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Abstract. Variational techniques provide a powerful tool for under-
standing image features and creating new efficient algorithms. In the
past twenty years, this machinery has been also applied to color images.
Recently, a general variational framework that incorporates the basic
phenomenological characteristics of the human visual system has been
built. Here we recall the structure of this framework and give noticeable
examples. We then propose a new analytic expression for a parameter
that regulates contrast enhancement. This formula is defined in terms
of intrinsic image features, so that the parameter no longer needs to be
empirically set by a user, but it is automatically determined by the image
itself.

1 Introduction

Human vision is a process of great complexity that involves many features as,
e.g. shape and pattern recognition, movement analysis and color perception.
In this paper we will focus on this last one. This process begins with light
capture by the three different types of cone pigments inside the retina. When
a light stimulus activates a cone, a photochemical transition occurs, producing
a nerve impulse that reaches the brain, where it is analyzed and interpreted.
However, neither retina photochemistry nor nervous impulses propagation are
well understood, hence a deterministic characterization of the visual process
is unavailable. For this reason, the majority of color perception models follow
a descriptive approach, trying to simulate macroscopic characteristics of color
vision, rather than reproduce neurophysiological activity.

A common characteristic of these models is that the Human Visual System
(HVS) features are taken as inspiration to devise the explicit equations of a per-
ceptual algorithms. The point of view adopted in [1] is rather different, since it
focuses on the translation of the basic macroscopic phenomenological character-
istics of color vision into mathematical axioms to be fulfilled by a variational
energy functional in order to be considered perceptually inspired. Remarkably, it
can be proven that only one class of energy functionals can cumply with all the
axioms at once.

Once a perceptual energy is fixed, the Euler-Lagrange equations corresponding
to its minimization give rise to a computational algorithm that can be used
to perform perceptual color correction. The advantage of this point of view
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relies in the intertwining between the algorithm equation and the corresponding
variational energy, which permits to better understand the algorithm behavior
in terms of important image features as tone dispersion or contrast.

A parameter appearing in these models is a coefficient which controls the de-
gree of contrast enhancement. Here we propose an image-driven formula
that respects the HVS phenomenology and automatically set this parameter
pixel-wise, so that it does not need to be superimposed by a user.

2 Basic Human Color Perception Phenomenology

The phenomenological properties of human color perception that we consider as
basics for our axiomatic construction are three: color constancy, local contrast
enhancement and visual adaptation.

Let us begin with human color constancy: It is well known that the HVS
has strong ‘normalization’ properties, i.e. humans can perceive colors of a scene
almost independently of the spectral electromagnetic composition of a uniform
illuminant, usually called color cast [2]. This peculiar ability is known as hu-
man color constancy and it is not perfect [3] because, even though human color
perception strongly depends on the context, i.e. on the relative radiance rather
than on the absolute one, also absolute luminance information plays a role in
the entire color perception process.

The majority of color modeFor this reason, the majority of color perception
models follow a descriptive approach, trying to simulate macroscopic character-
istics of color vision, rather than reproduce neurophysiological activity.ls try to
remove color cast due to illuminant looking for the invariant component of the
light signal: the physical reflectance of objects. However it is well known that
the separation between illuminant and reflectance is an ill-posed problem, unless
one imposes further constraints which are not verified by all images [4]. Instead,
in [1], another approach based on contrast enhancement is used to remove color
cast. That method is based on the consideration that an image with color cast is
always characterized by one chromatic channel with remarkably different stan-
dard deviation σ with respect to the others (not to be confused with an image
with dominant color, e.g. the close up of a leaf, in which the average value of a
channel prevails). Since standard deviation is a measure of average contrast, it is
clear that contrast enhancement can help decreasing the difference between σR,
σG and σB, by spreading the intensity values of all separate chromatic channels,
thus reducing color cast.

Let us now recall the local contrast enhancement property: while looking at a
natural scene, the HVS enhances local edges in order to better distinguish shapes
and objects. Well known phenomena exhibiting this effect are Mach bands and
simultaneous contrast [5]. Local HVS features related to color perception can
be detected also in more complex scenes and go under the general name of
‘chromatic induction’ [6,7]. Experimental evidences show that the strength of
chromatic induction between two different areas of a scene decreases monotoni-
cally with their Euclidean distance, even though a precise analytical description
is not yet available [7].
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Finally, let us remember the adaptation properties of the HVS. The range of
light intensity levels to which the HVS can adapt is impressive, on the order of
1010, from the scotopic threshold to the glare limit [5]. However, the HVS system
cannot operate over such a range simultaneously, rather it adapts to each scene
to prevent saturation which would depress contrast sensitivity [8].

