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a b s t r a c t 

Humans are fast and accurate when they recognize familiar faces. Previous neurophysiological studies have shown 
enhanced representations for the dichotomy of familiar vs. unfamiliar faces. As familiarity is a spectrum, however, 
any neural correlate should reflect graded representations for more vs. less familiar faces along the spectrum. By 
systematically varying familiarity across stimuli, we show a neural familiarity spectrum using electroencephalog- 
raphy. We then evaluated the spatiotemporal dynamics of familiar face recognition across the brain. Specifically, 
we developed a novel informational connectivity method to test whether peri-frontal brain areas contribute to 
familiar face recognition. Results showed that feed-forward flow dominates for the most familiar faces and top- 
down flow was only dominant when sensory evidence was insufficient to support face recognition. These results 
demonstrate that perceptual difficulty and the level of familiarity influence the neural representation of familiar 
faces and the degree to which peri-frontal neural networks contribute to familiar face recognition. 

Introduction 

Faces are crucial for our social interactions, allowing us to extract 
information about identity, gender, age, familiarity, intent and emo- 
tion. Humans categorize familiar faces more quickly and accurately than 
unfamiliar ones, and this advantage is more pronounced under diffi- 
cult viewing conditions, where categorizing unfamiliar faces often fails 
( Ramon and Gobbini, 2018 ; Young and Burton, 2018 ). The neural corre- 
lates of this behavioral advantage suggest an enhanced representation of 
familiar over unfamiliar faces in the brain ( Dobs et al., 2019 ; Landi and 
Freiwald, 2017 ). Here, we focus on addressing two major questions 
about familiar face recognition. First, whether there is a “familiarity 
spectrum ” for faces in the brain with enhanced representations for more 
vs. less familiar faces along the spectrum. Second, whether higher-order 
frontal brain areas contribute to familiar face recognition, testing previ- 
ous suggestions about their role in visual recognition ( Bar et al., 2006; 
Goddard et al., 2016; Karimi-Rouzbahani et al., 2019; Polyn et al., 2005; 
Summerfield et al., 2006; Todorov et al., 2007 ), and whether levels of 
face familiarity and perceptual difficulty (as has been suggested previ- 
ously ( Woolgar et al., 2011 , 2015 )) impact the involvement of frontal 
cognitive areas in familiar face recognition. 

∗ Corresponding authors. 
E-mail addresses: hamid.karimi-rouzbahani@mrc-cbu.cam.ac.uk (H. Karimi-Rouzbahani), ghodrati.masoud@gmail.com (M. Ghodrati). 

One of the main limitations of previous studies, which hinders 
our progress in answering our first question, is that they mostly 
used celebrity faces as the familiar category ( Ambrus et al., 2019 ; 
Collins et al., 2018 ; Dobs et al., 2019 ). As familiar faces can range widely 
from celebrity faces to highly familiar ones such as family members, 
relatives, friends, and even one’s own face ( Ramon and Gobbini, 2018 ), 
these results might not reflect the full familiarity spectrum. A better 
understanding of familiar face recognition requires characterizing the 
computational steps and representations for sub-categories of familiar 
faces, including personally familiar, visually familiar, famous, and ex- 
perimentally learned faces. Such face categories do not only differ in 
terms of how much exposure the individual has had to them, but also 
the availability of personal knowledge, relationships, and emotions as- 
sociated with the identities in question ( Leppänen and Nelson, 2009 ; 
Ramon and Gobbini, 2018 ; Kovács, 2020 ). However, we still expect that 
potentially enhanced representations for more vs. less familiar faces, as 
they modulate the behavior, can also be detected using neuroimaging 
analysis. Moreover, these categories may vary in terms of the poten- 
tial for top-down influences in the process. Importantly, while a few 

functional magnetic resonance imaging (fMRI) studies have investigated 
the differences between different levels of familiar faces ( Gobbini et al., 
2004 ; Landi and Freiwald, 2017 ; Leibenluft et al., 2004 ; Ramon et al., 
2015 ; Sugiura et al., 2015 ; Taylor et al., 2009 ), there are no studies 
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that systematically compare the temporal dynamics of information pro- 
cessing across this familiarity spectrum. Specifically, while event-related 
potential (ERP) analyses have shown amplitude modulation by lev- 
els of face familiarity ( Henson et al., 2008 ; Kaufmann et al., 2009 ; 
Schweinberger et al., 2002 ; Huang et al., 2017 ), they remain silent 
about whether more familiar faces are represented more distinctly than 
less familiar faces - amplitude modulation does not necessarily mean 
that information is being represented. To address this issue, we can 
use multivariate pattern analysis (MVPA or decoding; Ambrus et al., 
2019 ; Karimi-Rouzbahani et al., 2017a ), which provides higher sen- 
sitivity ( Norman et al., 2006 ) than univariate (e.g., ERP) analysis, to 
compare the amount of information in each of the familiarity levels. 

In line with our second question, recent human studies have com- 
pared the neural dynamics for familiar vs. unfamiliar face processing 
using the high temporal resolution of electroencephalography (EEG; 
Ambrus et al., 2019 ; Collins et al., 2018 ) and magnetoencephalogra- 
phy (MEG; Dobs et al., 2019 ). These studies have found that familiarity 
affects the initial time windows of face processing, which are generally 
attributed to the feed-forward mechanisms of the brain. In particular, 
they have explored the possibility that the face familiarity effect occurs 
because these faces have been seen repeatedly, leading to the devel- 
opment of low-level representations for familiar faces in the occipito- 
temporal visual system. This in turn facilitates the flow of familiar face 
information in a bottom-up feed-forward manner from the occipito- 
temporal to the frontal areas for recognition ( di Oleggio Castello and 
Gobbini, 2015 ; Ramon et al., 2015 ; Ellis et al., 1979 ; Young and Bur- 
ton, 2018 ). On the other hand, studies have also shown the role of frontal 
brain areas in facilitating the processing of visual inputs ( Bar et al., 
2006; Goddard et al., 2016; Karimi-Rouzbahani et al., 2019; Kveraga 
et al., 2007 ), such as faces ( Kramer et al., 2018 ; Summerfield et al., 
2006 ), by feeding back signals to the face-selective areas in the occipito- 
temporal visual areas, particularly when the visual input is ambiguous 
( Summerfield et al., 2006 ) or during face imagery ( Mechelli et al., 2004 ; 
Johnson et al., 2007 ). These top-down mechanisms, which were local- 
ized in medial prefrontal cortex (MPFC), have been suggested (but not 
quantitatively supported) to reflect feedback of (pre-existing) face tem- 
plates, against which the input faces are compared for correct recog- 
nition ( Polyn et al., 2005; Summerfield et al., 2006; Todorov et al., 
2007 ) in a recollection procedure ( Brown and Banks, 2015 ). A more 
recent fMRI study showed that there is significant face selectivity in the 
inferior frontal gyrus (IFG) over the frontal cortex and that the same 
area is strongly connected to the well-stablished face-selective superior 
temporal sulcus (STS) over the temporal cortex ( Davies-Thompson and 
Andrews, 2012 ), which was consistent with a previous diffusion tensor 
imaging study ( Ethofer et al., 2011 ). Despite the large literature of face 
recognition supporting the roles of both the peri-occipital (e.g. Fusiform 

face area, STS) and peri-frontal 1 (e.g. IFG, MPFC and posterior cingulate 
cortex ( Ramon et al., 2015 )) brain areas (i.e. feed-forward and feedback 
mechanisms), their potential interactions in familiar face recognition 
have remained ambiguous (see for reviews Ramon and Gobbini, 2018 ; 
Duchaine and Yovel, 2015 ). We develop novel connectivity methods 
to track the flow of information along the feed-forward and feedback 
mechanisms and assess the role of these mechanisms in familiar face 
recognition. 

One critical aspect of the studies that successfully detected top- 
down peri-frontal to peri-occipital feedback signals ( Bar et al., 2006 ; 
Summerfield et al., 2006 ; Goddard et al., 2016 ) has been the active 
involvement of the participant in a task. In recent E/MEG studies re- 
porting support for a feed-forward explanation of the face familiarity 
effect, participants were asked to detect target faces ( Ambrus et al., 
2019 ) or find a match between faces in series of consecutively presented 

1 Here we use the terms “peri-occipital ” and “peri-frontal ” to refer broadly to 
groups of electrodes selected from posterior and anterior parts of the EEG cap, 
respectively (as indicated in Fig. 5 ). 

faces ( Dobs et al., 2019 ). This makes familiarity irrelevant to the task of 
the participant. Such indirect tasks may reduce the involvement of top- 
down familiarity-related feedback mechanisms, as was demonstrated by 
a recent study ( Kay and Yeatman, 2017 ), which found reduced feedback 
signals (from intraparietal to ventro-temporal cortex) when comparing 
fixation vs. an active task in an fMRI study. Therefore, to answer our 
research questions and fully test the contribution of feedback to the fa- 
miliarity effect, we need active tasks that are affected by familiarity. 

