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Perceptual Feedback in Multigrid Motion Estimation
Using an Improved DCT Quantization
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Abstract—In this paper, a multigrid motion compensation video
coder based on the current human visual system (HVS) contrast
discrimination models is proposed. A novel procedure for the en-
coding of the prediction errors has been used. This procedure re-
stricts the maximum perceptual distortion in each transform co-
efficient. This subjective redundancy removal procedure includes
the amplitude nonlinearities and some temporal features of human
perception. A perceptually weighted control of the adaptive motion
estimation algorithm has also been derived from this model. Per-
ceptual feedback in motion estimation ensures a perceptual bal-
ance between the motion estimation effort and the redundancy re-
moval process. The results show that this feedback induces a scale-
dependent refinement strategy that gives rise to more robust and
meaningful motion estimation, which may facilitate higher level
sequence interpretation. Perceptually meaningful distortion mea-
sures and the reconstructed frames show the subjective improve-
ments of the proposed scheme versus an H.263 scheme with un-
weighted motion estimation and MPEG-like quantization.

Index Terms—Entropy constrained motion estimation, non-
linear human vision model, perceptual quantization, video coding.

I. INTRODUCTION

I N natural video sequences to be judged by human observers,
two kinds of redundancies can be identified: 1)objective re-

dundancies, related to the spatio-temporal correlations among
the video samples and 2)subjective redundancies, which refer
to the data that can be safely discarded without perceptual loss.
The aim of any video coding scheme is to remove both kinds of
redundancy. To achieve this aim, current video coders are based
on motion compensation and two-dimensional (2-D) transform
coding of the residual error [1]–[4]. The original video signal
is split into motion information and prediction errors. These
two lower complexity sub-sources of information are usually
referred to as displacement vector field (DVF) and displaced
frame difference (DFD), respectively.

In the most recent standards, H.263 and MPEG-4 [4], [5],
the fixed-resolution motion estimation algorithm used in H.261
and MPEG-1 has been replaced by an adaptive, variable-size
block matching algorithm (BMA) to obtain improved motion es-
timates [6]. Spatial subjective redundancy is commonly reduced
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through a perceptually weighted quantization of a transform of
the DFD. The bit allocation among the transform coefficients is
based on the spatial frequency response of simple (linear and
threshold) perception models [1]–[3].

In this context, there is a clear tradeoff between the effort
devoted to motion compensation and transform redundancy re-
moval. On the one hand, better motion estimation may lead to
better predictions and should alleviate the task of the quantizer.
On the other hand, better quantization techniques may be able to
remove more redundancy, thereby reducing the predictive power
needed in the motion estimate. Most of the recent work on mo-
tion estimation for video coding has been focused on the adap-
tation of the motion estimate to agiven quantizerto obtain an
good balance between these elements. Since the introduction
of the intuitive (suboptimal) entropy-constrained motion esti-
mation of Dufauxet al. [7], [8] several optimal, variable-size
BMAs have been proposed [9]–[12]. These approaches put for-
ward their intrinsic optimality, but the corresponding visual ef-
fect and the relative importance of the motion improvements
versus the quantizer improvements have not been deeply ex-
plored, mainly because of their subjective nature.

This paper adresses the problem of the tradeoff between
multigrid motion estimation and error quantization in a dif-
ferent way. An improved (nonlinear) perception model inspires
the whole design to obtain a coder that preserves no more
than the subjectively significant information. The role of
the perceptual model in the proposed video coder scheme is
twofold. First, it is used to simulate the redundancy removal in
the human visual system (HVS) through an appropriate per-
ceptually matched quantizer. Second, this perceptual quantizer
is used to control the adaptive motion estimation. This control
introduces a perceptual feedback in the motion estimation
stage. This perceptual feedback limits the motion estimation
effort, avoiding superfluous prediction of details that are
perceptually negligible and will be discarded by the quantizer.
The bandpass shape of the perceptual constraint to the motion
estimation gives a scale-dependent control criterion that may
be useful for discriminating between significant and noisy
motions. Therefore, the benefits of including the properties
of the biological filters in the design may go beyond a better
rate-distortion performance but also improve the meaningful-
ness of the motion estimates. This fact may be important for
next generation coders that build models of the scene from the
low-level information used in the current standards.

In this paper, a novel subjective redundancy removal proce-
dure [13], [14] and a novel perceptually weighted motion esti-
mation algorithm [12] are jointly considered to present a fully
perceptual motion compensated video coder. The aim of the
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paper is to assess the relative relevance of optimal variable-size
BMAs and quantizer improvements. To this end, the decoded
frames are explicitly compared and analyzed in terms of per-
ceptually meaningful distortion measures [15], [16]. The mean-
ingfulness of the motion information is tested by using it as
input for a well established motion-based segmentation algo-
rithm used in model-based video coding [17], [18].

The paper is organized as follows. In Section II, the current
methods for quantizer design and variable-size BMA for mo-
tion compensation are briefly reviewed. The proposed improve-
ments in the quantizer design, along with their perceptual foun-
dations, are detailed in Section III. In Section IV, the proposed
motion refinement criterion is obtained from the requirement of
a monotonic reduction of the significant (perceptual) entropy of
DFD and DVF. The comparison experiments are presented and
discussed in Section V. Some final remarks are given in Sec-
tion VI.

II. CONVENTIONAL TECHNIQUES FORTRANSFORMQUANTIZER

DESIGN AND MULTIGRID MOTION ESTIMATION

The basic elements of a motion compensated coder are the
optical flow estimation and the prediction error quantization.
The optical flow information is used to reduce the objective
temporal redundancy, while the quantization of the transformed
error signal [usually a 2-D discrete cosine transform (DCT)] re-
duces the remaining (objective and subjective) redundancy to
certain extent [1]–[4].

Signal independent JPEG-like uniform quantizers are em-
ployed in the commonly used standards [1]–[4]. In this case,
bit allocation in the 2-D DCT domain is heuristically based on
the threshold detection properties of the HVS [2], [3], but nei-
ther amplitude nonlinearities [19] nor temporal properties of the
HVS [20]–[22] are taken into account. The effect of these prop-
erties is not negligible [23], [24]. In particular, the nonlinearities
of the HVS may have significant effects on bit allocation and
improve the subjective results of the JPEG-like quantizers [13],
[14], [25], [26].