During this adaptation, the HVS shifts its sensitivity to light stimuli in order
to present only modulations around the average intensity level of a scene [8].
This provides a phenomenological motivation for the so-called ‘gray-world’ (GW)
assumption, which says that the average color in a scene is gray [9].

3 Assumptions for a Perceptually-Inspired Variational
Energy Functional

The content of this section have been discussed and proved in detail in [1]. Here
we only aim at summarizing the most relevant information of that work.

Let us fix the notation. Given a discrete RGB image, we denote by I =
{1, . . . , W} × {1, . . . , H} ⊂ Z

2 its spatial domain, W, H ≥ 1 being integers;
x = (x1, x2) and y = (y1, y2) denote the coordinates of two arbitrary pixels
in I. We will always consider a normalized dynamic range in [0, 1], so that a
color image function is denoted by I : I → [0, 1]3, I(x) = (IR(x), IG(x), IB(x)),
where Ic(x) is the intensity level of the pixel x ∈ I in the chromatic channel
c ∈ {R, G, B}. All computations will be performed on the scalar components
of the image, thus treating independently each chromatic channel, written, for
simplicity, as I(x).

3.1 Assumption 1: General Structure of a Perceptual Energy
Functional

In order to write the general structure of a perceptually inspired energy func-
tional, note that human color perception is characterized by both local and global
features : contrast enhancement has a local nature, i.e. spatially variant, while
visual adaptation and attachment to original data (implied by the failure of color
constancy) have a global nature, i.e. spatially invariant, in the sense that they
do not depend on the intensity distribution in the neighborhood.

These basic considerations imply that a perceptually inspired energy functional
should contain two terms: one spatially-dependent term whose minimization leads
to a local contrast enhancement and one global term whose minimization leads to
a control of the departure from both original pointwise values and the middle gray,
which, in our normalized dynamic range, is 1/2.

Let us first describe the general form of the contrast enhancement terms.
For that we need a contrast measure c(a, b) between two gray levels a, b > 0
(to avoid some singular cases, we shall assume that intensity image values are
always positive). We require the contrast function c : (0, +∞)× (0, +∞) → R to
be continuous, symmetric in (a, b), i.e. c(a, b) = c(b, a), increasing when min(a, b)
decreases or max(a, b) increases. Basic examples of contrast measures are c =
|a − b| ≡ max(a, b) − min(a, b) or c(a, b) = max(a,b)

min(a,b) .
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Since our purpose is to enhance contrast by minimizing an energy, we define
an inverse contrast function c(a, b), still continuous and symmetric in (a, b),
but decreasing when min(a, b) decreases or max(a, b) increases. Notice that, if
c(a, b) is a contrast measure, then c(a, b) = −c(a, b) or c(a, b) = 1/c(a, b) is
an inverse contrast measure, so that basic examples of inverse contrast are:
c(a, b) = min(a, b) − max(a, b) or c(a, b) = min(a,b)

max(a,b) .
Let us now introduce a normalized weighting function to localize the contrast

computation. Let w : I × I → R
+ be a positive symmetric kernel, i.e. such

that w(x, y) = w(y, x) > 0, for all x, y ∈ I, that measures the mutual influence
between the pixels x, y. The symmetry requirement is motivated by the fact
that the mutual chromatic induction is independent on the order of the two
pixel considered. Usually, we assume that w(x, y) is a function of the Euclidean
distance ‖x − y‖I between the two points. We shall assume that the kernel is
normalized, i.e. that ∑

y∈I

w(x, y) = 1 ∀x ∈ I. (1)

Given an inverse contrast function c(a, b) and a positive symmetric kernel w(x, y),
we define a contrast energy term by

Cw(I) =
∑

x∈I

∑

y∈I

w(x, y) c(I(x), I(y)) . (2)

The symmetry assumption implies that c(a, b) = c̃(min(a, b), max(a, b)) for some
function c̃ (indeed well defined by this identity). Notice that c̃ is non-decreasing
in the first argument and non-increasing in the second one.

