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Perceptual Feedback in Multigrid Motion Estimation
Using an Improved DCT Quantization

Jesus Malo, Juan Gutiérrez, |. Epifanio, Francesc J. Ferri, and José M. Artigas

Abstract—In this paper, a multigrid motion compensation video through a perceptually weighted quantization of a transform of
coder based on the current human visual system (HVS) contrast the DFD. The bit allocation among the transform coefficients is

discrimination models is proposed. A novel procedure for the en- ; ; ;
coding of the prediction errors has been used. This procedure re- based on the spat'lal frequency response of simple (linear and
threshold) perception models [1]-[3].

stricts the maximum perceptual distortion in each transform co- ! -
efficient. This subjective redundancy removal procedure includes  In this context, there is a clear tradeoff between the effort

the amplitude nonlinearities and some temporal features of human devoted to motion compensation and transform redundancy re-
perception. A perceptually weighted control of the adaptive motion - moyal, On the one hand, better motion estimation may lead to
izgmg'?gezlggéﬁhm r?q?n?i c?rllsgs?ierﬁ gtgi”;ﬁgufrrg;n athp'se r?g&iglpbe;'_ better predictions and should alleviate the task of the quantizer.
ance between the motion estimation effort and the redundancy re- O the other hand, better quantization techniques may be able to
moval process. The results show that this feedback induces a scalefemove more redundancy, thereby reducing the predictive power
dependent refinement strategy that gives rise to more robust and needed in the motion estimate. Most of the recent work on mo-
meaningful ':;?ti:’er;a?fg;]mgi?gé V;’S;Tlh mgr{i"’r‘]‘jﬁ?ﬁsﬂ?{i‘% Iri\g tion estimation for video coding has been focused on the adap-
sequence In . - . . . . . .
su(r]es and the r?econstructed fre?mes )ghow thegsubjective improve- tation of the motion estimate togiven quant_lzeto obt_aln an .
ments of the proposed scheme versus an H.263 scheme with un900d balance between these elements. Since the introduction
weighted motion estimation and MPEG-like quantization. of the intuitive (suboptimal) entropy-constrained motion esti-
Index Terms—Entropy constrained motion estimation, non- Mation of Dufauxet al. [7], [8] several optimal, variable-size
linear human vision model, perceptual quantization, video coding. BMAs have been proposed [9]-[12]. These approaches put for-
ward their intrinsic optimality, but the corresponding visual ef-
fect and the relative importance of the motion improvements
versus the quantizer improvements have not been deeply ex-
|. INTRODUCTION plored, mainly because of their subjective nature.
N natural video sequences to be judged by human observersThis paper adresses the problem of the tradeoff between
two kinds of redundancies can be identifiedobjective re- multigrid motion estimation and error quantization in a dif-
dundanciesrelated to the spatio-temporal correlations amorfgrent way. An improved (nonlinear) perception model inspires
the video samples and 8lbjective redundancigs/hich refer the whole design to obtain a coder that preserves no more
to the data that can be safely discarded without perceptual Idé&n the subjectively significant information. The role of
The aim of any video coding scheme is to remove both kinds fe perceptual model in the proposed video coder scheme is
redundancy. To achieve this aim, current video coders are bagedfold. First, it is used to simulate the redundancy removal in
on motion compensation and two-dimensional (2-D) transforthe human visual system (HVS) through an appropriate per-
coding of the residual error [1]-[4]. The original video signateptually matched quantizer. Second, this perceptual quantizer
is split into motion information and prediction errors. Thests used to control the adaptive motion estimation. This control
two lower complexity sub-sources of information are usualljpptroduces a perceptual feedback in the motion estimation
referred to as displacement vector field (DVF) and displacétiage. This perceptual feedback limits the motion estimation
frame difference (DFD), respectively. effort, avoiding superfluous prediction of details that are
In the most recent standards, H.263 and MPEG-4 [4], [)erceptually negligible and will be discarded by the quantizer.
the fixed-resolution motion estimation algorithm used in H.26Ihe bandpass shape of the perceptual constraint to the motion
and MPEG-1 has been replaced by an adaptive, variable-siaéimation gives a scale-dependent control criterion that may
block matching algorithm (BMA) to obtain improved motion esbe useful for discriminating between significant and noisy
timates [6]. Spatial subjective redundancy is commonly reducgwtions. Therefore, the benefits of including the properties
of the biological filters in the desigh may go beyond a better
Manuscript received May 6, 1999; revised June 18, 2001. This work was sJE—te'd'Stortlon pgrformgnce but al_so Improve the. meaningful-
ported in part by CICYT Projects TIC 1FD97-0279 and TIC 1FD97-1910. THaess of the motion estimates. This fact may be important for
asso_ciate editor coordinating the reyiew of this manuscript and approving it igext generation coders that build models of the scene from the
publication was Prof. Rashid Ansat. lpw-level information used in the current standards.
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paper is to assess the relative relevance of optimal variable-sifé¢he sequence [6]. The motion estimation starts at a coarse
BMAs and quantizer improvements. To this end, the decodegkolution (large blocks). At a given resolution, the best dis-
frames are explicitly compared and analyzed in terms of pgrtacement for each block is computed. The resolution of the
ceptually meaningful distortion measures [15], [16]. The meamotion estimate is locally increased (a block of the quadtree is
ingfulness of the motion information is tested by using it asplit) according to some refinement criterion. The process ends
input for a well established motion-based segmentation algehen no block of the quadtree can be split further.
rithm used in model-based video coding [17], [18]. The splitting criterion is the most important part of the algo-
The paper is organized as follows. In Section I, the currerithm because it controls the local refinement of the motion esti-
methods for quantizer design and variable-size BMA for manate. The splitting criterion has effects on the relative volumes
tion compensation are briefly reviewed. The proposed improvef DVF and DFD [7]-[12], and may give rise to unstable motion
ments in the quantizer design, along with their perceptual fougstimates due to an excesive refinement of the quadtree struc-
dations, are detailed in Section Ill. In Section IV, the proposedre [12], [29]. The usefulness of the motion information for
motion refinement criterion is obtained from the requirement diigher-level purposes (as in model-based video coding [5], [30],
a monotonic reduction of the significant (perceptual) entropy {81]) highly depends on its robustness (absence of false alarms)
DFD and DVF. The comparison experiments are presented andl hence on the splitting criterion. Motion-based segmentation
discussed in Section V. Some final remarks are given in Seddgorithms [17], [18] require reliable initial motion information,
tion VI. especially when using sparse (nondense) flows such as those
given by variable-size BMA. Two kinds of splitting criteria have
already been used: 1) the magnitude of the prediction error, e.g.,
energy, mean-square error or mean-absolute error [6], [29], [32],
[33], and 2) the complexity of the prediction error. In this case,
The basic elements of a motion compensated coder are the zeroth-order spatial entropy [7], [8] and the entropy of the
optical flow estimation and the prediction error quantizatiogncoded DFD [9]-[12] have been reported. While the magni-
The optical flow information is used to reduce the objectivitide-based criteria were proposed without a specific relation to
temporal redundancy, while the quantization of the transform#te encoding of the DFD, the entropy-based criteria make ex-
error signal [usually a 2-D discrete cosine transform (DCT)] rglicit use of the trade off between DVF and DFD.
duces the remaining (objective and subjective) redundancy tdSince the first entropy-constrained approach was introduced
certain extent [1][4]. [7], [8], great effort has been devoted to obtaining analyt-
Signal independent JPEG-like uniform quantizers are engal [9]-[11] or numerical [12] optimal entropy-constrained
ployed in the commonly used standards [1]-[4]. In this cas@yadtree DVF decompositions. These approaches criticize the
bit allocation in the 2-D DCT domain is heuristically based offaster) entropy measure of the DFD in the spatial domain of
the threshold detection properties of the HVS [2], [3], but nePufaux et al. because it does not take into account the effect
ther amplitude nonlinearities [19] nor temporal properties of th the selective DCT quantizer. This necessarily implies a sub-
HVS [20]-[22] are taken into account. The effect of these propptimal bit allocation between DVF and DFD. The literature
erties is not negligible [23], [24]. In particular, the nonlinearitiefd]-{12] reports the optimality of the proposed methods, but
of the HVS may have significant effects on bit allocation anthe practical (subjective) effect of this gain on the reconstructed
improve the subjective results of the JPEG-like quantizers [13gguence is not analyzed. In particular, only perceptually
[14], [25], [26]. unweighted SNR or MSE distortion measures are given and no
The conventional design of a generic transform quantizer@gplicit comparison of the decoded sequences is shown.
based on the minimization of th@veragequantization error
over a training set [27]. However, the techniques based on av-
erage error minimization have some subjective drawbacks in
image coding applications. The optimal quantizers (in an av-Splitting the original signal into two lower complexity signals
erage error sense) may underperform on individual blocks @VF and DFD) does reduce their redundancy to a certain ex-
frames [9] even if the error measure is perceptually weighteght. However, the enabling fact behind very-low-bit-rate coding
[28]: the accumulation of quantization levels in certain regioris that not all the remaining data are significant to the human ob-
in order to minimize the average perceptual error does not esrver. This is why more than just the strictly predictable data
sure good behavior on a particular block of the DFD. This sugan be safely discarded in the DFD quantization.
gests that the subjective problems of the conventional approaciccording to the current models of human contrast pro-
are not only due to the use of perceptually unsuitable metrics,&8sing and discrimination [34], [35], the input spatial patterns
usually claimed, but are also due to the use of an inappropriai@ first mapped onto a local frequency domain through a set
average errocriterion. In addition to this, quantizer designs thagf bandpass filters with different relative gains. After that, a
depend on the statistics of the input have to be re-computed@g-like nonlinearity is applied to each transform coefficient
the input signal changes. These factors favor the use of quan-obtain the response representation. Let us describe this
tizers based on the threshold frequency response of the HW®-step process as
instead of the conventional, average error-based quantizers.
Multigrid motion estimation techniques are based on
matching between variable-size blocks of consecutive frames A —a—r Q)

