studies, it is nevertheless generally

accepted that the amount of measured backward masking

depends significantly on the training of the experimental

subjects. For the purposes of perceptual coding, abrupt audio

signal transients (e.g., the onset of a percussive musical

instrument) create pre- and postmasking regions in time
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Fig. 10. Nonsimultaneous masking properties of the human ear. Backward (pre) masking occurs prior
to masker onset and lasts only a few milliseconds; forward (post) masking may persist for more than
100 ms after masker removal (after [42]).

during which a listener will not perceive signals beneath

the elevated audibility thresholds produced by a masker.

In fact, temporal masking has been used in several audio

coding algorithms (e.g., [12], [63], [112], [268], and [306]).

Premasking in particular has been exploited in conjunction

with adaptive block size transform coding to compensate for

pre-echo distortions (Sections III-D, IV, and VIII).

E. Perceptual Entropy

Johnston, while at Bell Labs, combined notions of psy-

choacoustic masking with signal quantization principles to

define perceptual entropy, a measure of perceptually relevant

information contained in any audio record. Expressed in bits

per sample, PE represents a theoretical limit on the compress-

ibility of a particular signal. PE measurements reported in

[45] and [6] suggest that a wide variety of CD-quality audio

source material can be transparently compressed at approx-

imately 2.1 bits per sample. The PE estimation process is

accomplished as follows. The signal is first windowed and

transformed to the frequency domain. A masking threshold

is then obtained using perceptual rules. Finally, a determina-

tion is made of the number of bits required to quantize the

spectrum without injecting perceptible noise. The PE mea-

surement is obtained by constructing a PE histogram over

many frames and then choosing a worst case value as the ac-

tual measurement.

The frequency-domain transformation is done with

a Hann window followed by a 2048-point fast Fourier

transform (FFT). Masking thresholds are obtained by

performing critical band analysis (with spreading), making

a determination of the noise-like or tone-like nature of the

signal, applying thresholding rules for the signal quality,

then accounting for the absolute hearing threshold. First,

real and imaginary transform components are converted to

power spectral components

Re Im (10)

then a discrete Bark spectrum is formed by summing the en-

ergy in each critical band (Table 1)

(11)

where the summation limits are the critical band boundaries.

The range of the index is sample-rate dependent, and in

particular for CD-quality signals. A spreading

function (7) is then convolved with the discrete Bark spec-

trum

(12)

to account for the spread of masking. An estimation of the

tone-like or noise-like quality for is then obtained using

the spectral flatness measure (SFM) [64]

SFM (13)

where and , respectively, correspond to the geometric

and arithmetic means of the power spectral density (PSD)

components for each band. The SFM has the property that it

is bounded by zero and one. Values close to one will occur if

the spectrum is flat in a particular band, indicating a decor-

related (noisy) band. Values close to zero will occur if the

spectrum in a particular band is narrowband. A “coefficient

of tonality” is next derived from the SFM on a dB scale

(14)

and this is used to weight the thresholding rules given by (8)

and (9) (with ) as follows for each band to form an

offset

(in dB) (15)

A set of JND estimates in the frequency power domain are

then formed by subtracting the offsets from the Bark spectral

components

(16)

These estimates are scaled by a correction factor to simu-

late deconvolution of the spreading function, and each is

then checked against the absolute threshold of hearing and re-

placed by . In a manner essentially identical

to the SPL calibration procedure that was described in Sec-

tion II-A, the PE estimation is calibrated by equating the min-

imum absolute threshold to the energy in a 4-kHz signal of

1 bit amplitude. In other words, the system assumes that the

playback level (volume control) is configured such that the
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smallest possible signal amplitude will be associated with an

SPL equal to the minimum absolute threshold. By applying

uniform quantization principles to the signal and associated

set of JND estimates, it is possible to estimate a lower bound

on the number of bits required to achieve transparent coding.

In fact, it can be shown that the perceptual entropy in bits per

sample is given by

int
Re

int
Im

(bits/sample)

(17)

where

index of critical band;

and upper and lower bounds of band ;

number of transform components in

band ;

masking threshold in band [(16)];

rounding to the nearest integer.

Note that if zero occurs in the log argument, we assign zero

for the result. The masking thresholds used in the above PE

computation also form the basis for a transform coding al-

gorithm described in Section III. In addition, the ISO/IEC

MPEG-1 psychoacoustic model 2, which is often used in

“.MP3” encoders, is closely related to the PE procedure. We

note, however, that there have been evolutionary improve-

ments since the PE estimation scheme first appeared in 1988.

For example, the PE calculation in many systems nowadays

(e.g., [17]) relies on improved tonality estimates relative to

the SFM-based measure of (14). The SFM-based measure is

both time and frequency constrained. Only one spectral esti-

mate (analysis frame) is examined in time, and in frequency,

the measure by definition lumps together multiple spectral

lines. In contrast, the more recently proposed tonality estima-

tion schemes (e.g., the “chaos measure” [17], [62]) consider

the predictability of individual frequency components across

time, in terms of magnitude and phase tracking properties.

A predicted value for each component is compared against

its actual value, and the Euclidean distance is mapped to a

measure of predictability. Highly predictable spectral com-

ponents are considered to be tonal, while unpredictable com-

ponents are treated as noise-like. A tonality coefficient that

allows weighting toward one extreme or the other is com-

puted from the chaos measure, just as in (14). Improved per-

formance has been demonstrated in several instances (e.g.,

[8], [17], [62]). Nevertheless, the PE measurement as pro-

posed in its original form conveys valuable insight on the ap-

plication of simultaneous masking asymmetry to a perceptual

model in a practical system.

F. Example Codec Perceptual Model: ISO 11172-3

(MPEG-1) Psychoacoustic Model 1

It is useful to consider an example of how the psychoa-

coustic principles described thus far are applied in actual

coding algorithms. The ISO/IEC 11172-3 (MPEG-1, layer

I) psychoacoustic model 1 [17] determines the maximum

allowable quantization noise energy in each critical band

such that quantization noise remains inaudible. In one of its

modes, the model uses a 512-point FFT for high-resolution

spectral analysis (86.13 Hz), then estimates for each input

frame individual simultaneous masking thresholds due to

the presence of tone-like and noise-like maskers in the signal

spectrum. A global masking threshold is then estimated

for a subset of the original 256 frequency bins by (power)

additive combination of the tonal and nontonal individual

masking thresholds. The remainder of this section describes

the step-by-step model operations. Sample results are given

for one frame of CD-quality pop music sampled at 44.1

kHz/16 bits per sample. We note that although this model

is suitable for any of the MPEG-1 coding layers, I-III, the

standard [17] recommends that model 1 be used with layers

I and II, while model 2 is recommended for layer III (MP3).

The five steps leading to computation of global masking

thresholds are as follows.

Step 1—Spectral Analysis and SPL Normaliza-

tion: Spectral analysis and normalization are performed

first. The goal of this step is to obtain a high-resolution

spectral estimate of the input, with spectral components

expressed in terms of sound pressure level. Much like the

PE calculation described previously, this SPL normalization

guarantees that a 4-kHz signal of 1-bit amplitude will

be associated with an SPL near 0 dB (close to an accept-

able value for normal listeners at 4 kHz), whereas a

full-scale sinusoid will be associated with an SPL near 90

dB. The spectral analysis procedure works as follows. First,

incoming audio samples are normalized according to

the FFT length and the number of bits per sample using

the relation

(18)

Normalization references the power spectrum to a 0-dB max-

imum. The normalized input is then segmented into

12-ms frames (512 samples) using a 1/16th-overlapped Hann

window such that each frame contains 10.9 ms of new data. A

PSD estimate is then obtained using a 512-point FFT,

i.e.,

(19)

where the power normalization term is fixed at 90.302

dB and the Hann window is defined as

(20)

Because playback levels are unknown during psychoa-

coustic signal analysis, the normalization procedure [(18)]

and the parameter in (19) are used to estimate SPL con-

servatively from the input signal. For example, a full-scale
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(a)

(b)

Fig. 11. ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music selection,
steps 1–5 as described in the text. (a) Step 1: Obtain PSD, express in dB SPL. Top panel gives linear
frequency scale, bottom panel gives Bark frequency scale. Absolute threshold superimposed. Step 2:
Tonal maskers identified and denoted by “X” symbol; Noise maskers identified and denoted by “O”
symbol. (b) Collection of prototype spreading functions [(31)] shown with level as the parameter.
These illustrate the incorporation of excitation pattern level-dependence into the model. Note that the
prototype functions are defined to be piecewise linear on the Bark scale. These will be associated with
maskers in steps 3 and 4.

sinusoid that is precisely resolved by the 512-point FFT in

bin will yield a spectral line having 84-dB SPL.

With 16-bit sample resolution, SPL estimates for very low

amplitude input signals will be at or below the absolute

threshold. An example PSD estimate obtained in this manner

for a CD-quality pop music selection is given in Fig. 11(a).

The spectrum is shown both on a linear frequency scale

(upper plot) and on the Bark scale (lower plot). The dashed

line in both plots corresponds to the absolute threshold of

hearing approximation used by the model.

Step 2—Identification of Tonal and Noise Maskers: After

PSD estimation and SPL normalization, tonal and nontonal

masking components are identified. Local maxima in the

sample PSD that exceed neighboring components within a
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(c)

(d)

Fig. 11. (Continued.) ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music
selection, steps 1–5 as described in the text. (c) Steps 3 and 4: Spreading functions are associated with
each of the individual tonal maskers satisfying the rules outlined in the text. Note that the SMR at the
peak is close to the widely accepted tonal value of 14.5 dB. (d) Spreading functions are associated with
each of the individual noise maskers that were extracted after the tonal maskers had been eliminated
from consideration, as described in the text. Note that the peak SMR is close to the widely accepted
noise-masker value of 5 dB.

certain Bark distance by at least 7 dB are classified as tonal.

Specifically, the “tonal” set is defined as

dB
(21)

where

– kHz)

– kHz)

– kHz)

(22)
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(e)

Fig. 11. (Continued.) ISO/IEC MPEG-1 psychoacoustic analysis model 1 for an example pop music
selection, steps 1–5 as described in the text. (e) Step 5: A global masking threshold is obtained by
combining the individual thresholds as described in the text. The maximum of the global threshold
and the absolute threshold is taken at each point in frequency to be the final global threshold. The
figure clearly shows that some portions of the input spectrum require SNR’s of better than 20 dB to
prevent audible distortion, while other spectral regions require less than 3-dB SNR. In fact, some
high-frequency portions of the signal spectrum are masked and therefore perceptually irrelevant,
ultimately requiring no bits for quantization without the introduction of artifacts.

Tonal maskers are computed from the spectral peaks

listed in as follows:

(dB) (23)

In other words, for each neighborhood maximum, energy

from three adjacent spectral components centered at the peak

are combined to form a single tonal masker. Tonal maskers

extracted from the example pop music selection are identi-

fied using “x” symbols in Fig. 11(a). A single noise masker

for each critical band, , is then computed from (re-

maining) spectral lines not within the neighborhood of

a tonal masker using the sum

(dB)

(24)

where is defined to be the geometric mean spectral line of

the critical band, i.e.,

(25)

where and are the lower and upper spectral line bound-

aries of the critical band, respectively. The idea behind (24)

is that residual spectral energy within a critical bandwidth

not associated with a tonal masker must, by default, be asso-

ciated with a noise masker. Therefore, in each critical band,

(24) combines into a single noise masker all of the energy

from spectral components that have not contributed to a tonal

masker within the same band. Noise maskers are denoted in

Fig. 11 by “o” symbols. Dashed vertical lines are included in

the Bark scale plot to show the associated critical band for

each masker.

Step 3—Decimation and Reorganization of Maskers: In

this step, the number of maskers is reduced using two criteria.

First, any tonal or noise maskers below the absolute threshold

are discarded, i.e., only maskers that satisfy

(26)

are retained, where is the SPL of the threshold in quiet

at spectral line . In the pop music example, two high-fre-

quency noise maskers identified during step 2 [Fig. 11(a)]

are dropped after application of (26) [Fig. 11(c)–(e)]. Next,

a sliding 0.5-Bark-wide window is used to replace any pair

of maskers occurring within a distance of 0.5 Bark by the

stronger of the two. In the pop music example, two tonal

maskers appear between 19.5–20.5 Barks [Fig. 11(a)]. It

can be seen that the pair is replaced by the stronger of the

two during threshold calculations [Fig. 11(c)–(e)]. After

the sliding window procedure, masker frequency bins are

reorganized according to the subsampling scheme

(27)
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(28)

where

mod

mod .
(29)

The net effect of (29) is 2 : 1 decimation of masker bins in

critical bands 18–22 and 4 : 1 decimation of masker bins in

critical bands 22–25, with no loss of masking components.

This procedure reduces the total number of tone and noise

masker frequency bins under consideration from 256 to 106.

Tonal and noise maskers shown in Fig. 11(c)–(e) have been

relocated according to this decimation scheme.

Step 4—Calculation of Individual Masking Thresh-

olds: Using the decimated set of tonal and noise maskers,

individual tone and noise masking thresholds are computed

next. Each individual threshold represents a masking con-

tribution at frequency bin due to the tone or noise masker

located at bin (reorganized during step 3). Tonal masker

thresholds are given by

(dB SPL) (30)

where denotes the SPL of the tonal masker in fre-

quency bin , denotes the Bark frequency of bin [(3)],

and the spread of masking from masker bin to maskee bin

, , is modeled by the expression

(dB SPL) (31)

i.e., as a piecewise linear function of masker level and

Bark maskee-masker separation .

approximates the basilar spreading (excitation pattern) de-

scribed in Section II-C. Prototype individual masking thresh-

olds are shown as a function of masker level in

Fig. 11(b) for an example tonal masker occurring at

Barks. As shown in Fig. 11, the slope of decreases

with increasing masker level. This is a reflection of psy-

chophysical test results, which have demonstrated [42] that

the ear’s frequency selectivity decreases as stimulus levels

increase. It is also noted here that the spread of masking

in this particular model is constrained to a 10-Bark neigh-

borhood for computational efficiency. This simplifying as-

sumption is reasonable given the very low masking levels

that occur in the tails of the excitation patterns modeled by

. Fig. 11(c) shows the individual masking thresh-

olds [(30)] associated with the tonal maskers in Fig. 11(a)

(“x”). It can be seen here that the pair of maskers identi-

fied near 19 Barks has been replaced by the stronger of the

two during the decimation phase. The plot includes the abso-

lute hearing threshold for reference. Individual noise masker

thresholds are given by

(dB SPL) (32)

where denotes the SPL of the noise masker in fre-

quency bin , denotes the Bark frequency of bin [(3)],

and is obtained by replacing with

everywhere in (31). Fig. 11(d) shows the individual masking

thresholds associated with the noise maskers identified in

step 2 [Fig. 11(a) “o”]. It can be seen in Fig. 11(d) that the two

high-frequency noise maskers that occur below the absolute

threshold have been eliminated. Before we proceed to step 5

and compute a global masking threshold, it is worthwhile to

consider the relationship between (8) and (30), as well as the

connection between (9) and (32). Equations (8) and (30) are

related in that both model the TMN masking paradigm (Sec-

tion II-C) in order to generate a masking threshold for quanti-

zation noise masked by a tonal signal component. In the case

of (8), a Bark-dependent offset that is consistent with exper-

imental TMN data for the threshold minimum SMR is sub-

tracted from the masker intensity, namely, the quantity 14.5

. In a similar manner, (30) estimates for a quantization

noise maskee located in bin the intensity of the masking

contribution due the tonal masker located in bin . Like (8),

the psychophysical motivation for (30) is the desire to model

the relatively weak masking contributions of a TMN. Unlike

(8), however, (30) uses an offset of only , i.e.,

(30) assumes a smaller minimum SMR at threshold than does

(8). The connection between (9) and (32) is analogous. In the

case of this equation pair, however, the psychophysical moti-

vation is to model the masking contributions of NMT. Equa-

tion (9) assumes a Bark-independent minimum SMR of 3–5

dB, depending on the value of the parameter . Equation

(32), on the other hand, assumes a Bark-dependent threshold

minimum SMR of dB. Also, whereas the

spreading function (SF) terms embedded in (30) and (32) ex-

plicitly account for the spread of masking, (8) and (9) assume

that the spread of masking was captured during the compu-

tation of the terms and , respectively.

Step 5—Calculation of Global Masking Thresholds: In

this step, individual masking thresholds are combined to es-

timate a global masking threshold for each frequency bin in

the subset given by (29). The model assumes that masking

effects are additive. The global masking threshold is

therefore obtained by computing the sum

(dB SPL) (33)

where

absolute hearing threshold for frequency

bin ;

and individual masking thresholds from step

4;
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Fig. 12. Magnitude response, oddly stacked uniformM -band filter bank.

and numbers of tonal and noise maskers, re-

spectively, identified during step 3.

In other words, the global threshold for each frequency bin

represents a signal-dependent, power-additive modification

of the absolute threshold due to the basilar spread of all tonal

and noise maskers in the signal power spectrum. Fig. 11(e)

shows the global masking threshold obtained by adding

the power of the individual tonal [Fig. 11(c)] and noise

[Fig. 11(d)] maskers to the absolute threshold in quiet.

III. TIME-FREQUENCY ANALYSIS: FILTER BANKS AND

TRANSFORMS

All audio codecs (Fig. 1) rely upon some type of time-fre-

quency analysis block to extract from the time-domain input

a set of parameters that is amenable to quantization and en-

coding in accordance with a perceptual distortion metric. The

tool most commonly employed for this mapping is the filter

bank, which is a parallel bank of bandpass filters covering the

entire spectrum. The filter bank divides the signal spectrum

into frequency subbands and generates a time-indexed series

of coefficients representing the frequency-localized signal

power within each band. By providing explicit information

about the distribution of signal and hence masking power

over the time-frequency plane, the filter bank plays an es-

sential role in the identification of perceptual irrelevancies

when used in conjunction with a perceptual model. At the

same time, the time-frequency parameters generated by the

filter bank provide a signal mapping that is conveniently ma-

nipulated to shape the coding distortion in order to match the

observed time-frequency distribution of masking power. In

other words, the filter bank facilitates psychoacoustic anal-

ysis as well as perceptual noise shaping. Additionally, by

decomposing the signal into its constituent frequency com-

ponents, the filter bank also assists in the reduction of sta-

tistical redundancies. An example magnitude response asso-

ciated with a uniform bandwidth -channel filter bank is

shown in Fig. 12. The analysis filters have normalized

center frequencies , and are characterized by

individual impulse responses , as well as frequency re-

sponses , for .

Filter banks for audio coding such as the one characterized

by the magnitude response of Fig. 12 are perhaps most con-

veniently described in terms of an analysis–synthesis frame-

work (Fig. 13), in which the input signal is processed at

the encoder by a parallel bank of th order finite im-

pulse response (FIR) bandpass filters . The bandpass

analysis outputs

(34)

are decimated by a factor of , yielding the subband se-

quences

(35)

which comprise a critically sampled or maximally decimated

signal representation, i.e., the number of subband samples

is equal to the number of input samples. Because it is im-

possible to achieve perfect “brickwall” magnitude responses

with finite order bandpass filters, there is unavoidable

aliasing between the decimated subband sequences. Quanti-

zation and coding are performed on the subband sequences,

. In the perceptual audio codec, the quantization noise

is usually shaped according to a perceptual model. The

quantized subband samples are eventually received

by the decoder, where they are upsampled by to form the

intermediate sequences

otherwise.
(36)

In order to eliminate the imaging distortions introduced by

the upsampling operations, the sequences are pro-

cessed by a parallel bank of synthesis filters, , and then

the filter outputs are combined to form the overall output

. The analysis and synthesis filters are carefully designed

to cancel aliasing and imaging distortions. It can be shown

[69] that the overall transfer function of the filter bank is

given by

(37)

For perfect reconstruction filter banks, the output will

be identical to the input within a delay, i.e.,

PAINTER AND SPANIAS: PERCEPTUAL CODING OF DIGITAL AUDIO 467

Authorized licensed use limited to: New York University. Downloaded on November 2, 2009 at 11:25 from IEEE Xplore.  Restrictions apply. 



Fig. 13. UniformM -band maximally decimated analysis–synthesis filter bank.

, as long as there is no quantization noise intro-

duced, that is, as long as . This is naturally not

the case for a codec, and therefore quantization sensitivity is

an important filter bank property, since PR guarantees are

lost in the presence of quantization.

This section provides a perspective on filter bank design

considerations, architectures, and special techniques of

particular importance in audio coding. This section is

organized as follows. First, filter bank design issues for

audio coding are addressed. Next, important details on the

-band pseudo-QMF and MDCT filter banks are given.

The MDCT is a PR cosine modulated filter bank that has

become of central importance in modern audio compression

algorithms. Finally, the time-domain “pre-echo” artifact is

examined in conjunction with pre-echo control techniques.

Beyond the references cited below, the reader in need of

greater detail or further analytical development is referred

to in-depth tutorials on filter banks that have appeared in the

literature [65], [66], as well as in classical [67] and recent

texts [68]–[70]. The reader may also wish to explore the

connection between filter banks and wavelets that has been

well documented in the literature [71], [72] and in several

texts [69], [73], [74], [152]. These notions are of particular

relevance in the case of audio codecs that make use of

discrete wavelet and wavelet packet analysis.

A. Filter Banks for Audio Coding: Design Considerations

The choice of an appropriate filter bank is critical to

the success of a perceptual audio coder. Efficient coding

performance depends heavily on adequately matching the

properties of the analysis filter bank to the characteristics of

the input signal [75]. Algorithm designers face an important

and difficult tradeoff between time and frequency resolution

when selecting a filter bank structure [76]. Failure to choose

a suitable filter bank can result in perceptible artifacts in the

output (e.g., pre-echoes) or impractically low coding gain

and attendant high bit rates. No single resolution tradeoff is

optimal for all signals. This dilemma is illustrated in Fig. 14

utilizing schematic representations of masking thresholds

with respect to time and frequency for (a) a castanets and (b)

(a)

(b)

Fig. 14. Masking thresholds in the time-frequency plane: (a)
castanets and (b) piccolo (after [201]).

a piccolo. In the figures, darker regions correspond to higher

masking thresholds. To realize maximum coding gain,

the strongly harmonic piccolo signal clearly calls for fine

frequency resolution and coarse time resolution, because the

masking thresholds are quite localized in frequency, but are
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also essentially time-invariant. Quite the opposite is true of

the castanets. The fast attacks associated with this percussive

sound create highly time-localized masking thresholds that

are also widely disbursed in frequency. Therefore, adequate

time resolution is essential for accurate estimation of the

highly time-varying masked threshold.