Let us now consider the term that should control the dispersion. As suggested
previously, it should realize an attachment to the initial given image I0 and to
the average illumination value, which we assume to be 1/2. Thus, we define two
dispersion functions: d1(I(x), I0(x)) to measure the separation between I(x) and
I0(x), and d2(I(x), 1

2 ) which measures the separation from the value 1/2. Both
d1 and d2 are continuous functions d1,2 : R

2 → R
+ such that d1,2(a, a) = 0 for

any a ∈ R, and d1,2(a, b) > 0 if a 
= b. We write dI0, 12
(I(x)) = d1(I(x), I0(x)) +

d2(I(x), 1
2 ), and the dispersion energy term as

D(I) =
∑

x∈I

dI0, 1
2
(I(x)) . (3)

We can now formulate our first assumption.

Assumption 1. The general structure of a perceptually inspired color correction
energy functional is

Ew(I) = D(I) + Cw(I), (4)

where Cw(I) and D(I) are the contrast and dispersion terms defined in (2) and
(3), respectively. The minimization of D must provide a control of the dispersion
around 1/2 and around the original intensity values. The minimization of Cw

must provide a local contrast enhancement.
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3.2 Assumption 2: Properties of the Contrast Function

In order to find out which properties the contrast term should satisfy, let us
observe that an overall change in intensity, measured by the generic quantity
λ > 0, does not affect the visual sensation. This requires the contrast function c
to be homogeneous, recalling that c is homogeneous of degree n ∈ Z if

c(λa, λb) = λn c(a, b) ∀λ, a, b ∈ (0, +∞), (5)

where a and b are synthetic representations of I(x) and I(y). Of course, if n = 0,
c automatically disregards the presence of λ, but we can say more: since λ can
take any positive value, if we set λ = 1/b, we may write equation (5) as:

c(a, b) = bn c
(a

b
, 1

)
∀a, b ∈ (0, +∞), (6)

so, when n = 0, bn = 1 and thus c results as a function of the ratio a/b which
intrinsically disregards overall changes in light intensity. If n > 0, then λ has
a global influence and could be removed performing a suitable normalization
(for instance, dividing by the n-th power of the highest intensity level). We can
formalize these considerations in our second assumption.

Assumption 2. We assume that the inverse contrast function c(a, b) is
homogeneous.

Thanks to the arguments presented so far, we have that inverse contrast func-
tions which are homogeneous of degree n = 0 are those that can be written as a
monotone non-decreasing function of min(I(x),I(y))

max(I(x),I(y)) .
Let us now introduce into the discussion the important Weber-Fechner’s law

[5] which says that the so-called Weber-Fechner ratio RWF ≡ I1−I0
I0

, i.e. the
ratio between an intensity variation ΔI ≡ I1 − I0 and the background intensity
I0, remains constant. The consequence is that the same variation is perceived
in a weaker way as the strenght of the intensity increases. Even though Weber-
Fechner’s law is not perfect [10], the intensity range over which it is in good
agreement with experience (called ‘Weber-Fechner’s domain’) is still comparable
to the dynamic range of most electronic imaging systems [10].

Since RWF = I1/I0 − 1, Weber-Fechner’s law is saying that the perceived
contrast is a function of I1/I0. This reason motivates us to say that c(a, b) is a
generalized Weber-Fechner contrast function if c is an inverse contrast function
which can be written as a non-decreasing function of min(a, b)/ max(a, b). Hence,
we can particularize assumption 2 as follows.

Assumption 2’. We assume that c is a generalized Weber-Fechner contrast
function.

Noticeable examples of contrast terms are the following:

C id
w (I) :=

1
4

∑

x∈I

∑

y∈I

w(x, y)
min(I(x), I(y))
max(I(x), I(y))

, (7)
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C log
w (I) :=

1
4

∑

x∈I

∑

y∈I

w(x, y) log
(

min(I(x), I(y))
max(I(x), I(y))

)
, (8)

The upper symbol in the above definitions of Cw simply specifies the monotone
function applied on the basic contrast variable t := min(I(x),I(y))

max(I(x),I(y)) . To refer to
any one of them we use the notation Cf

w(I), where f = id, log. Notice that the
function t = min(I(x), I(y))/ max(I(x), I(y)) is minimized when min(I(x), I(y))
takes the smallest possible value and max(I(x), I(y)) takes the largest possible
one, which corresponds to a contrast stretching. Thus, minimizing an increasing
function of the variable t, will produce a contrast enhancement.