II. CONVENTIONAL TECHNIQUES FORTRANSFORMQUANTIZER
DESIGN AND MULTIGRID MOTION ESTIMATION

I1l. PERCEPTUALLY UNIFORM DCT QUANTIZATION
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where However, the minimization of an average error measure does not
vectorA  inputimage; guarantee a satisfactory subjective performance on individual
matrixZ” filter bank; comparisons [9]. Even if a perceptual weighting is used, the av-
vectora local frequency transform; erage criteria may bias the results. For instance, Macq [28] used
functionR nonlinearity; uniform quantizers instead of the optimal LIoyd-Max quantizers
vectorr response to the input. [27], [40], due to the perceptual artifacts caused by the outliers

Then components of the image vectey, = {A,}_,, repre- on individual images.
sent the samples of the input luminance at the discrete position3o prevent large perceptual distortions on individual images
z =1,...,n.Tisam x n matrix constituted by the impulse re-arising from outlier coefficients, the coder should restrict the
sponses of they bandpass filters. The local frequency transforrmaximum perceptual error (MPHE) each coefficient and am-
isa = 7T - A. Each coefficient of the transform = {af}}"zl, plitude [13], [14]. This requirement is satisfied by a perceptu-
represent the output of the filtef with f = 1,...,m. Each ally uniform distribution of the available quantization levels in
local filter f is tuned to a certain frequency. In general [34the transform domain. If the perceptual distance between levels
each coefficient; of the response = R(a) = {rf}}"zl will  is constant, the MPE in each component is bounded regardless
depend on several transform coefficiemjs. However, at a first of the amplitude of the input.
approximation [19], the contributions af with f’ # f can be In this paper, the restriction of the MPE will be used as a
neglected. design criterion. This criterion can be seen as a perceptual ver-
The effect of the respondein the transforma can be conve- sion of the minimum maximum error criterion [9]. This idea
niently modeled by a nonuniform perceptual quantiger This  has been implicitly used in stillimage compression [25], [26] to
interpretation as a quantizer is based on the limited resolutiachieve a constant error contribution from each frequency com-
of the HVS. If the amplitude of a basis function of the transforrponent on an individual image. It has been shown that bounding
T is modified, the induced perception will remain constant untihe perceptual distortion in each DCT coefficient may be sub-
the just noticeable difference (JND) is reached. In this case,jastively more effective than minimizing the average percep-
in quantization, a continuous range of amplitudes gives rise toual error [13], [14]. Moreover, the MPE quantizers reduce to
single perception [36], [37]. This perceptual quantizer has to bee JPEG and MPEG quantizers if a simple (linear) perception
nonuniform because the empirical INDs are nonuniform [19hodel is considered.
[21], [22], [34]. The similarity between the impulse responses
of the perceptual filters of the transforfnand the basis func- B. Optimal Spatial Quantizers Under the MPE Criterion

tions of the local frequency transforms used in image and VideOThe design Of a transform quantizer for a given b|ock trans-
coding has been used to apply the experimental propertiest@im involves finding the optimal number of quantization levels
the perceptual transform domain to the block DCT transform sy each coefficient (bit allocation) and the optimal distribution

a reasonable approximation [13], [14], [25], [26], [38], [39]. Irbf these quantization levels in each case [27].

this paper(?,, is formulated in the DCT domain through an ex- | et us assume that the squared perceptual distance between
plicit design criterion based on a distortion metric that includeg,g similar patterns in the transform domairanda + Aa is

the HVS nonlinearities [15], [16] and some temporal perceptuglen by a weigthed sum of the distortion in each coefficient
features [20]-[22].