Unfortunately, most audio source material is highly non-

stationary and contains significant tonal and atonal energy,

as well as both steady-state and transient intervals. As a rule,

signal models [33] tend to remain constant for long periods

and then change suddenly. Therefore, the ideal coder should

make adaptive decisions regarding optimal time-frequency

signal decomposition, and the ideal analysis filter bank

would have time-varying resolutions in both the time and

frequency domains. This fact has motivated many algorithm

designers to experiment with switched and hybrid filter bank

structures, with switching decisions occurring on the basis

of the changing signal properties. Filter banks emulating the

analysis properties of the human auditory system, i.e., those

containing nonuniform “critical bandwidth” subbands, have

proven highly effective in the coding of highly transient

signals such as the castanets or glockenspiel. For dense

harmonically structured signals such as the harpsichord

or pitch pipe, on the other hand, the “critical band” filter

banks have been less successful because of their reduced

coding gain relative to filter banks with a large number of

subbands. In short, a number of bank characteristics are

highly desirable for audio coding

• signal adaptive time-frequency tiling;

• low-resolution “critical-band” mode, e.g., 32 subbands;

• high-resolution mode, up to 4096 subbands;

• efficient resolution switching;

• minimum blocking artifacts;

• good channel separation;

• strong stopband attenuation;

• perfect reconstruction;

• critical sampling;

• availability of fast algorithms.

Good channel separation and stopband attenuation are partic-

ularly desirable for signals containing very little irrelevancy

such as the harpsichord. Maximum redundancy removal is

essential for maintaining high quality at low bit rates for

these signals. Blocking artifacts in time-varying filter banks

can lead to audible distortion in the reconstruction. The next

two sections, respectively, give some important results on the

nearly PR and PR cosine-modulated filter bank architectures

that have become of central importance in modern audio

coding standards, with particular emphasis on the MDCT. In

light of the foregoing discussion on time-frequency resolu-

tion, methods for constructing time-varying, signal-adaptive

tilings of the time-frequency plane using the MDCT are ad-

dressed.

B. Cosine Modulated “Pseudo —QMF” M-Band Banks

Cosine modulation of a lowpass prototype filter has been

used since the early 1980’s [77]–[81] to realize parallel

M-channel filter banks with nearly perfect reconstruction.

Because they do not achieve perfect reconstruction, these

filter banks are known collectively as “pseudo-QMF,”

(PQMF) and they are characterized by the following attrac-

tive properties:

• constrained design; single FIR prototype filter;

• overall linear phase, and hence constant group delay;

• amenable to fast, block algorithms;

• uniform, linear phase channel responses;

• low complexity = one filter plus modulation;

• critical sampling.

In the PQMF bank derivation [68, ch. 8], phase distortion

is completely eliminated from the overall transfer function,

(37), because the analysis and synthesis filters are forced to

satisfy the mirror image condition

(38)

Moreover, adjacent channel aliasing is cancelled by estab-

lishing precise relationships between the analysis and syn-

thesis filters and , respectively. In the critically

sampled analysis–synthesis notation of Fig. 13, these condi-

tions ultimately yield analysis filters given by

(39)

and synthesis filters given by

(40)

where

(41)

and the sequence corresponds to the -sample

“window,” a real-coefficient, linear phase FIR prototype

low-pass filter, with normalized cutoff frequency 2 .

Given that aliasing and phase distortions have been elimi-

nated in this formulation, the filter bank design procedure is

reduced to the design of the window, , such that overall

amplitude distortion is minimized. Examples can be found

in [68].

The PQMF bank has played a significant role in the

evolution of modern audio codecs. The ISO IS11172-3

and IS13818-3 algorithms (“MPEG-1” [17] and “MPEG-2

BC/LSF” [18]) employ a 32-channel PQMF bank for spec-

tral decomposition in layers I–II. The prototype filter

contains 512 samples, yielding better than 96-dB sidelobe

suppression in the stopband of each analysis channel. Output

ripple (non-PR) is less than 0.07 dB. In addition, the same

PQMF bank is used in conjunction with a PR cosine mod-

ulated filter bank in layer III (see Section VI-A) to form a

hybrid filter bank architecture with time-varying properties.

The MPEG-1 algorithm has reached a position of promi-

nence with the widespread use of “.MP3” files (MPEG-1,

layer 3) on the Web for the exchange of audio recordings, as

well as with the deployment of MPEG-1, layer II in direct

broadcast satellite (DBS/DSS) and European digital audio

broadcast (DBA) initiatives. Because of the availability of
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common algorithms for PQMF and PR QMF banks, we

defer the discussion on generic complexity and efficient

implementation strategies until later. In the particular case

of MPEG-1, however, note that the 32-band PQMF analysis

bank as defined in the standard requires approximately 80

real multiplies and 80 real additions per output sample [17],

although a more efficient implementation based on a fast

algorithm for the DCT was also proposed [82], [398].

C. Cosine Modulated PR M-Band Banks and the MDCT

Although PQMF banks have been used quite successfully

in perceptual audio coders, the overall system design still

must compensate for the inherent distortion induced by the

lack of perfect reconstruction to avoid audible artifacts in the

codec output. The compensation strategy may be a simple

one (e.g., increased prototype filter length), but perfect re-

construction is actually preferable because it constrains the

sources of output distortion to the quantization stage. Begin-

ning in the early 1990’s, independent work by Malvar [83],

Ramstad [84], and Koilpillai and Vaidyanathan [85], [86],

showed that, in fact, generalized PR cosine modulated filter

banks are possible when the prototype low-pass filter

and synthesis filters , for , are ap-

propriately constrained. These researchers formulated gen-

eralized PR cosine modulated filter banks that are of con-

siderable interest in many applications. This section of the

paper, however, concentrates on the special case that has be-

come of central importance in the advancement of modern

perceptual audio coding algorithms, namely, the filter bank

for which . The PR properties of this special case

were first demonstrated by Princen and Bradley [87] using

time-domain arguments for the development of the time-do-

main aliasing cancellation (TDAC) filter bank. Later, Malvar

[88] developed the modulated lapped transform (MLT) by re-

stricting attention to a particular prototype filter and formu-

lating the filter bank as a lapped orthogonal block transform.

More recently, the consensus name in the audio coding lit-

erature for the lapped block transform interpretation of this

special-case filter bank has evolved into the modified dis-

crete cosine transform. To avoid confusion, we will denote

throughout the remainder of this document by “MDCT” the

PR cosine modulated filter bank with , and we will

place some restrictions on the window . In short, the

reader should be aware that the different acronyms TDAC,

MLT, and MDCT all refer essentially to the same PR co-

sine modulated filter bank. Only Malvar’s MLT label implies

a particular choice for , as described below. From the

perspective of an analysis–synthesis filter bank (Fig. 13), the

MDCT analysis filter impulse responses are given by

(42)

and the synthesis filters, to satisfy the overall linear phase

constraint, are obtained by a time reversal, i.e.,

(43)

This perspective is useful for visualizing individual channel

characteristics in terms of their impulse and frequency re-

sponses. In practice, however, the filter bank is realized as a

block transform.

1) Forward and Inverse MDCT: The analysis filter bank

is realized using a block transform of length 2 samples and

a block advance of only samples, i.e., with 50% overlap

between blocks. Thus, the MDCT basis functions extend

across two blocks in time, leading to virtual elimination

of the blocking artifacts that plague the reconstruction of

nonoverlapped transform coders. Despite the 50% overlap,

however, the MDCT is still critically sampled, and only

coefficients are generated by the forward transform for

each 2 -sample input block. Given an input block ,

the transform coefficients for are

obtained by means of the forward MDCT, defined as

(44)

Clearly, the forward MDCT performs a series of inner prod-

ucts between the analysis filter impulse responses

and the input . On the other hand, the inverse MDCT ob-

tains a reconstruction by computing a sum of the basis vec-

tors weighted by the transform coefficients from two blocks.

The first -samples of the th basis vector, for

, are weighted by the th coefficient of the current

block, . Simultaneously, the second -samples of the

th basis vector, for , are weighted

by the th coefficient of the previous block . Then, the

weighted basis vectors are overlapped and added at each time

index . Note that the extended basis functions require the in-

verse transform to maintain an -sample memory to retain

the previous set of coefficients. Thus, the reconstructed sam-

ples for , are obtained via the inverse

MDCT, defined as

(45)

where denotes the previous block of transform coef-

ficients. The overlapped analysis and overlap-add synthesis

processes are illustrated in Fig. 15.

Given the forward [(44)] and inverse [(45)] transform def-

initions, one still must design a suitable FIR prototype filter

. For the MDCT, the generalized PR conditions [68]

can be reduced to linear phase and Nyquist constraints on

the window, namely

(46a)

and

(46b)

for the sample indexes Note that it is pos-

sible to modify these constraints and reformulate the MDCT

with unique analysis and synthesis windows [89] using a

biorthogonal construction. Several general purpose orthog-

onal [87], [88], [90] and biorthogonal [91]–[93] windows
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(a)

(b)

Fig. 15. MDCT: (a) lapped forward transform (analysis)—2M
samples are mapped to M spectral components [(44)]. Analysis
block length is 2M samples, but analysis stride (hop size) and time
resolution are M -samples. (b) Inverse transform (synthesis)—M
spectral components are mapped to a vector of 2M samples [(45)]
that is overlapped by M samples and added to the vector of 2M
samples associated with the previous frame.

have been proposed, while still other orthogonal [94], [112],

[268], [362] and biorthogonal [89], [95] windows are opti-

mized explicitly for audio coding.

2) Example Windows: It is instructive to consider some

example MDCT windows. Malvar [88] denotes by “MLT”

the MDCT filter bank that makes use of the “sine” window,

defined as

(47)

for This particular window is perhaps

the most popular in audio coding. It appears, for example,

in the MPEG-1, Layer 3 (MP3) hybrid filter bank [17],

the MPEG-2 AAC/MPEG-4 T-F filter bank [112], and

numerous experimental coders proposed elsewhere. The

sine window has several unique properties that make it

advantageous. In particular, dc energy is concentrated in

a single coefficient, the filter bank channels have 24-dB

sidelobe attenuation, and it can be shown [88] that the MLT

is asymptotically optimal in terms of coding gain [64].

Optimization criteria other than coding gain or dc localiza-

tion have also been investigated. Ferreira [94] proposed a

parametric window that offers a controlled tradeoff between

reduction of the time-domain ringing artifacts produced

by coarse quantization and reduction of stopband leakage

relative to the sine window. The Ferreira window has a

broader range of better than 110 dB attenuation than does

the sine window. Improved ultimate stopband rejection can

be beneficial for perceptual gain, particularly for strongly

harmonic signals. This realization motivated the designers

of the Dolby AC-2/AC-3 [362] and MPEG-2 AAC/MPEG-4

T-F [112] algorithms to use a customized window rather

than the standard sine window. The so-called Kaiser–Bessel

derived (KBD) window was obtained in a procedure devised

at Dolby Laboratories. During the development of the AC-2

and AC-3 algorithms, novel prototype filters were optimized

to satisfy a minimum masking template [e.g., Fig. 16(b)

for AC-3]. At the expense of some passband selectivity,

the KBD windows achieve considerably better stopband

attenuation than the sine window [Fig. 16(b)]. Thus, for

a pure tone occurring at the center of a particular MDCT

channel, the KBD filter bank concentrates more energy

into a single transform coefficient. The remaining dispersed

energy tends to lie below a worst-case pure tone excitation

pattern [“masking template”—Fig. 16(b)]. For signals with

adequately spaced tonal components, the presence of fewer

suprathreshold MDCT components reduces the perceptual

bit allocation.

3) Time-Varying Windows: One final point regarding

MDCT window design is of particular importance for

perceptual audio coders. As the introduction (Section III-A)

illustrated through the pathological cases of tonal and noisy

signals, the characteristics of the “best” filter bank for

audio are signal specific and therefore time varying. In

practice, it is very common for codecs using the MDCT

(e.g., MPEG-1 [17], MPEG-2 AAC [112], etc.) to change

the window length to match the signal properties of the

input. A long window is used to maximize coding gain and

achieve good channel separation during segments identi-

fied as stationary, and a short window is used to localize

time-domain artifacts when pre-echoes are likely. Because

of the time overlap between basis vectors, either boundary

filters [96] or special transitional windows [97] are required

to preserve perfect reconstruction when window switching

occurs. Other schemes are also available [98], [99], but

for practical reasons these are not typically used. Both the

MPEG MDCT-based coders and the Dolby AC-3 algorithm

employ MDCT mode switching. Unlike MPEG, however,

AC-3 maintains perfect reconstruction without resorting to

transitional windows. The spectral and temporal analysis

tradeoffs involved in transitional window designs are well

illustrated in [106] for both the MPEG-1, layer 3 (MP3) [17]

and the Dolby AC-3 [362] filter banks.

4) Fast Algorithms, Complexity, and Implementation Is-

sues: One of the attractive properties that has contributed to

the widespread use of the MDCT, particularly in the stan-

dards, is the availability of FFT-based fast algorithms [100],

[101] that make the filter bank viable for real-time applica-

tions. For example, a unified fast algorithm [102] is avail-

able for the MPEG-1, -2, -4, and AC-3 long block MDCT,

the AC-3 short block MDCT, and the MPEG-1 PQMF bank.

A regressive structure suitable for parallel VLSI implemen-

tation of the (44) MDCT was also proposed [103]. As far as

quantization sensitivity is concerned, there are available ex-

pressions [104] for the reconstruction error of the quantized

system in terms of signal-correlated and uncorrelated com-

ponents that can be used to identify perceptually disturbing

reconstruction artifacts. Quantization issues for PR cosine

modulated filter banks in general are also addressed in [73].

D. Pre-Echo Distortion

An artifact known as pre-echo distortion can arise in trans-

form coders using perceptual coding rules. Pre-echoes occur

when a signal with a sharp attack begins near the end of a
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(a)

(b)

Fig. 16. Dolby AC-3 (solid) versus sine (dashed) MDCT windows:
(a) time-domain and (b) magnitude responses in relation to worst
case masking template.

transform block immediately following a region of low en-

ergy. This situation can arise when coding recordings of per-

cussive instruments such as the triangle, the glockenspiel, or

the castanets, for example [Fig. 17(a)]. For a block-based al-

gorithm, when quantization and encoding are performed in

order to satisfy the masking thresholds associated with the

block average spectral estimate, time-frequency uncertainty

dictates that the inverse transform will spread quantization

distortion evenly in time throughout the reconstructed block

[Fig. 17(b)]. This results in unmasked distortion throughout

the low-energy region preceding in time the signal attack at

the decoder. Although it has the potential to compensate for

pre-echo, temporal premasking of the distortion is possible

only if the transform block size is sufficiently small (minimal

coder delay, e.g., 2–5 ms). Percussive sounds are not the only

signals likely to produce pre-echoes. Such artifacts also often

plague coders when processing “pitched” signals containing

nearly impulsive bursts at the beginning of each pitch period,

e.g., the “German Male Speech” recording [110]. For a male

speaker with a fundamental frequency of 125 Hz, the interval

(a)

(b)

Fig. 17. Pre-echo example: (a) uncoded castanets and (b)
transform coded castanets, 2048-point block size.

between impulsive events is only 8 ms, which is much less

than the typical analysis block length. Several methods pro-

posed to eliminate pre-echoes are reviewed next.

E. Pre-Echo Control Strategies

Several methodologies have been proposed and suc-

cessfully applied in the effort to mitigate the pre-echoes

that tend to plague block-based coding schemes. This

section describes several of the most widespread techniques,

including the bit reservoir, window switching, gain modifi-

cation, switched filter banks, and temporal noise shaping.

Advantages and drawbacks associated with each method are

also discussed.

1) Bit Reservoir: Some coders [17], [307] utilize this

technique to satisfy the greater bit demand associated with

transients. Although most algorithms are fixed rate, the

instantaneous bit rates required to satisfy masked thresholds

on each frame are in fact time varying. Thus, the idea behind

a bit reservoir is to store surplus bits during periods of
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low demand, and then to allocate bits from the reservoir

during localized periods of peak demand, resulting in a

time-varying instantaneous bit rate but a fixed average bit

rate. One problem, however, is that very large reservoirs are

needed to deal satisfactorily with certain transient signals,

e.g., “pitched signals.” Particular bit reservoir implementa-

tions are addressed later in conjunction with the MPEG [17]

and PAC [307] standards.

2) Window Switching: First introduced by Edler [105],

this is also a popular method for pre-echo suppression, par-

ticularly in the case of MDCT-based algorithms. Window

switching works by changing the analysis block length from

“long” duration (e.g., 25 ms) during stationary segments to

“short” duration (e.g., 4 ms) when transients are detected. At

least two considerations motivate this method. First, a short

window applied to the frame containing the transient will

tend to minimize the temporal spread of quantization noise

such that temporal premasking effects might preclude audi-

bility. Second, it is desirable to constrain the high bit rates

associated with transients to the shortest possible temporal

regions. Although window switching has been successful

[17], [302], [307], it also has significant drawbacks. For one,

the perceptual model and lossless coding portions of the

coder must support multiple time resolutions. Furthermore,

most modern coders use the lapped MDCT. To satisfy PR

constraints, window switching typically requires transition

windows between the long and short blocks. Even when suit-

able transition windows (Fig. 18) satisfy the PR constraints,

they do so at the expense of poor time and frequency local-

ization properties [106], resulting in reduced coding gain.

Other difficulties inherent to window switching schemes

are increased coder delay, undesirable latency for closely

spaced transients (e.g., long-start–short-stop–start-short),

and impractical overuse of short windows for “pitched”

signals.

3) Hybrid, Switched Filter Banks: These have also been

used to counteract pre-echo distortion. In contrast to window

switching schemes, the hybrid and switched filter bank ar-

chitectures rely upon distinct filter bank modes. In hybrid

schemes (e.g., [201]), compatible filter bank elements are

cascaded in order to achieve the time-frequency tiling best

suited to the current input signal. Switched filter banks (e.g.,

[308]), on the other hand, make hard switching decisions on

each analysis interval in order to select a single monolithic

filter bank tailored to the current input. Examples of these

methods are given later in this document, along with some

discussion of their associated tradeoffs.

4) Gain Modification: This is yet another approach

[Fig. 19(a)] that has shown promise in the task of pre-echo

control [107], [108]. The gain modification procedure

smoothes transient peaks in the time-domain prior to

spectral analysis. Then, perceptual coding may proceed

as it does for normal, stationary blocks. Quantization

noise is shaped to satisfy masking thresholds computed

for the equalized long block without compensating for

an undesirable temporal spread of quantization noise. A

time-varying gain and the modification time interval are

transmitted as side information. Inverse operations are

Fig. 18. Example window switching scheme (MPEG-1, Layer III,
or “MP3”).

(a)

(b)

Fig. 19. (a) Gain modification and (b) TNS scheme.

performed at the decoder to recover the original signal. Like

the other techniques, caveats also apply to this method. For

example, gain modification effectively distorts the spectral

analysis time window. Depending upon the chosen filter

bank, this distortion could have the unintended consequence

of broadening the filter bank responses at low frequencies

beyond critical bandwidth. One solution for this problem is

to apply independent gain modifications selectively within

only frequency bands affected by the transient event. This

selective approach, however, requires embedding of the gain

blocks within a hybrid filter bank structure, which increases

coder complexity [109].

5) Temporal Noise Shaping: The final pre-echo control

technique considered in this section is temporal noise

shaping (TNS). As shown in Fig. 19(b), TNS [110] is a

frequency-domain technique that operates on the spectral co-

efficients generated by the analysis filter bank. TNS is
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applied only during input attacks susceptible to pre-echoes.

The idea is to apply linear prediction (LP) across frequency

(rather than time), since for an impulsive time signal, fre-

quency-domain coding gain is maximized using prediction

techniques. The method works as follows. Parameters of

a spectral LP “synthesis” filter are estimated via

application of standard minimum MSE estimation methods

(e.g., Levinson–Durbin [64]) to the spectral coefficients

. The resulting prediction residual is quantized

and encoded using standard perceptual coding according

to the original masking threshold. Prediction coefficients

are transmitted to the receiver as side information to allow

recovery of the original signal. The convolution operation

associated with spectral domain prediction is associated

with multiplication in time. In a manner analogous to the

source-system separation realized by LP analysis in the

time-domain for traditional speech codecs, therefore, TNS

effectively separates the time-domain waveform into an

envelope and temporally flat “excitation.” Then, because

quantization noise is added to the flattened residual, the

time-domain multiplicative envelope corresponding to

shapes the quantization noise such that it follows the original

signal envelope.

Quantization noise for the castanets applied to a

DCT-based coder is shown in Fig. 20(a) and (b) both

without and with TNS active, respectively. TNS clearly

shapes the quantization noise to follow the input signal’s

energy envelope. TNS mitigates pre-echoes since the error

energy is now concentrated in the time interval associated

with the largest masking threshold. Although they are related

as time-frequency dual operations, TNS is advantageous rel-

ative to gain shaping because it is easily applied selectively

in specific frequency subbands. Moreover, TNS has the

advantages of compatibility with most filter bank structures

and manageable complexity. Unlike window switching

schemes, for example, TNS does not require modification

of the perceptual model or lossless coding stages to a new

time-frequency mapping. TNS was reported in [110] to

dramatically improve performance on a five-point mean

opinion score (MOS) test from 2.64 to 3.54 for a particularly

troublesome pitched signal “German Male Speech” for

the MPEG-2 nonbackward compatible (NBC) coder [110].