Timing information is also crucial in evaluating the flows of feed- 
forward and feedback information as these processes often differ in the 
temporal dynamics ( Kietzmann et al., 2019 ). With the advent of infor- 
mational connectivity analyses, we now have the potential to exam- 
ine the interaction of information between feed-forward and feedback 
mechanisms to characterize their potential spatiotemporal contribution 
to familiar face recognition ( Goddard et al., 2016 , 2019 ; Anzellotti and 
Coutanche, 2018 ; Basti et al., 2020 ; Karimi-Rouzbahani et al., 2020a ). 
However, this requires novel methods to track the flow of familiarity 
information from a given brain area to a destination area and link this 
flow to the behavioral task goals to confirm its biological relevance. 
Such analyses can provide valuable insights for understanding the neu- 
ral mechanisms underlying familiar face recognition in humans. 

In our study, participants performed a familiar vs. unfamiliar face 
categorization task on sequences of images selected from four face cate- 
gories (i.e., unfamiliar, famous, personally familiar and their own faces), 
with dynamically updating noise patterns, while their EEG data were 
recorded. It was crucial to use dynamic noise in this study. If stimuli 
were presented statically for more than ~200 ms, this would result in 
a dominant feed-forward flow of information simply due to the incom- 
ing information ( Goddard et al., 2016; Karimi-Rouzbahani et al., 2019; 
Lamme and Roelfsema, 2000 ). On the other hand, if we present stimuli 
for very brief durations (e.g. < 50 ms), there may be insufficient time 
to evoke familiarity processing. By varying the signal-to-noise ratio of 
each image sequence using perceptual coherence, we were able to in- 
vestigate how information for the different familiar categories gradually 
builds up in the electrical activity recordable by scalp electrodes, and 
how this relates to the amount of sensory evidence available in the stim- 
ulus (perceptual difficulty). The manipulation of sensory evidence also 
allowed us to investigate when, and how, feedback information flow af- 
fects familiar face recognition. Using univariate and multivariate pattern 
analyses, representational similarity analysis (RSA) and a novel informa- 
tional connectivity analysis method, we reveal the temporal dynamics 
of neural representations for different levels of face familiarity. 

Our results show that self and personally familiar faces lead to higher 
perceptual categorization accuracy and enhanced representation in the 
brain even when sensory information is limited while famous (visually 
familiar) and unfamiliar face categorization is only possible in high- 
coherence conditions. Importantly, our novel information flow analysis 
suggests that in high-coherence conditions the feed-forward sweep of 
face category information processing is dominant, while at lower coher- 
ence levels the exchange of face category information is consistent with 
feedback flow of information. The change in dominance of feedback vs. 
feed-forward effects as a function of coherence level is consistent with 
a dynamic exchange of information between higher-order (frontal) cog- 
nitive and visual areas depending on the amount of sensory evidence. 

Results 

We designed a paradigm to study how the stimulus- and decision- 
related activations for different levels of face familiarity build up dur- 
ing stimulus presentation and how these built-up activations relate to 
the amount of sensory evidence about each category. We recorded EEG 
data from human participants ( n = 18) while they categorized face im- 
ages as familiar or unfamiliar. We varied the amount of sensory evi- 
dence by manipulating the phase coherence of images on different trials 
( Fig. 1 A). In each 1.2 s (max) sequence of image presentation (trial), the 
pattern of noise changed in each frame (16.7 ms) while the face image 
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Fig. 1. Experimental design and behavioral results 
for familiar vs. unfamiliar face categorization. (A) 
Upper row shows a sample face image (from the 
famous category) at the four different phase coher- 
ence levels (22, 30, 45, and 55%) used in this exper- 
iment, in addition to the original image (not used). 
Lower row shows schematic representation of the 
experimental paradigm. In each trial, a black fixa- 
tion cross was presented for 300–600 ms (randomly 
selected). Then, a noisy and rapidly updating (ev- 
ery 16.7 ms) stimulus of a face image (unfamiliar, 
famous, personally familiar, or self), at one of the 
four possible phase coherence levels, was presented 
until response, for a maximum of 1.2 s. Participants 
had to categorize the stimulus as familiar or unfa- 
miliar by pressing one of two buttons (button map- 
pings swapped across the two sessions, counterbal- 
anced across participants). There was then a vari- 
able inter-trial interval (ITI) lasting between 1 and 
1.2 s (chosen from a uniform random distribution; 
see a demo of the task here https://osf.io/n7b8f/ ). 
(B) Mean behavioral accuracy for face categoriza- 
tion across all stimuli, as a function of coherence 
levels; (C) Median reaction times for correctly cat- 
egorized face trials across all conditions, as a func- 
tion of coherence levels. (D) and (E) show the re- 
sults for different familiar face sub-categories. Error 
bars in all panels are the standard error of the mean 
across participants (smaller for panels B and C). 

and the overall coherence level remained the same. Familiar face im- 
ages ( n = 120) were selected equally from celebrity faces, photos of the 
participants’ own face, and personally familiar faces (e.g., friends, fam- 
ily members, relatives of the participant) while unfamiliar face images 
( n = 120) were completely unknown to participants before the experi- 
ment. Within each block of trials, familiar and unfamiliar face images 
with different coherence levels were presented in random order. 

Levels of face familiarity are reflected in behavioral performance 

We quantified our behavioral results using accuracy and reaction 
times on correct trials. Specifically, accuracy was the percentage of im- 
ages correctly categorized as either familiar or unfamiliar. All partici- 
pants performed with high accuracy ( > 92%) at the highest phase co- 
herence (55%), and their accuracy was significantly lower (~62%) at 

3 

https://osf.io/n7b8f/


H. Karimi-Rouzbahani, F. Ramezani, A. Woolgar et al. NeuroImage 233 (2021) 117896 

the lowest coherence (22%; F(3272) = 75.839, p < 0.001; Fig. 1 B). The 
correct reaction times show that participants were significantly faster 
to categorize the face at high phase coherence levels than lower ones 
(F(3272) = 65.797, p < 0.001, main effect; Fig. 1 C). We also calculated 
the accuracy and reaction times for the sub-categories of the familiar 
category separately (i.e. famous, personally familiar and self). The cal- 
culated accuracy here is the percentage of correct responses within each 
of these familiar sub-categories. The results show a gradual increase 
in accuracy as a function of phase coherence and familiarity ( Fig. 1 D, 
two-way ANOVA. factors: coherence level and face category. Face cat- 
egory main effect: F(2408) = 188.708, p < 0.001, coherence main ef- 
fect: F(3408) = 115.977, p < 0.001, and interaction: F(6408) = 12.979, 
p < 0.001), with the highest accuracy in categorizing their own (self), 
then personally familiar, and finally famous (or visually familiar) faces. 
The reaction time analysis also showed a similar pattern where partici- 
pants were fastest to categorize self faces, then personally familiar and 
famous faces ( Fig. 1 E, two-way ANOVA, factors: coherence level and 
face category. Face category main effect: F(2404) = 174.063, p < 0.001, 
coherence main effect: F(3404) = 104.861, p < 0.001). We did not eval- 
uate any potential interaction between coherence levels and familiarity 
levels as it does not address any hypothesis in this study. All reported 
p-values were corrected for multiple comparisons at p < 0.05 using Bon- 
ferroni correction. 

Is there a “familiarity spectrum ” for faces in the brain? 

Our behavioral results showed that there is a graded increase in par- 
ticipants’ performance as a function of familiarity level - i.e., participants 
achieve higher performance if the faces are more familiar to them. In 
this section we address the first question of this study about whether 
we can find a familiarity spectrum in neural activations, using both the 
traditional univariate and novel multi-variate analyses of EEG. 

Event-related potentials reflect behavioral familiarity effects 

As an initial, more traditional, pass at the data, we explored how 

the neural responses were modulated by different levels of familiarity 
and coherence by averaging event-related potentials (ERP) across par- 
ticipants for different familiarity levels and phase coherences ( Fig. 2 B). 
This is important as recent work failed to capture familiar face identity 
information from single electrodes ( Ambrus et al., 2019 ). At high coher- 
ence, the averaged ERPs, obtained from a representative centroparietal 
electrode (CP2), where previous studies have found differential activ- 
ity for different familiarity levels ( Henson et al., 2008 ; Kaufmann et al., 
2009 ; Huang et al., 2017 ), demonstrated an early, evoked response, fol- 
lowed by an increase in the amplitude proportional to familiarity levels. 
This showed that self faces elicited the highest ERP amplitude, followed 
by personally familiar, famous, and unfamiliar faces ( Fig. 2 B for 55% 

phase coherence). This observation of differentiation between familiar- 
ity levels at later time points seems to support evidence accumulation 
over time, which is more pronounced at higher coherence levels where 
the brain had access to reliable information. This repeats previous find- 
ings showing differential activity for different levels of face familiarity 
after 200 ms in the post-stimulus onset window ( Caharel et al., 2002 ; 
Wiese et al., 2019 ). 

We also observed a similar pattern between the ERPs of different 
familiarity levels at the time of decision (just before the response was 
made). Such systematic differentiation across familiarity levels was lack- 
ing at the lowest coherence level, where the amount of sensory evidence, 
and behavioral performance, were low (c.f. Fig. 2 A for 22% phase co- 
herence; shading areas). We observed a gradual increase in separability 
between the four face categories when moving from low to high co- 
herence levels (Supplementary Figure 1). The topographic ERP maps 
(Supplementary Figure 2) show that the effects are not localized on the 
CP2 electrode, but rather distributed across the head. There are elec- 
trodes which seem to show even more familiarity information than the 

CP2 electrode. These results reveal the neural correlates of perceptual 
differences in categorizing different familiar face categories under per- 
ceptually difficult conditions. 