A. Maximum Perceptual Error (MPE) Criterion for Quantizer Daat+da)=) Di=) Wilaj)Aa; (2
Design f=1 f=1

The natural way of assessing the quality of an encoded pihereW,(a ) is a frequency and amplitude-dependent percep-
ture (or sequence) involves a one-to-one comparison betweeal metric.
the original and the encoded version. The result of this compardn order to prevent large perceptual errors on individual im-
ison is related to the ability of the observer to notice the partiages coming from outlier coefficient values, the coder should be
ular quantization noise in the presence of the original (maskinggsigned to bound the MPE for every frequerfcgnd ampli-
pattern. This one-to-one noise detection or assessmentis cleaurtiea .
related to the tasks behind the standard pattern discriminationf a given coefficient (at frequency) is represented by
models [34], [35], in which an observer has to evaluate the digdantization levels distributed according to a densitge ¢ ) the
tortion from a masking stimulus. In contrast, a hypothetical reaaximum Euclidean quantization error at an amplitugevill
guest of assessing the global performance of a quantizer olwerbounded by half the Euclidean distance between two levels
a set of images or sequences would involve a sort of averaging
of each one-to-one comparison. It is unclear how a human ob- Aag(ay) < ; (3)
server does this kind of averaging to obtain a global feeling of 2Ny Ap(ay)
performance and the task itself is far from the natural one-to-o#ffe MPE for that frequency and amplitude will be related to the
comparison that arises when one looks at a particular picturgnetric and the density of levels:

The conventional techniques of transform quantizer design
use average design criteria in such a way that the final quantizer 2 Wy(ay)
achieves t%e minigmum average error ovz/ar the trainingqset (sum[PEf(af) = Wilay) -max (Aay(ar))” = ANZ X2 (ay)
of the one-to-one distortions weighted by their probability) [27]. (4)
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The only density of quantization levels that gives a constaistassumed, a CSF-based MPEG-like quantizer is obtained. If
MPE bound over the amplitude range is the one that variesths nonlinear correction in (8) is neglected, uniform quantizers
the square root of the metric are obtained for each coefficient ant becomes proportional
to the CSF, which is one of the recommended options in the
JPEG and MPEG standards [1]-[3]. Second, if both factors of
the metric are taken into account, the algorithm of [13], [14],
[26] is obtained: the quantization step size is input-dependent
and proportional to the JNDs and bit allocation is proportional
to the integral of the inverse of the JNDs. From now on, these
cases will referred to as linear and nonlinear MPE, respec-

Wi(ap)*?
)‘fopt(af) = 1/2 :
/Wf(af) day

With these optimal densities, the MPE in each coefficiéntill
depend on the number of allocated levels and on the integr
value of the metric

®)

tively.
1 12 2 The CSF-based (linear MPE) quantizer used in MPEG
MPE gop = N2 </ Wie(ay) daf) - (6) [1]-[3] and the proposed nonlinear MPE quantizer [13], [14],

[26], represent different degrees of approximation to the actual

Fixing the same maximum distortion for each coefficierfiuantization process),, eventually carried out by the HVS.
MPE;,. = k% and solving forN;, the optimal number of The scheme that takes into account the perceptual amplitude

quantization levels is obtained nonlinearities will presumably be more efficient in removing
the subjective redundancy from the DFD.
ooy = 1 /Wf(af)1/2 day. @ Fig. 1 shows the producy; - Af(gf) for th_e linear (MPEG-
! 2k like) and the nonlinear MPE quantizers. This product represents

The general form of the optimal MPE quantizer is given by (é e number of quantization levels per unit of area in the fre-

and (7) as a function of the perceptual metric. Thus, the behav ency and amp_litude plane. This surface is_a usefuldescription
of the MPE quantizer will depend on the accuracy of the S(g__whereaquantlzerconcentratesthe encoding effort [14]. Fig. 2

lected V. Here, a perceptual metric related to the gradient Spows the bit allocation solutions (number of quantization levels

the nonlinear responsg and to the amplitude JNDs has beeR®’ coefiicient ) iq the ””eaf and't.he nonlinear MPE cases.
considered [15], [16] Note how the amplitude nonlinearities enlarge the bandwidth

of the quantizer in comparison to the CSF-based case. This en-

OR(a) 2 Y largement will make a difference when dealing with wide spec-
Wy(as) = <8—af> o IND(as) trum signals like the DFD.
= (CSFJZI + % Gf(af))_2 (8) C. Introducing HVS Temporal Properties in the Prediction

Loop
whereL is the local mean luminance, C5I5 thecontrast sen-  The previous considerations about optimal MPE 2-D
sitivity function(the bandpass linear filter which characterizegansform quantizers can be extended to three-dimensional
the HVS performance for low amplitudes [20], [24], [28], [41])(3-D) spatio-temporal transforms. The HVS motion perception
andGy(ay) are empirical monotonically increasing functionsnodels extend the 2-D spatial filter bank to nonzero temporal
of amplitude for each spatial frequency to fit the amplitude INRequencies [42], [43]. The CSF filter is also defined for
data [15]. In particular, we have used the CSF of Nygaal. moving gratings [20] and the contrast discrimination curves

[41] for spatio-temporal gratings show roughly the same shape as
1 the curves for still stimuli [21], [22]. By using the 3-D CSF
CSF, — 1+i10 P ﬁ 472 f2 41 and similar nonlinear corrections for high amplitudes, the
s 4T 2% \11e 11.62 expression of (8) could be employed to measure differences

between local moving patterns. In this way, optimal MPE
guantizers could be defined in a spatio-temporal frequency
transform domain. However, the frame-by-frame nature of any
motion compensated scheme makes the implementation of a
3-D transform quantizer in the prediction loop more difficult.

x(115.9 + 258.1f) - ¢ 0-2%f ©)

and the following nonlinear functionS;(a) [15] (frequency
f in cycles/degrees)