A MOS improvement of 0.3 was also realized for the

well-known “Glockenspiel” test signal. This ultimately led

to the adoption of TNS in the MPEG NBC scheme [111],

[112].

IV. TRANSFORM CODERS

Transform coding algorithms for high-fidelity audio

make use of unitary transforms for the time/frequency

analysis section in Fig. 1. These algorithms typically

achieve high-resolution spectral estimates at the expense

of adequate temporal resolution. Many transform coding

schemes for wide-band and high-fidelity audio have been

proposed, starting with some of the earliest perceptual audio

codecs. In the mid-1980’s, Krahe applied psychoacoustic bit

allocation principles to a transform coding scheme [113],

(a)

(b)

Fig. 20. Temporal noise shaping example showing quantization
noise and the input signal energy envelope for castanets: (a) without
TNS and (b) with TNS.

[114]. Schroeder [3] later extended these ideas into multiple

adaptive spectral audio coding (MSC). The MSC utilizes a

1024-point DFT, then groups coefficients into 26 subbands,

inspired by the critical bands of the ear. DFT magnitude and

phase components are quantized and encoded in a two-step

successive refinement procedure that relies upon a percep-

tual bit allocation. Schroeder reported nearly transparent

coding of CD-quality audio at 132 kb/s [3]. Work along

these lines has continued, ultimately becoming integral to

the current state-of-the-art audio coding standards, although

as noted in Section I-B, modern coders making use of the

MDCT and other modulated filter banks for high-resolution

spectral analysis are in fact subband rather than transform

coders. Strictly speaking, the algorithms described in this

section that make use of modulated filter banks (e.g.,

ASPEC, DPAC, TwinVQ) should be called “high-resolution

subband coders” rather than transform coders. Also as noted

in Section I-B, the source of this confusion has in some
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Fig. 21. OCF encoder (after [116]).

cases been the block transform realizations typically used

for cosine modulated filter banks. This section describes

the individual contributions of Schroeder (MSC) [3], Bran-

denburg (OCF) [5], [115], [116], Johnston (PXFM/hybrid

coder) [6], [8], and Mahieux [118], [119]. Much of this

work became connected with MPEG standardization, and

ISO/IEC eventually clustered these schemes into a single

candidate algorithm, “Adaptive Spectral Entropy Coding of

High Quality Music Signals” (ASPEC) [9], which is part of

the ISO/IEC MPEG-1 [17] and the MPEG-2/BC-LSF [18]

audio coding standards. In fact, most of MPEG-1 Layer

III (MP3) and MPEG-2/BC-LSF Layer III is derived from

ASPEC. The remainder of this section addresses other

novel transform coding schemes that have appeared, not

necessarily associated with ASPEC.

A. Optimum Coding in the Frequency Domain (OCF-1,

OCF-2, OCF-3)

Brandenburg in 1987 proposed a 132-kb/s algorithm

known as “Optimum Coding in the Frequency Domain”

(OCF) [5] which is in some respects similar to the well

known “Adaptive Transform Coder” (ATC) for speech. OCF

(Fig. 21) works as follows. The input signal is first buffered

into 512 sample blocks and transformed to the frequency

domain using the DCT. Next, transform components are

quantized and entropy coded. A single quantizer is used

for all transform components. Adaptive quantization and

entropy coding work together in an iterative procedure

to achieve a fixed bit rate. In the inner loop of Fig. 21,

the quantizer step size is iteratively increased and a new

entropy-coded bit stream is formed at each update until the

desired bit rate is achieved. Increasing the step size at each

update produces fewer levels, which in turn reduces the bit

rate.

Using a second iterative procedure, a perceptual analysis

is introduced after the inner loop is done. First, critical band

analysis is applied. Then, a masking function is applied that

combines a flat 6-dB masking threshold with an interband

masking threshold, leading to an estimate of JND for each

critical band. If after inner loop quantization and entropy

encoding the measured distortion exceeds JND in at least

one critical band, quantization step sizes are adjusted only

in the out-of-tolerance critical bands. The outer loop repeats

until JND criteria are satisfied or a maximum loop count

is reached. Entropy coded transform components are then

transmitted to the receiver, along with side information.

Brandenburg in 1988 reported an enhanced OCF (OCF-2),

which achieved subjective quality improvements at a re-

duced bit rate of only 110 kb/s [115]. The improvements

were realized by replacing the DCT with the modified DCT

(Section III-C) and adding a pre-echo detection/compensa-

tion scheme. OCF-2 contains the first reported application

of the MDCT to audio coding. The 50% time overlap

associated with the MDCT increases the effective time

resolution and, consequently, improves the reconstruction

quality. OCF-2 quality is also improved for difficult signals

such as the triangle and castanets by using a simple pre-echo

detection/compensation scheme. OCF-2 was reported to

achieve transparency over a wide variety of source material.

In 1988, Brandenburg reported further OCF enhancements

(OCF-3) in which better quality was realized at a lower

bit rate (64 kb/s) with reduced complexity [116]. This was

achieved through differential coding of spectral components,

an enhanced psychoacoustic model modified to account for

temporal masking, and an improved rate-distortion loop.

B. Perceptual Transform Coder (PXFM)

While Brandenburg developed OCF, similar work was

simultaneously underway at AT&T Bell Labs. Johnston

[6] developed several DFT-based transform coders for

audio during the late 1980’s that became an integral part

of the ASPEC proposal. Johnston’s work in perceptual

entropy forms the basis for a transform coder reported in

1988 [6] that achieves transparent coding of FM-quality

monaural audio signals (Fig. 22). The idea behind the

perceptual transform coder (PXFM) is to estimate the

amount of quantization noise that can be inaudibly injected

into each transform domain subband using PE estimates.

The coder works as follows. The signal is first windowed

into overlapping (1/16) segments and transformed using

a 2048-point FFT. Next, the PE procedure described in

Section I is used to estimate JND thresholds for each critical

band. Then, an iterative quantization loop adapts a set of

128 subband quantizers to satisfy the JND thresholds until
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Fig. 22. PXFM encoder (after [6]).

the fixed bit rate is achieved. Finally, quantization and bit

packing are performed. Quantized transform components

are transmitted to the receiver along with appropriate side

information. Quantization subbands consist of eight-sample

blocks of complex-valued transform components. In 1989,

Johnston extended the PXFM coder to handle stereophonic

signals (SEPXFM) and attained transparent coding of a

CD-quality stereophonic channel at 192 kb/s. SEPXFM

[117] realizes performance improvements over PXFM by

exploiting inherent stereo cross-channel redundancy. The

SEPXFM structure is similar to that of PXFM, with variable

radix bit packing replaced by adaptive entropy coding. Side

information is therefore reduced to include only adjusted

JND thresholds (step-sizes) and pointers to the entropy

codebooks used in each transform domain subband. One of

six entropy codebooks is selected for each subband based

on the average component magnitude.

C. Brandenburg–Johnston Hybrid Coder

Johnston and Brandenburg [8] collaborated in 1990 to
produce a hybrid coder that, strictly speaking, is both a sub-
band and transform coding algorithm. It is included in this
section because it was part of the ASPEC cluster. The idea
behind the hybrid coder is to improve time and frequency
resolution relative to OCF and PXFM by constructing a filter
bank that more closely resembled the auditory filter bank.
This is accomplished at the encoder by first splitting the
input signal into four octave-width subbands using a QMF
filter bank. The decimated output sequence from each sub-
band is then followed by one or more transforms to achieve
the desired time/frequency resolution [Fig. 23(a)]. Both
DFT and MDCT methods were investigated. Given the tiling
of the time-frequency plane shown in Fig. 23(b), frequency
resolution at low frequencies (23.4 Hz) is well matched to
the ear, while the time resolution at high frequencies (2.7
ms) is sufficient for pre-echo control. The quantization and
coding schemes of the hybrid coder combine elements from
both PXFM and OCF. Masking thresholds are estimated
using the PXFM approach for eight time slices in each fre-
quency subband. A more sophisticated tonality estimate was
defined to replace the SFM [(13)] used in PXFM, however,
such that tonality is estimated in the hybrid coder as a local
characteristic of each individual spectral line. Predictability
of magnitude and phase spectral components across time
is used to evaluate tonality instead of just global spectral
shape within a single frame. High temporal predictability
of magnitudes and phases is associated with the presence

of a tonal signal. In contrast, low predictability implies the
presence of a noise-like signal. The hybrid coder employs
a quantization and coding scheme borrowed from OCF.
The hybrid coder without any explicit pre-echo control
mechanism was reported to achieve quality better than or
equal to OCF-3 at 64 kb/s [8]. The only disadvantage noted
by the authors was increased complexity. A similar hybrid
structure was eventually adopted in MPEG-1 and -2 Layer
III.

D. CNET Coder

During the same period in which Schroeder, Brandenburg,
and Johnston pursued optimal transform coding algorithms,
so too did several CNET researchers. In 1989, Mahieux et al.

proposed a DFT-based audio coding system that introduced a
novel scheme to exploit DFT interblock redundancy. Nearly
transparent quality was reported for 15 kHz (FM-grade)
audio at 96 kb/s [118], except for some highly harmonic
signals. The encoder applies first-order backward-adaptive
predictors (across time) to DFT magnitude and differential
phase components, then quantizes separately the prediction
residuals. Magnitude and differential phase residuals are
quantized using an adaptive nonuniform pdf-optimized
quantizer designed for a Laplacian distribution and an
adaptive uniform quantizer, respectively. Bits are allocated
during step-size adaptation to shape quantization noise such
that a psychoacoustic noise threshold is satisfied for each
block. The use of linear prediction is justified because it
exploits magnitude and differential phase time redundancy,
which tends to be large during periods when the audio
signal is quasi-stationary, especially for signal harmonics. A
similar technique was eventually embedded in the MPEG-2
AAC algorithm. In 1990, Mahieux and Petit reported on the
development of a similar MDCT-based transform coder for
which they reported transparent CD-quality at 64 kb/s [119].
This algorithm introduced a novel “spectrum descriptor”
scheme for representing the power spectral envelope. The
coder was reported to perform well for broad-band signals
with many harmonics but had some problems in the case
of spectrally flat signals. More recently, Mahieux and
Petit enhanced their 64-kb/s algorithm by incorporating a
sophisticated pre-echo detection and postfiltering scheme.
Pre-echo postfiltering and improved quantization schemes
resulted in a subjective score of 3.65 for two-channel stereo
coding at 64 kb/s per channel on the five-point CCIR impair-
ment scale. The CCIR J.41 reference audio codec (MPEG-1,
Layer-II) achieved a score of 3.84 at 384 kb/s/channel over
the same set of tests.
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Fig. 23. Brandenburg–Johnston coder: (a) filter bank structure and
(b) time/frequency tiling (after [8]).

E. ASPEC

The MSC, OCF, PXFM, AT&T hybrid, and CNET audio

transform coders were eventually clustered into a single

proposal by the ISO/IEC JTC1/SC2 WG11 committee.

As a result, Schroeder, Brandenburg, Johnston, Herre, and

Mahieux collaborated in 1991 to propose for acceptance as

the new MPEG audio compression standard a flexible coding

algorithm, ASPEC, which incorporated the best features of

each coder in the group [9]. ASPEC was claimed to produce

better quality than any of the individual coders at 64 kb/s.

The structure of ASPEC combines elements from all of its

predecessors. Like OCF and the CNET coder, ASPEC uses

the MDCT for time-frequency mapping. The masking model

is similar to that used in PXFM and the AT&T hybrid coder,

including the sophisticated tonality estimation scheme at

lower bit rates. The quantization and coding procedures

use the pair of nested loops proposed for OCF, as well as

the block differential coding scheme developed at CNET.

Moreover, long runs of masked coefficients are run-length

and Huffman encoded. Quantized scalefactors and trans-

form coefficients are Huffman coded also. Pre-echoes are

controlled using a dynamic window switching mechanism,

like the Thomson coder [105]. ASPEC offers several modes

for different quality levels, ranging from 64 to 192 kb/s

per channel. ASPEC ultimately formed the basis for Layer

III of the MPEG-1 and MPEG-2/BC-LSF standards. We

note that similar contributions were made in the area of

transform coding for audio outside the ASPEC cluster. For

example, Iwadare et al. reported on DCT-based [120] and

MDCT-based [11] perceptual adaptive transform coders that

control pre-echo distortion using adaptive window size.

F. DPAC

Other investigators have also developed promising

schemes for transform coding of audio. Paraskevas and

Mourjopoulos [121] reported on a differential perceptual

audio coder (DPAC), which makes use of a novel scheme for

exploiting long-term correlations. DPAC works as follows.

Input audio is transformed using the MDCT. A two-state

classifier then labels each new frame of transform coeffi-

cients as either a “reference” frame or a “simple” frame.

The classifier labels as “reference” the frames that contain

significant audible differences from the previous frame.

The classifier labels nonreference frames as “simple.”

Reference frames are quantized and encoded using scalar

quantization and psychoacoustic bit allocation strategies

similar to Johnston’s PXFM. Simple frames, however, are

subjected to coefficient substitution. Coefficients whose

magnitude differences with respect to the previous reference

frame are below an experimentally optimized threshold

are replaced at the decoder by the corresponding reference

frame coefficients. The encoder, then, replaces subthreshold

coefficients with zeros, thus saving transmission bits. Un-

like the interframe predictive coding schemes of Mahieux

and Petit, the DPAC coefficient substitution system is

advantageous in that it guarantees the “simple” frame

bit allocation will always be less than or equal to the bit

allocation that would be required if the frame was coded

as a “reference” frame. Superthreshold “simple” frame

coefficients are coded in the same way as reference frame

coefficients. DPAC performance was evaluated for frame

classifiers that utilized three different selection criteria.

Best performance was obtained while encoding source

material using a PE criterion. As far as overall performance

is concerned, NMR measurements were compared between

DPAC and Johnston’s PXFM algorithm at 64, 88, and 128

kb/s. Despite an average drop of 30%–35% in PE measured

at the DPAC coefficient substitution stage output relative to

the coefficient substitution input, comparative NMR studies

indicated that DPAC outperforms PXFM only below 88

kb/s, and then only for certain types of source material such

as pop or jazz music. The desirable PE reduction led to

an undesirable drop in reconstruction quality. The authors

concluded that DPAC may be preferable to algorithms such

as PXFM for low-bit-rate, nontransparent applications.

G. DFT Noise Substitution

Other coefficient substitution schemes have also been

proposed. Whereas DPAC exploits temporal correlation,

a substitution technique that exploits decorrelation was

recently devised for coding efficiently noise-like portions

of the spectrum. In a noise substitution procedure [122],

Schulz parameterizes transform coefficients corresponding

to noise-like portions of the spectrum in terms of average

power, frequency range, and temporal evolution, resulting

in an increased coding efficiency of 15% on average. A

temporal envelope for each parametric noise band is re-

quired because transform block sizes for most codecs are

much longer (e.g., 30 ms) than the human auditory system’s

temporal resolution (e.g., 2 ms). In this method, noise-like

spectral regions are identified in the following way. First,

least mean square (LMS) adaptive LP’s are applied to the

output channels of a multiband QMF analysis filter bank,

which has as input the original audio . A predicted

signal is obtained by passing the LP output sequences
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Fig. 24. TWIN-VQ encoder (after [125]).

through the QMF synthesis filter bank. Prediction is done

in subbands rather than over the entire spectrum to prevent

classification errors that could result if high-energy noise

subbands are allowed to dominate predictor adaptation,

resulting in misinterpretation of low-energy tonal subbands

as noisy. Next, the DFT is used to obtain magnitude ( ,

) and phase components ( , ) of the input

and prediction , respectively. Then, tonality

is estimated as a function of the magnitude and phase

predictability, i.e.,

(48)

where and are experimentally determined constants.

Noise substitution is applied to contiguous blocks of

transform coefficient bins for which is very small.

The 15% average bit savings realized using this method

in conjunction with transform coding are offset to a large

extent by a significant complexity increase resulting from

the additions of the adaptive linear predictors and a multi-

band analysis–synthesis QMF bank. As a result, the author

focused his attention on the application of noise substitution

to QMF-based subband coding algorithms.

H. DCT with Vector Quantization

For the most part, the algorithms described thus far rely

upon scalar quantization of transform coefficients. This is

not unreasonable, since scalar quantization in combination

with entropy coding can achieve very good performance. As

one might expect, however, vector quantization (VQ) has

also been applied to transform coding of audio, although

on a much more limited scale. Gersho and Chan investi-

gated VQ schemes for coding DCT coefficients subject to a

constraint of minimum perceptual distortion. They reported

on a variable rate coder [7], which achieves high quality in

the range of 55–106 kb/s for audio sequences bandlimited

to 15 kHz (32 kHz sample rate). After computing the DCT

on 512 sample blocks, the algorithm utilizes a novel multi-

stage tree-structured VQ (MSTVQ) scheme for quantization

of normalized vectors, with each vector containing four DCT

components. Bit allocation and vector normalization are de-

rived at both the encoder and decoder from a sampled power

spectral envelope, which consists of 29 groups of transform

coefficients. A simplified masking model assumes that each

sample of the power envelope represents a single masker.

Gersho and Chan later enhanced [123] their algorithm

by improving the power envelope and transform coefficient

quantization schemes. In the new approach to quantiza-

tion of transform coefficients, constrained-storage VQ

(CS-VQ) [124] techniques are combined with the MSTVQ

(CS-MSTVQ) from the original coder, allowing the new

coder to handle peak NMR requirements without imprac-

tical codebook storage requirements. The power envelope

samples are encoded using a two-stage process. The first

stage applies nonlinear interpolative VQ (NLIVQ). In the

second stage, segments of a power envelope residual are

encoded using a set of eight-, nine-, and ten-element TSVQ

quantizers. Relative to their first VQ/DCT coder, the authors

reported savings of 10–20 kb/s with no reduction in quality

due to the CS-VQ and NLIVQ schemes.

I. MDCT with Vector Quantization

More recently, Iwakami et al. developed transform-do-

main weighted interleave vector quantization (TWIN-VQ),

an MDCT-based coder which also involves transform coeffi-

cient VQ [125], [126]. This algorithm exploits LPC analysis,

spectral interframe redundancy, and interleaved VQ. At

the encoder (Fig. 24), each frame of MDCT coefficients

is first divided by the corresponding elements of the LPC

spectral envelope, resulting in a spectrally flattened quotient

(residual) sequence. This procedure flattens the MDCT

envelope but does not affect the fine structure. The next step,

therefore, divides the first step residual by a predicted fine

structure envelope. This predicted fine structure envelope is

computed as a weighted sum of three previous quantized fine

structure envelopes, i.e., using backward prediction. Inter-

leaved VQ is applied to the normalized second step residual.

The interleaved VQ vectors are structured in the following

way. Each -sample normalized second step residual vector

is split into subvectors, each containing coeffi-

cients. Second-step residuals from the -sample vector are
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interleaved in the subvectors such that the th subvector

contains elements , where .

Perceptual weighting is also incorporated by weighting each

subvector by a nonlinearly transformed version of its corre-

sponding LPC envelope component prior to the codebook

search. VQ indexes are transmitted to the receiver. The

authors claimed higher subjective quality than MPEG-1

Layer II at 64 kb/s for 48-kHz CD-quality audio, as well as

higher quality than MPEG-1 Layer II for 32-kHz audio at

32 kb/s. More recently, TwinVQ performance at lower bit

rates has also been investigated. At least three trends were

identified during ISO-sponsored comparative tests [127] of

TwinVQ and MPEG-2 AAC (Section VIII-B). First, AAC

outperformed TwinVQ for bit rates above 16 kb/s. Second,

TwinVQ and AAC achieved similar performance at 16 kb/s,

with AAC having a slight edge. Finally, the performance of

TwinVQ exceeded that of AAC at a rate of 8 kb/s. These

results ultimately motivated a combined AAC/TwinVQ ar-

chitecture for inclusion in MPEG-4 [385] (Section VIII-C).

Enhancements to the weighted interleaving scheme and LPC

envelope representation are reported in [128] which enabled

real-time implementation of stereo decoders on Pentium

and PowerPC platforms. Channel error robustness issues are

addressed in [129].

V. SUBBAND CODERS

Like the transform coders described in Section IV, subband

coders also exploit signal redundancy and psychoacoustic ir-

relevancy in the frequency domain. Instead of unitary trans-

forms, however, these coders rely upon frequency-domain

representations of the signal obtained from banks of band-

pass filters. The audible frequency spectrum (20 Hz–20 kHz)

is divided into frequency subbands using a bank of band-

pass filters. The output of each filter is then sampled and

encoded. At the receiver, the signals are demultiplexed, de-

coded, demodulated, and then summed to reconstruct the

signal. Audio subband coders realize coding gains by ef-

ficiently quantizing and encoding the decimated output se-

quences from either PR or non-PR filter banks (Section III).

Efficient quantization methods usually rely upon psychoa-

coustically controlled dynamic bit allocation rules, which al-

locate bits to subbands in such a way that the reconstructed

output signal is free of audible quantization noise or other

artifacts. In a generic subband audio coder, the input signal

is first split into several uniform or nonuniform subbands

using some critically sampled, PR or non-PR filter bank.

Nonideal reconstruction properties in the presence of quanti-

zation noise are compensated for by utilizing subband filters

that have very good sidelobe attenuation, an approach that

usually requires high-order filters. Then, decimated output

sequences from the filter bank are normalized and quantized

over short, 2–10-ms blocks. Psychoacoustic signal analysis is

used to allocate an appropriate number of bits for the quan-

tization of each subband. The usual approach is to allocate

a just-sufficient number of bits to mask quantization noise

in each block while simultaneously satisfying some bit-rate

constraint. Since masking thresholds and hence bit allocation

requirements are time-varying, buffering is often introduced

to match the coder output to a fixed rate. The encoder sends

to the decoder quantized subband output samples, normal-

ization scale factors for each block of samples, and bit allo-

cation side information. Bit allocation may be transmitted as

explicit side information, or it may be implicitly represented

by some parameter such as the scalefactor magnitudes. The

decoder uses side information and scalefactors in conjunc-

tion with an inverse filter bank to reconstruct a coded version

of the original input.