Dynamics of neural representation and evidence accumulation for different 
face familiarity levels 

Our results so far are consistent with previous event-related stud- 
ies showing that the amplitude of ERPs is modulated by the fa- 
miliarity of the face ( Henson et al., 2008 ; Kaufmann et al., 2009 ; 
Schweinberger et al., 2002 ; Huang et al., 2017 ). However, more mod- 
ulation of ERP amplitude does not necessarily mean enhanced repre- 
sentation. Moreover, we observed that the familiarity effects were dis- 
tributed across the head rather than localized only on the individual 
CP2 electrode (Supplementary Figure 2). Therefore, looking at individ- 
ual electrodes might overlook the true temporal dynamics of familiarity 
information, which may involve widespread brain networks ( Ramon and 
Gobbini, 2018 ; Duchaine and Yovel, 2015 ). Here we used multivariate 
pattern and representational similarity analyses on these EEG data to 
quantify the time course of familiar vs. unfamiliar face processing. Com- 
pared to traditional single-channel (univariate) ERP analysis, MVPA al- 
lows us to capture the whole-brain widespread and potentially subtle 
differences between the activation dynamics of different familiarity lev- 
els ( Ambrus et al., 2019 ; Dobs et al., 2019 ). Specifically, we asked: (1) 
how the representational dynamics of stimulus- and response-related 
activations change depending on the level of face familiarity; and (2) 
how manipulation of sensory evidence (phase coherence) affects neural 
representation and coding of different familiarity levels. 

To obtain the temporal evolution of familiarity information across 
time, at each time point we trained the classifier to discriminate between 
familiar and unfamiliar faces. Note that the mapping between response 
and fingers were swapped from the first session to the next (counterbal- 
anced across participants) and the data were collapsed across the two 
sessions for all analyses, which ensures the motor response cannot drive 
the classifier. We trained the classifier using 90% of the trials and tested 
it on the left-out 10% of trials using a standard 10-fold cross-validation 
procedure (see Methods ). This analysis used only correct trials. Our de- 
coding analysis shows that, up until ~200 ms after stimulus onset, de- 
coding accuracy is near chance for all coherence levels ( Fig. 3 A). The 
decoding accuracy then gradually increases over time and peaks around 
500 ms post-stimulus for the highest coherence level (55%) but remains 
around chance for the lower coherence level (22%, Fig. 3 A). The ac- 
curacy for intermediate coherence levels (30% and 45%) falls between 
these two bounds but only reaches significance above chance for the 
45% coherence level. This ramping up temporal profile suggests an ac- 
cumulation of sensory evidence in the brain across the time course of 
stimulus presentation, which has a processing time that depends on 
the strength of the sensory evidence ( Hanks and Summerfield, 2017 ; 
Philiastides et al., 2006 ). 

After verifying that we could decode the main effect of familiarity, 
we turned to the first main question of the study. To examine if neural 
decoding could reveal the spectrum of familiarity which we observed in 
behavior and ERPs, we separately calculated the decoding accuracy for 
each of the sub-categories of familiar faces ( Fig. 3 B): famous, person- 
ally familiar and self faces (on the 55% coherence level, which showed 
the highest decoding in Fig. 3 A). The decoding accuracy was highest for 
self faces, both for stimulus- and response-aligned analyses, followed 
by personally familiar, famous and unfamiliar faces. Accuracy for the 
response-aligned analysis shows that the decoding gradually increased 
to peak decoding ~100 ms before the response was given by partici- 
pants. This temporal evolution of decoding accuracy begins after early 
visual perception and rises in proportion to the amount of the face fa- 
miliarity. 

To rule out the possibility that an unbalanced number of trials in the 
sub-categories of familiar faces could lead to the difference in decoding 
accuracies between the sub-categories, we also repeated the decoding 
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Fig. 2. The effect of familiarity and sensory evidence 
on event-related potentials (ERPs). Averaged ERPs for 
22% (A) and 55% (B) phase coherence levels and four 
face categories across all participants for an electrode 
at a centroparietal site (CP2). Note that the left panels 
show stimulus-aligned ERPs while the right panel shows 
response-aligned ERPs. Shaded areas show the time win- 
dows when the difference in ERPs between unfamiliar and 
the average of the three familiar face categories (i.e. un- 
familiar vs. average of unfamiliar categories) were signif- 
icantly ( p < 0.05) higher in the 55% vs. 22% coherence 
levels. The significance was evaluated using one-tailed in- 
dependent t -test with correction for multiple comparisons 
across time at p < 0.05. The differences were significant 
at later stages of stimulus processing around 400 ms post- 
stimulus onset and < 100 ms before the response was given 
by the participant in the stimulus- and response-aligned 
analyses, respectively. 

analysis by classifying each familiar sub-category from the unfamiliar 
category (after equalizing the number of trials across the familiar and 
unfamiliar categories and also across the three familiar sub-categories), 
which provided similar results. We also repeated the same analysis for 
lower coherence levels: only the two high-coherence conditions (i.e. 
45% and 55%), but not the low-coherence conditions (i.e. 22% and 
30%), showed significantly above-chance decoding for all familiarity 
conditions (Supplementary Figure 3). 

Low-level stimulus differences between conditions could potentially 
drive the differences between categories observed in both ERP and de- 
coding analyses (e.g., familiar faces being more frontal than unfamiliar 
faces, leading to images with brighter centers and, therefore, separa- 
bility of familiar from unfamiliar faces using central luminance of im- 
ages; Dobs et al., 2019 ; Ambrus et al., 2019 ). To address such potential 
differences, we carried out a supplementary analysis using RSA (Sup- 
plementary Text and Supplementary Figures 4 and 5), which showed 
that such differences between images do not play a major role in the 
differentiation between categories. 

To determine whether the dynamics of decoding during stimulus pre- 
sentation are associated with tfhe perceptual task, as captured by our 
participants’ behavioral performance, we calculated the correlation be- 
tween decoding accuracy and perceptual performance. For this, we cal- 
culated the correlation between 16 data points from decoding accuracy 
(4 face categories × 4 phase coherence levels) and their correspond- 
ing behavioral accuracy rates, averaged over participants. The corre- 
lation peaked ~500 ms post-stimulus ( Fig. 3 C), which was just before 
the response was given. This is consistent with an evidence accumula- 
tion mechanism determining whether to press the button for ’familiar’ 

or ’unfamiliar’, which took another ~100 ms to turn into action (finger 
movement). 

Do higher-order peri-frontal brain areas contribute to familiar face 
recognition? 

In this section we address the second question of this study about 
whether peri-frontal brain areas contribute to the recognition of famil- 
iar faces in the human brain using a novel informational connectivity 
analyses on EEG. 

Task difficulty and familiarity level affect information flow across the brain 

We investigated how the dynamics of feed-forward and feedback in- 
formation flow changes during the accumulation of sensory evidence 
and the evolution over a trial of neural representations of face images. 
We developed a novel connectivity method based on RSA to quantify 
the relationships between the evolution of information based on peri- 
occipital EEG electrodes and those of the peri-frontal electrodes. As 
an advantage to previous Granger causality methods ( Goddard et al., 
2016, 2019; Karimi-Rouzbahani et al., 2019; Kietzmann et al., 2019 ), 
the connectivity method developed here allowed us to check whether 
the transferred signals contained specific aspects of stimulus information . 
Alternatively, it could be the case that the transferred signals might 
carry highly abstract but irrelevant information between the source and 
destination areas, which can be incorrectly interpreted as connectiv- 
ity ( Anzellotti and Coutanche, 2018 ; Basti et al., 2020 ). Briefly, feed- 
forward information flow is quantified as the degree to which the in- 
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Fig. 3. Decoding of face familiarity from EEG signals. (A) 
Time course of decoding accuracy for familiar vs. unfamiliar 
faces from EEG signals for four different phase coherence lev- 
els (22%, 30%, 45%, and 55%). (B) Time course of decoding 
accuracy for four face categories (i.e., unfamiliar, famous, self 
and personally familiar faces) from EEG signals at the 55% co- 
herence level. The chance accuracy is 50%. Thickened lines 
indicate the time points when the accuracy was significantly 
above chance level (sign rank test, FDR corrected across time, 
p < 0.05). (C) Correlation between behavioral performance and 
decoding accuracy (across all conditions) over time. Thickened 
lines indicate the time points when the correlation was signifi- 
cant. The left panels show the results for stimulus-aligned anal- 
ysis while the right panels show the results for response-aligned 
analysis (averaged over 18 participants). 

formation from peri-occipital electrodes at present time contributes to 
the information recorded at peri-frontal electrodes at a later time point, 
which reflects moving the frontal representation closer to that required 
for task goals. Feedback flow is defined as the opposite: the contribu- 
tion to information at peri-frontal electrodes at the present time to that 
recorded later at peri-occipital electrodes at a later time point ( Fig. 4 A). 