The conventional design of a generic transform quantizer is
based on the minimization of theaveragequantization error
over a training set [27]. However, the techniques based on av-
erage error minimization have some subjective drawbacks in
image coding applications. The optimal quantizers (in an av-
erage error sense) may underperform on individual blocks or
frames [9] even if the error measure is perceptually weighted
[28]: the accumulation of quantization levels in certain regions
in order to minimize the average perceptual error does not en-
sure good behavior on a particular block of the DFD. This sug-
gests that the subjective problems of the conventional approach
are not only due to the use of perceptually unsuitable metrics, as
usually claimed, but are also due to the use of an inappropriate
average errorcriterion. In addition to this, quantizer designs that
depend on the statistics of the input have to be re-computed as
the input signal changes. These factors favor the use of quan-
tizers based on the threshold frequency response of the HVS
instead of the conventional, average error-based quantizers.

Multigrid motion estimation techniques are based on
matching between variable-size blocks of consecutive frames

of the sequence [6]. The motion estimation starts at a coarse
resolution (large blocks). At a given resolution, the best dis-
placement for each block is computed. The resolution of the
motion estimate is locally increased (a block of the quadtree is
split) according to some refinement criterion. The process ends
when no block of the quadtree can be split further.

The splitting criterion is the most important part of the algo-
rithm because it controls the local refinement of the motion esti-
mate. The splitting criterion has effects on the relative volumes
of DVF and DFD [7]–[12], and may give rise to unstable motion
estimates due to an excesive refinement of the quadtree struc-
ture [12], [29]. The usefulness of the motion information for
higher-level purposes (as in model-based video coding [5], [30],
[31]) highly depends on its robustness (absence of false alarms)
and hence on the splitting criterion. Motion-based segmentation
algorithms [17], [18] require reliable initial motion information,
especially when using sparse (nondense) flows such as those
given by variable-size BMA. Two kinds of splitting criteria have
already been used: 1) the magnitude of the prediction error, e.g.,
energy, mean-square error or mean-absolute error [6], [29], [32],
[33], and 2) the complexity of the prediction error. In this case,
the zeroth-order spatial entropy [7], [8] and the entropy of the
encoded DFD [9]–[12] have been reported. While the magni-
tude-based criteria were proposed without a specific relation to
the encoding of the DFD, the entropy-based criteria make ex-
plicit use of the trade off between DVF and DFD.

Since the first entropy-constrained approach was introduced
[7], [8], great effort has been devoted to obtaining analyt-
ical [9]–[11] or numerical [12] optimal entropy-constrained
quadtree DVF decompositions. These approaches criticize the
(faster) entropy measure of the DFD in the spatial domain of
Dufaux et al. because it does not take into account the effect
of the selective DCT quantizer. This necessarily implies a sub-
optimal bit allocation between DVF and DFD. The literature
[9]–[12] reports the optimality of the proposed methods, but
the practical (subjective) effect of this gain on the reconstructed
sequence is not analyzed. In particular, only perceptually
unweighted SNR or MSE distortion measures are given and no
explicit comparison of the decoded sequences is shown.

III. PERCEPTUALLY UNIFORM DCT QUANTIZATION

Splitting the original signal into two lower complexity signals
(DVF and DFD) does reduce their redundancy to a certain ex-
tent. However, the enabling fact behind very-low-bit-rate coding
is that not all the remaining data are significant to the human ob-
server. This is why more than just the strictly predictable data
can be safely discarded in the DFD quantization.

According to the current models of human contrast pro-
cessing and discrimination [34], [35], the input spatial patterns
are first mapped onto a local frequency domain through a set
of bandpass filters with different relative gains. After that, a
log-like nonlinearity is applied to each transform coefficient
to obtain the response representation. Let us describe this
two-step process as

(1)
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where
vector input image;
matrix filter bank;
vector local frequency transform;
function nonlinearity;
vector response to the input.

The components of the image vector, , repre-
sent the samples of the input luminance at the discrete positions

. is a matrix constituted by the impulse re-
sponses of the bandpass filters. The local frequency transform
is . Each coefficient of the transform ,
represent the output of the filter with . Each
local filter is tuned to a certain frequency. In general [34],
each coefficient of the response will
depend on several transform coefficients. However, at a first
approximation [19], the contributions of with can be
neglected.

The effect of the responsein the transform can be conve-
niently modeled by a nonuniform perceptual quantizer. This
interpretation as a quantizer is based on the limited resolution
of the HVS. If the amplitude of a basis function of the transform

is modified, the induced perception will remain constant until
the just noticeable difference (JND) is reached. In this case, as
in quantization, a continuous range of amplitudes gives rise to a
single perception [36], [37]. This perceptual quantizer has to be
nonuniform because the empirical JNDs are nonuniform [19],
[21], [22], [34]. The similarity between the impulse responses
of the perceptual filters of the transformand the basis func-
tions of the local frequency transforms used in image and video
coding has been used to apply the experimental properties of
the perceptual transform domain to the block DCT transform as
a reasonable approximation [13], [14], [25], [26], [38], [39]. In
this paper, is formulated in the DCT domain through an ex-
plicit design criterion based on a distortion metric that includes
the HVS nonlinearities [15], [16] and some temporal perceptual
features [20]–[22].

A. Maximum Perceptual Error (MPE) Criterion for Quantizer
Design

The natural way of assessing the quality of an encoded pic-
ture (or sequence) involves a one-to-one comparison between
the original and the encoded version. The result of this compar-
ison is related to the ability of the observer to notice the partic-
ular quantization noise in the presence of the original (masking)
pattern. This one-to-one noise detection or assessment is clearly
related to the tasks behind the standard pattern discrimination
models [34], [35], in which an observer has to evaluate the dis-
tortion from a masking stimulus. In contrast, a hypothetical re-
quest of assessing the global performance of a quantizer over
a set of images or sequences would involve a sort of averaging
of each one-to-one comparison. It is unclear how a human ob-
server does this kind of averaging to obtain a global feeling of
performance and the task itself is far from the natural one-to-one
comparison that arises when one looks at a particular picture.