08517 In order to exploit the subjective temporal redundancy re-
_ . A Yo+ 7T 1
G play) = (=0.031og f + 0.3) (%) o5+7 : FSE . (10) moval to some extent, the proposed 2-D MPE quantizer can be
((—0.031og f + 0.3)CSFf)_% + ar_f complemented with one-dimensional (1-D) temporal filtering

based on the perceptual bit allocation in the temporal dimen-

It is important to note that the metric weight for each coeffision. This temporal filter can be implemented by a simple fi-
cient in (8) has two contributions: one constant term (the CShite impulse response weighting of the incoming error frames.
and one amplitude-dependent term that vanishes for low aihe temporal frequency response of the proposed 1-D filter
plitudes. This second term comes from a nonlinear correctienset proportional to the number of quantization levels that
to the linear threshold response described by the CSF. Thebeuld be allocated in each temporal frequency frame of a 3-D
two terms in the metric give two interesting particular cases MPE optimal quantizer. For each spatio-temporal coefficient

the MPE formulation. First, if a simple linear perception moddl = (.., f;), the optimal number of quantization levels is given
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x10

10

Fig. 1. Relative number of quantization levels allocated in the frequency and amplitude plane for a) nonlinear MPE and b) linear MPE quantizéase$he su
are scaled to have unit integral (the same total number of quantization levels). The distribution of the quantization levels in amplituderiarce ffmitait is just
the corresponding slice of the surface at the desired frequency. The MPE design [(5) and (7)] implies that this surface is proportional ta¥he hgttig) o
W(a,)'/? so different perception models (different metrics) give rise to a different distribution of quantization levels. Note that the distributiannsfanif

every frequency in the linear MPE (MPEG-like) case and nonuniform (peaked at low amplitides) in the nonlinear MPE case.
Fig. 2. Fig. 3(b) shows the temporal frequency response that is
obtained by integrating over the spatial frequencies.

o1f N

-~
-

= = = = Linear MPE
Non-linear MPE IV. PERCEPTUALFEEDBACK IN THE MOTION ESTIMATION
Any approximation to the actual perceptual quantization

\ )
process(},, has an obvious application in the DFD quantizer

| ] design, but it may also have interesting effects on the com-
putation of the DVF if the proper feedback from the DFD

!
1
]
1
1
]
!
i
L 1 \
i 1
1
! gquantization is established in the prediction loop.
i
i
]
]
]
]

o
=3
*

If all the details of the DFD are considered to be of equal im-
portance, we would have amweightedsplitting criterion as in

(Levels per Coefficient)
=3
[=3
(=2}

0.04
“ the difference-based criteria [6], [29], [32], [33] or as in the spa-
002t tial entropy-based criterion of Dufawet al. [7], [8]. However,
as the DFD is going to be simplified by some nontrivial quan-

tizer @,,, which represents the selective bottleneck of early per-
ception, not every additional detail predicted by a better motion
compensation will be significant to the quantizer. In this way,

the motion estimation effort has to be focused on the moving

-~

10 15
Spatial Frequency (cycl/deg)
Fig. 2. Bit allocation results (relative number of quantization levels perregions that Contairperceptually significant motion informa-
coefficient) for the linear MPE (MPEG-like case) and for the nonlinear MP : S
case. The curves are scaled to have unit integral (the same total numbeﬁ%p In O,rde,r to formallze the concept of perceptually Slgnlfl
quantization levels). In the linear case, the metric is just the square of the C&&Nt motion information, the work of Watson [36] and Daugman
and thenV, o CSF;, as recommended by JPEG and MPEG. A more complg87] on entropy reduction in the HVS should be taken into ac-

count. They assume a model of early contrast processing based

20 25 30

(nonlinear) model gives rise to a wider quantizer bandpass.

_ _ on a pair {, Q,) and suggest that the entropy of the cortical
by (7). Integrating over the spatial frequency, the number gtene representation (a measure of the perceptual entropy of the
quantization levels for that temporal frequency is signal) is just the entropy of the quantized version of the trans-

1 12 formed image. Therefore, a measure of the perceptual entropy
Ny = ;Nf = 5% ;/Wf(af) dag. (11) H, ofasignalAis
Hp(A) = H(Qy[T-A]). (12)

Fig. 3(a) shows the number of quantization levels for each
spatio-temporal frequency of a 3-D nonlinear MPE quantizer. Using this perceptual entropy measure (which is simply the

This is the 3-D version of the 2-D nonlinear bit allocation oéntropy of the output of a MPE quantizer), we can propose an
Fig. 2. Note that (except for a scale factor) the spatial frequenexyplicit definition of what perceptually significant motion infor-
curve for the zero temporal frequency is just the solid curve ofation is. Let us motivate the definition as follows. Given a cer-
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Fig. 3. (a) Nonlinear MPE bit allocation results in the 3-D spatio-temporal frequency domain (relative number of quantization levels per 3ebt}oéfiie
surface is scaled to have unit integral. (b) Frequency response of the perceptual temporal filter, propoignal'tee solid line corresponds to the theoretical
curve and the dashed line stands for the actual frequency response obtained with the fourth-order FIR filter used in the experiments (see Becteffielets

of the filter in the temporal domain are: 0.0438, 0.1885, 0.4443, 0.1885, and 0.0438.

tain motion description, DVF, with entrop/ (DVF), a predic- [7], [8], and the optimal approaches [9]-[12]. The optimal
tion of the next frame can be done. Some particular error, DFBpproaches only differ in the way the problem is stated: While
will be obtained, with a perceptual entropf,(DF D). If ad- in [9]-[11] an explicit rate-distortion sum is minimized, in [12]
ditional motion information is available\ H(DVF) > 0 (more a fixed distortion is assumed (constant MPE quantizer) and
complex quadtree segmentation and more motion vectors), @aenonotonically decreasing behavior for the rate is imposed.
would expect a reduction of the perceptual information of thEhese optimal algorithms do not necessarily find the absolute
remaining DFD, i.e. AH,(DF D) < 0. Let us define this addi- minimum in the rate-distortion sense but only local minima;
tional motion information as perceptually significant only if ithowever, as the actual DFD entropy is used, the performance
implies a greater reduction in the perceptual entropy of the pia-the suboptimal result is always improved. It is interesting to

diction errors:A(DV F) is perceptually significant if note that the reasoning about the perceptual relevance of the
motion information presented here leads to (14), which takes