The results show that at the highest coherence level (55%), infor- 
mation flow is dominantly in the feed-forward direction. This is illus- 
trated by the shaded area in Fig. 4 B where partialling out the peri- 
frontal from peri-occipital correlations only marginally reduces the total 
peri-occipital correlation ( Fig. 4 B, black curves and shaded area), mean- 
ing that there is limited information transfer from peri-frontal to peri- 
occipital. In contrast, partialling out the peri-occipital from peri-frontal 
correlations leads to a significant reduction in peri-frontal correlation, 

reflecting a feed-forward transfer of information ( Fig. 4 B, brown curves 
and shaded area). This trend is also seen for response-aligned analysis. 

These differences are shown more clearly in Fig. 4 C where the peaks 
of feed-forward and feedback curves show that the feed-forward infor- 
mation is dominant earlier, followed by feedback information flow, as 
shown by the later peak of feedback dynamics. These results suggest that 
when the sensory evidence is high, feed-forward information flow may 
be sufficient for categorical representation and decision making while 
feedback only slightly enhances the representation. However, in lower 
coherence levels (i.e., low sensory evidence), the strength of information 
flow is either equivalent between feed-forward and feedback directions 
(30%, 45%) or dominantly feedback (22%, Fig. 4 D). 

Here, we can see that the lower sensory evidence correlates with 
greater engagement of feedback mechanisms, suggesting that feedback 
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Fig. 4. Feed-forward and feedback information flow re- 
vealed by RSA. (A) A schematic presentation of the method 
for calculating informational connectivity between the peri- 
frontal and peri-occipital electrodes, termed feed-forward 
and feedback information flow. Feed-forward information 
flow is calculated as difference of the correlation between 
the present time peri-frontal neural RDM and the predicted 
model RDM and the same correlation when the earlier peri- 
occipital neural RDM is partialled out from it. This is shown 
in the Venn diagram on the right. The summation of white 
and yellow areas reflect the correlation between the peri- 
frontal and the model RDMs while the yellow area reflects 
the same correlation after partialling out the peri-occipital 
area at the earlier time point. The difference between the 
two (i.e. white = (white + yellow)– yellow) is considered to 
be feed-forward flow of information captured by the model. 
Delay time (T) is 30 ms. (B) Time course of partial Spear- 
man’s correlations representing the partial correlations be- 
tween the peri-occipital (black) and peri-frontal (brown) EEG 
electrodes and the model (familiar-unfamiliar model, see the 
inset in A) while including (solid) and excluding (dashed) 
the effect of the other area at phase coherence of 55%. The 
shaded area shows the decline in partial correlation of the 
current area with the model after excluding (partialling out) 
the RDM of the other area. Note that in both the dashed and 
solid lines, the low-level image statistics are partialled out of 
the correlations, so we call them partial correlations in both 
cases. (C) Feedforward (brown) and feedback (black) infor- 
mation flows obtained by calculating the value of the shaded 
areas in the corresponding curves in B. (D) Direction of in- 
formation flow for different coherence levels, determined as 
the difference between feed-forward and feedback informa- 
tion flow showed in C. Thickened lines indicate time points at 
which the difference is significantly different from zero (sign 
permutation test and corrected significance level at p < 0.05), 
and black dotted lines indicate 0 correlation. The left panels 
show the results for stimulus-aligned analysis while the right 
panels represent the results for response-aligned analysis. 

is recruited to boost task-relevant information in sensory areas under cir- 
cumstances where the input is weak. This is consistent with the dynam- 
ics and relative contribution of feedback and feed-forward mechanisms 
in the brain varying with the sensory evidence / perceptual difficulty of 
the task. 

Importantly, we also were interested in whether the degree of fa- 
miliarity changes the direction of information flow between the peri- 

frontal and peri-occipital brain areas. For this analysis, we collapsed 
the data across all coherence levels to look specifically at the impact 
of face familiarity. We generated specific RDM models to evaluate how 

much information about unfamiliar faces vs. all unfamiliar faces as a 
group ( Fig. 5 A) and each sub-category of familiar faces (i.e., famous, 
personally familiar and self; Fig. 5 B) individually were transferred be- 
tween the two brain areas. To avoid any bias from a different number 
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Fig. 5. Directions of information flow for familiar, unfamiliar and different levels of familiarity. The models, as depicted on the top, are constructed to measure 
the extent and timing by which information about unfamiliar and familiar (A), and each familiar sub-category (B) moves between the peri-occipital and peri-frontal 
brain areas. Feed-forward information flow is calculated as difference of the correlation between the present time peri-frontal neural RDM and the predicted model 
RDM and the same correlation when the earlier peri-occipital neural RDM is partialled out from it. This is shown in the Venn diagram in Fig. 4 A. The summation 
of white and yellow areas reflect the correlation between the peri-frontal and the model RDMs while the yellow area reflects the same correlation after partialling 
out the peri-occipital area at the earlier time point. The difference between the two (i.e. white = (white + yellow)– yellow) is considered to be feed-forward flow 

of information captured by the model. Delay time (T) is 30 ms. The yellow areas in the models refer to the target category (including unfamiliar, familiar, famous, 
personally familiar and self faces). Thickened lines indicate time points at which the difference is significantly different from zero (sign permutation test and corrected 
for multiple comparisons at significance level of p < 0.05), and black horizontal dotted lines indicate 0 correlation. The left panel shows the result for stimulus-aligned 
analysis while the right panels represent the result for response-aligned analysis. 

of elements in the RDM matrices, we only compared equal-sized condi- 
tions and present the results in separate panels (i.e. familiar vs. unfamil- 
iar ( Fig. 5 A) and sub-categories of familiar faces ( Fig. 5 B)). While the 
unfamiliar category showed a non-significant flow in either direction, 
the familiar category showed significant feed-forward flow of informa- 
tion in the stimulus-aligned data starting from 300 ms post-stimulus on- 
set ( Fig. 5 A). Among the familiar sub-categories, only the self category 
showed significant feed-forward information flow starting to accumu- 
late after the stimulus onset, reaching sustained significance ~500 ms. 
The less familiar categories of famous and personally familiar did not 
reach significance. In the response-aligned analysis, again, the signifi- 
cant time points show the domination of feed-forward flow for the fa- 
miliar category (Figure A) but not the unfamiliar category, and the self 
category but not the other sub-categories of familiar faces ( Fig. 5 B). 
Together, these results suggest that while the information about the un- 

familiar category did not evoke a particular dominance of information 
flow in either direction, the representations of familiar and self faces 
showed dominant feed-forward information flow from the peri-occipital 
to the peri-frontal brain areas. Note that, in this analysis, we also tried to 
minimize the effect of the participants’ decision and motor response in 
the models by excluding the opposing category (i.e. unfamiliar category 
when evaluating the familiar models and vice versa), which could have 
potentially contributed to the information flows in the previous analysis 
(c.f. Fig. 4 ). 

Together, the results of the information connectivity analysis sug- 
gest that, in familiar face recognition, both top-down and bottom-up 
mechanisms play a role, with the amount of sensory evidence determin- 
ing their relative contribution. It also suggests that the degree to which 
sensory information is processed feed-forward can be modulated by the 
familiarity level of the stimulus. 
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Discussion 

This study investigated the neural mechanisms of familiar face recog- 
nition. We asked how familiarity affected the contribution of feed- 
forward and feedback processes in face processing. We first showed that 
manipulating the familiarity affected the informational content of neu- 
ral responses about face category, in line with a large body of behav- 
ioral literature showing an advantage of familiar over unfamiliar face 
processing in the brain. Then, we developed a novel method of infor- 
mational connectivity analysis to track the exchange of familiarity in- 
formation between peri-occipital and peri-frontal brain areas to see if 
frontal brain areas contribute to familiar face recognition. Our results 
showed that when the perceptual difficulty was low (high sensory ev- 
idence), the flow of face familiarity information was consistent with a 
feed-forward account. On the other hand, when the perceptual difficulty 
was high (low sensory evidence), the dominant flow of face familiarity 
information reversed, which we interpret as reliance on feedback mech- 
anisms. Moreover, when teasing apart the effect of task and response 
from neural representations, only the familiar faces, but not the unfa- 
miliar faces, showed a dominance of feed-forward flow of information, 
with maximum flow for the most familiar category, the self faces. 

Our results are consistent with the literature suggesting that vi- 
sual perception comprises both feed-forward and feedback neural 
mechanisms transferring information between the peri-occipital visual 
areas and the peri-frontal higher-order cognitive areas ( Bar et al., 
2006 ; Summerfield et al., 2006 ; Goddard et al., 2016 ; Karimi- 
Rouzbahani et al., 2017b , 2017c , 2019 ). However, previous experimen- 
tal paradigms and analyses did not dissociate feedback and feed-forward 
information flow in familiar face recognition, and argued for a domi- 
nance of feed-forward processing ( Dobs et al., 2019 ; di Oleggio Castello 
and Gobbini, 2015 ; Ellis et al., 1979 ; Young and Burton, 2018 ). The 
more nuanced view we present is important because stimulus familiar- 
ity, similar to other factors including levels of categorization (superordi- 
nate vs. basic level; Besson et al., 2017 ; Praß et al., 2013 ), task difficulty 
( Chen et al., 2008; Kay and Yeatman, 2017; Woolgar et al., 2015 ) and 
perceptual difficulty ( Fan et al., 2020; Gilbert and Li, 2013; Gilbert and 
Sigman, 2007; Hupé et al., 1998; Lamme and Roelfsema, 2000; Wool- 
gar et al., 2011 ), may affect the complex interplay of feed-forward and 
feedback mechanisms in the brain. 