The conventional techniques of transform quantizer design
use average design criteria in such a way that the final quantizer
achieves the minimum average error over the training set (sum
of the one-to-one distortions weighted by their probability) [27].

However, the minimization of an average error measure does not
guarantee a satisfactory subjective performance on individual
comparisons [9]. Even if a perceptual weighting is used, the av-
erage criteria may bias the results. For instance, Macq [28] used
uniform quantizers instead of the optimal Lloyd-Max quantizers
[27], [40], due to the perceptual artifacts caused by the outliers
on individual images.

To prevent large perceptual distortions on individual images
arising from outlier coefficients, the coder should restrict the
maximum perceptual error (MPE)in each coefficient and am-
plitude [13], [14]. This requirement is satisfied by a perceptu-
ally uniform distribution of the available quantization levels in
the transform domain. If the perceptual distance between levels
is constant, the MPE in each component is bounded regardless
of the amplitude of the input.

In this paper, the restriction of the MPE will be used as a
design criterion. This criterion can be seen as a perceptual ver-
sion of the minimum maximum error criterion [9]. This idea
has been implicitly used in still image compression [25], [26] to
achieve a constant error contribution from each frequency com-
ponent on an individual image. It has been shown that bounding
the perceptual distortion in each DCT coefficient may be sub-
jectively more effective than minimizing the average percep-
tual error [13], [14]. Moreover, the MPE quantizers reduce to
the JPEG and MPEG quantizers if a simple (linear) perception
model is considered.

B. Optimal Spatial Quantizers Under the MPE Criterion

The design of a transform quantizer for a given block trans-
form involves finding the optimal number of quantization levels
for each coefficient (bit allocation) and the optimal distribution
of these quantization levels in each case [27].

Let us assume that the squared perceptual distance between
two similar patterns in the transform domainand is
given by a weigthed sum of the distortion in each coefficient

(2)

where is a frequency and amplitude-dependent percep-
tual metric.

In order to prevent large perceptual errors on individual im-
ages coming from outlier coefficient values, the coder should be
designed to bound the MPE for every frequencyand ampli-
tude .

If a given coefficient (at frequency) is represented by
quantization levels distributed according to a density the
maximum Euclidean quantization error at an amplitudewill
be bounded by half the Euclidean distance between two levels

(3)

The MPE for that frequency and amplitude will be related to the
metric and the density of levels:

(4)
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The only density of quantization levels that gives a constant
MPE bound over the amplitude range is the one that varies as
the square root of the metric

(5)

With these optimal densities, the MPE in each coefficientwill
depend on the number of allocated levels and on the integrated
value of the metric

(6)

Fixing the same maximum distortion for each coefficient
and solving for , the optimal number of

quantization levels is obtained

(7)

The general form of the optimal MPE quantizer is given by (5)
and (7) as a function of the perceptual metric. Thus, the behavior
of the MPE quantizer will depend on the accuracy of the se-
lected . Here, a perceptual metric related to the gradient of
the nonlinear response and to the amplitude JNDs has been
considered [15], [16]

JND

CSF (8)

where is the local mean luminance, CSFis thecontrast sen-
sitivity function(the bandpass linear filter which characterizes
the HVS performance for low amplitudes [20], [24], [28], [41]),
and are empirical monotonically increasing functions
of amplitude for each spatial frequency to fit the amplitude JND
data [15]. In particular, we have used the CSF of Nyganet al.
[41]

CSF

(9)

and the following nonlinear functions [15] (frequency
in cycles/degrees)

CSF

CSF
(10)

It is important to note that the metric weight for each coeffi-
cient in (8) has two contributions: one constant term (the CSF)
and one amplitude-dependent term that vanishes for low am-
plitudes. This second term comes from a nonlinear correction
to the linear threshold response described by the CSF. These
two terms in the metric give two interesting particular cases of
the MPE formulation. First, if a simple linear perception model

is assumed, a CSF-based MPEG-like quantizer is obtained. If
the nonlinear correction in (8) is neglected, uniform quantizers
are obtained for each coefficient and becomes proportional
to the CSF, which is one of the recommended options in the
JPEG and MPEG standards [1]–[3]. Second, if both factors of
the metric are taken into account, the algorithm of [13], [14],
[26] is obtained: the quantization step size is input-dependent
and proportional to the JNDs and bit allocation is proportional
to the integral of the inverse of the JNDs. From now on, these
two cases will referred to as linear and nonlinear MPE, respec-
tively.

The CSF-based (linear MPE) quantizer used in MPEG
[1]–[3] and the proposed nonlinear MPE quantizer [13], [14],
[26], represent different degrees of approximation to the actual
quantization process, , eventually carried out by the HVS.
The scheme that takes into account the perceptual amplitude
nonlinearities will presumably be more efficient in removing
the subjective redundancy from the DFD.

Fig. 1 shows the product for the linear (MPEG-
like) and the nonlinear MPE quantizers. This product represents
the number of quantization levels per unit of area in the fre-
quency and amplitude plane. This surface is a useful description
of where a quantizer concentrates the encoding effort [14]. Fig. 2
shows the bit allocation solutions (number of quantization levels
per coefficient ) in the linear and the nonlinear MPE cases.
Note how the amplitude nonlinearities enlarge the bandwidth
of the quantizer in comparison to the CSF-based case. This en-
largement will make a difference when dealing with wide spec-
trum signals like the DFD.

C. Introducing HVS Temporal Properties in the Prediction
Loop

The previous considerations about optimal MPE 2-D
transform quantizers can be extended to three-dimensional
(3-D) spatio-temporal transforms. The HVS motion perception
models extend the 2-D spatial filter bank to nonzero temporal
frequencies [42], [43]. The CSF filter is also defined for
moving gratings [20] and the contrast discrimination curves
for spatio-temporal gratings show roughly the same shape as
the curves for still stimuli [21], [22]. By using the 3-D CSF
and similar nonlinear corrections for high amplitudes, the
expression of (8) could be employed to measure differences
between local moving patterns. In this way, optimal MPE
quantizers could be defined in a spatio-temporal frequency
transform domain. However, the frame-by-frame nature of any
motion compensated scheme makes the implementation of a
3-D transform quantizer in the prediction loop more difficult.

