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Abstract. Tone mapping refers to the conversion of luminance val-
ues recorded by a digital camera or other acquisition device, to the
luminance levels available from an output device, such as a monitor
or a printer. Tone mapping can improve the appearance of rendered
images. Although there are a variety of algorithms available, there is
little information about the image tone characteristics that produce
pleasing images. We devised an experiment where preferences for
images with different tone characteristics were measured. The re-
sults indicate that there is a systematic relation between image tone
characteristics and perceptual image quality for images containing
faces. For these images, a mean face luminance level of 46–49
CIELAB L* units and a luminance standard deviation (taken over
the whole image) of 18 CIELAB L* units produced the best render-
ings. This information is relevant for the design of tone-mapping
algorithms, particularly as many images taken by digital camera us-
ers include faces. © 2005 SPIE and IS&T. [DOI: 10.1117/1.1900134]

1 Introduction

Consumers of digital cameras and related products de
high-quality images. Consumer preference for imag
however, is not easy to predict. Even if it were technica
feasible, creating a perfect reproduction of the light th
arrived at the camera would not guarantee the most
ferred rendering of the original scene. For example m
professional portraiture employs a large degree of im
enhancement, and the results are almost always preferr
a veridical rendering. This may occur because most c
sumers judge the attractiveness of an image without di
reference to the original scene, so that their judgments
based on memory, either of the specific scene or of gen
scenes. There is evidence that memory for colored obj
can be unreliable.1–3
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Digital images may be modified through the applicati
of image processing algorithms, but what modificatio
make images look better is not well understood. One
proach to this problem is to study directly the effect
image processing on image preference. We recently ex
ined the perceptual performance of demosaicing algorith
in this manner.4 Previous work has also studied the relati
between image colorfulness and human observer qua
naturalness ratings.5–7 Here we apply similar experimenta
methods to study the relation between image tone cha
teristics and perceptual image quality.

Tone mappingrefers to the conversion of input lumi
nance values, as captured by an acquisition device~e.g., a
digital camera!, to luminance values for display on an ou
put device~e.g., a computer monitor!. Luminance values in
a natural image can range over about five orders
magnitude.8 This compares to a much smaller range
about two orders of magnitude available with a compu
monitor under typical viewing conditions. Even for th
usual situation where the image acquisition device qu
tizes the number of luminance levels to match the num
of levels available on the output device, tone mapping c
still improve the appearance of an image. The relation
tween input and output luminance values produced b
tone-mapping algorithm is called atone-mapping curve.

Tone mapping changes thetone characteristicsof the
image. By tone characteristics we mean the distribution
the luminance values of the image’s pixels, without rega
to how the pixels are arranged spatially. In general, to
characteristics can either be assessed globally~over the en-
tire image!, or locally ~over some smaller region of inter
est!. Within an image region~either global or local!, tone
characteristics are completely described by theluminance
histogramof the region. This specifies the number of ima

3;
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
pixels within the region that have each possible output
minance value. In this paper, we will consider both glob
and local tone characteristics.

Previous work on tone mapping has focused on co
parisons of the performance of different tone-mapp
methods. Much of this work was conducted in the cont
of film-based photography, where practical considerati
limited attention to global tone-mapping methods in whi
a single tone-mapping curve was applied to the entire
age ~see review by Nelson9!. Bartleson and Breneman10

suggested that a good tone-mapping curve established
relation between relative perceived brightness values in
scene and the rendered image, where relative brightne
were computed using a modified power function deriv
from research on brightness scaling.11 Their curve corre-
sponded closely to curves that received high ratings i
psychophysical study performed by Clark.12 Further work
by Hunt and co-workers13,14 suggested that the Bartleso
and Breneman principle10 should be modified depending o
the viewing conditions~in particular the surround of the
image! and suggested that although a linear relation
tween scene and image relative brightnesses was appr
ate for reflection prints, a power-law relation between re
tive brightnesses was more appropriate for transparen
The widely used zone system for photographic tone m
ping ~reviewed in Reinhardet al.15! relies on perceptua
judgments of how regions in the original scene appeare
the photographer.

In film photography, it is not practical to automatical
adjust the tone-mapping curve between images at sep
locations within an image, since the shape of these cu
is governed by physical characteristics of the emulsions
film-development process. With the advent of digital ima
ing, a wider range of tone-mapping algorithms become
practical interest. On the other hand, in many digital ca
eras image quantization precedes the application of a t
mapping algorithm, a feature that increases the challen
for successful tone mapping. Thus there has been rene
interest in developing tone-mapping algorithms~see, e.g.,
Refs. 8 and 16–18!. Evaluation of these methods has aga
emphasized comparing the output of competing algorith
A recent study by Dragoet al.,19 for example, applied
seven tone-mapping techniques to four digital images
their performance was rank ordered based on observer
erences.