3.3 Assumption 3: Entropic Dispersion Term

The main features of the dispersion term have to be its attachment to the initial
given image I0 and to the average illumination value, which we assume to be 1/2.
In principle, to measure the dispersion of I with respect to I0 or 1/2, any distance
function can be used. However, let us notice that, given that contrast terms are
expressed as homogeneous functions of degree 0, the variational derivatives are
homogeneous functions of degree -1. Since the previous axioms do not give any
precise indication about the analytical form of the dispersion term that should be
chosen, we search for functions able to maintain coherence with this homogeneity.
A good candidate for this is the entropic dispersion term DE

α,β(I):

α
∑

x∈I

(
1
2

log
1

2I(x)
−

(
1
2
− I(x)

))
+ β

∑

x∈I

(
I0(x) log

I0(x)
I(x)

− (I0(x) − I(x))
)

,

(9)
where α, β > 0, which is based on the relative entropy distance [11] between I
and 1/2 (the first term) and between I0 and I(the second term). Notice that, if
a > 0 and f(s) = a log a

s − (a− s), s ∈ (0, 1], has a global minimum in s = a. In
particular, this holds when a = I0(x) or a = 1/2. Given the statistical interpre-
tation of entropy, we can say that minimizing DE

α,β(I) amounts to minimizing
the disorder of intensity levels around 1/2 and around the original data I0(x).
Thus, DE

α,β(I) accomplishes the required tasks of a dispersion term.

4 Minimization of the Energy Functionals
Ef

w,α,β(I) = DE
α,β(I) + Cf

w(I)

The minimization of Ef
w,α,β(I), f = id, log,−M corresponds to a trade-off be-

tween two opposing mechanisms: on one hand we have entropic control of dis-
persion around 1/2 and around original data, on the other hand we have local
contrast enhancement.

The existence of a minimum in the discrete framework can be guaranteed for
a quite general class of energy functionals see [1] for details.
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Assume that α, β > 0 are fixed. If Ef
w,α,β(I) = DE

α,β(I) + Cf
w(I), then, by

linearity of the variational derivative, we have δEf
w,α,β(I) = δDE

α,β(I) + δCf
w(I).

The minimum of Ef
w,α,β(I) satisfies δEf

w,α,β(I) = 0. To search for the minimum
a semi-implicit discrete gradient descent strategy with respect to log I can be
used. This corresponds to using a gradient descent approach in which the metric
is the relative entropy, instead of the usual quadratic distance (see [11]). The
continuous gradient descent equation is

∂t log I = −δEf
w,α,β(I), (10)

with t being the evolution parameter. Since ∂t log I = 1
I ∂tI, we have

∂tI = −IδEf
w,α,β(I). (11)

Let us now discretize the scheme: choosing a finite evolution step Δt > 0 and
setting Ik(x) = IkΔt(x), k ∈ N, with I0(x) being the original image being, then,
by direct computation of δDE

α,β(I), the semi-implicit discretization of (11) is

Ik+1(x) − Ik(x)
Δt

= α

(
1
2
− Ik+1(x)

)
+ β

(
I0(x) − Ik+1(x)

)− Ik(x)δC f
w (Ik)(x).

(12)
The terms −2Ik(x)δC id

w (Ik)(x)≡R id
w,Ik(x) and −2Ik(x)δC log

w (Ik)(x)≡R log
w,Ik(x)

can be explicitly written as [1]:

R id
w,Ik(x)=

∑

y∈I

w(x, y)
[

Ik(y)
Ik(x)

sign+(Ik(x)−Ik(y))−Ik(x)
Ik(y)

sign−(Ik(x)−Ik(y))
]

;

(13)

R log
w,Ik(x) =

∑

y∈I

w(x, y) sign(Ik(x) − Ik(y)), (14)

where we set, for every ξ ∈ R,

sign(ξ) :=

⎧
⎨

⎩

1 if ξ > 0,
1
2 if ξ = 0,
−1 if ξ < 0,

sign+(ξ) :=

⎧
⎨

⎩

1 if ξ > 0,
1
2 if ξ = 0,
0 if ξ < 0,

sign−(ξ) = 1−sign+(ξ).