In order to exploit the subjective temporal redundancy re-
moval to some extent, the proposed 2-D MPE quantizer can be
complemented with one-dimensional (1-D) temporal filtering
based on the perceptual bit allocation in the temporal dimen-
sion. This temporal filter can be implemented by a simple fi-
nite impulse response weighting of the incoming error frames.
The temporal frequency response of the proposed 1-D filter
is set proportional to the number of quantization levels that
should be allocated in each temporal frequency frame of a 3-D
MPE optimal quantizer. For each spatio-temporal coefficient

, the optimal number of quantization levels is given
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Fig. 1. Relative number of quantization levels allocated in the frequency and amplitude plane for a) nonlinear MPE and b) linear MPE quantizers. The surfaces
are scaled to have unit integral (the same total number of quantization levels). The distribution of the quantization levels in amplitude for a certain coefficient is just
the corresponding slice of the surface at the desired frequency. The MPE design [(5) and (7)] implies that this surface is proportional to the metricN � � (a ) /
W (a ) so different perception models (different metrics) give rise to a different distribution of quantization levels. Note that the distribution is uniform for
every frequency in the linear MPE (MPEG-like) case and nonuniform (peaked at low amplitides) in the nonlinear MPE case.

Fig. 2. Bit allocation results (relative number of quantization levels per
coefficient) for the linear MPE (MPEG-like case) and for the nonlinear MPE
case. The curves are scaled to have unit integral (the same total number of
quantization levels). In the linear case, the metric is just the square of the CSF
and thenN / CSF as recommended by JPEG and MPEG. A more complex
(nonlinear) model gives rise to a wider quantizer bandpass.

by (7). Integrating over the spatial frequency, the number of
quantization levels for that temporal frequency is

(11)

Fig. 3(a) shows the number of quantization levels for each
spatio-temporal frequency of a 3-D nonlinear MPE quantizer.
This is the 3-D version of the 2-D nonlinear bit allocation of
Fig. 2. Note that (except for a scale factor) the spatial frequency
curve for the zero temporal frequency is just the solid curve of

Fig. 2. Fig. 3(b) shows the temporal frequency response that is
obtained by integrating over the spatial frequencies.

IV. PERCEPTUALFEEDBACK IN THE MOTION ESTIMATION

Any approximation to the actual perceptual quantization
process has an obvious application in the DFD quantizer
design, but it may also have interesting effects on the com-
putation of the DVF if the proper feedback from the DFD
quantization is established in the prediction loop.

If all the details of the DFD are considered to be of equal im-
portance, we would have anunweightedsplitting criterion as in
the difference-based criteria [6], [29], [32], [33] or as in the spa-
tial entropy-based criterion of Dufauxet al. [7], [8]. However,
as the DFD is going to be simplified by some nontrivial quan-
tizer , which represents the selective bottleneck of early per-
ception, not every additional detail predicted by a better motion
compensation will be significant to the quantizer. In this way,
the motion estimation effort has to be focused on the moving
regions that containperceptually significant motion informa-
tion. In order to formalize the concept of perceptually signifi-
cant motion information, the work of Watson [36] and Daugman
[37] on entropy reduction in the HVS should be taken into ac-
count. They assume a model of early contrast processing based
on a pair ( ) and suggest that the entropy of the cortical
scene representation (a measure of the perceptual entropy of the
signal) is just the entropy of the quantized version of the trans-
formed image. Therefore, a measure of the perceptual entropy

of a signal is

T (12)

Using this perceptual entropy measure (which is simply the
entropy of the output of a MPE quantizer), we can propose an
explicit definition of what perceptually significant motion infor-
mation is. Let us motivate the definition as follows. Given a cer-
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Fig. 3. (a) Nonlinear MPE bit allocation results in the 3-D spatio-temporal frequency domain (relative number of quantization levels per 3-D coefficient). The
surface is scaled to have unit integral. (b) Frequency response of the perceptual temporal filter, proportional toN . The solid line corresponds to the theoretical
curve and the dashed line stands for the actual frequency response obtained with the fourth-order FIR filter used in the experiments (see Section V). The coefficients
of the filter in the temporal domain are: 0.0438, 0.1885, 0.4443, 0.1885, and 0.0438.

tain motion description, DVF, with entropy DVF , a predic-
tion of the next frame can be done. Some particular error, DFD,
will be obtained, with a perceptual entropy . If ad-
ditional motion information is available, DVF (more
complex quadtree segmentation and more motion vectors), one
would expect a reduction of the perceptual information of the
remaining DFD, i.e., . Let us define this addi-
tional motion information as perceptually significant only if it
implies a greater reduction in the perceptual entropy of the pre-
diction errors: is perceptually significant if

(13)

Broadly speaking, some additional motion information is per-
ceptually significant if it increments the perceptual information
of the prediction more than its own volume.

If each motion refinement in a variable-size BMA,
DVF DVF DVF , is required to be

perceptually significant, the followingperceptually weighted
splitting criterion arises:a block of the quadtree structure
should be split if

DVF DFD

DVF DFD (14)

where DVF is the entropy of the DPCM coded DVF plus
the information needed to encode the quadtree structure and

DFD is the perceptual entropy of the residual error signal.
Equation (14) has the same form as the criterion proposed by

Dufaux and Moscheni [7], [8], except for the way in which the
entropy of the DFD is computed. In this case, the unweighted
entropy of the DFD in the spatial domain is replaced by the
perceptually weighted entropy measure in the appropriate
encoding domain. The consideration of the entropy of the
quantized DFD (or perceptual entropy) is the main difference
between the suboptimal approach of Dufaux and Moscheni

[7], [8], and the optimal approaches [9]–[12]. The optimal
approaches only differ in the way the problem is stated: While
in [9]–[11] an explicit rate-distortion sum is minimized, in [12]
a fixed distortion is assumed (constant MPE quantizer) and
a monotonically decreasing behavior for the rate is imposed.
These optimal algorithms do not necessarily find the absolute
minimum in the rate-distortion sense but only local minima;
however, as the actual DFD entropy is used, the performance
of the suboptimal result is always improved. It is interesting to
note that the reasoning about the perceptual relevance of the
motion information presented here leads to (14), which takes
into account the quantized DFD entropy, in a natural way. As
long as [9]–[12] use CSF-based quantizers, all these optimal
approaches can also be referred to as perceptually weighted
variable-size BMAs. In what follows, the algorithm of Dufaux
et al. [7], [8] and the algorithm from (14) will be compared
and referred to as unweighted and perceptually weighted
variable-size BMA, respectively.