AH(DVEF) < —AH,(DFD). (13)  into account the quantized DFD entropy, in a natural way. As
Broadly speaking, some additional motion information is pelond @s [9-[12] use CSF-based quantizers, all these optimal
ceptually significant if it increments the perceptual informatiofPProaches can aiso be referred to as perceptually weighted
of the prediction more than its own volume. variable-size BMAs. In WhaF follows, the algquthm of Dufaux
If each motion refinement in a variable-size BMAS! @l [7], [8] and the algorithm from (14) will be compared
AH(DVF) = H(DVF,p1i.) — H(DVFpospie), is required to be ano_l refer_red to as unwe!ghted and perceptually weighted
perceptually significant, the followingerceptually weighted Variable-sizé BMA, respectively. _ _
splitting criterion arisesa block of the quadtree structure 1N Perceptual quantizer constraint on the motion estimate
should be split if comes from the particular y@eg coding application in which the
actual bit-rate has to be minimized [9]-[12]. However, the ben-
H(DVFgiit) + H,(DFDgpit ) efits of including the properties of the biological filters in the
< H(DVFyospiic) + Hyp(DFDyospiic) (14) motion estimation may go beyond the rate-distortion optimiza-
tion. The bandpass shape of human sensitivity (Fig. 2) gives a

where H(DVF) is the entropy of the DPCM coded DVF plusscale-dependent measure of the perceptual entropy of the DFD.
the information needed to encode the quadtree structure #slsome frequency bands (some scales) have more perceptual
H,(DFD) is the perceptual entropy of the residual error signamportance than others, the application of the perceptual cri-
Equation (14) has the same form as the criterion proposedtayion results in a different splitting behavior in the different
Dufaux and Moscheni [7], [8], except for the way in which théevels of the multigrid structure. Fig. 4 qualitatively shows how a
entropy of the DFD is computed. In this case, the unweightééindpass criterion may give a scale-dependent splitting result.
entropy of the DFD in the spatial domain is replaced by the coarse levels of the multigrid (left side figures), the spatial
perceptually weighted entropy measure in the appropriaepport of the DFD is large due to the displacement of large
encoding domain. The consideration of the entropy of th®#ocks. The uncertainty relationshipz - Af = k leads to a
quantized DFD (or perceptual entropy) is the main differend@~D with narrow bandwidth in the case of a large DFD sup-
between the suboptimal approach of Dufaux and Moscheyort. Conversely, in the fine levels of the multigrid (right-side
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Fig. 4. Scale-dependent splitting strategy due to perceptual feedback. The dashed regions in the frequency domain represent the bit allbddBén of th
quantizer. They determine the frequency band which is considered to compute the perceptual entropy of the signal. For a given energy andvedstietion le
spatial extent and the frequency bandwidth of the DFD (thick solid lines) are related by the uncertainty felatiodnf = k. The bandwidth of the DFD will
depend on the resolution, giving rise to a different splitting behavior when using a bandpass splitting criterion such as the perceptual entropy.

figures), the DFD is spatially localized, giving rise to a broadAlso, a well-known motion-based segmentation algorithm for
band error signal. If the complexity measure is more sensitiigh-level video coding [17], [18] has been used with both per-
to the complexity of the signal in low- and middle-frequencgeptually weighted and perceptually unweighted BMASs to test
bands, the splitting criterion will be tolerant in the coarse levetheir respective usefulness.
of the multigrid and will be strict in the high-resolution levels. Inevery experiment, the quantizer was adapted for each group
The next section will show that this scale-dependent behaviirpictures to achieve the desired bit-rate (200 kb/s with QCIF
is useful for discriminating between significant and noisy mdermat). In order to highlight the relative differences among the
tions. different approaches considered, only the first frame was intra-
coded and only forward prediction was used in the remaining
frames (i.e., no bidirectional interpolated frames nor additional
intracoded frames were introduced). As a consequence, the re-
Four experiments on several standard sequences [44] W&lits may seem abnormally distorted at this rate. The DC coef-
carried out at a fixed bit-rate: ficient of error signals is basically zero [45], so the luminance
« Different quantizers with the same motion estimation. information of the original blocks was used to normalize the
+ Different motion estimations with the same quantizer. amplitudes of the error blocks. These luminance values were
 Relative relevance of the improvements in the motion eset quantized but DPCM coded from block to block as in the

V. EXPERIMENTS AND DISCUSSION

timation and the quantization. JPEG standard. The 1-D temporal filter was implemented by a
» Proposed scheme versus previous comparable schefimesar-phase FIR filter using least-squares error minimization in
(H.263, MPEG-1). the frequency response. A simple fourth-order filter was used to

We are interested in two different comparisons: 1) quality eéstrict the buffer requirements (see Fig. 3 for the achieved fre-
the reconstructed signal and 2) usefulness of the motion flogggency response and the filter coefficients).
for higher-level purposes. To this end, examples of the recon-A maximum of five resolution levels (blocks frofil x 64to
structed frames and subjective distortion measures using a pex-4) were used in the variable-size BMA quadtrees. Blocks of
ceptually meaningful metric [15], [16] are given in each cassize8 x 8 were used in the fixed-size BMA. Thestep displace-
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c) d)

Fig. 5. Quantization results with a fixed motion estimation algorithm (unweighted variable-size BMA). (a) Original (detail of frame Rudfitemquence). (b)
Two-dimensional linear MPE, uniform MPEG-like quantization. (c) Two-dimensional nonlinear MPE. (d) Two-dimensional nonlinear MPE and titenogal f

ment search [8] and integer-pixel accuracy was used in eveky Experiment 1: Different Quantizers with the Same Motion
resolution level of the BMAs. The usual correlation was used &Sstimation

a similarity measure. o . _ The performance of the linear MPE (MPEG-like) quantizer
The definitive proof of the subjective benefits of an algorithm 4 the proposed nonlinear MPE quantizers was compared
is a set of psychophysical experimgnts on the quality- of the '§sing the same (perceptually unweighted H.263-like) motion
constructed sequences, but it requires time-consuming expgltimation. Fig. 5 shows a representative example of the kind of
ences involving several observers. An approximate, but MQigors obtained with the different quantizers at a fixed bit-rate.
practical, approach is to use perceptually meaningful distorti@;b_ 6 shows the increase of the perceptual distortion in the
measures. This is not a simple issue [46], [47]. However, bagjgferent reconstructions of tHeubiksequence.
facts as the spatial frequency sensitivity make a fundamental dif-The consideration of the (2-D or 3-D) nonlinearities in-
ference between plain Euclidean distortion metrics (e.g MSE@bduces a substantial improvement in comparison to the
SNR) and any (even the simplest) perceptually weighted metiigear MPE quantizer. The temporal filtering smooths the
In the experiments, the perceptual distortions were compute@onstructed sequence and reduces to some extent the re-
through (2) using the nonlinear perceptual metric of (8) [15kaining blocking effect and busy artifacts of the 2-D nonlinear
[16] on a frame-by-frame basis. This metric incorporates thgproach. However, despite the eventual visual advantages of
basic elements of early achromatic visual processing [46], [4Tis temporal filtering, the key factor in the improvements of
luminance adaptation, spatial frequency channels, frequency ttee proposed quantizers is the consideration of the amplitude
pendent filtering, contrast masking, and (quadratic) probabilibonlinearities and the corresponding enlargement of the spatial
summation. The squared distortion was computed for each DGdiantizer bandwidth (Fig. 2). The reconstructed examples and
block in a frame and averaged across the frame. This straighfittre computed distortion confirm this point. This enlargement
ward frame-by-frame implementation may neglect some terimplies that the quantized signal keeps some significant details
poral factors, but it still gives a rough approximation to the olstherwise discarded, avoiding the rapid degradation of the
servers opinion and is thus useful for confirming the results. reconstructed signal.
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1l ' ' '] refining the motion estimate with the weighted and unweighted
variable-size BMAs. The consideration of the perceptual quan-
tizer in the motion estimation certainly minimizes the entropy
osl ] of the motion flow and the total entropy as claimed in [9]-[12].
The problem with the unweighted criterion is that it is too per-
missive at high-resolution levels. In this way, too many blocks
are split increasing the motion information without decreasing
the information content of the DFD, i.e., perceptually negligible
motion information is being added.