Numerous subband coding algorithms for high-fidelity

audio have appeared in the literature since the late 1980’s. In

fact, as noted in Section I-B, essentially all modern coders

make use of modulated filter banks such as the PQMF

or MDCT (Sections III-B and III-C) for high-resolution

spectral analysis, particularly for steady-state signals. For

analysis of transient signals, on the other hand, a significant

number of modern algorithms employ other analysis tools,

such as the discrete wavelet packet transform. Typically

the DWPT decomposition tree is structured to emulate a

(low-resolution) critical band analysis with only 24 subbands

(e.g., coders described in Sections V-C and V-D). These

trends have inspired the proposal that the subband/transform

class labels for modern coders should be replaced with

the classifications of “low-resolution” and “high-resolu-

tion” subband coding [33]. This section focuses upon the

individual subband algorithms proposed by researchers

from the Institut fur Rundfunktechnik (IRT) [4], [133],

Philips Research Laboratories [134], and CCETT. Much

of this work was motivated by standardization activities

for the European Eureka-147 DBA system. The ISO/IEC

eventually clustered the IRT, Philips, and CCETT proposals

into a single candidate algorithm, “Masking Pattern Adapted

Universal Subband Integrated Coding and Multiplexing”

(MUSICAM) [10], [135], which competed successfully

for inclusion in the ISO/IEC MPEG-1 and MPEG-2 audio

coding standards. Consequently, most of MPEG-1 [17] and

MPEG-2 [18] layers I and II are derived from MUSICAM.

Other subband algorithms, proposed by Charbonnier and

Petit [130], Voros [131], and Teh et al. [132], are not dis-

cussed here. The first part of this section concentrates upon

MUSICAM and its antecedents, which ultimately led to the

creation of the MPEG audio standard. The second part of

this section describes recent audio coding research in which

time-invariant and time-varying signal adaptive filter banks

are constructed from DWT’s and DWPT’s, respectively.

This section ends with consideration of some novel hybrid

subband/sinusoidal structures that have shown promise.

A. MASCAM

The MUSICAM algorithm is derived from coders de-

veloped at IRT, Philips, and CNET. At IRT, Theile et al.

developed “Masking Pattern Adapted Subband Coding”

(MASCAM), a subband audio coder [4] based upon a

tree-structured QMF bank that was designed to mimic

the critical band structure of the auditory filter bank. The

coder has 24 nonuniform subbands, with bandwidths of

125 Hz below 1 kHz, 250 Hz in the range 1–2 kHz, 500
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Fig. 25. MUSICAM encoder (after [135]).

Hz in the range 2–4 kHz, 1 kHz in the range 4–8 kHz,

and 2 kHz from 8 to 16 kHz. The prototype filter has 64

taps. Subband output sequences are processed in 2-ms

blocks. A normalization scalefactor from each subband

is quantized and transmitted for each block. Subband bit

allocations are derived from a simplified psychoacoustic

analysis. The original coder reported in [4] considered only

in-band simultaneous masking. Later, as described in [133],

interband simultaneous masking and temporal masking were

added to the bit-rate calculation. Temporal postmasking is

exploited by updating scalefactors less frequently during

periods of signal decay. The MASCAM coder was reported

to achieve high-quality results for 15-kHz bandwidth input

signals at bit rates between 80–100 kb/s per channel. A

similar subband coder was developed at Philips during this

same period. As described by Veldhuis et al. in [134], the

Philips group investigated subband schemes based on 20-

and 26-band nonuniform filter banks. Like the original

MASCAM system, the Philips coder relies upon a highly

simplified masking model that considers only the upward

spread of simultaneous masking. Thresholds are derived

from a prototypical basilar excitation function under worst

case assumptions regarding the frequency separation of

masker and maskee. Within each subband, signal energy

levels are treated as single maskers. Given SNR targets due

to the masking model, uniform ADPCM is applied to the

normalized output of each subband. The Philips coder was

claimed to deliver high-quality coding of CD-quality signals

at 110 kb/s for the 26-band version and 180 kb/s for the

20-band version.

B. MUSICAM

Based primarily upon coders developed at IRT and

Phillips, the MUSICAM algorithm [10], [135] was suc-

cessful in the 1990 ISO/IEC competition [136] for a new

audio coding standard. It eventually formed the basis for

MPEG-1 and MPEG-2 audio layers I and II. Relative to its

predecessors, MUSICAM (Fig. 25) makes several practical

tradeoffs between complexity, delay, and quality. By uti-

lizing a uniform bandwidth, 32-band polyphase filter bank

instead of a tree-structured QMF bank, both complexity and

delay are greatly reduced relative to the IRT and Phillips

coders. Delay and complexity are 10.66 ms and 5 MFLOPS,

respectively. These improvements are realized at the expense

of using a suboptimal filter bank, however, in the sense that

filter bandwidths (constant 750 Hz for 48-kHz sample rate)

no longer correspond to the critical bands. Despite these

excessive filter bandwidths at low frequencies, high-quality

coding is still possible with MUSICAM due to its enhanced

psychoacoustic analysis. High-resolution spectral estimates

(46 Hz/line at 48-kHz sample rate) are obtained through the

use of a 1024-point FFT in parallel with the polyphase filter

bank. This parallel structure allows for improved estimation

of masking thresholds and hence determination of more

accurate minimum SMR’s required within each subband.

The MUSICAM psychoacoustic analysis procedure is

essentially the same as the MPEG-1 psychoacoustic model

1 described in Section VIII-G.

The remainder of MUSICAM works as follows. Subband

output sequences are processed in 8-ms blocks (twelve sam-

ples at 48 kHz), which is close to the temporal resolution

of the auditory system (4–6 ms). Scale factors are extracted

from each block and encoded using 6 bits over a 120-dB dy-

namic range. Occasionally, temporal redundancy is exploited

by repetition over two or three blocks (16 or 24 ms) of slowly

changing scale factors within a single subband. Repetition is

avoided during transient periods such as sharp attacks. Sub-

band samples are quantized and coded in accordance with

SMR requirements for each subband as determined by the

psychoacoustic analysis. Bit allocations for each subband are

transmitted as side information. On the CCIR five-grade im-

pairment scale, MUSICAM scored 4.6 (standard deviation

0.7) at 128 kb/s, and 4.3 (standard deviation 1.1) at 96 kb/s

per monaural channel, compared to 4.7 (standard deviation

0.6) on the same scale for the uncoded original. Quality was

reported to suffer somewhat at 96 kb/s for critical signals

which contained sharp attacks (e.g., triangle, castanets), and

this was reflected in a relatively high standard deviation of

1.1. MUSICAM was selected by ISO/IEC for MPEG audio

due to its desirable combination of high quality, reasonable

complexity, and manageable delay. Also, bit error robustness

was found to be very good (errors nearly imperceptible) up

to a bit error rate of 10 .

C. Wavelet Decompositions

The previous section described subband coding algo-

rithms that utilize banks of fixed resolution bandpass QMF

or polyphase FIR filters. This section describes a different
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Fig. 26. Filter bank interpretation of the DWT.

Fig. 27. Subband decomposition associated with a discrete wavelet transform.

class of subband coders that rely instead upon a filter bank

interpretation of the DWT. DWT based subband coders

offer increased flexibility over the subband coders described

previously since identical filter bank magnitude frequency

responses can be obtained for many different choices of

a wavelet basis, or equivalently, choices of filter coeffi-

cients. This flexibility presents an opportunity for basis

optimization. For each segment of audio, one can adaptively

choose a wavelet basis that minimizes the rate for some

target distortion. A detailed discussion of specific technical

conditions associated with the various wavelet families is

beyond the scope of this paper, and this section therefore

avoids mathematical development and concentrates instead

upon high-level coder architectures. In-depth treatment of

wavelets is available from many sources, for example, [137].

Under certain assumptions, the DWT acts as an orthonormal

linear transform . For a compact (finite)

support wavelet of length , the associated transformation

matrix is fully determined by a set of coefficients for

. As shown in Fig. 26, this transformation

matrix has an associated filter bank interpretation. One ap-

plication of the transform matrix to an 1 signal vector

generates an 1 vector of wavelet-domain transform

coefficients . The 1 vector can be separated into two

2 1 vectors of approximation and detail coefficients

and , respectively. The spectral content of the signal

captured in and corresponds to the frequency

subbands realized in 2 : 1 decimated output sequences from

a QMF bank.

Therefore, recursive DWT applications effectively pass

input data through a tree-structured cascade of low-pass

and high-pass filters followed by 2 : 1 decimation at every

node. The forward/inverse transform matrices of a particular

wavelet are associated with a corresponding QMF anal-

ysis/synthesis filter bank. The usual wavelet decomposition

implements an octave-band filter bank structure shown

in Fig. 27. In the figure, frequency subbands associated

with the coefficients from each stage are schematically

represented for an audio signal sampled at 44.1 kHz.

Wavelet packet (WP) or DWPT representations, on the

other hand, decompose both the detail and approximation

coefficients at each stage of the tree, as shown in Fig. 28.

In the figure, frequency subbands associated with the coef-

ficients from each stage are schematically represented for a

44.1-kHz sample rate. A filter bank interpretation of wavelet

transforms is attractive in the context of audio coding

algorithms. Wavelet or wavelet packet decompositions

can be tree structured as necessary (unbalanced trees are

possible) to decompose input audio into a set of frequency

subbands tailored to some application. It is possible, for

example, to approximate the critical band auditory filter

bank utilizing a wavelet packet approach. Moreover, many

-coefficient finite support wavelets are associated with a

single magnitude frequency response QMF pair; therefore,

a specific subband decomposition can be realized while

retaining the freedom to choose a wavelet basis that is in

some sense “optimal.” The basic idea behind DWT and

DWPT-based subband coders is to quantize and encode

efficiently the coefficient sequences associated with each

stage of the wavelet decomposition tree using the same noise

shaping techniques as the previously described perceptual

subband coders. The next few subsections concentrate upon

WP-based subband coders developed in the early 1990’s by

Sinha et al. [157], [158], [160], as well as more recently

proposed hybrid sinusoidal/WPT algorithms developed by

Hamdy and Tewfik [187], Boland and Deriche [138], and

Pena et al. [139]–[142]. Other studies of DWT-based audio

coding schemes concerned with low-complexity, low-delay,

combined wavelet/multipulse LPC coding and combined

scalar/vector quantization of transform coefficients were

reported, respectively, by Black and Zeytinoglu [143],

Kudumakis and Sandler [144]–[146], and Boland and

Deriche [147], [148]. Several bit-rate scalable DWPT-based

schemes have also been investigated recently. For example,

a fixed-tree DWPT coding scheme capable of nearly trans-

parent quality with scalable bit rates below 100 kb/s was

proposed by Dobson et al. and implemented in real time on a

75-MHz Pentium-class platform [149]. Additionally, Lu and
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Fig. 28. Subband decomposition associated with discrete wavelet packet transform (DWPT or WP).
Note that other, nonuniform decomposition trees are also possible.

Pearlman investigated a rate-scalable DWPT-based coder

that applies set partitioning in hierarchical trees (SPIHT) to

generate an embedded bitstream. Nearly transparent quality

was reported at bit rates between 55–66 kb/s [150].

D. Adapted Wavelet Packet Decompositions

The “best basis” methodologies [151], [152] for adapting

the WP tree structure to signal properties are typically

formulated in terms of Shannon entropy [153] and other

perceptually blind statistical measures. For a given WP

tree, related research directed toward optimal filter selection

[154]–[156] has also emphasized optimization of statistical

rather than perceptual properties. The questions of per-

ceptually motivated filter selection and tree construction

are central to successful application of WP analysis in

audio coding algorithms. We consider in this section some

relevant research and algorithm developments. The WP tree

structure determines the time and frequency resolution of

the transform and therefore also creates a particular tiling

of the time-frequency plane. Several WP audio algorithms

[149], [158] have successfully employed time-invariant

WP tree structures that mimic the ear’s critical band fre-

quency resolution properties. In some cases, however, a

more efficient perceptual bit allocation is possible with a

signal-specific time-frequency tiling that tracks the shape

of the time-varying masking threshold. Some examples are

described next.

1) DWPT Coder with Globally Adapted Daubechies Anal-

ysis Wavelet: Sinha and Tewfik developed a variable-rate

wavelet-based coding scheme for which they reported nearly

transparent coding of CD-quality audio at 48–64 kb/s [157],

[158]. The encoder (Fig. 29) exploits redundancy using a

VQ scheme and irrelevancy using a WP signal decomposi-

tion combined with perceptual masking thresholds. The al-

gorithm works as follows. Input audio is segmented into

1 vectors, which are then windowed using a 1/16th overlap

square-root Hann window. The dynamic dictionary (DD),

which is essentially an adaptive VQ subsystem, then elim-

inates signal redundancy. A dictionary of 1 codewords

is searched for the vector perceptually closest to the input

Fig. 29. Dynamic dictionary/optimal wavelet packet encoder (after
[157]).

vector. An optimized WP decomposition is applied to the

original signal as well as the DD residual. The decomposition

tree is structured such that its 29 frequency subbands roughly

correspond to the critical bands of the auditory filter bank. A

masking threshold, obtained as in [134], is assumed constant

within each subband and then used to compute a perceptual

bit allocation. The encoder transmits the particular combina-

tion of DD and WP information that minimizes the bit rate

while maintaining perceptual quality.

This algorithm is unique in that it contains the first re-

ported application of adapted WP analysis to perceptual sub-

band coding of high-fidelity, CD-quality audio. During each

analysis frame, the WP basis selection procedure applies an

optimality criterion of minimum bit rate for a given distortion

level. The adaptation is “global” in the sense that the same

analysis wavelet is applied to the entire decomposition. The

authors reached several useful conclusions regarding the op-

timal compact support ( -coefficient) wavelet basis when

selecting from among the Daubechies orthogonal wavelet

bases [159, Proposition 4.5, p. 977]. First, optimization pro-

duced average bit-rate savings dependent on filter length of

up to 15%. Second, it is not necessary to search exhaustively

the space of all wavelets for a particular value of . The

search can be constrained to wavelets with 2 vanishing

moments with minimal impact on bit rate. Third, larger ,

i.e., more taps, and deeper decomposition trees, tended to
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yield better results. As far as quality is concerned, subjective

tests showed that the algorithm produced transparent quality

for certain test material including drums, pop, violin with

orchestra, and clarinet. Subjects detected differences, how-

ever, for the castanets and piano sequences. These difficulties

arise, respectively, because of inadequate pre-echo control,

and inefficient modeling of steady sinusoids. Tewfik and Ali

later enhanced the WP coder to improve pre-echo control and

increase coding efficiency. After elimination of the dynamic

dictionary, they reported improved quality in the range of

55–63 kb/s, as well as a real-time implementation of on two

TMS320C31 devices [160]. Other improvements included

exploitation of auditory temporal masking for pre-echo con-

trol, more efficient quantization and encoding of scale fac-

tors, and run-length coding of long zero sequences.

2) Scalable DWPT Coder with Adaptive Tree Struc-

ture: Srinivasan and Jamieson proposed a WP-based audio

coding scheme [161], [162] in which a signal-specific

perceptual best basis is constructed by adapting the WP

tree structure on each frame such that perceptual entropy

and, ultimately, the bit rate are minimized. While the tree

structure is signal adaptive, the analysis filters are time

invariant and obtained from the family of spline-based

biorthogonal wavelets [137]. The algorithm (Fig. 30) is

also unique in the sense that it incorporates mechanisms

for both bit-rate and complexity scaling. Before the tree

adaptation process can commence for a given frame, a

set of 63 masking thresholds corresponding to a set of

threshold frequency partitions roughly 1/3 Bark wide is

obtained from the ISO/IEC MPEG-1 psychoacoustic model

recommendation 2 [17]. Of course, depending upon the WP

tree, the subbands may or may not align with the threshold

partitions. For any particular WP tree, the associated bit

rate (cost) is computed by extracting the minimum masking

thresholds from each subband and then allocating sufficient

bits to guarantee that the quantization noise in each band

does not exceed the minimum threshold. The objective

of the tree adaptation process, therefore, is to construct a

minimum cost subband decomposition by maximizing the

minimum masking threshold in every subband. In [161], a

complexity-constrained tree adaptation procedure is shown

to yield a basis requiring the fewest bits for perceptually

transparent coding for a given complexity and temporal

resolution. Shapiro’s zerotree algorithm [163] is iteratively

applied to quantize the coefficients and exploit remaining

temporal correlations until the perceptual rate-distortion

criteria are satisfied. For informal listening tests over coded

program material that included violin, violin/viola, flute,

sitar, vocals/orchestra, and sax, the coded outputs at rates in

the vicinity of 45 kb/s were reported to be indistinguishable

from the originals with the exceptions of the flute and sax.

Software is available from the authors’ Web site [161]. We

note that other researchers have also reported recently on

similar strategies for signal-adaptive WP analysis of audio.

For example, perceptual metrics for WP tree adaptation

were investigated in [164] and [165].

3) DWPT Coder with Globally Adapted General Analysis

Wavelet: Srinivasan and Jamieson [161] demonstrated

Fig. 30. Masking-threshold adapted WP audio coder [161].

the advantages of a masking threshold adapted WP tree

with a time-invariant analysis wavelet. On the other hand,

Sinha and Tewfik [158] used a time-invariant WP tree but a

globally adapted analysis wavelet to demonstrate that there

exists a signal-specific “best” wavelet basis in terms of

perceptual coding gain for a particular number of filter taps.

The basis optimization in [158], however, was restricted

to Daubechies’ wavelets. Recent research has attempted to

identify which wavelet properties portend an optimal basis,

as well as to consider basis optimization over a broader

class of wavelets. In an effort to identify the “best” filter,

Philippe et al. measured the impact on perceptual coding

gain of wavelet regularity, AR(1) coding gain, and filter

bank frequency selectivity [166], [167]. The study compared

performance among orthogonal Rioul [168], orthogonal

Onno [169], and the biorthogonal wavelets of [170] in a WP

coding scheme that had essentially the same time-invariant

critical band WP decomposition tree as [158]. Using filters

of lengths varying between 4–120 taps, minimum bit rates

required for transparent coding in accordance with the usual

perceptual subband bit allocations were measured for each

wavelet. For a given filter length, the results suggested that

neither regularity nor frequency selectivity mattered signifi-

cantly. On the other hand, the minimum bit rate required for

transparent coding was shown to decrease with increasing

analysis filter AR(1) coding gain, leading the authors to

conclude that AR(1) coding gain is a legitimate criterion for

WP filter selection in perceptual coding schemes.

4) DWPT Coder with Adaptive Tree Structure and Locally

Adapted Analysis Wavelet: Phillipe et al. [171] measured

the perceptual coding gain associated with optimization of

the WP analysis filters at every node in the tree, as well as

optimization of the tree structure. In one experiment, the

WP tree structure was fixed, and then optimal filters were

selected for each tree node (local adaptation) such that the

bit rate required for transparent coding was minimized.

Simulated annealing [172] was used to solve the discrete

optimization problem posed by a search space containing

300 filters of varying lengths from the Daubechies [137],

Onno [169], Smith–Barnwell [173], Rioul [168], and

Akansu–Caglar [174] families. The filters selected by

simulated annealing were used in another set of experiments

on tree structure optimization. For a fixed tree, the filter

adaptation experiments yielded several noteworthy results.

First, a nominal bit-rate reduction of 3% was realized for

Onno’s filters (66.5 kb/s) relative to Daubechies’ filters (68

kb/s). Second, simulated annealing over the search space of
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Fig. 31. Wavelet packet analysis filter bank optimized for minimum bit rate, used in MMPE
experiments.

300 filters yielded a nominal 1% bit-rate reduction (66 kb/s)

relative to the Onno-only case. Finally, longer filter bank

delay, i.e., longer analysis filters, yielded lower bit rates.

For low-delay applications, however, a seven-fold delay

reduction from 700 down to only 100 samples is realized at

the cost of only a 10% increase in bit rate. Additional results

were reported recently in [175].

5) DWPT Coder with Perceptually Optimized Synthesis

Wavelets: Recent research has shown that reconstruction

distortion can be minimized in the mean square sense

(MMSE) by relaxing PR constraints and tuning the synthesis

filters [176]–[182]. Naturally, mean square error minimiza-

tion is of limited value for subband audio coders. As a

result, Gosse et al. [183], [184] extended [181] to minimize

a mean perceptual error (MMPE) rather than MMSE. A

mean perceptual error (MPE) was evaluated at the PR filter

bank output in terms of a unique JND measure [185]. Then,

an MMPE filter tuning algorithm derived from [181] was

applied, and performance was evaluated in terms of a per-

ceptual objective measure [186]. Using the DWPT structure

shown in Fig. 31, the authors reported improvement over the

PR case, and concluded that further investigation is required

to better characterize the costs and benefits of MMPE tuning

in a time-varying scenario.

E. Hybrid Harmonic/Wavelet Decompositions

Although the WP coder improvements reported in [160]

addressed pre-echo control problems evident in [158], they

did not rectify the coder’s inadequate performance for har-

monic signals such as the piano test sequence. This is in part

because the low-order FIR analysis filters typically employed

in a WP decomposition are characterized by poor frequency

selectivity, and therefore wavelet bases tend not to provide

compact representations for strongly sinusoidal signals. On

the other hand, wavelet decompositions provide some con-

trol over time resolution properties, leading to efficient rep-

resentations of transient signals. These considerations have

inspired several researchers to investigate hybrid coders.