Algorithms that apply a fixed tone-mapping curve to a
image have the feature that the tone characteristics of
images produced by the algorithm can vary widely, sin
these characteristics depend strongly on the input. Dig
imaging presents the opportunity to develop algorithms
ing a different principle. Rather than defining the relatio
ship between input and output luminances, one can spe
target output tone characteristics and apply an ima
dependent transformation that yields a good approxima
of these characteristics. One early digital tone-mapping
gorithm, histogram equalization, is based on this idea:
algorithm maps the luminance values in the input image
produce a desired luminance histogram in the output ima
Although it seems unlikely that the optimal output hist
gram is completely independent of image content, the p
ciple of specifying target output image tone characteris
has been incorporated into recent tone-mapping algorit
02300Journal of Electronic Imaging
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intended to improve upon histogram equalization. In the
algorithms, the output histogram varies with an analysis
image content.8,16

The work we present here is intended to further expl
the idea that effective tone mapping can be achie
through specification of desired output image tone char
teristics. Rather than focusing on the development a
evaluation of tone-mapping algorithms, we chose to
dress the underlying issue of whether we could iden
output tone characteristics that produce perceptually att
tive images, and whether such characteristics depend
image content. To this end, we report the results of t
image preference studies and analyze how image pre
ence is related to image tone characteristics.

The work presented here employs images captured w
standard digital cameras and is directed at improving
quality of images produced from such cameras. We do
explicitly consider the case where the dynamic range of
capture and display devices varies greatly~see Refs. 8, 17,
18, and 20!.

As most amateur digital photographs include people,
studies employ an image set that consisted mainly of
ages of people. We also wanted to include images of peo
from different ethnic backgrounds, since many earlier to
mapping studies used images of Caucasians only~e.g. Refs.
12, 21, and 22!.

2 Experiment 1

2.1 Overview

Experiment 1 was exploratory, with the goal of identifyin
systematic relationships between tone variables and im
quality. We applied four different tone-mapping methods
each of 25 experimental images and measured the per
tual quality of the different renderings of each image. The
algorithms produced output images with a range of to
characteristics. Image preference was measured usin
pairwise comparison procedure. On each trial, observ
indicated which of two presented images was the most
tractive.

The pairwise comparison procedure is intuitive for o
servers and yields reliable data.4 Note, however, that ob-
servers only make judgments about different renderings
the same input image. Thus some analysis is require
aggregate a data set large enough to explore the questio
how an image’s tone characteristics relate to its percep
quality. To this end, the preference choice data were a
lyzed using a regression procedure23 to yield metric differ-
ences in image quality between image pairs. The proced
yields difference ratings that are commensurate across i
images. We then asked whether differences in specific
agetone variableswere predictive of the difference ratings
Here the term tone variable refers to a summary meas
such as mean luminance, that may be computed from
output luminance histogram.

We used 25 digitally acquired images and rendered e
on a CRT computer monitor using four different ton
mapping methods. The four methods produced results
were perceptually different for most of the images, th
providing variation in image tone characteristics whose
fect we could study.
3-2 Apr–Jun 2005/Vol. 14(2)
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
2.2 Methods: Image Acquisition

Twenty-five images were used in Experiment 1. Twen
one were captured in Santa Barbara, California and f
were taken in Palo Alto, California. All of the images we
captured under daylight, at different times of the d
throughout May 1999. The illuminant was measured imm
diately following the acquisition of each image by placing
white reflectance standard in the scene and measuring
reflected light using a Photo Research PR-650 spectra
ometer. Of the 25 images, 17 were portraits of people
were landscapes, and 3 were of objects.

The 21 Santa Barbara images were taken with a Ko
DCS-200 camera and the 4 Palo Alto images with a Kod
DCS-420 camera. Both cameras have a resolution of 1
31012 with RGB sensors arranged in a Bayer mosai24

The DCS-200 captures the input light intensity using 8-
linear quantization, whereas the DCS-420 captures with
bit precision. The 12-bit values captured by the DCS-4
are converted to 8-bit values on-camera via a nonlin
transformation. The relative RGB spectral sensitivities a
response properties of both cameras were characterize
described elsewhere.25 This characterization left one fre
parameter describing the overall sensitivity of the cam
undetermined, as this parameter varies with acquisition
posure duration and f-stop. The images were cropped
maximum size of 575~w! by 800 ~h! pixels to ensure tha
two renderings of each image could be displayed simu
neously on the computer screen used in our experimen