Our results showed that the contribution of peri-frontal to peri- 
occipital feedback information was inversely proportional to the amount 
of sensory evidence about the stimulus. Specifically, we only observed 
feedback when the sensory evidence was lowest (high perceptual diffi- 
culty) in our face familiarity categorization task. Although a large lit- 
erature has provided evidence for the role of top-down feedback in vi- 
sual perception, especially when sensory visual information is low, they 
generally evaluated the feedback mechanisms within the visual system 

( Delorme et al., 2004; Felleman and Essen Van, 1991; Fenske et al., 
2006; Kietzmann et al., 2019; Lamme et al., 2002; Lamme and Roelf- 
sema, 2000; Lee and Mumford, 2003; Mohsenzadeh et al., 2018; Pratte 
et al., 2013; Ress et al., 2000; Supèr et al., 2001 ) rather than across the 
fronto-occpital brain networks ( Bar et al., 2006; Goddard et al., 2016; 
Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019; Summer- 
field et al., 2006 ). Our findings support theories suggesting that fronto- 
occipital information transfer may feedback (pre-existing) face tem- 
plates, against which the input faces are compared for correct recogni- 
tion ( Polyn et al., 2005; Summerfield et al., 2006; Todorov et al., 2007 ). 
Previous results could not determine the content of the transferred sig- 
nals ( Bar et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani, 2018; 
Karimi-Rouzbahani et al., 2019; Summerfield et al., 2006 ). Here, using 
our novel connectivity analyses, we showed that the transferred signal 
contained information which contributed to the categorization of famil- 
iar and unfamiliar faces. 

Despite methodological differences, our findings support previous 
human studies showing increased activity in lower visual areas when the 
cognitive and perceptual tasks were difficult relative to easy, which the 

authors attributed to top-down contributions ( Kay and Yeatman, 2017; 
Ress et al., 2000 ). However, due to the low temporal resolution of fMRI, 
these studies cannot show the temporal evolution of these top-down con- 
tributions or the validity of the hypothesized direction. Importantly, the 
observed increase in activity in lower visual areas does not necessarily 
correspond to the enhancement of neural representations in those ar- 
eas - increased univariate signal does not show whether there is more 
information that will support performance. Electrophysiological stud- 
ies in animals have also shown that cortical feedback projections ro- 
bustly modulate responses of early visual areas when sensory evidence 
is low, or the stimulus is difficult to segregate from the background fig- 
ure( Hupé et al., 1998 ) . A recent study has also found cortical feedback 
modulated the activity of neurons in the dorsolateral geniculate nucleus 
(dLGN), which was less consistent when presenting simple vs. complex 
grating stimuli ( Spacek et al., 2019 ). Therefore, varying perceptual dif- 
ficulty seems to engage different networks and processing mechanisms, 
and we show here that this also pertains to faces: less difficult stimuli 
such as our high-coherence faces seem to be predominantly processed 
by the feed-forward mechanisms, while more difficult stimuli such as 
our low-coherence faces recruit both feed-forward and feedback mech- 
anisms. However, the exact location of the feedback in all these studies, 
including ours, remains to be determined with the development of more 
accurate modalities for neural activity recording. 

We observed that the direction of information flow is also influenced 
by the familiarity of the stimulus. The models of familiar faces and self 
faces, evoked a dominant flow of feed-forward information. The unfa- 
miliar category, however, did not evoke information flow in any direc- 
tion, as evaluated by our connectivity method. This is consistent with 
enhanced representations of familiar face categories in the feed-forward 
pathways ( Dobs et al., 2019 ; di Oleggio Castello and Gobbini, 2015 ; 
Ellis et al., 1979 ; Young and Burton, 2018 ), which, in turn, requires less 
top-down contributions to facilitate the perception of relevant informa- 
tion ( Bar et al., 2006 ; Gilbert and Sigman, 2007 ). Our results might 
initially seem inconsistent with Fan et al.’s (2020) study, which did not 
report significant differences between the temporal dynamics of famil- 
iar and unfamiliar face representations; however, they only used famous 
faces within the familiar face spectrum. In our sub-category analysis, 
we also did not observe differences between famous faces and unfamil- 
iar faces; our main findings were from highly familiar self faces. Over- 
all, then, our results suggest that processing of familiar faces, especially 
the most familiar (self) faces, is dominated by feed-forward information 
flow. 

One assumption in the connectivity analysis of the current work, as 
in many previous ones ( Clarke et al., 2018; Goddard et al., 2016; Ki- 
etzmann et al., 2019 ), is that all categories of faces used here involve 
neural mechanisms from both the peri-frontal and peri-occipital areas. 
However, this is not necessarily the case; we know from the face recog- 
nition literature that peri-frontal brain areas (as defined in this study) 
play role in the processing of face-relevant information such as social, 
dynamic and eye-movement-related aspects in cooperation with supe- 
rior temporal brain areas ( Duchaine and Yovel, 2015 ; superior tempo- 
ral areas are grouped here in the peri-occipital category). On the other 
hand, the peri-occipital brain areas have been suggested to dominantly 
process lower order sensory-level face features with relatively more in- 
dependence from peri-frontal brain areas ( Collins and Olsen, 2014 ). This 
suggests that our connectivity analysis might provide a stronger flow for 
one aspect of information than the other depending on the potentially 
distinct neural network involved for each. However, to the best of our 
knowledge, no studies have suggested distinct networks for the process- 
ing of the conditions which we compared (familiar vs. unfamiliar faces 
or familiarity levels). Thus, we cannot rule out the possibility that there 
might be factors attributable to a subset of categories, but not others, 
that involve distinct networks. For example, it could be the case that fa- 
miliar faces, but not unfamiliar ones, involve emotion networks which 
span from the posterior to the anterior brain areas ( Leppänen and Nel- 
son, 2009 ). To avoid this potential influence, we selected images for 
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both familiar and unfamiliar categories with variable emotional con- 
tent, but any emotional content associated with basic familiarity could 
not be avoided. At this point, we interpret our results as an interaction 
between feed-forward and feedback sweeps of information within a net- 
work, but acknowledge the potential contribution of additional frontal 
areas for one category over another. 

Our results suggest that processing differs considerably for highly 
familiar faces. This may be because expectation and prediction play a 
role in ( Ramon and Gobbini, 2018 ; Summerfield and Egner, 2009 ), and 
can potentially affect the contribution of feedback neural mechanisms 
in face detection ( Summerfield et al., 2006 ). Specifically, familiar faces 
are generally more limited in number compared to unfamiliar faces, 
which can potentially make the former more predictable. However, ac- 
cording to the earlier visual recognition literature ( Bar et al., 2006 ; 
Summerfield et al., 2006 ), if anything, this would have evoked more 
pronounced feedback signals for the familiar faces vs. unfamiliar faces 
in this study. In contrast to this prediction, our results showed dominant 
feed-forward flow of information for familiar faces, and no significant 
flow in either direction for unfamiliar faces. Therefore, it seems unlikely 
that the potential difference in expectation between familiar and unfa- 
miliar categories could explain our information flow results. 

Results also show that, in lower coherence levels, the information 
about the familiarity levels was generally stronger than the information 
about familiarity itself (as captured by familiar-unfamiliar model RDM; 
Supplementary Figure 4). This suggests a lower threshold for the ap- 
pearance of familiarity level compared to familiar-unfamiliar represen- 
tations, which are differentially developed through life-time experience 
and task instructions, respectively. Specifically, development of neural 
representations reflecting familiarity levels could be a result of expo- 
sure to repetitive faces, which can lead to developing face-specific rep- 
resentations in the visual system ( Dobs et al., 2019 ), while task instruc- 
tions could temporarily enhance the processing of relevant information 
in the brain through top-down mechanisms ( Hebart et al., 2018 ; Karimi- 
Rouzbahani et al., 2019 ). This is probably the reason for the dominance 
of feedback information flow in the processing of familiarity informa- 
tion ( Fig. 5 A). 