The perceptual quantizer constraint on the motion estimate
comes from the particular video coding application in which the
actual bit-rate has to be minimized [9]–[12]. However, the ben-
efits of including the properties of the biological filters in the
motion estimation may go beyond the rate-distortion optimiza-
tion. The bandpass shape of human sensitivity (Fig. 2) gives a
scale-dependent measure of the perceptual entropy of the DFD.
As some frequency bands (some scales) have more perceptual
importance than others, the application of the perceptual cri-
terion results in a different splitting behavior in the different
levels of the multigrid structure. Fig. 4 qualitatively shows how a
bandpass criterion may give a scale-dependent splitting result.
In coarse levels of the multigrid (left side figures), the spatial
support of the DFD is large due to the displacement of large
blocks. The uncertainty relationship leads to a
DFD with narrow bandwidth in the case of a large DFD sup-
port. Conversely, in the fine levels of the multigrid (right-side
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Fig. 4. Scale-dependent splitting strategy due to perceptual feedback. The dashed regions in the frequency domain represent the bit allocation of the MPE
quantizer. They determine the frequency band which is considered to compute the perceptual entropy of the signal. For a given energy and resolution level, the
spatial extent and the frequency bandwidth of the DFD (thick solid lines) are related by the uncertainty relation�x � �f = k. The bandwidth of the DFD will
depend on the resolution, giving rise to a different splitting behavior when using a bandpass splitting criterion such as the perceptual entropy.

figures), the DFD is spatially localized, giving rise to a broad-
band error signal. If the complexity measure is more sensitive
to the complexity of the signal in low- and middle-frequency
bands, the splitting criterion will be tolerant in the coarse levels
of the multigrid and will be strict in the high-resolution levels.
The next section will show that this scale-dependent behavior
is useful for discriminating between significant and noisy mo-
tions.

V. EXPERIMENTS AND DISCUSSION

Four experiments on several standard sequences [44] were
carried out at a fixed bit-rate:

• Different quantizers with the same motion estimation.
• Different motion estimations with the same quantizer.
• Relative relevance of the improvements in the motion es-

timation and the quantization.
• Proposed scheme versus previous comparable schemes

(H.263, MPEG-1).
We are interested in two different comparisons: 1) quality of

the reconstructed signal and 2) usefulness of the motion flows
for higher-level purposes. To this end, examples of the recon-
structed frames and subjective distortion measures using a per-
ceptually meaningful metric [15], [16] are given in each case.

Also, a well-known motion-based segmentation algorithm for
high-level video coding [17], [18] has been used with both per-
ceptually weighted and perceptually unweighted BMAs to test
their respective usefulness.

In every experiment, the quantizer was adapted for each group
of pictures to achieve the desired bit-rate (200 kb/s with QCIF
format). In order to highlight the relative differences among the
different approaches considered, only the first frame was intra-
coded and only forward prediction was used in the remaining
frames (i.e., no bidirectional interpolated frames nor additional
intracoded frames were introduced). As a consequence, the re-
sults may seem abnormally distorted at this rate. The DC coef-
ficient of error signals is basically zero [45], so the luminance
information of the original blocks was used to normalize the
amplitudes of the error blocks. These luminance values were
not quantized but DPCM coded from block to block as in the
JPEG standard. The 1-D temporal filter was implemented by a
linear-phase FIR filter using least-squares error minimization in
the frequency response. A simple fourth-order filter was used to
restrict the buffer requirements (see Fig. 3 for the achieved fre-
quency response and the filter coefficients).

A maximum of five resolution levels (blocks from to
) were used in the variable-size BMA quadtrees. Blocks of

size were used in the fixed-size BMA. Then-step displace-
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Fig. 5. Quantization results with a fixed motion estimation algorithm (unweighted variable-size BMA). (a) Original (detail of frame 7 of theRubiksequence). (b)
Two-dimensional linear MPE, uniform MPEG-like quantization. (c) Two-dimensional nonlinear MPE. (d) Two-dimensional nonlinear MPE and temporal filtering.

ment search [8] and integer-pixel accuracy was used in every
resolution level of the BMAs. The usual correlation was used as
a similarity measure.

The definitive proof of the subjective benefits of an algorithm
is a set of psychophysical experiments on the quality of the re-
constructed sequences, but it requires time-consuming experi-
ences involving several observers. An approximate, but more
practical, approach is to use perceptually meaningful distortion
measures. This is not a simple issue [46], [47]. However, basic
facts as the spatial frequency sensitivity make a fundamental dif-
ference between plain Euclidean distortion metrics (e.g MSE or
SNR) and any (even the simplest) perceptually weighted metric.
In the experiments, the perceptual distortions were computed
through (2) using the nonlinear perceptual metric of (8) [15],
[16] on a frame-by-frame basis. This metric incorporates the
basic elements of early achromatic visual processing [46], [47]:
luminance adaptation, spatial frequency channels, frequency de-
pendent filtering, contrast masking, and (quadratic) probability
summation. The squared distortion was computed for each DCT
block in a frame and averaged across the frame. This straighfor-
ward frame-by-frame implementation may neglect some tem-
poral factors, but it still gives a rough approximation to the ob-
servers opinion and is thus useful for confirming the results.

A. Experiment 1: Different Quantizers with the Same Motion
Estimation

The performance of the linear MPE (MPEG-like) quantizer
and the proposed nonlinear MPE quantizers was compared
using the same (perceptually unweighted H.263-like) motion
estimation. Fig. 5 shows a representative example of the kind of
errors obtained with the different quantizers at a fixed bit-rate.
Fig. 6 shows the increase of the perceptual distortion in the
different reconstructions of theRubiksequence.