1) Hybrid Sinusoidal/Classical DWPT Coder: Hamdy et

al. developed a novel hybrid coder [187] designed to exploit

the efficiencies of both harmonic and wavelet signal repre-

sentations. For each analysis frame, the encoder (Fig. 32)

chooses a compact signal representation from combined si-

nusoidal and wavelet bases. This algorithm is based on the

notion that short-time audio signals can be decomposed into

tonal, transient, and noise components. It assumes that tonal

components are most compactly represented in terms of si-

nusoidal basis functions, while transient and noise compo-

nents are most efficiently represented in terms of wavelet

bases. The encoder works as follows. First, Thomson’s anal-

ysis model [188] is applied to extract sinusoidal parameters

for each input frame. Harmonic synthesis using the McAulay

and Quatieri reconstruction algorithm [189] for phase and

amplitude interpolation is next applied to obtain a residual

sequence. Then, the residual is decomposed into WP sub-

bands. The overall WP analysis tree approximates an audi-

tory filter bank. Edge-detection processing identifies and re-

moves transients in low-frequency subbands. Without tran-

sients, the residual WP coefficients at each scale become

largely decorrelated. In fact, the authors determined that the

sequences are well approximated by white Gaussian noise

(WGN) sources having exponential decay envelopes. As far

as quantization and encoding are concerned, sinusoidal fre-

quencies are quantized with sufficient precision to satisfy

just-noticeable-differences in frequency (JNDF). Sinusoidal

amplitudes are quantized and encoded in accordance with a

masked threshold estimate. Sinusoidal phases are uniformly

quantized on the interval . As for quantization and en-

coding of WP parameters, all coefficients below 11 kHz are

encoded as in [371]. Above 11 kHz, however, parametric rep-

resentations are utilized. Transients are represented in terms

of a binary edge mask, while noise components are repre-

sented in terms of means, variances, and decay constants. The
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Fig. 32. Hybrid sinusoidal/wavelet encoder (after [187]).

coder was reported to achieve nearly transparent coding over

of wide range of CD-quality source material at bit rates in

the vicinity of 44 kb/s [190].

2) Hybrid Sinusoidal/M-Band DWPT Coder: Boland

and Deriche [138] reported on an experimental sinu-

soidal-wavelet hybrid audio codec with high-level archi-

tecture very similar to [187] but with low-level differences

in the sinusoidal and wavelet analysis blocks. In particular,

for harmonic analysis the proposed algorithm replaces

Thomson’s method used in [187] with a combination of

total least squares linear prediction (TLS-LP) and Prony’s

method. Then, in the harmonic residual wavelet decom-

position block, the proposed method replaces the usual

DWT cascade of two-band QMF sections with a cascade of

four-band QMF sections. In the wavelet analysis section,

the harmonic residual is decomposed such that critical

bandwidths are roughly approximated using a three-level

cascade of four-band analysis filters (i.e., ten subbands)

designed according to the -band technique in [191]. After

subjective listening comparisons between the proposed

scheme at 60–70 kb/s and MPEG-1, Layer III at 64 kb/s

on 12 SQAM CD [192] source items, the authors reported

indistinguishable quality for “acoustic guitar,” “Eddie

Rabbit,” “castanets,” and “female speech.”

3) Hybrid Sinusoidal/DWPT Coder with Tree Structure

Adaptation (ARCO): Pena et al. [139] have reported on

the “Adaptive Resolution Codec” (ARCO). This algorithm

employs a two-stage hybrid tonal-WP analysis section

architecturally similar to both [187] and [138]. ARCO intro-

duced several novelties in the segmentation, psychoacoustic

analysis, and WP analysis blocks. In an effort to match the

time-frequency analysis resolution to the signal properties,

ARCO includes a subframing scheme that makes use of both

time and frequency block clustering to determine optimal

analysis frame lengths [193]. The ARCO psychoacoustic

model resembles ISO/IEC MPEG-1 model recommenda-

tion 1 [17], with some enhancements. Tonality labeling

is based on [194], and noise maskers are segregated into

narrow-band and wide-band subclasses. Wide-band noise

maskers have frequency-dependent excitation patterns. The

ARCO WP decomposition procedure optimizes both the

tree structure, as in [161], and filter selections, as in [158]

and [171]. ARCO essentially arranges the subbands such

that the corresponding set of idealized brickwall rectangular

filters having amplitude equal to the height of the minimum

masking threshold in the each band matches as closely

as possible the shape of the masking threshold. Bits are

allocated in each subband to satisfy the minimum masking

threshold . The ARCO bit allocation strategy [195]

achieves fast convergence to a desired bit rate by shifting the

masking threshold up or down. Another unique property of

ARCO is its set of high-level “cognitive rules” that seek to

minimize the objectionable distortion when insufficient bits

are available to guarantee transparent coding [196]. Finally,

it is interesting to note that researchers developing ARCO

recently replaced the hybrid sinusoidal-WP analysis filter

bank with a novel multiresolution MDCT-based filter bank.

In [197], Casal et al. developed a “Multi-Transform” (MT)

that retains the lapped properties of the MDCT but creates a

nonuniform time-frequency tiling by transforming back into

time the high-frequency MDCT components in L-sample

blocks. The proposed MT is characterized by high resolution

in frequency in the low subbands and high resolution in time

at the high frequencies.

F. Signal-Adaptive, Nonuniform Filter Bank (NUFB)

Decompositions

The most popular method for realizing nonuniform

frequency subbands is to cascade uniform filters in an unbal-

anced tree structure, as with, for example, the DWPT. For a

given impulse response length, however, cascade structures

in general produce poor channel isolation. Recent advances

in modulated filter bank design methodologies (e.g., [198])

have made tractable direct form near perfect reconstruction

nonuniform designs, which are critically sampled. We

next consider subband coders that employ signal-adaptive

nonuniform modulated filter banks to approximate the

time-frequency analysis properties of the auditory system

more effectively than the other subband coders. Beyond the

algorithms addressed below, we note that other investigators

have proposed nonuniform filter bank coding techniques,
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which address redundancy reduction utilizing lattice [199]

and bidimensional VQ schemes [200].

1) Switched Nonuniform Filter Bank Cascade: Princen

and Johnston developed a CD-quality coder based upon a

signal-adaptive filter bank [201] for which they reported

quality better than the sophisticated MPEG-1 Layer III

algorithm at both 48 and 64 kb/s. The analysis filter bank

for this coder consists of a two-stage cascade. The first stage

is a 48-band nonuniform modulated filter bank split into

four uniform-bandwidth sections. There are eight uniform

subbands from 0 to 750 Hz, four uniform subbands from

750 to 1500 Hz, 12 uniform subbands from 1.5 to 6 kHz, and

24 uniform subbands from 6 to 24 kHz. The second stage

in the cascade optionally decomposes nonuniform bank

outputs with on/off switchable banks of finer resolution

uniform subbands. During filter bank adaptation, a suitable

overall time-frequency resolution is attained by selectively

enabling or disabling the second-stage filters for each of the

four uniform bandwidth sections. Uniform PCM is applied

to subband samples under the constraint of perceptually

masked quantization noise.

2) FV-MLT: Purat and Noll [370] also developed a

CD-quality audio coding scheme based on a signal-adaptive,

nonuniform, tree-structured wavelet packet decomposition.

This coder is unique in two ways. First of all, it makes use

of a novel wavelet packet decomposition [202]. Second, the

algorithm adapts to the signal the wavelet packet tree de-

composition depth and breadth (branching structure) based

on a minimum bit-rate criterion, subject to the constraint

of inaudible distortions. In informal subjective tests, the

algorithm achieved excellent quality at a bit rate of 55 kb/s.

G. IIR Filter Banks

Although the majority of subband and wavelet audio

coding algorithms found in the literature employ banks of

perfect reconstruction FIR filters, this does not preclude

the possibility of using infinite impulse response (IIR)

filter banks for the same purpose. Compared to FIR filters,

IIR filters are able to achieve similar magnitude response

characteristics with reduced filter orders, and hence with

reduced complexity. In the multiband case, IIR filter banks

also offer complexity advantages over FIR filter banks.

Enhanced performance, however, comes at the expense of

an increased construction and implementation effort for

IIR filter banks. Creusere and Mitra constructed a template

subband audio coding system modeled after [366] to com-

pare performance and to study the tradeoffs involved when

choosing between FIR and IIR filter banks for the audio

coding application [203]. In the study, two IIR and two FIR

coding schemes were constructed from the template using a

structured all-pass filter bank, a parallel allpass filter bank, a

tree-structured QMF bank, and a polyphase quadrature filter

bank.

VI. SINUSOIDAL CODERS

Although sinusoidal signal models have been applied

successfully in speech coding [204], [205], [189], [212]

and music synthesis applications [214], there was until

recently relatively little work reported on perceptual audio

coding using sinusoidal signal models. The existing sinu-

soidal coders were developed in a speech coding context,

and tended to minimize MSE. Perceptual properties were

introduced later [139], [206], [207], [211]. This section

is concerned with perceptual coding algorithms based on

purely sinusoidal or hybrid sinusoidal signal models. The

advent of MPEG-4 standardization established new research

goals for high-quality coding of general audio signals at bit

rates in the range of 6–24 kb/s, rates that had previously

been reserved for speech-specific coding algorithms. The

problem addressed in the MPEG-4 research was to achieve

low rates while eliminating the source-system paradigm

that characterizes most speech coders. In experiments

reported as part of the MPEG-4 standardization effort, it was

determined that sinusoidal coding is capable of achieving

good quality at low rates without being constrained by

a restrictive source model. Furthermore, unlike CELP

and other classical low-rate speech coding models, the

parametric sinusoidal coding is amenable in a straightfor-

ward manner to pitch and time-scale modification at the

decoder. This section describes sinusoidal algorithms re-

cently proposed for low-rate audio coding using perceptual

properties, including the Analysis/Synthesis Audio Codec

(ASAC), enhanced ASAC, and FM ASAC. Some of these

methodologies have been adopted as a part of the MPEG-4

standardization (Section VIII). Additionally, outside of the

MPEG-4 standardization framework, the recent emergence

of Internet-based streaming audio has motivated consider-

able research on the application of sinusoidal signal models

to high-quality audio coding at low bit rates. For example,

Levine and Smith developed a hybrid sinusoidal-filter bank

coding scheme that achieves very high quality at rates in the

vicinity of 32 kb/s [206], [208], [209].

A. Analysis/Synthesis Audio Codec

The sinusoidal ASAC for robust coding of general audio

signals at rates between 6 and 24 kb/s was developed by

Edler et al. at the University of Hannover and proposed

for MPEG-4 standardization [210] in 1995. An enhanced

ASAC proposal later appeared in [211]. Initially, ASAC

segments input audio into analysis frames over which the

signal is assumed to be nearly stationary. Sinusoidal syn-

thesis parameters are then extracted according to perceptual

criteria, quantized, encoded, and transmitted to the decoder

for synthesis. The algorithm distributes synthesis parameters

across basic and enhanced bitstreams to allow scalable

output quality at bit rates of 6 and 24 kb/s. Architecturally,

the ASAC scheme (Fig. 33) consists of a preanalysis block

for window selection and envelope extraction, a sinusoidal

analysis-by-synthesis parameter estimation block, a percep-

tual model, and a quantization and coding block. Although

it bears similarities to sinusoidal speech coding [189],

[212], [213] and music synthesis [214] algorithms that

have been available for some time, the ASAC coder also

incorporates some new techniques. In particular, whereas

previous sinusoidal coders emphasized waveform matching
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Fig. 33. ASAC encoder (after [216]).

by minimizing reconstruction error norms such as the mean

square error, ASAC disregards classical error minimization

criteria and instead selects sinusoids in decreasing order

of perceptual importance by means of an iterative anal-

ysis-by-synthesis loop. The perceptual significance of each

component sinusoid is judged with respect to the masking

power of the synthesis signal, which is determined by a

simplified version of the psychoacoustic model [215]. The

iterative analysis-by-synthesis block [216] estimates one

at a time the parameters of the th individual constituent

sinusoid or partial, and every iteration identifies the most

perceptually significant sinusoid remaining in the synthesis

residual, , and adds it to the synthetic

output, . Perceptual significance is assessed by com-

paring the synthesis residual against the masked threshold

associated with the current synthetic output and choosing

the residual sinusoid with the largest suprathreshold margin.

The loop repeats until the bit budget is exhausted. When

compared to standard speech codecs at similar bit rates, the

first version of ASAC [210] reportedly offered improved

quality for nonharmonic tonal signals such as spectrally

complex music, similar quality for single instruments, and

impaired quality for clean speech [217]. The later ASAC

[211] was improved for certain signals [218].

B. Harmonic and Individual Lines Plus Noise Coder

The ASAC algorithm outperformed speech-specific algo-

rithms at the same bit rate in subjective tests for some test

signals, particularly spectrally complex music characterized

by large numbers of nonharmonically related sinusoids. The

original ASAC, however, failed to match speech codec per-

formance for other test signals such as clean speech. As a

result, the ASAC core was embedded in an enhanced al-

gorithm [219] intended to better match the coder’s signal

model with diverse input signal characteristics. In research

proposed as part of an MPEG-4 “core experiment” [220],

Purnhagen et al. at the University of Hannover developed

in conjunction with Deutsche Telekom Berkom an “object-

based” algorithm. In this approach, harmonic sinusoid, indi-

vidual sinusoid, and colored noise objects could be combined

in a hybrid source model to create a parametric signal repre-

sentation. The enhanced algorithm, known as the “Harmonic

Fig. 34. HILN encoder (after [219]).

and Individual Lines Plus Noise” (HILN), is architecturally

very similar to the original ASAC, with some modifications

(Fig. 34). The iterative analysis–synthesis block is extended

to include a cascade of analysis stages for each of the avail-

able object types. In the enhanced analysis–synthesis system,

harmonic analysis is applied first, followed by individual

spectral line analysis, followed by shaped noise modeling

of the two-stage residual. Results from subjective listening

tests at 6 kb/s showed significant improvements for HILN

over ASAC, particularly for the most critical test items that

had previously generated the most objectionable ASAC arti-

facts [221]. Compared to HILN, CELP speech codecs are still

able to represent more efficiently clean speech at low rates,

and “time-frequency” codecs are able to encode more effi-

ciently general audio at rates above 32 kb/s. Nevertheless, the

HILN improvements relative to ASAC inspired the MPEG-4

committee to incorporate HILN into the MPEG-4 committee

draft as the recommended low-rate parametric audio coder

[222]. The HILN algorithm was recently deployed in a scal-

able low-rate Internet streaming audio scheme [223].

C. FM Synthesis

The HILN algorithm seeks to optimize coding efficiency

by making combined use of three distinct source models.

Although the HILN harmonic sinusoid object has been
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shown to facilitate increased coding gain for certain signals,

it is possible that other object types may offer opportunities

for greater efficiency when representing spectrally complex

harmonic signals. This notion motivated a recent investiga-

tion into the use of frequency modulation (FM) synthesis

techniques [224] in low-rate sinusoidal audio coding for

harmonically structured single instrument sounds [225].

FM synthesis offers advantages over other harmonic coding

methods (e.g., [216], [226]) because of its ability to model

with relatively few parameters harmonic signals that have

many partials. In the simplest FM synthesis, for example, the

frequency of a sine wave (carrier) is modulated by another

sine wave (modulator) to generate a complex waveform with

spectral characteristics that depend on a modulation index

and the parameters of the two sine waves. In continuous

time, the FM signal is given by

(49)

where

amplitude;

carrier frequency;

modulation frequency;

modulation index;

time index.

The associated Fourier series representation is

(50)

where is the Bessel function of the first kind. It can

be seen from (50) that a large number of harmonic partials

can be generated (Fig. 35) by controlling only three param-

eters per FM “operator.” One can observe that the funda-

mental and harmonic frequencies are determined by and

, and that the harmonic partial amplitudes are controlled

by the modulation index . The Bessel envelope, moreover,

essentially determines the FM spectral bandwidth. Example

harmonic FM spectra for a unit amplitude 200-Hz carrier are

given in Fig. 35 for modulation indexes of one [Fig. 35(a)]

and 15 [Fig. 35(b)]. While both examples have identical har-

monic structure, the amplitude envelopes and bandwidths

differ markedly as a function of the index . Clearly, the cen-

tral issue in making effective use of the FM technique for

signal modeling is parameter estimation accuracy.

Winduratna proposed an FM synthesis audio coding

scheme in which the outputs of parallel FM “operators”

are combined to model a single instrument sound. The

algorithm (Fig. 36) works as follows. First, the preanalysis

block segments input audio into analysis frames and then

extracts parameters for a set of individual spectral lines, as

in [216]. Next, the preanalysis identifies a harmonic struc-

ture by maximizing an objective function [225]. Given a

fundamental frequency estimate from the preanalysis , the

iterative parameter extraction loop estimates the parameters

of individual FM operators and accumulates their contri-

butions until the composite spectrum closely resembles the

original. Perceptual closeness is judged to be adequate when

the absolute original minus synthetic harmonic difference

(a)

(b)

Fig. 35. Harmonic FM spectra, f = f = 200 Hz, with (a)
I = 1 and (b) I = 15.

Fig. 36. FM synthesis coding scheme (after [225]).

spectrum is below the masked threshold [215]. During

each loop iteration, error minimizing values for the current

operator are determined by means of an exhaustive search.

The loop repeats and additional operators are synthesized

until the error spectrum is below the masked threshold. The

FM coding scheme was shown to efficiently represent single

instrument sounds at bit rates between 2.1–4.8 kb/s. Using

a 24-ms analysis window, for example, one critical male
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speech item was encoded at 21.2 kb/s using FM synthesis

compared to 45 kb/s for ASAC [225], with similar output

quality. Despite estimation difficulties for signals with more

than one fundamental, e.g., polyphonic music, the high

efficiency of the FM synthesis technique makes it a likely

candidate for future inclusion in object-based algorithms

such as HILN.

D. Hybrid Sinusoidal Coders

Whereas the waveform-preserving perceptual transform

(Section IV) and subband (Section IV) coders tend to target

transparent quality at bit rates between 32–128 kb/s per

channel, the sinusoidal coders proposed thus far in the

literature have concentrated on very low-rate applications

between 2–16 kb/s. Rather than transparent quality, these

algorithms have emphasized source robustness, i.e., the

ability to deal with general audio at low rates without

constraining source model dependence. The current low-rate

sinusoidal algorithms (ASAC, HILN, etc.) represent the

perceptually significant portions of the magnitude spectrum

from the original signal without explicitly treating the phase

spectrum. As a result, perceptually transparent coding is

typically not achieved with these algorithms. It is generally

agreed that different state-of-the-art coding techniques

perform most efficiently in terms of output quality achieved

for a given bit rate. In particular, CELP speech algorithms

offer the best performance for clean speech below 16 kpbs,

parametric sinusoidal techniques perform best for general

audio between 16–32 kb/s, and so-called time-frequency

audio codecs tend to offer the best performance at rates

above 32 kb/s. Designers of comprehensive bit-rate scal-

able coding systems, therefore, must decide whether to

cascade multiple stages of fundamentally different coder

architectures with each stage operating on residual signal

from the previous stage, or alternatively to “simulcast”

independent bitstreams from different coder architectures

and then select an appropriate decoder at the receiver. In

fact, some experimental work performed in the context of

MPEG-4 standardization demonstrated that a cascaded,

hybrid sinusoidal/time-frequency coder can not only meet

but in some cases even exceed the output quality achieved

by the time-frequency (transform) coder alone at the same

bit rate for certain critical test signals [227]. Issues critical

to cascading successfully a parametric sinusoidal coder with

a transform-based time-frequency coder are addressed in

[228]. It was earlier noted that CELP speech algorithms

typically outperform the parametric sinusoidal coders for

clean speech inputs at rates below 16 kb/s. There is some

uncertainty, however, as to which class of algorithm is best

suited when both speech and music are present. A hybrid

scheme (Fig. 37) intended to outperform CELP/parametric

“simulcast” for speech/music mixtures was proposed in

[228]. As expected, the hybrid structure was reported to

outperform simulcast configurations only when the voice

signal was dominant [228]. Quality degradations were

reported for mixtures containing dominant musical signals.

In the future, hybrid structures of this type will benefit from

emerging techniques in speech/music discrimination (e.g.,

Fig. 37. Hybrid sinusoidal/vocoder (after [228]).

[229], [230]). As observed by Edler, on the other hand,

future audio coding research is also quite likely to focus on

automatic decomposition of complex input signals into com-

ponents for which individual coding is more efficient than

direct coding of the mixture [231] using hybrid structures.

Advances in sound separation and auditory scene analysis

[232], [233] techniques will eventually make the automated

decomposition process viable.

VII. LINEAR-PREDICTION-BASED CODERS

Although other methodologies have been the focus

of attention in perceptual audio coding research, a few

CD-quality coders based on a source-system model and

linear prediction have also been reported to achieve trans-

parent or near transparent quality with bit rates ranging

between 64–128 kb/s. With the exception of TwinVQ [128],

however, the LP audio codecs have primarily remained

within the experimental domain. In light of the recent trend

toward hybrid speech and audio coding at rates below 16

kb/s, it is useful to consider existing LP techniques in audio

coding. It was observed in formal listening tests during

MPEG-4 standardization, for example, that at certain low

rates, the best choice of signal model depends upon the

source material. In particular, a CELP coder outperforms

a sinusoidal coder for speech, but the sinusoidal coder

outperforms the CELP coder for music. It is conceivable

that a more efficient future hybrid algorithm will capitalize

on the strengths of both signal models in a single coder.

The benefits of perceptual LP codecs in this scenario as

yet have been largely unexplored. In spite of the fact that

the LP analysis–synthesis framework is central to modern

speech coding algorithms [234], it has received relatively

little attention in the audio coding literature or standards.

One reason is that the LP coders are not well suited to

the task of modeling the nearly sinusoidal components

present in steady-state audio signals. These elements create

sharp peaks in the spectral envelope, which often in the

presence of quantization noise lead to LP synthesis filter

instabilities. Another reason for the lack of interest is that

the source-system represented by the LP analysis–syn-

thesis framework does not necessarily model any of the

physical mechanisms that generate audio signals. The

correspondence between the LP analysis–synthesis and the

source-system speech production model has been a primary

reason for its success in speech applications. Whether

or not LP analysis–synthesis is well suited to modeling
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Fig. 38. Multipulse excitation model used in [235].

audio is highly signal-dependent. Nevertheless, several LP

algorithms have been successfully applied to CD-quality

audio. This section considers some examples of LP-based

audio codecs. In addition, the section examines a novel

coder based on frequency-warped LP that has potential for

reduced complexity by eliminating the explicit perceptual

model.