The RSA-based connectivity method used in this study follows a re- 
cent shift towards informational brain connectivity methods ( Anzellotti 
and Coutanche, 2018; Basti et al., 2020; Clarke et al., 2018; God- 
dard et al., 2016; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al., 
2019, 2020a; Kietzmann et al., 2019 ), and introduces a few distinct fea- 
tures compared to previous methods of connectivity analyses. Specif- 
ically, traditional connectivity methods examine inter-area interac- 
tions through indirect measures such as gamma-band synchronization 
( Gregoriou et al., 2009 ), shifting power ( Bar et al., 2006 ) or causal- 
ity in the activity patterns ( Summerfield et al., 2006 ; Fan et al., 2020 ). 
Such connectivity methods consider simultaneous (or time-shifted) cor- 
related activations of different brain areas as connectivity, but they 
are unable to examine how (if at all) relevant information is trans- 
ferred across those areas. Goddard et al. (2016) developed an RSA-based 
Granger connectivity method to solve this issue, which allowed us and 
others to track the millisecond transfer of stimulus information across 
peri-frontal and peri-occipital brain areas ( Karimi-Rouzbahani, 2018 ; 
Karimi-Rouzbahani et al., 2019 ; Goddard et al., 2019 ). This was 
followed by another informational connectivity method, which was 
similar but used regression instead of correlation in implementation 
( Kietzmann et al., 2019 ). While informative, these methods, are silent 
about what aspects of the representation are transferred and modulated. 
In other words, we need new methods to tell how (if at all) the trans- 
ferred information is contributing to the representations in the destina- 
tion area. Not having access to the transferred contents could lead to 
incorrect interpretations of connectivity for one main reason: we would 
not be able to tease apart transactions of distinct types of information 
across areas (e.g. familiar-unfamiliar discrimination, or different levels 
of familiarity). To address this issue, one could simply calculate the cor- 
relation between the neural and model RDMs from the source and desti- 

nation areas at every time point and then calculate the Granger causal- 
ity between the two time-courses of correlations. This is exactly how 

Clarke et al. (2018) incorporated RDM models into their connectivity to 
track specific aspects of the transferred information. However, this last 
method loses the temporal dynamics of information flow in the calcula- 
tion of Granger causality, and only provides the direction of information 
flow. Our method circumvents this limitation (i.e. lack of temporal infor- 
mation) by making use of the high-dimensional representational space 
of the RDMs in the source and destination areas for the calculation of 
inter-area and area-model relationship leaving the time samples avail- 
able for the evaluation of the temporal dynamics. Our method allows us 
to explicitly determine the content (using model RDMs), the direction 
(by considering delayed time samples across areas) and the temporal 
evolution (using temporally-resolved analysis) of the information trans- 
ferred from the peri-frontal to peri-occipital areas and vice versa. The 
relevance of the transferred information is determined by the amount 
that the representations in the destination area are shifted towards our 
predefined predicted RDM models. In this way, we could determine the 
temporal dynamics of the contributory element of the transferred infor- 
mation. Despite the specificity that the model-based methods (including 
our proposed one) provide about the content of the transferred informa- 
tion, such model-based methods have the characteristic to ignore other 
model-irrelevant aspects of information which might be similarly or dis- 
tinctly represented in the source and destination areas. In other words, 
while the source and destination areas might show high levels of con- 
nectivity through the “lens ” of the model used, their representational 
geometry (as evaluated here using RDMs) might be very distinct from 

one another when directly compared or vice versa. Therefore, the re- 
sults of model-based connectivity methods do not make any predictions 
about the direction and the amount of potential connectivity when using 
model-free connectivity methods. 

Despite the advantage that informational connectivity methods pro- 
vide over conventional univariate connectivity methods, further investi- 
gations (using simulated datasets with known ground-truth of informa- 
tion flow) are needed to fully uncover their characteristics and potential 
limitations. As an initial step in that direction, we simulated a simpli- 
fied well-controlled dataset and applied our connectivity analysis to it 
to check if it could detect the imposed information flow between our 
simulated source and destination areas (Supplementary Figure 6). Re- 
sults showed that our connectivity analysis detected correct direction 
and temporal dynamics of the simulated information flow. Despite this 
successful simulation, a full mathematical and analytical investigation 
will need to be performed to compare the available and the proposed 
informational connectivity analyses in the future. 

Our results specify the neural correlates for the behavioral advan- 
tage in recognizing more vs. less familiar faces in a “familiarity spec- 
trum ”. As in previous studies, our participants were better able to cate- 
gorize highly familiar than famous or unfamiliar faces, especially in low- 
coherence conditions ( Kramer et al., 2018 ; Young and Burton, 2018 ). 
This behavioral advantage could result from long-term exposure to vari- 
ations of personally familiar faces under different lighting conditions 
and perspectives, which is usually not the case for famous faces. 

Our neural decoding results quantified a neural representational ad- 
vantage for more familiar faces compared to less familiar ones (i.e. 
higher decoding for the former than the latter) to suggest that more 
familiar faces also lead to more distinguishable neural representations. 
Decoding accuracy was also proportional to the amount of sensory ev- 
idence: the higher the coherence levels, the higher the decoding accu- 
racy. We observed that the decoding accuracy “ramped-up ” and reached 
its maximum ~100 ms before participants expressed their decisions us- 
ing a key press. These results are suggestive of sensory evidence accumu- 
lation and decision making processes during face processing in humans, 
consistent with previously reported data in monkey and recent single- 
trial ERP studies ( Hanks and Summerfield, 2017; Kelly and O’Connell, 
2013; Philiastides et al., 2006; Philiastides and Sajda, 2006; Shadlen and 
Newsome, 2001 ). 
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There was a significant correlation between MVPA accuracy and our 
behavioral results, showing a relationship between neural representa- 
tion and behavioral outcomes. While it would be ideal to see perfect 
correlation between neural data and behavior, it is not usually the case 
( Dobs et al., 2019 ), which may reflect several reasons including the noise 
in the neural data and sub-optimal decoding of the neural codes ( Karimi- 
Rouzbahani et al., 2020b ) and/or possible non-linear relationships be- 
tween neural data and behavior. In our study, while there was a differ- 
ence between the neural data from personally familiar and self faces (c.f. 
Figs. 2 and 3 ), there was no detectable difference in behavior, potentially 
reflecting a ceiling effect for both categories in above-chance conditions 
(i.e. coherence levels > 30%). Despite this, the correlation was signifi- 
cant across the four familiarity × four coherence level conditions overall 
during time windows later in the trial and immediately before the re- 
sponse. This suggests that the behavioral advantages of self and familiar 
faces and/or having higher sensory evidence (highest coherence) could 
have been driven by the enhanced neural representations. 

Previous studies generally show face familiarity modulation during 
early ERP components such as N170, N250, and P300 ( Ambrus et al., 
2019; Dobs et al., 2019; Fan et al., 2020; Henson et al., 2008; Huang 
et al., 2017; Kaufmann et al., 2009; Schweinberger et al., 2002 ). In 
contrast, the time course of our EEG results showed their maximum 

effects after 400 ms post-stimulus onset. However, these studies typi- 
cally use event-related paradigms, which evoke initial brain activations 
peaking at around 200 ms, whereas our dynamic masking paradigm 

releases the information gradually along the time course of the trial. 
Moreover, the extended ( > 200 ms) static stimulation used in previous 
studies has been suggested to bias towards domination of feed-forward 
processing ( Goddard et al., 2016 ; Karimi-Rouzbahani, 2018 ), because 
of the co-processing of the incoming sensory information and the re- 
currence of earlier windows of the same input ( Kietzmann et al., 2019 ; 
Mohsenzadeh et al., 2018 ), making it hard to measure feedback. Our 
paradigm, while providing a delayed processing profile compared to 
previous studies, avoids this and also slows down the process of ev- 
idence accumulation so that it becomes more trackable in time. This 
does mean, however, that our time courses are not really comparable 
with previous ERP results. 

In conclusion, our study demonstrates that the processing of face in- 
formation involves both feed-forward and feedback flow of information 
in the brain, and which predominates depends on the strength of incom- 
ing perceptual evidence and the familiarity of the face stimulus. Our 
novel extension of multivariate connectivity analysis methods allowed 
us to disentangle feed-forward and feedback contributions to familiarity 
representation. This connectivity method can be applied to study a wide 
range of cognitive processes, wherever information is represented in the 
brain and transferred across areas. We also showed that the behavioral 
advantage for familiar face processing is robustly reflected in neural rep- 
resentations of familiar faces in the brain and can be quantified using 
multivariate pattern analyses. These new findings and methods empha- 
size the importance of, and open new avenues for, exploring the impact 
of different behavioral tasks on the dynamic exchange of information in 
the brain. 

Materials and methods 

Participants 

We recorded from 18 participants (15 male, aged between 20 and 26 
years, all with normal or corrected-to-normal vision). Participants were 
students from the Faculty of Mathematics and Computer Science at the 
University of Tehran, Iran. All participants voluntarily participated in 
the experiments and gave their written consent prior to participation. 
All experimental protocols were approved by the ethical committee of 
the University of Tehran. All experiments were carried out in accordance 
with the guidelines of the Declaration of Helsinki. 

Stimuli 

We presented face images of four categories, including unfamiliar, 
famous, self and personally familiar faces. The unfamiliar faces ( n = 120) 
were unknown to participants. The famous faces ( n = 40) were pictures 
of celebrities, politicians, and other well-known people. These faces 
were selected from different, publicly available face databases. 2 In both 
categories, half of the images were female, and half were male. To en- 
sure that all participants knew the famous face identities, participants 
completed a screening task prior to the study. In this screening, we pre- 
sented them with the names of famous people in our data set and asked 
if they were familiar with the person. 

The personally familiar faces were selected from participants’ family, 
close relatives, and friends ( n = 40); self-images were photographs of 
participants ( n = 40). The images of self and personally familiar faces 
were selected to have varied backgrounds and appearances. On average, 
we collected n = 45 for personally familiar and n = 45 for self faces for 
every individual participant. All images were cropped to have 400 × 400 
pixels and were converted to greyscale ( Fig. 1 A). We ensured that spatial 
frequency, luminance, and contrast were equalized across all images. 
The magnitude spectrum of each image was adjusted to the average 
magnitude spectrum of all images in our database. 3 

The phase spectrum was manipulated to generate noisy images char- 
acterized by their percentage phase coherence ( Dakin et al., 2002 ). 
We used a total of four different phase coherence values (22%, 30%, 
45%, and 55%), chosen based on behavioral pilot experiments, so over- 
all behavioral performance spanned the psychophysical dynamic range. 
Specifically, the participants scored 52.1%, 64.7%, 85.2% and 98.7% 

in the mentioned coherence levels in the piloting. At each of the four 
phase coherence levels, we generated multiple frames for every image: 
the number of frames generated depended on the reaction time of the 
participants, as explained below. Different sets of participants were used 
for the actual and pilot experiments. 