The consideration of the (2-D or 3-D) nonlinearities in-
troduces a substantial improvement in comparison to the
linear MPE quantizer. The temporal filtering smooths the
reconstructed sequence and reduces to some extent the re-
maining blocking effect and busy artifacts of the 2-D nonlinear
approach. However, despite the eventual visual advantages of
this temporal filtering, the key factor in the improvements of
the proposed quantizers is the consideration of the amplitude
nonlinearities and the corresponding enlargement of the spatial
quantizer bandwidth (Fig. 2). The reconstructed examples and
the computed distortion confirm this point. This enlargement
implies that the quantized signal keeps some significant details
otherwise discarded, avoiding the rapid degradation of the
reconstructed signal.
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Fig. 6. Perceptual distortion measures for the frames of theRubiksequence
using different quantizers with the same (unweighted H.263-like) motion
estimation. All the distortion results presented in the paper are normalized by
the worst distortion obtained at the last frame of theRubik sequence using
an H.261 or MPEG-1 approach. The thick solid line correspond to the linear
MPE quantizer. The thin solid line correspond to the 2-D nonlinear MPE
quantizer and the thin dashed line correspond to the 2-D nonlinear quantizer
with temporal filtering. In this 3-D case, the frame-by-frame implementation
of the perceptual distortion measure may slightly overestimate the visual effect
of the frame blurring introduced by the temporal filter. Despite this fact, the
perceptual distortions reveal that the amplitude nonlinearities substantially
improve the reconstruction results.

A very interesting consequence is that the (2-D or 3-D) non-
linear quantizers keep the distortion bounded over a large group
of frames (compare the behavior of the linear and nonlinear dis-
tortion curves). In this way, the need to introduce bit-consuming
intracoded frames is reduced.

B. Experiment 2: Different Motion Estimations with the Same
Quantizer

The proposed perceptually weighted variable-size BMA and
the unweighted variable-size BMA were compared in this ex-
periment using the same linear MPE (MPEG-like) quantizer.
The results with a fixed-size BMA are also included as
a reference.

The quantitative rationale behind entropy constrained ap-
proaches is saving motion information to improve the DFD
encoding and have a better reconstruction. From this point
of view, the only reason to take into account the perceptual
quantization is an improvement of the reconstructed sequence.
The qualitative rationale to take into account the perceptual
quantization is to include a perceptual criterion to decide when
some motion information is significant. Accordingly, the effects
of the perceptual weight in the motion estimation were tested
in two different ways. First, the effect of the savings in motion
information on the signal quality was analyzed. Second, the
usefulness of the motion information for higher-level purposes
was tested.

The Table I and Fig. 7 analyze the bit allocation performance
of the motion estimation algorithms. Table I shows the per-
centage of the total bit-rate used for the motion flow. Fig. 7
shows the reduction of the bit-rate in theTaxi sequence while

refining the motion estimate with the weighted and unweighted
variable-size BMAs. The consideration of the perceptual quan-
tizer in the motion estimation certainly minimizes the entropy
of the motion flow and the total entropy as claimed in [9]–[12].
The problem with the unweighted criterion is that it is too per-
missive at high-resolution levels. In this way, too many blocks
are split increasing the motion information without decreasing
the information content of the DFD, i.e., perceptually negligible
motion information is being added.

However, do these motion information savings in [9]–[12]
have a significant effect on the reconstructed quality? Fig. 8
shows a representative example of the decoded results using the
same MPEG-like quantizer and the different considered motion
estimations at a fixed bit-rate (frame 7 of theTaxi sequence).
Fig. 9 shows the increase of the perceptual distortion in the
different reconstructions of theTaxi sequence. The distortions
here are relatively lower than in theRubiksequence because the
area of the moving regions (and hence the distorted area) is also
lower. These results show that both variable-size BMAs make
some difference in quality with regard to the fixed-size H.261
BMA due to the savings in DVF information. However, the prac-
tical advantages of the better bit allocation between DVF and
DFD over the suboptimal variable-size BMA are not evident.
The benefits of the better bit allocation in comparison to the sub-
optimal variable-size BMA are so small (Table I and Fig. 7) that
in practice (Figs. 8 and 9), they cannot be exploited by the quan-
tizer to give a better encoded DFD. That is, any adaptive DVF
consumes such a small portion of the total bit-rate that there is
no significant difference in the reconstruction between the dif-
ferent variable-size BMA algorithms.

The scale-independent behavior of the unweighted algorithm
leads to too many splittings at high resolution. This suboptimal
result has no effect in the reconstructed sequence, but it may
give rise to noisy, less meaningful, motion information. In order
to test the meaningfulness of the motion information obtained
with the different algorithms, a well-known motion-based seg-
mentation algorithm [17], [18] was initialized with the different
flows.

The layer identification algorithm [17], [18] starts from an ar-
bitrary initial segmentation, which is refined by estimating the
affine motion model of each region and merging the regions
with similar affine parameters. Given a pair of frames from a
sequence with moving objects, the segmentation algorithm
gives masks, representing the identified objects and the cor-
responding affine models.

In order to assess the relative performance of the flows under
consideration, the following segmentation error measure has
been used. Let be the dissimilarity between each (manually
segmented) object and its corresponding mask ( is the
mask that maximizes for all the obtained masks )

(15)

where stands for the set complement and is the
Chamfer distance, i.e., the distance fromto the boundary
of the object [48]. This distance progressively penalizes
unmatched pixels that are far from the object boundary. The
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Fig. 7. Bit-rate of DVF and DFD while refining the motion estimate. The values are given as a percentage of the total entropy at the lowest resolution level. The
curves represent the average percentage of the bit-rate across the frames and the error bars represent the standard deviation. The different lines indicate different
starting resolutions (initial block sizes): solid64� 64, dashed32� 32, and dotted16� 16. (a) Unweighted spatial entropy splitting criterion. (b) Perceptually
weighted splitting criterion.

TABLE I
PERCENTAGE OF THETOTAL BIT-RATE USED FOR THEMOTION FLOW (DVF)

segmentation error for a frameis the sum of the individual
segmentation errors . It has been empirically found that this
error measure adequately describes the intuitive quality of
the segmentation (Figs. 10 and 11 and their particular errors
illustrate this point).