However, do these motion information savings in [9]-[12]
have a significant effect on the reconstructed quality? Fig. 8
shows a representative example of the decoded results using the
same MPEG-like quantizer and the different considered motion
estimations at a fixed bit-rate (frame 7 of tfaxi sequence).
Fig. 9 shows the increase of the perceptual distortion in the
different reconstructions of thBaxi sequence. The distortions

Frame here are relatively lower than in tiRubiksequence because the
Fig. 6. Perceptual distortion measures for the frames oRihgik sequence area of the moving regions (and hence the dlstqrted area) s also
using different quantizers with the same (unweighted H.263-like) motid@wer- These results show that both variable-size BMAs make
estimation. All the distortion results presented in the paper are normalized $gme difference in quality with regard to the fixed-size H.261
B o ey T ok ot et 1 EMA dl 10 the savings in DVE nformation. However, he prac-
MPE quantizer. The thin solid line correspond to the 2-D nonlinear MpECal advantages of the better bit allocation between DVF and
quantizer and the thin dashed line correspond to the 2-D nonlinear quantiZ#D over the suboptimal variable-size BMA are not evident.

with temporal filtering. In this 3-D case, the frame-by-frame implementatiofrhe henefits of the better bit allocation in comparison to the sub-
of the perceptual distortion measure may slightly overestimate the visual effect

of the frame blurring introduced by the temporal filter. Despite this fact, th.@ptimallvariaple'Size BMA are so small (Table I_and Fig. 7) that
perceptual distortions reveal that the amplitude nonlinearities substantiatiypractice (Figs. 8 and 9), they cannot be exploited by the quan-

improve the reconstruction results. tizer to give a better encoded DFD. That is, any adaptive DVF
consumes such a small portion of the total bit-rate that there is
A very interesting consequence is that the (2-D or 3-D) none significant difference in the reconstruction between the dif-
linear quantizers keep the distortion bounded over a large grdfepent variable-size BMA algorithms.
of frames (compare the behavior of the linear and nonlinear dis-The scale-independent behavior of the unweighted algorithm
tortion curves). In this way, the need to introduce bit-consumingads to too many splittings at high resolution. This suboptimal
intracoded frames is reduced. result has no effect in the reconstructed sequence, but it may
give rise to noisy, less meaningful, motion information. In order
B. Experiment 2: Different Motion Estimations with the Samgy test the meaningfulness of the motion information obtained
Quantizer with the different algorithms, a well-known motion-based seg-

The proposed perceptually weighted variable-size BMA arfgentation algorithm [17], [18] was initialized with the different
the unweighted variable-size BMA were compared in this e{ows.
periment using the same linear MPE (MPEG-like) quantizer. The layer identification algorithm [17], [18] starts from an ar-
The results with a fixed-sizé x 8 BMA are also included as bitrary initial segmentation, which is refined by estimating the
a reference. affine motion model of each region and merging the regions
The quantitative rationale behind entropy constrained apith similar affine parameters. Given a pair of frames from a
proaches is saving motion information to improve the DFBequence witl moving objects, the segmentation algorithm
encoding and have a better reconstruction. From this pofiiveésm masks, representing the identified objects and the cor-
of view, the only reason to take into account the perceptugsponding affine models.
quantization is an improvement of the reconstructed sequencdn order to assess the relative performance of the flows under
The qualitative rationale to take into account the perceptug@nsideration, the following segmentation error measure has
quantization is to include a perceptual criterion to decide wh&en used. Let; be the dissimilarity between each (manually
some motion information is significant. Accordingly, the effect§egmented) objec?; and its corresponding masl{ (M is the
of the perceptual weight in the motion estimation were test&ask that maximizesZ; N O; for all the obtained mask&/;)
in two different ways. First, the effect of the savings in motion
information on the signa! quality.was anfalyzed. Second, the ¢ :/ Di(z) dx +/ Di(x) dx (15)
usefulness of the motion information for higher-level purposes MnOS 0:NME
was tested.
The Table | and Fig. 7 analyze the bit allocation performaneehere C' stands for the set complement aw®(z) is the
of the motion estimation algorithms. Table | shows the peGhamfer distance, i.e., the distance franto the boundary
centage of the total bit-rate used for the motion flow. Fig. @f the objectO; [48]. This distance progressively penalizes
shows the reduction of the bit-rate in thaxi sequence while unmatched pixels that are far from the object boundary. The
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H(DVF)+Hp(DFD) (%)
H(DVF)+Hp(DFD) (%)

82

64 32 16 8 4 64 32 16 8 4
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Fig. 7. Bit-rate of DVF and DFD while refining the motion estimate. The values are given as a percentage of the total entropy at the lowest resbliitien lev
curves represent the average percentage of the bit-rate across the frames and the error bars represent the standard deviation. The didfeatadifieseint
starting resolutions (initial block sizes): solid x 64, dashed®2 x 32, and dotted 6 x 16. (a) Unweighted spatial entropy splitting criterion. (b) Perceptually
weighted splitting criterion.