EEG acquisition and apparatus 

We recorded EEG data from participants while they were perform- 
ing the face categorization task. EEG data were acquired in an electro- 
statically shielded room using an ANT Neuro Amplifier (eego 64 EE- 
225) from 64 Ag/AgCl scalp electrodes and from three periocular elec- 
trodes placed below the left eye and at the left and right outer canthi. 
All channels were referenced to the left mastoid with input impedance 
< 15k and chin ground. Data were sampled at 1000 Hz and a software- 
based 0.1–200 Hz bandpass filter was used to remove DC drifts, and 
high-frequency noise and 50 and 100 Hz (harmonic) notch filters were 
applied to minimize line noise. These filters were applied non-causally 
(using MATLAB filtfilt) to avoid phase-related distortions. We used Inde- 
pendent Component Analysis (ICA) to remove artefactual components 
in the signal. The components which were reflecting artefactual signals 
(eye movements, head movements) were removed based on ADJUST’s 
criteria ( Mognon et al., 2011 ). Next, trials with strong eye movement 
or other movement artifacts were removed using visual inspection. On 
average, we kept 98.74% ± 1.5% artifact-free trials for any given condi- 
tion. 

We presented images on LCD monitor (BenQ XL2430, 24 ″ , 144 Hz 
refresh rate, resolution of 1920 × 1080 pixels) and the stimulus presen- 
tation was controlled using custom-designed MATLAB codes and Psy- 
chtoolbox 3.0 ( Brainard, 1997 ; Pelli, 1997 ). We presented stimuli at a 
distance of 60 cm to the participant, and each image subtended 8° × 8°
of visual angle. 

2 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html https://megapixels.cc/ 
datasets/msceleb/ 
3 https://github.com/Masoud-Ghodrati/face _ familiarity 

11 

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://megapixels.cc/datasets/msceleb/
https://github.com/Masoud-Ghodrati/face_familiarity


H. Karimi-Rouzbahani, F. Ramezani, A. Woolgar et al. NeuroImage 233 (2021) 117896 

Procedure 

Participants performed a familiar vs. unfamiliar face categorization 
task by categorizing dynamically updating sequences of either familiar 
or unfamiliar face images in two recording sessions ( Fig. 1 A). Image se- 
quences were presented in rapid serial visual presentation (RSVP) fash- 
ion at a frame rate of 60 Hz frames per second (i.e. 16.67 ms per frame 
without gaps). Each trial consisted of a single sequence of up to 1.2 s (un- 
til response) with a series of images from the same stimulus (i.e., selec- 
tion from either familiar or unfamiliar face categories) at one of the four 
possible phase coherence levels. Importantly, within each phase coher- 
ence level, the overall amount of noise remained unchanged, whereas 
the spatial distribution of the noise varied across individual frames such 
that different parts of the underlying image was revealed sequentially. 

We instructed participants to fixate at the center of the monitor and 
respond as accurately and quickly as possible by pressing one of two 
keyboard keys (left and right arrow keys) to identify the image as famil- 
iar or unfamiliar using the right index and middle fingers, respectively. 
The mapping between familiar-unfamiliar categories and the two fingers 
were swapped from the first session to the next (counterbalanced across 
participants) and the data were collapsed across the two sessions before 
analyses. As soon as a response was given, the RSVP sequence stopped, 
followed by an inter-trial interval of 1–1.2 s (random with uniform dis- 
tribution). The maximum time for the RSVP sequence was 1.2 s. If par- 
ticipants failed to respond within the 1.2 s period, the trial was marked 
as a no-choice trial and was excluded from further analysis. We had a 
total of 240 trials (i.e., 30 trials per perceptual category, familiar and 
unfamiliar, each at four phase coherence levels) during the experiment. 
Participants were naïve about the number and proportion of the face 
stimuli in categories. We presented six blocks of 36 trials each, and one 
block of 24 trials and participants had some resting time between the 
blocks. Each image from the image set was presented to the participants 
once in each session. 

Analysis 

Decoding (MVPA) analysis 
We decoded the information content of our conditions using Multi- 

variate Pattern Analysis (MVPA) methods with Support Vector Machine 
(SVM) classifiers ( Cortes and Vapnik, 1995 ). MVPA utilizes within- 
condition similarity of trials and their cross-condition dissimilarity to de- 
termine the information content of individual conditions. We trained an 
SVM classifier on the patterns of brain activity (from 64 EEG electrodes) 
from 90% of familiar (including famous, personally familiar and self 
sub-categories) and 90% of unfamiliar trials, and then tested the trained 
classifier on the left-out 10% of trials from each category. The classifi- 
cation accuracy from categorization of the testing data shows whether 
there is information about familiarity in the neural signal. We only used 
the trials in which the participant correctly categorized the stimulus as 
familiar or unfamiliar. We repeated this procedure iteratively 10 times 
until all trials from the two categories were used in the testing of the 
classifier once (no trial was included both in the training and testing sets 
in a single run), hence 10-fold cross-validation, and averaged the clas- 
sification accuracy across the 10 validation runs for each participant. 
To obtain the decoding accuracy through time, we down-sampled the 
EEG signals to 100 Hz and repeated the same classification procedure 
for every 10 ms time point from − 100 to 600 ms relative to the onset of 
the stimulus, and from − 500 to 100 ms relative to the response. This al- 
lowed us to assess the evolution of face familiarity information relative 
to the stimulus onset and response separately. 

To investigate the potential differences in the temporal evolution 
of the sub-categories contained in the familiar category (i.e., famous, 
personally familiar and self), we additionally calculated the decoding 
accuracy for each sub-category separately. Note that the same decoding 
results obtained from decoding of familiar vs. unfamiliar categories were 
used here, only calculated separately for each sub-category of familiar 

faces. Finally, we averaged the decoding accuracies across participants 
and reported the group-level results. 

We used random bootstrapping testing to evaluate the significance 
of the decoding accuracies at every time point for the group of partici- 
pants. For every time point, this involved randomizing the labels of the 
familiar and unfamiliar trials 10,000 times and obtaining 10,000 de- 
coding accuracies using the above procedure for each participant. Then 
we averaged the 10,000 decoding accuracies across (18) participants 
obtaining a single decoding accuracy for each of the 10,000 random- 
ization for group-level analysis. For every time point, the p-value of the 
true group-averaged decoding accuracy was obtained as [1- p(10,000 
randomly generated decoding accuracies which were surpassed by the 
corresponding true group-averaged decoding value)]. Since there is a 
different number of trials in each familiar sub-category, in the random 

bootstrapping, we maintained the same proportion of trials in each sub- 
category to preserve the original structure and generate an appropriate 
null distribution. We then corrected the p values for multiple compar- 
isons across time (using MATLAB’s mafdr function at p < 0.05). After 
the correction, the true decoding values with p < 0.05 were considered 
significantly above chance (e.g., 50%). 

Brain-behavior correlation 
To investigate if the decoding results could explain the observed be- 

havioral face categorization results, we calculated the correlation be- 
tween the decoding and the behavioral results using Spearman’s rank 
correlation. We calculated the correlation between a 16-element vector 
containing each participant’s behavioral accuracy for the four coher- 
ence levels of the four familiarity levels (i.e. Familiar, Famous, Self and 
Unfamiliar), and another vector with the same structure containing the 
decoding values from the same conditions ( Karimi-Rouzbahani et al., 
2020b ). We repeated this procedure for every time point and each in- 
dividual participant separately. Finally, we averaged the correlations 
across participants and reported the group-level results. 

To determine the significance of the group-averaged correlations, the 
same bootstrapping procedure as described above was repeated at ev- 
ery time point by generating 10,000 random correlations after shuffling 
the elements of the 16-element behavioral vector. We repeated this pro- 
cedure for every time point and each individual participant separately. 
Then we averaged the 10,000 random correlations across (18) partic- 
ipants obtaining a single correlation value for each of the 10,000 ran- 
domization for group-level analysis. For every time point, the p-value of 
the true group-averaged correlation was obtained as [1- p(10,000 ran- 
domly generated correlations which were surpassed by the correspond- 
ing true group-averaged correlation)]. We then corrected the p values 
for multiple comparisons across time (using MATLAB’s mafdr function at 
p < 0.05). After the correction, the true correlation values with p < 0.05 
were considered significantly above chance (i.e., 0). 

Representational similarity analysis 
Representational similarity analysis is used here for three purposes. 

First, to partial out the possible contributions of low-level image statis- 
tics to our decoding results, which is not directly possible in the decoding 
analysis (Supplementary Text). Second, to investigate possible coding 
strategies that the brain might have adopted which could explain our 
decoding, specifically, whether the brain was coding familiar vs. unfa- 
miliar faces, the different levels of familiarity or a combination of the 
superordinate and subordinate categories. Third, to measure the contri- 
bution of information from other brain areas to the representations of 
each given area (see Information flow analysis). 