Several experiments were carried out using the layer iden-
tification algorithm [17], [18] with the three different DVFs:
fixed-size BMA, unweighted variable-size BMA and perceptu-
ally weighted variable-size BMA. Results regarding two stan-
dard sequences,Taxi and Rubik, are considered here because
they represent extreme cases for the segmentation algorithm:
small moving objects with simple translations and one large ob-
ject rotating around an axis, respectively. While in the first se-
quence even simple velocity clustering could solve the problem,
in the second one, regions with very different velocities have to
be merged in a single complex-motion object.

Table II shows the average segmentation error (normalized
by the maximum in each sequence), the number of iterations
and the number of identified regions in each case. Figs. 10 and
11 show examples of the motion flows and the segmentations
achieved in particular frames of the sequences along with the
corresponding segmentation error. The differences in robust-
ness, coherence and meaningfulness between the results of the
different algorithms are apparent in the motion flows (Figs. 10
and 11). The quantitative results of the segmentation confirm
this intuitive impression. The block appearance of the layers is
obviously due to the sparseness of the input flows. The segmen-

tation algorithm is usually initialized with dense flows (one mo-
tion vector per pixel) [17], [18], not with sparse (one motion
vector per block) flows. However, this worst case situation is
appropriate to highlight the usefulness of each flow.

The following trends can be identified from the obtained re-
sults: 1) the segmentation is better when the blocks are fairly
small compared to the size of the moving regions (see the vari-
able-size BMA error results forRubik–large object- andTaxi
–small objects–); however, 2) the segmentation is very sensi-
tive to the robustness and coherence of the sparse flow. This
implies that the block size cannot be arbitrarily reduced to im-
prove the segmentation resolution: Despite its higher density, a
more noisy flow from a too small block size BMA is worse.

This general behavior may be explained in terms of the data
needed to estimate the six parameters of the affine models.
Ideally, a minimum of three independent vectors (six data) are
needed to segment a region. In real (noisy) situations, more
vectors per region will be needed. Consequently, the segmen-
tations of large objects are comparatively better. On the other
hand, as the number of motion measurements is reduced when
using sparse flows (compared to dense flows), their robustness
becomes critical. This is why the results based on fixed-size
BMA (sparse and noisy) are extremely poor. However, if
the variable-size BMA used is robust enough, reliable rough
segmentations are still possible. In particular, the increased
robustness of the perceptually weighted flow speeds up the
convergence of the segmentation algorithm and minimizes the
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Fig. 8. Reconstruction results with different motion estimations and a fixed MPEG-like quantization. (a) Original (detail of frame 7 of theTaxi sequence). (b)
Fixed-size BMA. (c) Unweighted variable-size BMA. (d) Weighted variable-size BMA.

Fig. 9. Perceptual distortion measures for the frames of theTaxi sequence
using different motion estimations with the same (MPEG-like) quantizer.
The thick solid line corresponds to the fixed-size BMA. The thin solid line
corresponds to the unweighted variable-size BMA and the thin dashed line
corresponds to the weighted variable-size BMA.

segmentation error (see Table II). Moreover, a closer estimation
of the actual number of moving objects is obtained due to the
smoothness of the flow within moving regions, which prevents
false splittings.

To summarize, despite the fact that a better bit allocation be-
tween DVF and DFD (Table I and Fig. 7) does not improve the
quality of the decoded sequence (Figs. 8 and 9), the segmenta-
tion results (Table II and Figs. 10 and 11) show that perceptual
weighting gives rise to a more meaningful flow: it makes the

sparse flow more suitable for obtaining robust rough segmenta-
tions.

C. Experiment 3: Relative Relevance of the Improvements in
the Motion Estimation and the Quantization

To study the combined effect and the relative advantages of
the proposed improvements, the four possible combinations
of motion estimation and quantization algorithms were com-
pared at a fixed bit-rate. The perceptually weighted and the
unweighted (suboptimal) variable-size BMA were combined
with the the 2-D linear (MPEG-like) and the 2-D nonlinear
MPE quantizers. Fig. 12 shows an example of a reconstructed
frame using the four different approaches considered. Fig. 13
shows the corresponding distortion for each frame of the
Rubik sequence. These reconstruction examples and error
results confirm what expected from the separate analysis of
the previous sections: The quality improvement due to the use
of the appropriate entropy measure in the motion estimation is
negligible compared to the benefits of a better quantization.

In this case, the simple increase in the quantizer bandpass that
comes from considering the visual nonlinearities (Fig. 2) may
explain the enhancement. Due to the noisy (high-frequency) na-
ture of the error signal, wide band quantizers may be better
than narrower band (CSF-based) quantizers. In fact, the benefits
of this enhanced quantizer are more apparent on video frames
(Figs. 5 and 12) than in still images [13], [14]. The interesting
constant distortion result reported in Section V-A (Fig. 6) is
also reproduced here: While the perceptual distortion increases
quickly when using the linear quantizer, it remains constant with
the nonlinear MPE quantizer regardless the motion estimation
algorithm.
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Fig. 10. DVFs and motion-based segmentation results (Taxi, frame 9). (a) Original frame. (b) Fixed-size BMA flow. (c) Unweighted variable-size BMA flow.
(d) Perceptually weighted variable-size BMA flow. (e) Ideal segmentation. (f) Segmentation with fixed-size BMA (� = 1:02). (g) Segmentation with unweighted
variable-size BMA, (� = 0:49). (h) Segmentation with perceptually weighted variable-size BMA, (� = 0:35).

Fig. 11. DVFs and motion-based segmentation results (Rubik, frame 3). (a) Original frame. (b) Fixed-size BMA flow. (c) Unweighted variable-size BMA flow.
(d) Perceptually weighted variable-size BMA flow. (e) Ideal segmentation. (f) Segmentation with fixed-size BMA (� = 0:98). (g) Segmentation with unweighted
variable-size BMA, (� = 0:51). (h) Segmentation with perceptually weighted variable-size BMA, (� = 0:25).

TABLE II
SEGMENTATION ERRORS, NUMBER OF ITERATIONS AND IDENTIFIED REGIONS
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Fig. 12. Decoded results using different combinations of quantizers and motion estimations. (a) Unweighted variable-size BMA and 2-D linear MPE,
MPEG-like, quantization. (b) Unweighted variable-size BMA and 2-D nonlinear MPE quantization. (c) Perceptually weighted variable-size BMA and 2-D linear
MPE, MPEG-like, quantization. (d) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization.