2.3 Image Processing

2.3.1 Dark level subtraction

For the DCS-200, a dark level was subtracted from the
quantized pixel values before further processing. The d
level was estimated from an image acquired with the l
cap on and computing the spatial average of the resul
image. The average for the red, green, and blue sen
were all 13.5 on the camera’s 8-bit~0–255! output scale
and this is the value that was subtracted. To estimate
dynamic range of the images, we compared the minim
and maximum pixel values for the green sensor. These t
cally occupied the entire allowable output range~approxi-
mately 13–255 before dark subtraction!. Given that some
pixels had values near zero after dark subtraction, it is
possible to express the dynamic range of these images
meaningful ratio.

For the DCS-420, it was possible to linearize the out
values using a look-up table provided as part of each
image file. This was done prior to further processing. Af
linearization, the estimated dark level for the DCS-420 w
close to zero and no explicit dark level subtraction w
performed. The dynamic range of these images could
estimated by taking the ratio of the maximum to minimu
linearized output value for the green sensor. These ra
varied from 17 to 140 across the DCS-420 images use
this experiment.

2.3.2 Demosaicing

Because the two cameras employed a mosaiced de
with each raw pixel corresponding to only one of the thr
sensor types, it was necessary to apply a demosiacing a
rithm to convert the raw mosaiced image to a full co
02300Journal of Electronic Imaging
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RGB image. We used a Bayesian demosaicing algorit
developed by Brainard and colleague26–28 and summarized
in a recent paper4 where we evaluated the perceptual qu
ity of demosaicing algorithms.~The performance of the
Bayesian algorithm is controlled by a number of para
eters. For the application here, the correlation betw
nearest-neighbor pixels was assumed to be 0.90, whe
the correlation between the responses of different sen
classes at the same image location was estimated fro
bilinear interpolation of the mosaiced image. Finally, t
algorithm assumed that there was additive normally dist
uted pixel noise with a standard deviation for each sen
class equal to 4% of the spatial average of responses
that class. The estimates at each location were obtaine
applying the algorithm to a 535 image region surrounding
that pixel.! The demosaicing results for our images were
general quite good, with very few noticeable artifacts.

2.3.3 Color balancing

We by-passed the on-board color balancing of the cam
and used our measurements of the scene illuminant
color balance the images. Given the camera’s RGB sen
relative spectral sensitivities and the measured illumina
we were able to estimate the relative surface spectral re
tance of the object at each scene location. This was d
using a Bayesian estimation procedure that will be
scribed in a future report. Briefly, we constructed a n
mally distributed multivariate prior distribution for objec
surface reflectances by analyzing the Vrehlet al.29 data set
of measured surface reflectance functions. The analysis
lowed closely the method introduced by Brainard a
Freeman30 in their work on computational color constanc
Given the prior, estimating reflectances from the sensor
sponses is a straightforward application of Bayes rule.
ing the estimated surface reflectance functions, we co
then synthesize an image that consisted of the CIE X
tristimulus coordinates that would have been obtained
the surface been viewed under standard CIE daylight D
up to an overall scale factor. This scale factor varied fro
image to image depending on the scene illuminant, acq
sition exposure, and acquisition f-stop. Uncertainty ab
the scale factor is equivalent to uncertainty about the ov
all intensity of the scene illuminant and is thus handl
transparently by the tone-mapping algorithms that we
plied to render the images, which are designed to apply
images captured over a wide range of overall scene lu
nances. Note that image L* properties reported in this pa
per refer to L* values for the experimental images di
played on the experimental monitor, not to L* properties of
regions of the original scene.

To check the accuracy of the color balancing process
image of a Macbeth color checker was taken using
Kodak DCS-420 digital camera. Raw RGB values~before
demosaicing! were extracted for each of the 24 colo
checker patches. The Bayes color correction was use
estimate the XYZ values of the patches under CIE D
illumination. These estimates were compared with tar
values computed from measured spectral reflectances o
color checker patches and the known spectral relative s
tral power distribution of CIE daylight D65. Here the fre
overall scale factor was determined so that the two mid
gray color checker patches~patch Nos. 21 and 22! matched
3-3 Apr–Jun 2005/Vol. 14(2)
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Jo
Fig. 1 Tone mapping. The top panel in the figure shows the global L* luminance histogram of the
original image. The four panels in the first full row show the histograms after application of the four
tone-mapping algorithms. The four panels in the middle row show the tone-mapping curves used by
the four algorithms for the image shown. The bottom panels show the output images for each of the
four algorithms.
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in average luminance between the color balanced and ta
values. The average CIELABDE 94 difference between
the estimated values and directly determined target va
~average taken over the 24 patches! was 3.6 units, indicat-
ing that the algorithm worked well.