TABLE |
PERCENTAGE OF THETOTAL BIT-RATE USED FOR THEMOTION FLow (DVF)

TAXI RUBIK YOSEMITE TREES | Average

FSBMA 12,57  21.71 46.19 39.21 308
Unweight. vSBMA 1.89 3.29 8.69 4.97 4.7+£1.5
Weighted vSBMA 0.94 1.87 4.32 3.24 2.6£0.7

segmentation error for a frameis the sum of the individual tation algorithm is usually initialized with dense flows (one mo-
segmentation errorg. It has been empirically found that thistion vector per pixel) [17], [18], not with sparse (one motion
error measure adequately describes the intuitive quality wéctor per block) flows. However, this worst case situation is
the segmentation (Figs. 10 and 11 and their particular err@gpropriate to highlight the usefulness of each flow.
illustrate this point). The following trends can be identified from the obtained re-
Several experiments were carried out using the layer idesults: 1) the segmentation is better when the blocks are fairly
tification algorithm [17], [18] with the three different DVFs: small compared to the size of the moving regions (see the vari-
fixed-size BMA, unweighted variable-size BMA and perceptuable-size BMA error results fdRubik—large object- andaxi
ally weighted variable-size BMA. Results regarding two starsmall objects—); however, 2) the segmentation is very sensi-
dard sequenceJaxi and Rubik are considered here becauséve to the robustness and coherence of the sparse flow. This
they represent extreme cases for the segmentation algoritlimplies that the block size cannot be arbitrarily reduced to im-
small moving objects with simple translations and one large oprove the segmentation resolution: Despite its higher density, a
ject rotating around an axis, respectively. While in the first seaore noisy flow from a too small block size BMA is worse.
guence even simple velocity clustering could solve the problem,This general behavior may be explained in terms of the data
in the second one, regions with very different velocities have teeded to estimate the six parameters of the affine models.
be merged in a single complex-motion object. Ideally, a minimum of three independent vectors (six data) are
Table Il shows the average segmentation error (normalizededed to segment a region. In real (noisy) situations, more
by the maximum in each sequence), the number of iteratiovectors per region will be needed. Consequently, the segmen-
and the number of identified regions in each case. Figs. 10 aatlons of large objects are comparatively better. On the other
11 show examples of the motion flows and the segmentatiomsnd, as the number of motion measurements is reduced when
achieved in particular frames of the sequences along with thging sparse flows (compared to dense flows), their robustness
corresponding segmentation error. The differences in robusecomes critical. This is why the results based on fixed-size
ness, coherence and meaningfulness between the results oBfli& (sparse and noisy) are extremely poor. However, if
different algorithms are apparent in the motion flows (Figs. 1ibe variable-size BMA used is robust enough, reliable rough
and 11). The quantitative results of the segmentation confisegmentations are still possible. In particular, the increased
this intuitive impression. The block appearance of the layersrisbustness of the perceptually weighted flow speeds up the
obviously due to the sparseness of the input flows. The segmeonnvergence of the segmentation algorithm and minimizes the



MALO et al. PERCEPTUAL FEEDBACK IN MULTIGRID MOTION ESTIMATION 1421

) d)

Fig. 8. Reconstruction results with different motion estimations and a fixed MPEG-like quantization. (a) Original (detail of frame Tagf $kquence). (b)
Fixed-size BMA. (c) Unweighted variable-size BMA. (d) Weighted variable-size BMA.

W+ ' ' '] sparse flow more suitable for obtaining robust rough segmenta-
tions.

08y C. Experiment 3: Relative Relevance of the Improvements in

the Motion Estimation and the Quantization

g
>
T

To study the combined effect and the relative advantages of
the proposed improvements, the four possible combinations
of motion estimation and quantization algorithms were com-
pared at a fixed bit-rate. The perceptually weighted and the
unweighted (suboptimal) variable-size BMA were combined
with the the 2-D linear (MPEG-like) and the 2-D nonlinear
MPE quantizers. Fig. 12 shows an example of a reconstructed
frame using the four different approaches considered. Fig. 13
shows the corresponding distortion for each frame of the
Rubik sequence. These reconstruction examples and error

Frame results confirm what expected from the separate analysis of
. N _ the previous sections: The quality improvement due to the use
Fig. 9. Perceptual distortion measures for the frames ofTthe sequence . . . . . .
using different motion estimations with the same (MPEG-like) quantize‘f".f the appropriate entropy measure in the motion estimation is
The thick solid line corresponds to the fixed-size BMA. The thin solid linéyegligible compared to the benefits of a better quantization.
corresponds to the unweighted variable-size BMA and the thin dashed line|, this case, the simple increase in the quantizer bandpass that
corresponds to the weighted variable-size BMA. . . . . .. .
comes from considering the visual nonlinearities (Fig. 2) may
explain the enhancement. Due to the noisy (high-frequency) na-
segmentation error (see Table II). Moreover, a closer estimatime of the error signal, wide band quantizers may be better
of the actual number of moving objects is obtained due to thigan narrower band (CSF-based) quantizers. In fact, the benefits
smoothness of the flow within moving regions, which prevents this enhanced quantizer are more apparent on video frames
false splittings. (Figs. 5 and 12) than in still images [13], [14]. The interesting

To summarize, despite the fact that a better bit allocation basnstant distortion result reported in Section V-A (Fig. 6) is
tween DVF and DFD (Table | and Fig. 7) does not improve thaso reproduced here: While the perceptual distortion increases
quality of the decoded sequence (Figs. 8 and 9), the segmeuzickly when using the linear quantizer, it remains constant with
tion results (Table Il and Figs. 10 and 11) show that perceptubke nonlinear MPE quantizer regardless the motion estimation
weighting gives rise to a more meaningful flow: it makes thalgorithm.

Perceptual Error

o
'Y

0.2
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i I gl ki

Fig. 10. DVFs and motion-based segmentation rest@iigi(frame 9). (a) Original frame. (b) Fixed-size BMA flow. (c) Unweighted variable-size BMA flow.
(d) Perceptually weighted variable-size BMA flow. (e) Ideal segmentation. (f) Segmentation with fixed-sizedBMA.(2). (g) Segmentation with unweighted
variable-size BMA, € = 0.49). (h) Segmentation with perceptually weighted variable-size BMA=(0.35).
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Fig. 11. DVFs and motion-based segmentation resRittb{k frame 3). (a) Original frame. (b) Fixed-size BMA flow. (c) Unweighted variable-size BMA flow.
(d) Perceptually weighted variable-size BMA flow. (e) Ideal segmentation. (f) Segmentation with fixed-sizedBMA.08). (g) Segmentation with unweighted
variable-size BMA, € = 0.51). (h) Segmentation with perceptually weighted variable-size BMA=(0.25).