D. Experiment 4: The Proposed Scheme Versus Previous
Comparable Schemes

In this section, the considered elements of the motion com-
pensated video coder were combined to simulate and compare
previously reported schemes (MPEG-1 or H.261 and H.263) and
the proposed ones. MPEG-1 and H.261 use a fixed-size BMA
and a linear (CSF-based) MPE quantizer. A regular implementa-
tion of H.263 use an unweighted splitting criterion variable-size
BMA and a linear MPE quantizer. The video coder scheme pro-
posed here use a perceptually weighted variable-size BMA and
a nonlinear MPE quantizer (either 2-D or 3-D).

Examples of the decoded frames at a fixed bit-rate are shown
in Figs. 14 and 15. The perceptual distortion for each frame of
the reconstructed sequences is shown in Fig. 16. Both frames
and distortions confirm the improvements of the proposed
schemes compared to the previous similar schemes in terms of
subjective quality at a fixed bit-rate.

VI. FINAL REMARKS

The current motion compensated video coding standards
include very basic perceptual information (linear threshold
models) only in the quantizer design. In this paper a multigrid
motion compensated video coding scheme based on a more

Fig. 13. Perceptual distortion measures for the frames of theRubiksequence
using different combinations of quantizers and motion estimations. The thick
lines correspond to the approaches using the linear MPE quantizer. The thin
lines correspond to the approaches using the 2-D nonlinear MPE quantizer.
The dashed lines correspond to the approaches using perceptually weighted
variable-size BMA and the solid lines correspond to the approaches using
unweighted variable-size BMA.
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Fig. 14. Reconstruction results with theRubiksequence using previously reported encoding configurations (a-b) and the proposed 2-D or 3-D alternatives (c-d).
(a) Fixed size BMA for motion estimation and MPEG-like quantization (linear MPE). (b) Unweighted variable-size BMA and MPEG-like quantization (linear
MPE). (c) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization. (d) Perceptually weighted variable-size BMA and 2-D nonlinear MPE
quantization and temporal filtering.

accurate HVS contrast discrimination model has been pre-
sented. The model accounts for the nonuniform nature of the
HVS redundancy removal in the frequency domain. Here the
basic idea is to design the entire encoding process to preserve
no more than the subjectively significant information at a
given subjective distortion level. This aim affects not only the
quantizer design, but also the motion estimation.

On the one hand, as a result of a more accurate perception
model and the MPE restriction criterion, an improved nonlinear
quantizer has been proposed. On the other hand, this percep-
tual quantizer is used here to decide if additional motion infor-
mation is perceptually significant. This definition of perceptu-
ally significant motion information gives rise to an appropriate
entropy-constrained BMA (using the actual DFD entropy) in a
natural way. In this way, superfluous effort in the motion de-
scription (predicting details that are going to be discarded by the
quantizer) is avoided and a perceptual feedback is introduced in
the motion estimation refinement.

The reconstructed frames and perceptually meaningful dis-
tortion measures show that the proposed schemes improve the
results of previous comparable schemes such as H.263 with un-

weighted motion refinement and MPEG-like quantization. In
particular, nonlinear MPE quantizers lead to better subjective
quality than the linear MPE (CSF-based, MPEG-like) quan-
tizers at the same bit-rates because they more accurately pre-
serve the relevant information of the DFDs. A very interesting
consequence is that the (2-D or 3-D) nonlinear quantizers keep
the distortion bounded over a large group of frames, so the need
to introduce bit-consuming intracoded frames can be reduced.
According to the perceptual distortion results at a fixed bit-rate,
the benefits of a better bit allocation between DVF and DFD
(the benefits of the perceptual weight in motion estimation) are
negligible compared to the benefits of perceptually more ac-
curate quantizers. The significant improvement due to this en-
hancement of the quantizer suggests that quantizer design may
be more important than optimal motion estimation from the
rate-distortion point of view.

However, a side effect of the perceptual control of the mo-
tion estimation is a scale-dependent refinement strategy that
gives rise to more robust and meaningful motion flows com-
pared to unweighted refinement criteria. This is confirmed by
the segmentation results that show how the perceptual weighting
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Fig. 15. Reconstruction results with theTaxi sequence using previously reported encoding configurations (a-b) and the proposed 2-D or 3-D alternatives (c-d).
(a) Fixed size BMA for motion estimation and MPEG-like quantization (linear MPE). (b) Unweighted variable-size BMA and MPEG-like quantization (linear
MPE). (c) Perceptually weighted variable-size BMA and 2-D nonlinear MPE quantization. (d) Perceptually weighted variable-size BMA and 2-D nonlinear MPE
quantization and temporal filtering.

Fig. 16. Perceptual distortion measures for the frames of the (a)Rubikand (b)Taxisequence using previous and the proposed schemes. The thick lines correspond
to the previous apporaches and thin lines correspond to the proposed schemes. Solid thick line corresponds to fixed-size BMA and linear MPE quantizer(H.261,
MPEG1). Dashed thick line corresponds to unweighted variable-size BMA and linear MPE quantizer (H.263). The solid thin line corresponds to perceptually
weighted variable-size BMA and 2-D nonlinear MPE and the dashed thin line corresponds to perceptually weighted variable-size BMA and 3-D nonlinear MPE.
As in Fig. 6, the frame-by-frame implementation of the perceptual distortion measure may slightly overestimate the visual effect of the frame blurring introduced
by the temporal filter.
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makes a sparse flow suitable to obtain rough segmentations of
the moving objects. These results suggest that the perceptual
quantizer should not to be taken into account in the motion
estimation due to rate-distortion reasons, but to obtain more
meaningful flows that may be of interest for higher-level video
coding.

Systematic psychophysical testing instead of the simple
frame-by-frame perceptual measure may be necessary to
measure accurately the relevance of the temporal features of the
proposed 1-D 2-D quantizer design. Nevertheless, the results
presented suggest that when amplitude nonlinearities are taken
into account, the consideration of the temporal properties is not
so significant.
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