We constructed neural representational dissimilarity matrices 
(RDMs) by calculating the ( Spearman’s rank) correlation between ev- 
ery possible representation obtained from every single presented im- 
age which resulted in a correct response (leading to a 240 by 240 RDM 

matrix if all images were categorized correctly, which was never the 
case for any participant). The matrices were constructed using signals 
from the electrodes over the whole brain as well as from peri-occipital 
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and peri-frontal electrodes separately as explained later ( Figs. 4 -6). We 
also constructed image RDMs for which we calculated the correlations 
between every possible pair of images which had generated the corre- 
sponding neural representations used in the neural RDMs (i.e. only from 

correct trials). Finally, to evaluate how much the neural RDMs coded the 
familiar vs. unfamiliar faces, familiar and unfamiliar faces separately, 
familiarity levels and each level of familiarity, we constructed different 
model RDMs. For examples, in the Familiar-Unfamiliar model RDM, the 
elements which corresponded to the correlations of familiar with famil- 
iar, or unfamiliar with unfamiliar, representations (and not their cross- 
correlations) were valued as 1, and the elements which corresponded to 
the cross-correlations between familiar and unfamiliar faces were val- 
ued as 0. The Familiarity level model, on the other hand, was filled with 
0 s (instead of 1 s) for the representations which corresponded to the 
cross-correlations between different sub-categories of familiar faces (e.g. 
personally familiar vs. famous) with everything else being the same as 
the Familiar-Unfamiliar model RDM. Please note that the number of trials 
within all conditions of the RDM were down-sampled to the minimum 

number available for all conditions. This avoided potential difference 
across conditions as a result of unbalanced number of trials across con- 
ditions. To correlate the RDMs, we selected and reshaped the upper tri- 
angular elements of the RDMs (excluding the diagonal elements) into 
vector RDMs (or RDVs). To evaluate the correlation between the neural 
RDVs and the model RDVs, we used Spearman’s partial correlation in 
which we calculated the correlation between the neural and the model 
RDV while partialling out the image RDV as in Eq. (1) : 

𝜌𝑁 𝑀 .𝐼 ( 𝑡 ) = 
𝜌𝑁𝑀 ( 𝑡 ) − 𝜌𝑁𝐼 ( 𝑡 ) 𝜌𝑀𝐼 ( 𝑡 ) 

√ 

1 − 𝜌2 
𝑁𝐼 ( 𝑡 ) 

√ 

1 − 𝜌2 
𝑀𝐼 ( 𝑡 ) 

(1) 

where 𝜌 refers to Spearman correlation and 𝜌𝑁 𝑀 .𝐼 refers to the Spear- 
man correlation between the neural and model RDVs after partialling 
out the image RDV. 𝑁 , 𝑀 and 𝐼 respectively refer to Neural, Model and 
Image RDVs. As indicated in the equation, the partial correlation was 
calculated for every time point of the neural data (10 ms time steps), 
relative to the stimulus onset and response separately using the time- 
invariant model and image RDVs. To evaluate the significance of the 
partial correlations, we used a similar bootstrapping procedure as was 
used in decoding. However, here we randomized the elements of the 
model RDV 10,000 times (while keeping the number of ones and ze- 
ros equal to the original RDV) and calculated 10,000 random partial 
correlations. Finally, we compared the true partial correlation at every 
time point with the randomly generated partial correlations for the same 
time point and deemed it significant if it exceeded 95% of the random 

correlations ( p < 0.05) after correcting for multiple comparisons. 

Informational connectivity analysis 

We developed a novel model-based method of information flow anal- 
ysis to investigate how earlier information content of other brain ar- 
eas contributes to the present-time information content of a given area. 
While several recent approaches have suggested for information flow 

analysis in the brain ( Goddard et al., 2016 ; Karimi-Rouzbahani, 2018 ; 
Karimi-Rouzbahani et al., 2019 ), following the recent needs for 
these approaches in answering neuroscience questions ( Anzellotti and 
Coutanche, 2018 ), none of the previously developed methods could an- 
swer the question of whether the transferred information was improv- 
ing the representation of the target area in line with the behavioral 
task demands. Our proposed model, however, explicitly incorporates 
the specific aspects of behavioral goals or stimuli in its formulation and 
allows us to measure if the representations of target areas are shifted 
towards the behavioral/neural goals by the received information. An 
alternative would be that the incoming information from other areas 
are just epiphenomenal and are task-irrelevant. This new method can 
distinguish these alternatives. 

Accordingly, we split the EEG electrodes in two groups, each with 
16 electrodes: peri-frontal and peri-occipital ( Fig. 4 A) to see how fa- 

miliarity information is (if at all) transferred between these areas that 
can be broadly categorized as “cognitive ” and “sensory ” brain areas, re- 
spectively. We calculated the neural RDMs for each area separately and 
calculated the correlation between the neural RDV and the model RDV, 
partialling out the image RDM from the correlation (as explained in 
Eq. (1) ). This resulted in a curve when calculating the partial correlation 
at every time point in 10 ms intervals (see the solid lines in Fig. 4 B). Note 
that the partial correlation curve for the peri-frontal area could have re- 
ceived contributions from the present and earlier representations of the 
same area (i.e., the latter being imposed by our sequential stimulus pre- 
sentation). It could also have received contributions from earlier peri- 
occipital representations through information flow from peri-occipital 
to the peri-frontal area. To measure this potential contribution, we par- 
tialled out the earlier peri-occipital representations in calculation of the 
partial correlation between peri-frontal and model RDVs and calculated 
the difference between the former and the latter partial correlations as 
feed-forward information flow according to Eq. (2) : 

𝐹 𝑒𝑒𝑑 − 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓 𝑙𝑜𝑤 ( 𝑡 ) = 

𝜌𝐹𝑀.𝐼 ( 𝑡 ) − 
𝜌𝐹𝑀.𝐼 ( 𝑡 ) − 𝜌𝐹𝑂.𝐼 ( 𝑡 − 𝑇 ) 𝜌𝑀𝑂.𝐼 ( 𝑡 − 𝑇 ) 
√ 

1 − 𝜌2 
𝐹𝑜.𝐼 ( 𝑡 − 𝑇 ) 

√ 

1 − 𝜌2 
𝑀𝑂.𝐼 ( 𝑡 − 𝑇 ) 

(2) 

where 𝜌𝐹𝑀.𝐼 refers to the partial correlation between the peri-frontal 
and the model RDV, 𝜌𝐹𝑂.𝐼 the partial correlation between peri-frontal 
and peri-occipital RDVs and 𝜌𝑀𝑂.𝐼 the partial correlation between the 
peri-occipital and model RDVs. Please note that the image RDV is par- 
tialled out from all pairwise correlations to remove its effect in the analy- 
sis, so the subscript 𝐼 and the term “partial ”. This determines the contri- 
bution of earlier peri-occipital representations to the present peri-frontal 
areas which we called “feed-forward information flow ” (as indicated by 
the brown shades in Fig. 4 ). To determine the contribution of the peri- 
frontal representations in modulating the peri-occipital representations, 
we used Eq. (3) : 

𝐹 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑙𝑜𝑤 ( 𝑡 ) = 

𝜌𝑂𝑀.𝐼 ( 𝑡 ) − 
𝜌𝑂𝑀.𝐼 ( 𝑡 ) − 𝜌𝑂𝐹 .𝐼 ( 𝑡 − 𝑇 ) 𝜌𝑀𝐹.𝐼 ( 𝑡 − 𝑇 ) 
√ 

1 − 𝜌2 
𝑂𝐹 .𝐼 ( 𝑡 − 𝑇 ) 

√ 

1 − 𝜌2 
𝑀𝐹.𝐼 ( 𝑡 − 𝑇 ) 

(3) 

with the same notations as in Eq. (2) . Accordingly, Eq. (3) determines 
the contribution of earlier peri-frontal representations in directing the 
peri-occipital representations towards the model RDV, namely ’feedback 
information flow’. In Eqs. (2) and (3) , the delay time (T) was 30 ms, 
which was selected based on previously reported delay times between 
the peri-occipital and peri-frontal areas in visual processing ( Foxe and 
Simpson, 2002 ). To that end, five earlier RDVs were averaged (5 time 
points centered on − 30 ms) leading to an average delay time of 30 ms. 

Finally, to characterize the information flow dynamics between the 
peri-occipital and peri-frontal areas, we calculated the difference be- 
tween the feed-forward and feedback contribution of information flows. 
This allowed us to investigate the transaction of targeted informa- 
tion between the brain areas aligned to the stimulus onset and re- 
sponse. We repeated the same procedure using the Familiar-Unfamiliar 
as well as Familiarity level models to see if they differed. We validated 
the proposed informational connectivity method using simulated well- 
controlled dataset (Supplementary Figure 6). We determined the signifi- 
cance of the partial correlations using the above-explained random boot- 
strapping procedure. We determined the significance of the differences 
between partial correlations (the shaded areas in Fig. 4 and the lines in 
panel C) and the differences in the feed-forward and feedback contri- 
bution of information using Wilcoxon’s signed-rank test using p < 0.05 
threshold for significance after correction for multiple comparisons (us- 
ing Matlab mafdr). 
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