TABLE 1l
SEGMENTATION ERRORS NUMBER OF I TERATIONS AND IDENTIFIED REGIONS
RUBIK (2 objects) TAXI (4 objects)
€ Iterat.  Regions € Tterat.  Regions
FSBMA 1.00 £ 0.05 25 21.0+4.8 | 1.00+£0.14 25 15.8+3.8

Unweight. vsBMA | 0.46 £0.06 21+£5 44+£22 | 052+015 1149 5.8+2.0
Weighted vsBma | 0.27 £0.03 716 21+03 | 0.49£0.14 4+1 43£0.5
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Fig. 12. Decoded results using different combinations of quantizers and motion estimations. (a) Unweighted variable-size BMA and 2-D linear MPE,
MPEG-like, quantization. (b) Unweighted variable-size BMA and 2-D nonlinear MPE quantization. (c) Perceptually weighted variable-size BNDAinedr2-
MPE, MPEG-like, quantization. (d) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization.

D. Experiment 4: The Proposed Scheme Versus Previous 1l
Comparable Schemes

In this section, the considered elements of the motion com-
pensated video coder were combined to simulate and compare %3}
previously reported schemes (MPEG-1 or H.261 and H.263) and

the proposed ones. MPEG-1 and H.261 use a fixed-size BMA g
and alinear (CSF-based) MPE quantizer. Aregularimplementa- = %6f
tion of H.263 use an unweighted splitting criterion variable-size %
BMA and a linear MPE quantizer. The video coder scheme pro- 8
posed here use a perceptually weighted variable-size BMA and & %4

a nonlinear MPE quantizer (either 2-D or 3-D).

Examples of the decoded frames at a fixed bit-rate are shown
in Figs. 14 and 15. The perceptual distortion for each frame of o2r
the reconstructed sequences is shown in Fig. 16. Both frames
and distortions confirm the improvements of the proposed
schemes compared to the previous similar schemes in terms of
subjective quality at a fixed bit-rate.

VI. FINAL REMARKS Fig. 13. Perceptual distortion measures for the frames oRth@ksequence
. . . using different combinations of quantizers and motion estimations. The thick
The current motion compensated video coding standatthes correspond to the approaches using the linear MPE quantizer. The thin

include very basic perceptual information (linear thresholies correqund to the approaches using the 2-D r)onlinear MPE quan_tizer.

del v in th i desi In thi Iti The dashed lines correspond to the approaches using perceptually weighted
mode s) only in the quantizer design. In this paper a multigri@iapie-size BMA and the solid lines correspond to the approaches using
motion compensated video coding scheme based on a mateeighted variable-size BMA.
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Fig. 14. Reconstruction results with tReibiksequence using previously reported encoding configurations (a-b) and the proposed 2-D or 3-D alternatives (c-d).
(a) Fixed size BMA for motion estimation and MPEG-like quantization (linear MPE). (b) Unweighted variable-size BMA and MPEG-like quantizaton (lin
MPE). (c) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization. (d) Perceptually weighted variable-size BMA and 2D kiftttine
quantization and temporal filtering.

accurate HVS contrast discrimination model has been prgeighted motion refinement and MPEG-like quantization. In
sented. The model accounts for the nonuniform nature of tparticular, nonlinear MPE quantizers lead to better subjective
HVS redundancy removal in the frequency domain. Here tlgeiality than the linear MPE (CSF-based, MPEG-like) quan-
basic idea is to design the entire encoding process to presdizers at the same bit-rates because they more accurately pre-
no more than the subjectively significant information at aerve the relevant information of the DFDs. A very interesting
given subjective distortion level. This aim affects not only theonsequence is that the (2-D or 3-D) nonlinear quantizers keep
guantizer design, but also the motion estimation. the distortion bounded over a large group of frames, so the need
On the one hand, as a result of a more accurate perceptiorintroduce bit-consuming intracoded frames can be reduced.
model and the MPE restriction criterion, an improved nonlinedccording to the perceptual distortion results at a fixed bit-rate,
guantizer has been proposed. On the other hand, this perdbp-benefits of a better bit allocation between DVF and DFD
tual quantizer is used here to decide if additional motion infofthe benefits of the perceptual weight in motion estimation) are
mation is perceptually significant. This definition of perceptunegligible compared to the benefits of perceptually more ac-
ally significant motion information gives rise to an appropriateurate quantizers. The significant improvement due to this en-
entropy-constrained BMA (using the actual DFD entropy) in Bancement of the quantizer suggests that quantizer design may
natural way. In this way, superfluous effort in the motion débe more important than optimal motion estimation from the
scription (predicting details that are going to be discarded by thete-distortion point of view.
guantizer) is avoided and a perceptual feedback is introduced irHowever, a side effect of the perceptual control of the mo-
the motion estimation refinement. tion estimation is a scale-dependent refinement strategy that
The reconstructed frames and perceptually meaningful digives rise to more robust and meaningful motion flows com-
tortion measures show that the proposed schemes improvephesd to unweighted refinement criteria. This is confirmed by
results of previous comparable schemes such as H.263 with tire segmentation results that show how the perceptual weighting
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Fig. 15. Reconstruction results with tiiaxi sequence using previously reported encoding configurations (a-b) and the proposed 2-D or 3-D alternatives (c-d).
(a) Fixed size BMA for motion estimation and MPEG-like quantization (linear MPE). (b) Unweighted variable-size BMA and MPEG-like quantizaton (lin
MPE). (c) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization. (d) Perceptually weighted variable-size BMA and 24b htititine

guantization and temporal filtering.
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Fig. 16. Perceptual distortion measures for the frames of tHeulalkand (b)Taxisequence using previous and the proposed schemes. The thick lines correspond
to the previous apporaches and thin lines correspond to the proposed schemes. Solid thick line corresponds to fixed-size BMA and linear MRH.86antizer
MPEG1). Dashed thick line corresponds to unweighted variable-size BMA and linear MPE quantizer (H.263). The solid thin line corresponds &dlyerceptu
weighted variable-size BMA and 2-D nonlinear MPE and the dashed thin line corresponds to perceptually weighted variable-size BMA and 3-D ridilinear M
As in Fig. 6, the frame-by-frame implementation of the perceptual distortion measure may slightly overestimate the visual effect of the fragriatbhgiuced

by the temporal filter.
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makes a sparse flow suitable to obtain rough segmentations f19]
the moving objects. These results suggest that the perceptyal
guantizer should not to be taken into account in the motioAzo]
estimation due to rate-distortion reasons, but to obtain morg1]
meaningful flows that may be of interest for higher-level video

coding.

Systematic psychophysical testing instead of the simple
frame-by-frame perceptual measure may be necessary ﬁ%]
measure accurately the relevance of the temporal features of thé
proposed 1-B-2-D quantizer design. Nevertheless, the results
presented suggest that when amplitude nonlinearities are tak&4!
into account, the consideration of the temporal properties is not

so significant.
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