(15)
Equation (12) can be used to implement iterative computational algorithms
for perceptual color image enhancement. In [12,1,13] it is shown that the al-
gorithm corresponding to f = log is a variational version of the ACE algo-
rithm [14], while the one corresponding to f = id is a variational version of the
(anti-)symmetrized Retinex algorithm [2,15].
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5 An Image-Driven Contrast Enhancement Parameter

From (12), it follows that the discrete equation that represents the variational
method is the following:

Ik+1(x) =
Ik(x) + Δt

(
α
2 + βI0(x) + 1

2Rf
Ik

(x)
)

1 + Δt(α + β)
, (16)

α and β represent the strength of the attachment to 1/2 and to I0, respec-
tively. Rf

Ik
(x) performs contrast enhancement and can be written in the general

form Rf
Ik

(x) =
∑

y∈I w(x, y) rf (Ik(x), Ik(y)), where, for f = id, log we have

rid(Ik(x), Ik(y)) = Ik(y)
Ik(x) sign+(Ik(x) − Ik(y)) − Ik(x)

Ik(y) sign−(Ik(x) − Ik(y)) and
rlog(Ik(x), Ik(y)) = sign(Ik(x) − Ik(y)).

In practice, the sign functions appearing in rid and rlog are too singular to be
used without producing artifacts, so that a smoothed version is needed, we take
signs(I

k(x) − Ik(y)) = arctan(s(Ik(x)−Ik(y)))
maxy∈I{| arctan(s(Ik(x)−Ik(y)))|} , s > 1 defining its slope.

It turns out that a proper election of the parameter s is crucial to perform a
suitable color enhancement.

So far, this parameter was let as a free user parameter, here we propose
a formula to set s as a function of image features in line with human visual
perception, so that it does not need to be imposed by a user with an expensive
try-and-look procedure.

The function we propose is the following

sw(x) =
1

μw(x)
· 1 − σw(x)

σw(x)
, (17)

where μw(x) is the local average intensity and σw(x) is the local standard devi-
ation σw(x):

μw(x) =
∑

y∈I

w(x, y)Ik(y), σw(x) =
√∑

y∈I

w(x, y) (Ik(y) − μw(x))2. (18)

The first factor (‘WF factor’) is introduced in accordance with the Weber-
Fechner law: the HVS is more sensitive to contrast variations in low intensity
areas rather than in bright ones, coherently with this, the WF factor increases
sw(x) in low intensity areas. The second factor (‘homogeneity factor’) expresses
the fact that the HVS is more sensible to contrast variations in homogeneous
zones than in detailed ones, thus, using the local standard deviation as a mea-
sure of detail inside a given image area, we have that sw(x) increases when gets
small. Because of the dependence on x, it is impossible to depict sw(x), however,
it is clear that both the factors appearing in the formula show a hyperbolically
decreasing behavior as the local average intensity or local standard deviation
increase.
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Fig. 1. First row: original images. Second row: filtered versions with fixed slope param-
eter s = 10. Third row: filtered versions with varying slope parameter sw(x) as in (17).
The contrast term used is Cid

w and the parameters α and β are both set to 1.

Both μw(x) and σw(x) can be computed through convolutions (denoted with
the usual symbol ∗), which can be rapidly implemented thanks to the Fast
Fourier Transform FFT. In fact, by definition, μw(x) = (Ik ∗ w)(x) and, ex-
panding the binomial expression in the definition of σw(x),

σ2
w(x) =

∑

y∈I

w(x, y)Ik(y)
2 − 2μw(x)

∑

y∈I

w(x, y)Ik(y) + μw(x)2
∑

y∈I

w(x, y) (19)

but, remembering that w is normalized and the definition of μw(x) we can write
σ2

w(x) = (w ∗ (Ik)2)(x) − [(w ∗ Ik)(x)]2.
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Since the convolutions involved in the computation of s(x) must be com-
puted to approximate the function Rf

w,Ik(x), as explained in [12,1], this formula
does not increase the computational complexity of the algorithm, which remains
O(N) log(N), where N is the total number of pixels.

Hereafter, we present some results that will show the soundness of this pro-
posal for sw(x). The local automatic contrast parameter sw(x) still provides
sound results and a better rendition of details in dark zones, as can be noticed
in all images, in particular in the book one.

Remark: After many experiments, we empirically found out that a kernel function
w corresponding to overall good results is extended over the entire image and
has this analytical expression w(x, y) = 1/‖x − y‖I. It would be interesting to
see if there is a relationship between this empirical function and physiological o
psychophysical properties of human vision.

6 Conclusions

We have summarized a recently developed variational framework for perceptual
color correction models [1]. We have also proposed an image-driven formula to
automatically set a parameter that influences the strenght of contrast enhance-
ment. This function is in line with human vision properties and its computation
does not increase the computational complexity of the algorithm.
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