A. Multipulse Excitation

Singhal at Bell Labs [235] reported that analysis-by-syn-

thesis multipulse excitation of sufficient pulse density can

be applied to correct for LP envelope errors introduced by

bandwidth expansion and quantization (Fig. 38). This algo-

rithm uses a twenty-fourth-order LPC synthesis filter while

optimizing pulse positions and amplitudes to minimize per-

ceptually weighted reconstruction errors. Singhal determined

that densities of approximately one pulse per four output

samples of each excitation subframe are required to achieve

near transparent quality. Spectral coefficients are transformed

to inverse sine reflection coefficients, then differentially en-

coded and quantized using pdf-optimized Max quantizers.

Entropy (Huffman) codes are also used. Pulse locations are

differentially encoded relative to the location of the first pulse.

Pulseamplitudesarefractionallyencodedrelativetothelargest

pulse and then quantized using a Max quantizer. The proposed

MPLPC audio coder achieved output SNR’s of 35–40 dB at

a bit rate of 128 kb/s. Other MPLPC audio coders have also

been proposed [236], including a scheme based on MPLPC in

conjunctionwiththediscretewavelet transform[147].

B. Discrete Wavelet Excitation Coding

While the most successful speech codecs nowadays use

some form of closed-loop time-domain analysis-by-syn-

thesis such as MPLPC, high-performance LP-based

perceptual audio coding has been realized with alternative

frequency-domain excitation models. For instance, Boland

and Deriche reported output quality comparable to MPEG-1,

Layer II at 128 kb/s for an LPC audio coder operating at 96

kb/s [237] in which the prediction residual was transform

coded using a three-level DWT based on a four-band uniform

filter bank. At each level of the DWT, the lowest subband

of the previous level was decomposed into four uniform

bands. This ten-band nonuniform structure was intended to

mimic critical bandwidths to a certain extent. A perceptual

bit allocation according to MPEG-1, psychoacoustic model

2 was applied to the transform coefficients.

C. Sinusoidal Excitation Coding

Still other frequency-domain excitation models are pos-

sible. Excitation sequences modeled as a sum of sinu-

soids were investigated [238] in order to capitalize on

the experimentally observed tendency of the prediction

residuals for high-fidelity audio to be spectrally impulsive

rather than flat. In coding experiments using 32-kHz-sam-

pled input audio, subjective and objective quality improve-

ments relative to the MPLPC coders were reported for

the sinusoidal excitation schemes, with high-quality output

audio reported at 72 kb/s. In the experiments [239], a

set of tenth-order LP coefficients is estimated on 9.4-ms

analysis frames and split-vector quantized using 24 bits.

Then, the prediction residual is analyzed and sinusoidal

parameters are estimated for the seven best out of a can-

didate set of 13 sinusoids for each of six subframes.

The masked threshold is estimated and used to form a

time-varying bit allocation for the amplitudes, frequencies,

and phases on each subframe. Given a frame allocation

of 675, a total of 573, 78, and 24 bits, respectively, are

allocated to the sinusoidal, bit allocation side informa-

tion, and LP coefficients. In conjunction with the usage

of a masking-threshold adapted weighting filter, the si-

nusoidal excitation scheme was also reported to deliver

improved quality relative to MPEG-1, Layer I at a bit

rate of 96 kb/s [238] for selected test material, including

piano, horn, and drum.

D. Frequency Warped LP

Beyond the performance improvements realized through

the use of different excitation models, there has been some

interest in warping the frequency axis prior to performing

LP analysis to effectively provide better resolution at some

frequencies than at others. In the context of perceptual

coding, it is naturally of interest to achieve a Bark-scale

warping. Frequency axis warping to achieve nonuniform

FFT resolution was first introduced by Oppenheim et al.

[240], [241] using a network of cascaded first-order all-pass

sections for frequency warping of the signal, followed by

a standard FFT. The idea was later extended to warped

linear prediction (WLP) by Strube [242], and was ultimately

applied in an ADPCM codec [243]. Cascaded First-order

all-pass sections were used to warp the signal, and then the

LP autocorrelation analysis was performed on the warped

autocorrelation sequence. In this scenario, a single-param-

eter warping of the frequency axis can be introduced into

the LP analysis by replacing the delay elements in the FIR

analysis filter with all-pass sections, i.e., by replacing the

complex variable with a filter of the form

(51)

Thus, the predicted sample value is not produced from a com-

bination of past samples, but rather from the samples of a

warped signal. In fact, it has been shown [244], [405] that

selecting the value of 0.723 for the parameter leads to a
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Fig. 39. ISO/IEC 11172-3 (MPEG-1) layer I/II encoder.

frequency warp that approximates well the Bark frequency

scale. A WLP-based audio codec [245] was recently pro-

posed. The inherent Bark frequency resolution of the WLP

prediction residual yields a perceptually shaped quantiza-

tion noise without the use of an explicit perceptual model or

time-varying bit allocation. In this system, a fortieth-order

WLP synthesis filter is combined with differential encoding

of the prediction residual. A fixed rate of 2 bits per sample

(88.2 kb/s) is allocated to the residual sequence, and 5 bits

per coefficient are allocated to the prediction coefficients on

an analysis frame of 800 samples, or 18 ms. This translates to

a bit rate of 99.2 kb/s per channel. In objective terms, an au-

ditory error measure showed considerable improvement for

the WLP coding error in comparison to a conventional LP

coding error when the same number of bits was allocated to

the prediction residuals. Subjectively, the algorithm was re-

ported to achieve transparent quality for some material, but

it also had difficulty with transients at the frame boundaries.

The algorithm was later extended to handle stereophonic sig-

nals [246] by forming a complex-valued representation of

the two channels and then using WLP for complex signals

(CWLP). Less than CD quality was reported at a rate of 128

kb/s for 44.1-kHz-sampled source material. It was suggested

that significant quality improvement could be realized for

the WLPC audio coder by improving the excitation model

to use a closed-loop analysis-by-synthesis procedure such as

CELP or a multipulse model [247]. One of the shortcomings

of the original WLP coder was inadequate attention to tem-

poral effects. As a result, further experiments were reported

[248] in which WLP was combined with TNS to realize ad-

ditional quality improvement for the complex-signal stereo-

phonic WLP audio coder. Future developments in LP-based

audio codecs will continue to appear, particularly in the con-

text of low-rate hybrid coders for both speech and audio.

VIII. AUDIO CODING STANDARDS

This section gives both high-level descriptions and

important details of several international and com-

mercial product audio coding standards, including the

ISO/IEC MPEG-1/-2/-4 series, the Dolby AC-2/AC-3, the

Sony ATRAC/MiniDisc/SDDS, the Lucent Technologies

PAC/EPAC/MPAC, and the Phillips DCC algorithms.

A. ISO/IEC 11172-3 (MPEG-1) and ISO/IEC IS13818-3

(MPEG-2 BC)

An International Standards Organization/Moving Pictures

Experts Group (ISO/MPEG) audio coding standard for

stereo CD-quality audio was adopted in 1992 after four

years of extensive collaborative research by audio coding

experts worldwide. ISO 11172-3 [249] comprises a flex-

ible hybrid coding technique, which incorporates several

methods including subband decomposition, filter bank

analysis, transform coding, entropy coding, dynamic bit

allocation, nonuniform quantization, adaptive segmentation,

and psychoacoustic analysis. MPEG coders accept 16-bit

PCM input data at sample rates of 32, 44.1, and 48 kHz.

MPEG-1 (1992) offers separate modes for mono, stereo,

dual independent mono, and joint stereo. Available bit

rates are 32–192 kb/s for mono and 64–384 kb/s for stereo.

MPEG-2 (1994) [250]–[252] extends the capabilities offered

by MPEG-1 to support the so called 3/2 channel format

with left, right, center, and left and right surround channels.

The first MPEG-2 standard was backward compatible with

MPEG-1 in the sense that 3/2 channel information trans-

mitted by an MPEG-2 encoder can be correctly decoded

for two-channel presentation by an MPEG-1 receiver. The

second MPEG-2 standard sacrificed backward MPEG-1

compatibility to eliminate quantization noise unmasking

artifacts [253] which are potentially introduced by the forced

backward compatibility. Several tutorials on the MPEG-1

[254]–[257] and MPEG-1/2 [30], [31], [75] standards have

appeared. MPEG standardization work is continuing, and

will eventually lead to very low rates for high fidelity,

perhaps reaching as low as 16 kb/s per channel.

The MPEG-1 architecture contains three layers of in-

creasing complexity, delay, and output quality. Each higher

layer incorporates functional blocks from the lower layers.

Layers I and II (Fig. 39) work as follows. The input signal

is first decomposed into 32 critically subsampled subbands

using a polyphase realization of a PQMF bank [78] (Sec-

tion III). The channels are equally spaced such that a 48-kHz

input signal is split into 750-Hz subbands, with the subbands

decimated 32 : 1. A 511th-order prototype filter was chosen

such that the inherent overall PQMF distortion remains

below the threshold of audibility. Moreover, the prototype

filter was designed for very high sidelobe attenuation (96

dB) to insure that intraband aliasing due to quantization
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Fig. 40. ISO/IEC 11172-3 (MPEG-1) layer III encoder.

noise remains negligible. For the purposes of psychoacoustic

analysis and determination of JND thresholds, a 512 (layer

I) or 1024 (layer II) point FFT is computed in parallel with

the subband decomposition for each decimated block of

12 input samples (8 ms at 48 kHz). Next, the subbands are

block companded (normalized by a scalefactor) such that the

maximum sample amplitude in each block is unity, then an

iterative bit allocation procedure applies the JND thresholds

to select an optimal quantizer from a predetermined set

for each subband. Quantizers are selected such that both

the masking and bit-rate requirements are simultaneously

satisfied. In each subband, scale factors are quantized using

6 bits and quantizer selections are encoded using 4 bits.

1) Layer I: For layer I encoding, decimated subband

sequences are quantized and transmitted to the receiver in

conjunction with side information, including quantized scale

factors and quantizer selections.

2) Layer II: Layer II improves three portions of Layer

I in order to realize enhanced output quality and reduce bit

rates at the expense of greater complexity and increased

delay. In particular, the perceptual model relies upon a

higher resolution FFT, the maximum subband quantizer

resolution is increased, and scale-factor side information is

reduced while exploiting temporal masking by considering

properties of three adjacent 12-sample blocks and optionally

transmitting one, two, or three scale factors. Average MOS’s

of 4.7 and 4.8 were reported [30] for monaural layer I and

layer II codecs operating at 192 and 128 kb/s, respectively.

Averages were computed over a range of test material.

3) Layer III: The layer III MPEG (Fig. 40) architecture

achieves performance improvements by adding several im-

portant mechanisms on top of the layer I/II foundation. A hy-

brid filter bank is introduced to increase frequency resolution

and thereby better approximate critical band behavior. The

hybrid filter bank includes adaptive segmentation to improve

pre-echo control. Sophisticated bit allocation and quantiza-

tion strategies that rely upon nonuniform quantization, anal-

ysis-by-synthesis, and entropy coding are introduced to allow

reduced bit rates and improved quality. The hybrid filter bank

is constructed by following each subband filter with an adap-

tive MDCT. This practice allows for higher frequency res-

olution and pre-echo control. Use of an 18-point MDCT,

for example, improves frequency resolution to 41.67 Hz per

spectral line. The adaptive MDCT switches between 6–18

points to allow improved pre-echo control. Shorter blocks (4

ms) provide for temporal premasking of pre-echoes during

transients; longer blocks during steady-state periods improve

coding gain, while also reducing side information and hence

bit rates. Bit allocation and quantization of the spectral lines

are realized in a nested loop procedure that uses both nonuni-

form quantization and Huffman coding. The inner loop ad-

justs the nonuniform quantizer step sizes for each block until

the number of bits required to encode the transform compo-

nents falls within the bit budget. The outer loop evaluates the

quality of the coded signal (analysis-by-synthesis) in terms

of quantization noise relative to the JND thresholds. Average

MOS of 3.1 and 3.7 were reported [30] for monaural layer II

and layer III codecs operating at 64 kb/s.

4) Applications: MPEG-1 has been successful in nu-

merous applications. For example, MPEG-1 Layer III has

become the de facto standard for transmission and storage

of compressed audio for both WWW and handheld media

applications (e.g., Diamond RIO). In these applications,

the “.MP3” label denotes MPEG-1, Layer III. Note that

MPEG-1 audio coding has steadily gained acceptance and

ultimately has been deployed in several other large scale

systems, including the European digital radio (DBA) or

Eureka [359], direct broadcast satellite [360], and digital

compact cassette [366]. Recently, moreover, the collabora-

tive European Advanced Communications Technologies and

Services (ACTS) program adopted MPEG audio and video

as the core compression technologies for the Advanced

Television at Low Bitrates And Networked Transmission

over Integrated Communication systems (ATLANTIC)

project, a system intended to provide functionality for

television program production and distribution [258], [259].

The ATLANTIC system has posed new challenges for

MPEG deployment such as seamless bitstream (source)

switching [260] and robust transcoding (tandem coding).

Unfortunately, transcoding is neither guaranteed nor likely

to preserve perceptual noise masking [261]. A buried data

“MOLE” signal was proposed to mitigate and in some cases

eliminate transcoding distortion for cascaded MPEG-1 layer

II codecs [262], ideally allowing downstream tandem stages

to preserve the original bitstream. The idea behind the

MOLE is to apply the same set of quantizers to the same set

of data in the downstream codecs as in the original codec.

The output bitstream will then be identical to the original
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Fig. 41. ISO/IEC IS13818-7 (MPEG-2 NBC/AAC) encoder (after [266]).

bitstream, provided that numerical precision in the analysis

filter banks does not bias the data [263].

We will next consider the more recent and in some

cases still-evolving MPEG standards for audio, namely, the

MPEG-2 AAC and the MPEG-4 algorithms. The discus-

sion will focus primarily upon architectural novelties and

differences from MPEG-1.

B. ISO/IEC IS13818-7 (MPEG-2 NBC/AAC)

The 11172-3 MPEG-1 and IS13818-3 MPEG-2 BC/LSF

algorithms standardized practical methods for high-quality

coding of monaural and stereophonic program material. By

the early 1990’s, however, demand for high-quality coding of

multichannel audio at reduced bit rates had increased signif-

icantly. Although the MPEG-1 and MPEG-2 BC/LSF algo-

rithms had exploited many of the audio coding research ad-

vances that had occurred since the late 1980’s, a few recent

tools still had not been adopted in the international standards.

Moreover, the backward compatibility constraints imposed

on the MPEG-2 BC/LSF algorithm made it impractical to

code five-channel program material at rates below 640 kb/s.

As a result, MPEG began standardization activities for a non-

backward compatible advanced coding system targeting “in-

distinguishable” quality [264] at a rate of 384 kb/s for five

full bandwidth channels. In less than three years, this effort

led to the adoption of the IS13818-7 MPEG-2 Non-back-

ward Compatible/Advanced Audio Coding (NBC/AAC) al-

gorithm [265], a system that exceeded design goals and pro-

duced the desired quality at only 320 kb/s for five full band-

width channels. While similar in many respects to its prede-

cessors, the AAC algorithm [75], [266], [267] achieves per-

formance improvements by incorporating coding tools pre-

viously not found in the standards such as filter bank window

shape adaptation, spectral coefficient prediction, temporal

noise shaping, and bandwidth- and bit-rate-scaleable oper-

ation. Improvements in bit rate and quality are also realized

through the use of a sophisticated noiseless coding scheme

integrated with a two-stage bit allocation procedure. More-

over, the AAC algorithm contains scalability and complexity

management tools not previously included with the MPEG

algorithms. As far as applications are concerned, the AAC al-

gorithm is currently embedded in the atob and LiquidAudio

players for streaming of high-fidelity stereophonic audio. It

is also a candidate for standardization in the United States

Digital Audio Radio (U.S. DAR) project. The remainder of

this section describes some of the features unique to MPEG-2

AAC.

The MPEG-2 AAC algorithm (Fig. 41) is organized

as a set of coding tools. Depending upon available CPU

or channel resources and desired quality, one can select

from among three complexity “profiles,” namely main, low

(LC), and scalable sample rate (SSR) profiles. Each profile

recommends a specific combination of tools. Our focus here

is on the complete set of tools available for main profile

coding, which works as follows.

1) Filter Bank: First, a high-resolution MDCT filter

bank obtains a spectral representation of the input. Like

previous MPEG coders, the AAC filter bank resolution

is signal adaptive. Stationary signals are analyzed with a

2048-point window, while transients are analyzed with a

block of eight 256-point windows to maintain time synchro-

nization for channels using different filter bank resolutions

during multichannel operations. The maximum frequency

resolution is therefore 23 Hz for a 48 kHz sample rate, and

the maximum time resolution is 2.6 ms. Unlike previous

MPEG coders, however, AAC eliminates the hybrid filter

bank and relies on the MDCT exclusively. The AAC filter

bank is also unique in its ability to switch between two

distinct MDCT analysis window shapes. Given particular

input signal characteristics, the idea behind window shape

adaptation is to optimize filter bank frequency selectivity in

the sense of localizing supramasking threshold signal energy

to the extent possible in the fewest spectral coefficients.

This strategy seeks essentially to maximize the perceptual

coding gain of the filter bank. While both satisfying the

perfect reconstruction and aliasing cancellation constraints

of the MDCT, the two windows offer different spectral

analysis properties. A sine window [(47)] is selected when
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narrow passband selectivity is more beneficial than strong

stopband attenuation, as in the case of inputs characterized

by a dense harmonic structure (less than 140-Hz spacing)

such as harpsichord or pitch pipe. On the other hand, a KBD

window is selected in cases for which stronger stopband

attenuation is required, or for situations in which strong

components are separated by more than 220 Hz. The KBD

window in AAC has its origins in the MDCT filter bank

window designed at Dolby Labs for the AC-3 algorithm

using explicitly perceptual criteria. Details of the minimum

masking template design procedure are given in [268] and

[269].

2) Spectral Prediction: The AAC algorithm realizes

improved coding efficiency relative to its predecessors by

applying prediction over time to the transform coefficients

below 16 kHz, as was done previously in [118], [270], and

[271].

3) Bit Allocation: The bit allocation and quantization

strategies in AAC bear some similarities to previous MPEG

coders in that they make use of a nested loop iterative

procedure, and in that psychoacoustic masking thresholds

are obtained from an analysis model similar to MPEG-1,

model recommendation number two. Both lossy and lossless

coding blocks are integrated into the rate-control loop struc-

ture so that redundancy removal and irrelevancy reduction

are simultaneously affected in a single analysis-by-synthesis

process. As in the case of MPEG-1, Layer III, the AAC

coefficients are grouped into 49 scale-factor bands that

mimic the auditory system’s frequency resolution. As with

MPEG-1 Layer III and Lucent Technologies PAC, a bit

reservoir is maintained to compensate for time-varying

perceptual bit-rate requirements.

4) Noiseless Coding: The noiseless coding block [272]

embedded in the rate-control loop has several innovative

features as well. Twelve Huffman codebooks are available

for two- and four-tuple blocks of quantized coefficients.

Sectioning and merging techniques are applied to maximize

redundancy reduction. Individual codebooks are applied

to time-varying “sections” of scale-factor bands, and the

sections are defined on each frame through a greedy merge

algorithm that minimizes the bitrate. Grouping across time

and intraframe frequency interleaving of coefficients prior

to codebook application are also applied to maximize zero

coefficient runs and further reduce bit rates.

5) Other Enhancements: The AAC has an embedded

TNS module for pre-echo control (Section III-E), a special

profile for SSR, and time-varying as well as frequency

subband selective application of MS and/or intensity stereo

coding for five-channel inputs [273].

6) Performance: Incorporation of the nonbackward

compatible coding enhancements proved to be a judicious

strategy for the AAC algorithm. In independent listening

tests conducted worldwide [274], the AAC algorithm met

the strict ITU-R BS.1116 criteria for “indistinguishable”

quality [275] at a rate of 320 kb/s for five full bandwidth

channels [276]. This level of quality was achieved with a

manageable decoder complexity. Two-channel real-time

AAC decoders were reported to run on 133-MHz Pentium

platforms using 40% and 25% of available CPU resources

for the main and low complexity profiles, respectively [277].

In the future, MPEG-2 AAC will maintain a presence as the

core “time-frequency” coder reference model for the new

MPEG-4 standard.

7) Reference Model Validation : Before proceeding with

a discussion of MPEG-4, we first consider a significant

system-level aspect of MPEG-2 AAC that also propagated

into MPEG-4. Both algorithms are structured in terms of

so-called reference models (RM’s). In the RM approach,

generic coder blocks or tools (e.g., perceptual model, filter

bank, rate-control loop, etc.) adhere to a set of defined

interfaces. The RM therefore facilitates the testing of in-

cremental single block improvements without disturbing

the existing macroscopic RM structure. For instance, one

could devise a new psychoacoustic analysis model that

satisfies the AAC RM interface and then simply replace

the existing RM perceptual model in the reference soft-

ware with the proposed model. It is then a straightforward

matter to construct performance comparisons between the

RM method and the proposed method in terms of quality,

complexity, bit rate, delay, or robustness. The RM defini-

tions are intended to expedite the process of evolutionary

coder improvements.

In fact, several practical AAC improvements have already

been analyzed within the RM framework. For example, in

[278] a new backward predictor is proposed as a replace-

ment for the existing backward adaptive LMS predictors, re-

sulting in a 38% computational savings. Forward adaptive

predictors have also been investigated [279]. In another ex-

ample of RM efficacy, improvements to the AAC noiseless

coding module were also reported in [280]. A modification

to the greedy merge sectioning algorithm was proposed in

which high-magnitude spectral peaks that tended to degrade

Huffman coding efficiency were coded separately. In yet an-

other example of RM innovation aimed at improving quality

for a given bit rate, product code VQ techniques [281] were

applied to increase AAC scale-factor coding efficiency [282].

This scheme realized significant quality improvements for

critical test items at low rates, because scale factors are decor-

related using a DCT and then grouped into subvectors for

quantization by a product code VQ [283].

8) Enhanced AAC in MPEG-4: The next section is

concerned with the multimodal MPEG-4 audio standard,

for which the MPEG-2 AAC RM core was selected as

the “time-frequency” audio coding RM, although some

improvements have already been realized. Recently, for

example, perceptual noise substitution (PNS) was included

[284] as part of the MPEG-4 AAC RM. The PNS exploits

the fact that a random noise process can be used to model

efficiently transform coefficients in noise-like frequency

subbands, provided the noise vector has an appropriate

temporal fine structure [122]. Bit-rate reduction is realized

since only a compact, parametric representation is required

for each PNS subband (i.e., noise energy) rather than

requiring full quantization and coding of subband transform

coefficients. At a bit rate of 32 kb/s, a mean improvement

due to PNS of 0.61 on the comparison mean opinion score
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Fig. 42. ISO/IEC MPEG-4 integrated tools for audio coding (after [288]).

(CMOS) test for critical test items such as speech, castanets,

and complex sound mixtures was reported in [284].

C. ISO/IEC 14 496-3 (MPEG-4)

Version one of the most recent MPEG audio standard,

ISO/IEC 14 496 or MPEG-4, was adopted in December 1998

after many proposed algorithms were tested [285], [286] for

compliance with the program objectives established by the

MPEG committee. MPEG-4 audio encompasses a great deal

more functionality than just perceptual coding [287]. It com-

prises an integrated family of algorithms with wide-ranging

provisions for scaleable, object-based speech and audio

coding at bit rates from as low as 200 b/s up to 64 kb/s per

channel. The distinguishing features of MPEG-4 relative

to its predecessors are extensive scalability, object-based

representations, user interactivity/object manipulation, and a

comprehensive set of coding tools available to accommodate

almost any desired tradeoff among bit rate, complexity, and

quality. Very low rates are achieved through the use of struc-

tured representations for synthetic speech and music, such

as text-to-speech and MIDI. For higher bit rates and “natural

audio” speech and music, the standard provides integrated

coding tools that make use of different signal models, the

choice of which is made depending upon desired bit rate,

bandwidth, complexity, and quality. Coding tools are also

specified in terms of MPEG-4 “profiles,” which essentially

recommend tool sets for a given level of functionality

and complexity. Beyond its provisions specific to coding

of speech and audio, MPEG-4 also specifies numerous

sophisticated system-level functions for media-independent

transport, efficient buffer management, syntactic bitstream

descriptions, and time-stamping for synchronization of

audiovisual information units. Although a discussion of

these features is not relevant to our focus on perceptual

coding, an excellent overview is given in [288]. Also note

that a perspective on future directions within MPEG audio

appeared in [289].

1) Natural Audio Coding Tools: MPEG-4 audio version

one [288] integrates a set of tools (Fig. 42) for coding of

natural sounds [290] at bit rates ranging from as low as

200 b/s up to 64 kb/s per channel. For speech and audio,

three distinct algorithms are integrated into the framework,

namely, two parametric coders for bitrates of 2–4 kb/s

and 8-kHz sample rate as well as 4–16 kb/s and 8- or

16-kHz sample rates (Section VI-B). For higher quality,

narrow-band (8-kHz sample rate) or wide-band (16 kHz)

speech is handled by a CELP speech codec operating

between 6 and 24 kb/s. For generic audio at bit rates above

16 kb/s, a “time/frequency” perceptual coder is employed,

and in particular the MPEG-2 AAC algorithm with exten-

sions for fine-grain bit-rate scalability [291] is specified in

MPEG-4 version one RM as the time-frequency coder. The

multimodal framework of MPEG-4 audio allows the user to

tailor the coder characteristics (i.e., the signal model) to the

program material.

2) Synthetic Audio Coding Tools: Whereas earlier

MPEG standards treated only natural audio program

material, MPEG-4 achieves very low rate coding by sup-

plementing its natural audio coding techniques with tools

for synthetic audio processing [292] and interfaces for

structured, high-level audio representations. Chief among

these are the text-to-speech interface (TTSI) and methods for

score-driven synthesis. The TTSI provides the capability for

200–1200 b/s transmission of synthetic speech that can be

represented in terms of either text only or text plus prosodic

parameters. Beyond speech, general music synthesis capa-

bilities in MPEG-4 are provided by a set of structured audio

tools [293]–[295]. Synthetic sounds are represented using

the structured audio orchestra language (SAOL). SAOL
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[296] treats music as a collection of instruments and instru-

ments as small networks of signal-processing primitives, all

of which can be downloaded to a decoder. Although no stan-

dard synthesis techniques are specified, available synthesis

methods include the following: wavetable, FM, additive,

physical modeling, granular synthesis, or nonparametric

hybrids of any of these methods [297]. An excellent tutorial

on structured audio methods and applications appeared

recently in [298].

3) MPEG-4 Audio Profiles: Although many coding and

processing tools are available in MPEG-4 audio, cost and

complexity constraints often dictate that it is not practical

to implement all of them in a particular system. Version

1 therefore defines four complexity-ranked audio profiles

intended to help system designers in the task of appro-

priate tool subset selection. In order of bit rate, they are

as follows. The low-rate synthesis audio profile provides

only wavetable-based synthesis and a text-to-speech (TTS)

interface. For natural audio-processing capabilities, the

speech audio profile provides a very low-rate speech coder

and a CELP speech coder. The scaleable audio profile offers

a superset of the first two profiles. With bit rates ranging

from 6 to 24 kb/s and bandwidths from 3.5 to 9 kHz, this

profile is suitable for scalable coding of speech, music, and

synthetic music in applications such as Internet streaming or

narrow-band audio digital broadcasting (NADIB). Finally,

the main audio profile is a superset of all other profiles, and

it contains tools for both natural and synthetic audio.

4) MPEG-4 Audio Version Two: While remaining

backward compatible with MPEG-4 version 1, MPEG-4

version 2 will add new profiles that incorporate a number of

significant system-level and functionality enhancements. At

the system level, version 2 will include a media independent

bitstream format that supports streaming, editing, local

playback, and interchange of contents. Also in version 2, an

MPEG-J “programmatic system” will specify an application

programming interface (API) for interoperation of MPEG

players with JAVA code. New error resilience techniques in

version 2 will allow both equal and unequal error protection

for the audio bit streams. As for functionality, version 2 will

offer improved audio realism in sound rendering. New tools

will allow parameterization of the acoustical properties of

an audio scene, enabling features such as immersive audio-

visual rendering, room acoustical modeling, and enhanced

three-dimensional sound presentation. TTS interfaces from

version 1 will be enhanced in version 2 with a markup

TTS intended for applications such as speech-enhanced

Web browsing, verbal e-mail, and “story-teller” on demand.

MPEG-4 standardization activities are ongoing. One can

obtain up-to-date information from several on-line sources.

For example, structured audio information can be found on

[299]. The complete 2500 page May 1998 MPEG-4 Final

Committee Draft document is also available electronically

from [299].

D. Precision Adaptive Subband Coding

Phillips’ DCC is an example of a consumer product that es-

sentially implements the 384-kb/s stereo mode of MPEG-1,

layer I. A discussion of the “Precision Adaptive Subband

Coding” algorithm and other elements of the DCC system

are given in [300].

E. Adaptive Transform Acoustic Coding

The ATRAC algorithm developed by Sony for use

in its rewritable MiniDisc system makes combined use

of subband and transform coding techniques to achieve

nearly CD-quality coding of 44.1-kHz 16-bit PCM input

data [301] at a bit rate of 146 kb/s per channel [302].

Using a tree-structured QMF analysis bank, the ATRAC

encoder (Fig. 43) first splits the input signal into three

subbands of 0–5.5 kHz, 5.5–11 kHz, and 11–22 kHz. Like

MPEG layer III, the ATRAC QMF bank is followed by

signal-adaptive MDCT analysis [(44)] in each subband.

The window switching scheme works as follows. During

steady-state input periods, high-resolution spectral analysis

is attained using 512 sample blocks (11.6 ms). During

input attack or transient periods, however, short block sizes

of 1.45 ms in the high-frequency band and 2.9 ms in the

low and mid-frequency bands are used to affect pre-echo

cancellation. After MDCT analysis, spectral components

are clustered into 52 nonuniform subbands [block floating

units (BFU’s)] according to a critical band spacing. The

BFU’s are block-companded, quantized, and encoded

according to a psychoacoustically derived bit allocation.

For each analysis frame, the ATRAC encoder transmits

quantized MDCT coefficients, subband window lengths,

BFU scalefactors, and BFU word lengths to the decoder.

Like the MPEG family, the ATRAC architecture decouples

the decoder from psychoacoustic analysis and bit allocation

details. Evolutionary improvements in the encoder bit allo-

cation strategy are therefore possible without modifying the

decoder structure. An added benefit of this architecture is

asymmetric complexity, which enables inexpensive decoder

implementations.

Suggested bit allocation techniques for ATRAC are of

lower complexity than those found in other standards since

ATRAC is intended for low-cost, battery-powered consumer

electronics equipment. One proposed method distributes

bits between BFU’s according to a weighted combination of

fixed and adaptive bit allocations [303]. For the th BFU,

bits are allocated according to the relation

(52)

where

fixed allocation;

signal-adaptive allocation;

parameter constant offset computed to guarantee a

fixed bit rate;

parameter tonality estimate ranging from zero (noise-

like) to one (tone-like).

The fixed allocations are the same for all inputs and

concentrate more bits at lower frequencies. The signal-adap-

tive bit allocations allocate bits according to the

strength of the MDCT components. The effect of (52) is that

more bits are allocated to BFU’s containing strong peaks

for tonal signals. For noise-like signals, bits are allocated

496 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Authorized licensed use limited to: New York University. Downloaded on November 2, 2009 at 11:25 from IEEE Xplore.  Restrictions apply. 



Fig. 43. Sony ATRAC (MiniDisc, SDDS).

according to the fixed allocation, with low bands receiving

more bits than high bands. Clearly, this method relies on

heuristic principles rather than detailed psychoacoustic

analysis such as the MPEG model recommendations (Sec-

tion VIII-G). The resulting system achieves a reasonable

tradeoff among complexity, quality, and bit rate.

F. Sony Dynamic Digital Sound (SDDS)

In addition to enabling near CD quality on a MiniDisc

medium, the ATRAC algorithm has also been deployed as

the core of Sony’s digital cinematic sound system, SDDS.

SDDS integrates eight independent ATRAC modules to carry

the program information for the left, left center, center, right

center, right, subwoofer, left surround, and right surround

channels typically present in a modern theater. SDDS data

are recorded using optical black and white dot-matrix tech-

nology onto two thin strips along the right and left edges of

the film, outside of the sprocket holes, and each edge contains

four channels. There are 512 ATRAC bits per channel associ-

ated with each movie frame, and each optical data frame con-

tains a matrix of 52 192 bits [304]. SDDS data tracks do

not interfere with or replace the existing analog sound tracks.

Both Reed–Solomon error correction and redundant track

information delayed by 18 frames are employed to make

SDDS robust to bit errors introduced by run-length scratches,

dust, splice points, and defocusing during playback or film

printing. Analog program information is used as a backup in

the event of uncorrectable digital errors.

G. Lucent Technologies Perceptual Audio Coder (PAC),

Enhanced PAC (EPAC), and Multichannel PAC (MPAC)

The pioneering research contributions on perceptual

entropy [45], monophonic PXFM [6], stereophonic PXFM

[305], and ASPEC [9] strongly influenced not only the

MPEG family architecture but also evolved at AT&T Bell

Laboratories into the PAC. AT&T and Lucent Technologies

separated after the MPAC algorithm was evaluated for

MPEG NBC/AAC testing, and the PAC algorithm subse-

quently became proprietary to Lucent. AT&T, meanwhile,

has become active in the MPEG-2 AAC research and

standardization. The low-complexity profile of AAC has

become the AT&T coding standard. Like the MPEG coders,

the current Lucent PAC algorithm is flexible in that it

supports monophonic, stereophonic, and multiple channel

modes. In fact, the bitstream definition will accommodate

up to 16 front side, seven surround, and seven auxiliary

channel pairs, as well as three low-frequency effects (LFE

or subwoofer) channels. Depending upon desired quality,

PAC supports several bit rates. For a modest increase in

complexity at a particular bit rate, moreover, improved

output quality can be realized by enabling enhancements to

the original system (EPAC). For example, whereas 96-kb/s

output was judged to be adequate with stereophonic PAC,

near and transparent CD output qualities were reported at

56–64 kb/s and 128 kb/s, respectively, for stereophonic

EPAC [306]. This section gives an overview of the PAC,

EPAC, and MPAC algorithms, concentrating primarily on

the innovations that differentiate this system from the others

reviewed in this document.

1) PAC: The original PAC system described in [307]

achieves very high-quality coding of stereophonic inputs

at 96 kb/s. Like MPEG-1 layer III and ATRAC, the PAC

encoder [Fig. 44(a)] uses a signal-adaptive MDCT filter

bank to analyze the input spectrum with appropriate fre-

quency resolution. A long window of 2048 points (1024

subbands) is used during steady-state segments, or else a

series of short 256-point windows (128 subbands) is applied

during segments containing transients or sharp attacks. In

contrast to MPEG-1 and ATRAC, however, PAC relies on

the MDCT alone rather than incorporating MDCT analysis

into a hybrid filter bank structure, thus realizing a relative

complexity reduction in the filter bank section. As noted

previously [115], [119], the MDCT lends itself to compact

representation of stationary signals, and a 2048-point block

size yields sufficiently high frequency resolution for most

sources. This segment length was also associated with the

maximum realizable coding gain as a function of block size

[308]. Masking thresholds are used to select one of 128

exponentially distributed quantization step sizes in each

of 49 or 14 coder bands (analogous to ATRAC BFU’s) in

high-resolution and low-resolution modes, respectively. The

coder bands are quantized using an iterative rate control loop

in which thresholds are adjusted to satisfy simultaneously
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(a)

(b)

Fig. 44. Lucent Technologies PAC: (a) PAC and (b) EPAC.

bit-rate constraints and an equal loudness criterion that

attempts to shape quantization noise such that its absolute

loudness is constant relative to the masking threshold. The

rate control loop allows time-varying instantaneous bit rates,

much like the bit reservoir of MPEG-1 layer III. Remaining

statistical redundancies are removed from the stream of

quantized spectral samples prior to bitstream formatting

using eight structured, multidimensional Huffman code-

books.

2) EPAC: In an effort to enhance PAC output quality

at low bitrates, Sinha and Johnston introduced a novel

signal-adaptive MDCT/WP switched filter bank scheme

[Fig. 44(b)], which resulted in nearly transparent coding for

CD-quality source material at 64 kb/s per stereo pair [308].

EPAC is unique in that it switches between two distinct

filter banks rather than relying upon hybrid [17], [302] or

nonuniform cascade [201] structures. In subjective tests

involving 12 expert and nonexpert listeners with difficult

castanets and triangle test signals, EPAC outperformed PAC

at a rate of 64-kb/s per stereo pair by an average of 0.4–0.6

on a five-point quality scale.

3) MPAC: Like the MPEG, AC-3, and SDDS systems,

the PAC algorithm also extends its monophonic processing

capabilities into stereophonic and multiple channel modes.

Stereophonic PAC computes individual masking thresholds

for the left, right, mono, and stereo ( ,

and ) signals using a version of the monophonic

perceptual model that has been modified to account for bi-

nary-level masking differences (BLMD’s) or binaural un-

masking effects [309]. Then, monaural PAC methods encode

either the signal pairs or . In order to minimize the

overall bit rate, however, an switching procedure

is embedded in the rate control loop such that different en-

coding modes ( or ) can be applied to the individual

coder bands on the same analysis frame. MPAC was found to

produce the best quality at 320 kb/s for five channels during

a recent ISO test of multichannel algorithms [310].

4) Applications: Both 128- and 160-kb/s stereophonic

versions of PAC are currently being considered for stan-

dardization in the U.S. DAR project. In an effort to provide

graceful degradation and extend broadcast range in the

presence of heavy fading associated with fringe reception

areas, perceptually motivated unequal error protection (UEP

channel coding) schemes were examined in [311]. The

availability of JAVA PAC decoder implementations are

reportedly increasing PAC deployment among suppliers of

internet audio program material [306]. MPAC has been con-

sidered for cinematic and advanced television applications.

Real-time PAC and EPAC decoder implementations have

been demonstrated on 486-class PC platforms.

H. DOLBY AC-2, AC-2A

Since the late 1980’s, Dolby Laboratories has been ac-

tive in perceptual audio coding research and standardiza-

tion, and Dolby researchers have made numerous scientific

contributions within the collaborative framework of MPEG

audio. On the commercial front, Dolby has developed the

AC-2 and the AC-3 algorithms [268]. The AC-2 [312],

[313] is a family of single-channel algorithms operating

at bit rates between 128 and 192 kb/s for 20-kHz band-

width input sampled at 44.1 or 48 kHz. There are four

available AC-2 variants, all of which share a common ar-

chitecture in which the input is mapped to the frequency

domain by an evenly stacked TDAC filter bank [87] with

a novel parametric Kaiser–Bessel analysis window (Sec-

tions III-C and VIII-B) optimized for improved stopband

attenuation relative to the sine window. The evenly stacked

TDAC differs from the oddly stacked MDCT in that the

evenly stacked low-band filter is half-band, and its mag-

nitude response wraps around the foldover frequency (see

Section III). A unique mantissa-exponent coding scheme

is applied to the TDAC transform coefficients. First, sets

of frequency-adjacent coefficients are grouped into blocks

(subbands) of roughly critical bandwidth. For each, the

block maximum is identified and then quantized as an

exponent in terms of the number of left shifts required

until overflow occurs. The collection of exponents forms

a stair-step spectral envelope having 6 dB (left shift

498 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Authorized licensed use limited to: New York University. Downloaded on November 2, 2009 at 11:25 from IEEE Xplore.  Restrictions apply. 



multiply by dB) resolution, and normalizing the

transform coefficients by the envelope generates a set of

mantissas. The envelope approximates the short-time spec-

trum, and therefore a perceptual model uses the exponents

to compute both a fixed and a signal-adaptive bit alloca-

tion for the mantissas on each frame. As far as details on

the four AC-2 variants are concerned, two versions are de-

signed for low-complexity, low-delay applications, and the

other two for higher quality at the expense of increased

delay or complexity. The AC-2A [314] algorithm employs

a switched 128/512-point TDAC filter bank to improve

quality for transient signals. One AC-2 feature that is

unique among the standards is that the perceptual model

is backward adaptive, meaning that the bit allocation is not

transmitted explicitly. Instead, the AC-2 decoder extracts

the bit allocation from the quantized spectral envelope

using the same perceptual model as the AC-2 encoder.

This structure leads to a significant reduction of side in-

formation and induces a symmetric encoder/decoder com-

plexity, which was well suited to the original AC-2 target

application of single point-to-point audio transport. An ex-

ample single point-to-point system now using low-delay

AC-2 is the DolbyFAX, a full-duplex codec that carries

simultaneously two channels in both directions over four

ISDN “B” links for film and TV studio distance col-

laboration. Low-delay AC-2 codecs have also been in-

stalled on 950 MHz wireless digital studio transmitter

links (DSTL’s). The AC-2 moderate delay and AC-2A

algorithms have been used for both network and wireless

broadcast applications such as cable and DBS television.

I. Dolby AC-3/Dolby Digital/Dolby SR D

The 5.1-channel “surround” format that had become the

de facto standard in most movie houses during the 1980’s

was becoming ubiquitous in home theaters of the 1990’s

that were equipped with matrixed multichannel sound (e.g.,

Dolby ProLogic). As a result of this trend, it was clear that

emerging applications for perceptual coding would eventu-

ally minimally require stereophonic or even multichannel

surround-sound capabilities to gain consumer acceptance.

Although single-channel algorithms such as the AC-2 can

run on parallel independent channels, significantly better

performance can be realized by treating multiple channels

together in order to exploit interchannel redundancies and

irrelevancies. The Dolby Laboratories AC-3 algorithm

[315]–[317], also known as “Dolby Digital” or “SR D,” was

developed specifically for multichannel coding by refining

all of the fundamental AC-2 blocks, including the filter

bank, the spectral envelope encoding, the perceptual model,

and the bit allocation. The coder carries 5.1 channels of

audio (left, center, right, left surround, right surround, and a

subwoofer), but at the same time it incorporates a flexible

downmix strategy at the decoder to maintain compatibility

with conventional monaural and stereophonic sound repro-

duction systems. The “.1” channel is usually reserved for

low-frequency effects and is low-pass bandlimited below

120 Hz. The main features of the AC-3 algorithm are as

follows:

• sample rates: 32, 44.1, and 48 kHz;

• high-quality output at 64 kb/s per channel;

• MDCT filter bank (TDAC [90]), KBD window;

• spectral envelope represented by exponents;

• hybrid forward–backward adaptive perceptual model;

• uniform quantization of mantissas;

• multiple channels processed as an ensemble;

• robust decoder downmix functionality;

• board-level real-time encoders available;

• bit rates: 32–640 kb/s, variable;

• delay roughly 100 ms;

• exponents/mantissa quantization/encoding;

• signal-adaptive exponent strategy;

• parametric bit allocation;

• perceptual model improvements possible;

• frequency-selective intensity coding, LR, MS;

• integral dynamic range control system;

• chip-level real-time decoders available.

The AC-3 works in the following way. A signal-adaptive

MDCT filter bank with a customized KBD window (Sec-

tions III-C and VIII-B) maps the input to the frequency do-

main. Long windows are applied during steady-state seg-

ments, and a pair of short windows is used for transient seg-

ments. The MDCT coefficients are quantized and encoded

by an exponent/mantissa scheme similar to AC-2. Bit alloca-

tion for the mantissas is performed according to a perceptual

model that estimates the masked threshold from the quan-

tized spectral envelope. Like AC-2, an identical perceptual

model resides at both the encoder and decoder to allow for

backward adaptive bit allocation on the basis of the spectral

envelope, thus reducing the burden of side information on

the bitstream. Unlike AC-2, however, the perceptual model is

also forward adaptive in the sense that it is parametric. Model

parameters can be changed at the encoder and the new param-

eters transmitted to the decoder in order to affect modified

masked threshold calculations. Particularly at lower bit rates,

the perceptual bit allocation may yield insufficient bits to sat-

isfy both the masked threshold and the rate constraint. When

this happens, mid/side (MS) and intensity coding (“channel

coupling” above 2 kHz) reduce the demand for bits by ex-

ploiting, respectively, interchannel redundancies and irrele-

vancies. Ultimately, exponents, mantissas, coupling data, and

exponent strategy data are combined and transmitted to the

receiver.

1) Filter Bank: Although the high-level AC-3 structure

(Fig. 45) resembles that of AC-2, there are significant dif-

ferences between the two algorithms. Like AC-2, the AC-3

algorithm first maps input samples to the frequency domain

using a PR cosine-modulated filter bank with a novel KBD

window (Sections III-C and VIII-B, parameters in [268]).

Unlike AC-2, however, AC-3 is based on the oddly stacked

MDCT. The AC-3 also handles window switching differently

than AC-2A. Long, 512-sample (93.75 Hz res. at 48 kHz)

windows are used to achieve reasonable coding gain during

stationary segments. During transients, however, a pair of

256-sample windows replaces the long window to minimize

pre-echoes. Also in contrast to the MPEG and AC-2 algo-

rithms, the AC-3 MDCT filter bank retains PR properties
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Fig. 45. Dolby AC-3 encoder.

during window switching without resorting to bridge win-

dows by introducing a suitable phase shift into the MDCT

basis vectors (equations given in [106]) for one of the two

short transforms. Whenever a scheme similar to the one used

in AC-2A detects transients, short filter bank windows may

activate independently on any one or more of the 5.1 chan-

nels.

2) Exponent Strategy: The AC-3 algorithm uses a refined

version of the AC-2 exponent/mantissa MDCT coefficient

representation, resulting in a significantly improved coding

gain. In AC-3, the MDCT coefficients corresponding to

1536 input samples (six transform blocks) are combined into

a single frame. Then, a frame processing routine optimizes

the exponent representation to exploit temporal redundancy,

while at the same time representing the stair-step spectral

envelope with adequate frequency resolution. In particular,

spectral envelopes are formed from partitions of either one,

two, or four consecutive MDCT coefficients on each of the

six MDCT blocks in the frame. To exploit time redundancy,

the six envelopes can be represented individually, or any

or all of the six can be combined into temporal partitions.

The AC-3 exponent strategy exploits in a signal-dependent

fashion the time- and frequency-domain redundancies that

exist on a frame of MDCT coefficients.

3) Perceptual Model: A novel parametric forward–back-

ward adaptive perceptual model estimates the masked

threshold on each frame. The forward-adaptive component

exists only at the encoder. Given a rate constraint, this block

interacts with an iterative rate control loop to determine the

best set of perceptual model parameters. These parameters

are passed to the backward adaptive component, which

estimates the masked threshold by applying the parameters

from the forward-adaptive component to a calculation

involving the quantized spectral envelope. Identical back-

ward adaptive model components are embedded in both

the encoder and decoder. Thus, model parameters are fixed

at the encoder after several threshold calculations in an

iterative rate control process and then transmitted to the

decoder. The parametric perceptual model also provides a

convenient upgrade path in the form of a bit allocation delta

parameter. It was envisioned that future, more sophisticated

AC-3 encoders might run in parallel two perceptual models,

with one being the original reference model and the other

being an enhanced model with more accurate estimates of

masked threshold. The delta parameter allows the encoder to

transmit a stair-step function for which each tread specifies a

masking level adjustment for an integral number of 1/2-Bark

bands. Thus, the masking model can be incrementally

improved without alterations to the existing decoders. Other

details on the hybrid backward-forward AC-3 perceptual

model can be found in [269].

4) Bit Allocation and Mantissa Quantization: A bit

allocation is determined at the encoder for each frame of

mantissas by an iterative procedure that adjusts the mantissa

quantizers, the multichannel coding strategies (below), and

the forward-adaptive model parameters to satisfy simultane-

ously the specified rate constraint and the masked threshold.

In a manner similar to MPEG-1, quantizers are selected

for the set of mantissas in each partition based on an SMR

calculation. Sufficient bits are allocated to ensure that the

SNR for the quantized mantissas is greater than or equal

to the SMR. If the bit supply is insufficient to satisfy the

masked threshold, then SNR’s can be reduced in selected

threshold partitions until the rate is satisfied, or intensity

coding and MS transformations are used in a frequency-se-

lective fashion to reduce the bit demand. Unlike some of the

other standardized algorithms, the AC-3 does not include an

explicit lossless coding stage for final redundancy reduction

after quantization and encoding.

5) Multichannel Coding: When bit demand imposed

by multiple independent channels exceeds the bit budget,

the AC-3 ensemble processing of 5.1 channels exploits

interchannel redundancies and irrelevancies, respectively, by

making frequency-selective use of MS and intensity coding

techniques. Although the MS and intensity functions can be

simultaneously active on a given channel, they are restricted

to nonoverlapping subbands. The MS scheme is carefully

controlled [317] to maintain compatibility between AC-3

and matrixed surround systems such as Dolby ProLogic.

Intensity coding, also known as channel coupling, is a

multichannel irrelevancy reduction coding technique that

exploits properties of spatial hearing. There is considerable

experimental evidence [318] suggesting that the interaural

time difference of a signal’s fine structure has negligible

influence on sound localization above a certain frequency.

Instead, the ear evaluates primarily energy envelopes. Thus,
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the idea behind intensity coding is to transmit only one

envelope in place of two or more sufficiently correlated

spectra from independent channels, together with some

side information. The side information consists of a set of

coefficients that is used to recover individual spectra from

the intensity channel.

6) System-Level Functions: At the system level, AC-3

provides mechanisms for channel downmixing and dynamic

range control. Downmix capability is essential for the 5.1

channel system since the majority of potential playback sys-

tems are still monaural or, at best, stereophonic. Downmixing

is performed at the decoder in the frequency domain rather

than the time domain to minimize complexity. This is pos-

sible because of the filter bank linearity. The bitstream car-

ries some downmix information since different listening sit-

uations call for different downmix weighting. Dialog level

normalization is also available at the decoder. Finally, the

bitstream has available facilities to handle other control and

ancillary user information such as copyright, language, pro-

duction, and time-code data [319].

7) Complexity: Assuming the standard HDTV configu-

ration of 384 kb/s with a 48-kHz sample rate and imple-

mentation using the Zoran ZR38001 general-purpose DSP

instruction set, the AC-3 decoder memory requirements and

complexity are as follows: 6.6 kb RAM, 5.4 kb ROM, 27.3

MIPS for 5.1 channels; and 3.1 kb RAM, 5.4 kb ROM, and

26.5 MIPS for two channels [320]. Note that complexity

estimates are processor-dependent. For example, on a Mo-

torola DSP56002, 45 MIPS are required for a 5.1-channel

decoder. Encoder complexity varies between two and five

times decoder complexity depending on the encoder sophis-

tication [320]. Numerous real-time encoder and decoder im-

plementations have been reported. Early on, for example, a

single-chip decoder was implemented on a Zoran DSP [321].

More recently, a DP561 AC-3 encoder (5.1 channels, 44.1-

or 48-kHz sample rate) for DVD mastering was implemented

in real time on a DOS/Windows PC host with a plug-in DSP

subsystem. The computational requirements were handled

by an Ariel PC-Hydra DSP array of eight Texas Instruments

TMS 320C44 floating point DSP devices clocked at 50 MHz

[322]. The authors also reported on anticipated completion of

a similar real-time encoder with only two or three 80-MHz

fixed-point Motorola 56 300 DSP devices [322].

8) Applications and Standardization: The first popular

AC-3 application was in the cinema. The “Dolby Digital” or

“SR D” AC-3 information is interleaved between sprocket

holes on one side of the 35-mm film. The AC-3 was first

deployed in only three theaters for the film Star Trek VI

in 1991, after which the official rollout of Dolby SR D

occurred in 1992 with Batman Returns. By 1997, more than

900 film soundtracks had been AC-3 encoded. Nowadays,

the AC-3 algorithm is finding use in DVD, cable televi-

sion, and DBS. Many high-fidelity amplifiers and receiver

units now contain embedded AC-3 decoders and accept

an AC-3 digital rather than an analog feed from external

sources such as DVD. In addition, the DP504/524 version

of the DolbyFAX system (Section VIII-H) has added AC-3

stereo and MPEG-1 Layer II to the original AC-2-based

system. Film, television, and music studios use DolbyFAX

over ISDN links for automatic dialog replacement, music

collaboration, sound-effects delivery, and remote videotape

audio playback. As far as standardization is concerned, the

U.S. Advanced Television Systems Committee (ATSC) has

adopted the AC-3 algorithm as the A/52 audio compression

standard [362] and as the audio component of the A/52

DTV standard [323]. The U.S. Federal Communications

Commission in December 1996 adopted the ATSC standard

for DTV, including the AC-3 audio component. On the

international standardization front, the Digital Audio-Visual

Council (DAVIC) selected AC-3 and MPEG-1, layer II for

the audio component of the DAVIC 1.2 specification [324].

Moreover, the Society of Cable and Telecommunications

Engineers has considered AC-3 for standardization.

IX. QUALITY MEASURES FOR PERCEPTUAL AUDIO CODING

In many situations, and particularly in the context of

standardization activities, performance measures are needed

to evaluate whether one of the established or emerging

techniques in perceptual audio coding is in some sense

superior to the available alternative methods. Perceptual

audio codecs are most often evaluated in terms of bit rate,

complexity, delay, robustness, and output quality. Of these,

all but robustness and output quality can be quantified in

straightforward objective terms. Reliable and repeatable

output quality assessment (which is related to robustness),

on the other hand, presents a significant challenge. It is

well known that perceptual coders can achieve transparent

quality over a very broad, highly signal-dependent range

of segmental SNR’s ranging from as low as 13 dB to

as high as 90 dB. Classical objective measures of signal

fidelity such as SNR or total harmonic distortion (THD)

are therefore completely inadequate [325]. As a result,

time-consuming and expensive subjective listening tests are

required to measure the small impairments that most often

characterize the high-quality perceptual coding algorithms.

Despite some confounding factors, subjective listening tests

are nevertheless the most reliable tool available for codec

quality evaluation, and standardized listening test procedures

have been developed to maximize reliability. This section

offers a perspective on quality measures for perceptual

audio coding. The first portion describes subjective quality

measurement techniques for perceptual audio coders and

identifies confounding factors that complicate subjective

tests, and the second portion gives sample subjective test

results from several of the two- and 5.1-channel standards.

A. Subjective Quality Measures

Although listening tests are often conducted informally,

the ITU-R Recommendation BS.1116 [275] formally

specifies a listening environment and test procedure appro-

priate for subjective evaluations of the small impairments

associated with high quality audio codecs. The standard

procedure calls for grading by expert listeners [326] using

the CCIR “continuous” impairment scale [Fig. 46(a)] [327]

in a double blind, A-B-C triple-stimulus hidden reference
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comparison paradigm. While stimulus A always contains

the reference (uncoded) signal, the B and C stimuli contain

in random order a repetition of the reference and then the

impaired (coded) signal, i.e., either B or C is a hidden refer-

ence. After listening to all three, the subject must identify

either B or C as the hidden reference, and then grade the

impaired stimulus (coded signal) relative to the reference

stimulus using the five-category, 41-point “continuous”

absolute category rating (ACR) impairment scale shown in

the left-hand column of Fig. 46(a). A default grade of 5.0

is assigned to the stimulus identified by the subject as the

hidden reference. A subjective difference grade (SDG) is

computed by subtracting the score assigned to the actual

hidden reference from the score assigned to the actual

impaired signal. Nearly transparent quality for the coded

signal is implied if the hidden reference mean subjective

score (MSS) lies within the 95% confidence interval of the

coded signal and the coded signal MSS lies within the 95%

confidence interval of the hidden reference. It is important to

note the difference between the small impairment subjective

measurements in [275] and the five-point MOS most often

associated with speech coding algorithms [328]. Unlike the

small impairment scale, the scale of the speech coding MOS

is discrete, and scores are absolute rather than relative to a

hidden reference. To emphasize this difference, it has been

proposed [329] that MSS denote the small impairment sub-

jective score for perceptual audio coders. Unless otherwise

specified, the subjective listening test scores cited for the

various algorithms described in this paper are from either

the absolute or the differential small impairment scales in

Fig. 46(a).

It is important to realize that the most reliable subjective

evaluation strategy for a given perceptual codec depends on

the nature of the coding distortion. Although the small-scale

impairments associated with nearly transparent coding are

well characterized by measurements relative to a reference

standard using a fine-grade scale, some experts have argued

that the more audible distortions associated with nontrans-

parent coding are best measured using a different scale

that can better cope with large impairments. For example,

in recent listening tests [330] on 16-kb/s codecs for the

WorldSpace satellite communications system, it was deter-

mined that an ITU-T P.800/P.830 seven-point comparison

category rating (CCR) method [331] was better suited to

the evaluation task [Fig. 46(b)] than the scale of BS.1116

because of the nontransparent quality associated with the test

signal. Investigators preferred the CCR over both the small

impairment scale as well as the five-point ACR commonly

used in tests of speech codecs. A listening test standard for

large-scale impairments analogous to BS.1116 does not yet

exist for audio codec evaluation.

B. Confounding Factors in Subjective Evaluations

Regardless of the particular grading scale in use,

subjective test outcomes generated using even rigorous

methodologies such as the ITU-R BS.1116 are still in-

fluenced by factors such as context, site selection, and

(a)

(b)

Fig. 46. Subjective quality scales: (a) ITU-R Rec. BS.1116 [275]
small impairment scale for absolute and differential subjective
quality grades and (b) ITU-T Rec. P.800/P.830 [331] large
impairment comparison category rating.

individual listener acuity (physical) or preference (cogni-

tive). Before comparing subjective test results on particular

codecs, therefore, one should be prepared to interpret the

subjective scores with some care. For example, consider

the variability of “expert” listeners. A study of decision

strategies [332] using multidimensional scaling techniques

[333] found that subjects disagree on the relative importance

with which to weigh perceptual criteria during impairment

detection tasks. In another study [334], Shlien and Soulodre

presented experimental evidence that can be interpreted

as a repudiation of the “golden ear.” Expert listeners were

tasked with discriminating between clean audio and audio

corrupted by low-level artifacts typically induced by audio

codecs (five types were analyzed in [335]), including

pre-echo distortion, unmasked granular (quantization) noise,

and high-frequency boost or attenuation. Different experts

were sensitive to different artifact types. Sporer reached

502 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

Authorized licensed use limited to: New York University. Downloaded on November 2, 2009 at 11:25 from IEEE Xplore.  Restrictions apply. 



similar conclusions after yet a third study of expert listeners

[329]. Nonhuman factors also influence subjective listening

test outcomes. For example, playback level (SPL) and back-

ground noise, respectively, can influence excitation pattern

shapes and introduce undesired masking effects. Moreover,

the presentation method can strongly influence perceived

quality, because loudspeakers introduce distortions on their

own and in conjunction with a listening room. These effects

can introduce site dependencies. In short, although they

have proven effective, existing subjective test procedures

for audio codecs are clearly suboptimal. Recent research

into more reliable tools for subjective codec evaluations has

shown promise and is continuing. For example, Moulton

Laboratories investigated [336], [337] the effectiveness

of multifacet Rasch models [338] for improved reliability

of subjective listening tests on high-quality audio codecs.

The Rasch model [339] is a statistical analysis technique

designed to remove the effects of local disturbances on

test outcomes. The impact of Rasch analysis on the relia-

bility of subjective audio codec evaluations is still under

investigation. Meanwhile, the unreliability of subjective

tests has motivated considerable research into develop-

ment of automatic perceptual measurement schemes (e.g.,

[340]–[346], [186], [347]–[351]) that has ultimately led

to the adoption of an international standard for perceptual

quality measurement, ITU-R BS.1387 [352]. Experts do

not consider the standardized algorithm to be a human

subject replacement, however, and research into improved

perceptual measurement schemes will continue (e.g., ITU-R

JWP10-11Q). Automatic perceptual measurement of com-

pressed high-fidelity audio quality is a fascinating topic that

is treated in more detail elsewhere (e.g., [36] and [353]).

C. Subjective Evaluations of Two-Channel Standardized

Codecs

The influence of site and subject dependencies on

subjective listening tests can potentially invalidate direct

comparisons between independent test results for different

algorithms. Ideally, fair intercodec comparisons require

that scores are obtained from a single site with the same

test subjects. Soulodre, et al. conducted a formal ITU-R

BS.1116-compliant [275] listening test that compared sev-

eral standardized two-channel stereo codecs [354], including

the MPEG-1 Layer 2 [17], the MPEG-1 Layer 3 [17], the

MPEG-2 AAC [112], the Lucent Technologies PAC [16],

and the Dolby AC-3 [268] codecs. In all, 17 algorithm/bit

rate combinations were examined, using listening material

deemed critical by experts.

The test results, reproduced in Table 2, clearly show eight

performance classes. The AAC and AC-3 codecs at 128

and 192 kb/s, respectively, exhibited the best performance

with mean difference grades better than 1.0. The MPEG-2

AAC algorithm at 128 kb/s, however, was the only codec

that satisfied the quality requirements defined by ITU-R

Rec. BS.1115 [355] for perceptual audio coding systems in

broadcast applications, namely, that there not be any audio

materials rated below 1.00. Overall, the ranking of the

Table 2

Comparison of Standardized Two-Channel Algorithms
(After [354])

Table 3
Comparison of Standardized 5.1-Channel Algorithms

families from best to worst with respect to quality was AAC,

PAC, MPEG-1 Layer 3, AC-3, MPEG-1 Layer 2, and ITIS

(MPEG-1, LII, hardware implementation). The class three

results can be interpreted to mean that bit rate increases of

32, 64, and 96 kb/s per stereo pair are required for the PAC,

AC-3, and Layer 2 codec families, respectively, to match

the output quality of the MPEG-2 AAC at 96 kb/s per stereo

pair.

D. Subjective Evaluations of 5.1-Channel Standardized

Codecs

Multichannel perceptual audio coders are increasingly

in demand for multimedia, cinema, and home theater ap-

plications. As a result, the European Broadcasting Union

recently sponsored Deutsche Telekom Berkom in a formal

subjective evaluation [356] that compared the output quality

for real-time implementations of the 5.1 channel Dolby

AC-3 and the matrixed 5.1-channel MPEG-2/BC Layer 2

algorithms at bit rates between 384 and 640 kb/s (Table

3). The tests adhered to the methodologies outlined in ITU

BS.1116, and the five-channel listening environment was

configured according to ITU-R Rec. BS.775 [357]. The

resulting difference grades given in Table 3 represent aver-

ages of the mean grades reported for a collection of eight

critical test items. None of the tested codec configurations

satisfied “transparency.” More sophisticated multichannel

algorithms such as Lucent PAC and MPEG-2 AAC were not

examined in this test because they were not considered to be

sufficiently well established on the market [356].
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Table 4

Audio Coding Standards and Applications

X. CONCLUSION

A. Summary of Applications for Commercial and

International Standards

Current applications (Table 4) for embedded audio coding

include DBA [358], [359], DBS [360], DVD [361], high-def-

inition television (HDTV) [362], cinematic theater [363], and

audio-on-demand over wide area networks such as the In-

ternet [364]. Audio coding has also enabled miniaturization

of digital audio storage media such as Compact MiniDisk

[365] and DCC [366], [367]. With the advent of the “.MP3”

audio format, which denotes audio files that have been com-

pressed using the MPEG-1, Layer III algorithm, perceptual

audio coding has become of central importance to over-net-

work exchange of multimedia information, and has recently

been integrated into several popular portable consumer audio

playback devices that are specifically designed for web com-

patibility. In addition, DolbyNET, a version of the AC-3 algo-

rithm, has been successfully integrated into streaming audio

processors for delivery of audio on demand to the desktop

Web browser.

B. Summary of Recent Research and Future Research

Directions

The level of sophistication and high performance achieved

by the standards listed in Table 4 reflects the fact that audio

coding algorithms have matured rapidly in less than a

decade. The emphasis nowadays has shifted to realizations

of low-rate, low-complexity, and low-delay algorithms

[368]. Using primarily transform [369], subband (filter

bank/wavelet) [370]–[374], and other [375]–[377] coding

methodologies coupled with perceptual bit allocation strate-

gies, new algorithms continue to advance the state-of-the

art in terms of bit rates and quality. Sinha and Johnston, for

example, reported transparent CD quality at 64/32 kb/s for

stereo/mono [373] sources. Other new algorithms include

extended capacity for multichannel/multilanguage systems

[363], [378], [379]. In addition to pursuing the usual goals

of transparent compression at lower bit rates (below 64

kb/s/channel) with reduced complexity, minimal delay

[380], and enhanced bit error robustness [401], an emerging

trend for future research in audio coding is concerned

with the development of algorithms that offer scalability

[381]–[387]. Scalable algorithms will ultimately be used

to accommodate the unique challenges associated with

audio transmission over time-varying channels such as the

packet-switched networks that compose the Internet, as

well as time-varying wireless channels. Network-specific

design considerations are also motivating research into joint

source-channel coding [388] for audio over the Internet.

Another emerging trend is one of convergence between

low-rate audio coding algorithms and speech coders, which

are increasingly embedding mechanisms to exploit percep-

tual irrelevancies [389], [390], [399], [400]. Research is

also ongoing into potential improvements for the various

perceptual coder building blocks, such as novel filter banks

for low-delay coding and reduced pre-echo [391], [404]

and new psychoacoustic signal analysis techniques [392],

[393]. Researchers are also investigating new algorithms

for tasks of peripheral interest to perceptual audio coding

such as transform-domain signal modifications [394] and

digital watermarking [395], [396]. Finally, considerable

investigation is continuing into perceptual quality mea-

surements for coder evaluations in terms of both subjective

[336], [337] and objective methodologies. In fact, after a

competition between and then ultimately a collaboration

by several research teams, the ITU-R recently adopted an

automatic perceptual measurement system, ITU-R BS-1387

[397], [402], [403] intended to assist in the tasks of codec

selection, evaluation, and maintenance. Future research will

continue in all of these areas.
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