2.3.4 Tone mapping

Four tone-mapping algorithms~Clipping, Histogram
Equalization, Larson’s Method, andHolm’s Method! were
applied to the color balanced XYZ images. These are
scribed below. Each method transformed the luminance
each image pixel while holding the chromaticity of ea
pixel constant. The relation between a particular meas
ment of input and output luminance is referred to as
algorithm’s tone-mapping curve. In general, the tone
02300urnal of Electronic Imaging
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mapping curve produced by an algorithm depends on im
content. Each of the algorithms used was global, in
sense that the same tone-mapping curve was applied to
ery pixel in the image.

It should be emphasized that our main goal was to us
variety of tone-mapping algorithms that would produce d
ferent tone-mapping characteristics. The performance
each algorithm was not of primary concern. All four met
ods led to acceptable~as judged by the authors! renderings
for all of the images. In Fig. 1 we show an example of t
histograms, tone-mapping curves, and output images
duced by the four algorithms.

~1! Clipping: For the clipping method, the tone
mapping curve relating image luminance to display lum
nance was a straight line through the origin. Image lum
3-4 Apr–Jun 2005/Vol. 14(2)
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
nances that were mapped to display luminances gre
than the maximum available on the output device w
clipped to the maximum. The slope of the tone-mapp
curve was determined so that maximum display lumina
was equal to five times the mean luminance of the to
mapped image. This clipping method provides a sim
baseline that works reasonably well.

~2! Histogram equalization: A widely used method tha
re-assigns luminance values to achieve a particular ta
luminance histogram~e.g., uniform or Gaussian! in the
tone-mapped image.31 This method efficiently uses the dy
namic range of the display device, but can generate ima
that have exaggerated contrast and thus a harsh appea
In our implementation, the target histogram was a Gaus
centered at the middle of the output range.

~3! Larson method: A more sophisticated version of his
togram equalization. The idea is to limit the magnitude
luminance mapping, so that luminance differences wit
the image that were not visible before tone mapping are
made visible by it. Images tone mapped with the Lars
method generally have a more natural appearance
when using the traditional histogram equalization metho

~4! Holm’s method~Ref. 16!: Part of a color reproduc
tion pipeline created at Hewlett-Packard Labs for use
digital cameras. We used only the tone-mapping segmen
the pipeline for consistency with the other methods.
Holm’s method, the input image is first classified as one
several different types~e.g., high key or low key! using a
set of image statistics. A tone-mapping curve is then g
erated according to the image type and image statistics,
this curve is applied to the whole image. This method
corporates preference guidelines that came from the inv
tor’s extensive experience in photographic imaging.

2.3.5 Rendering for display

The images were presented on a CRT monitor. Conver
between the tone-mapped XYZ values and monitor setti
was achieved using the general model of monitor per
mance and calibration procedures described by Braina32

The calibration was performed using the PR-650 spectr
diometer. Spectral measurements were made at 4 nm in
ments between 380 and 780 nm but interpolated wit
cubic spline to the CIE recommended wavelength samp
of 5 nm increments between 380 and 780 nm. CIE XY
coordinates were computed with respect to the CIE 1
color matching functions.

2.3.6 Room and display setup

The experimental room was set up according to the In
national Organization for Standardization Recommen
tions for Viewing Conditions for Graphic Technology an
Photography.33 The walls were made of a medium gra
material and the table on which the monitor was placed w
covered with black cloth. The room was lit by two fluore
cent ceiling lights~3500 K! controlled by a dimmer switch
set at a dim level. The illumination measured at the o
server position was 41 lux. The experiment was control
by MATLAB software based on the Psychophys
Toolbox.34,35 The images were displayed on a Hewle
Packard P1100 21 in. monitor~128031024 pixels! driven
by a Hewlett Packard Kayak XU computer.
02300Journal of Electronic Imaging
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2.3.7 Procedure

On each trial of the experiment, observers were sho
pairs of the same scene rendered via different tone-map
methods and were asked to choose the image that
found to be the most attractive. To further explain this
struction, observers were asked to choose the image
would select to put into their own photo album. The o
servers were also asked to look around the images be
making a decision rather than focus on just one aspect

The experiment started after a 2 min adaptation period
Three seconds after each pair of images was presented
selection boxes appeared under the images. This 3 s d
was to encourage the observers to carefully consider t
decision. There was no upper limit on response time. T
observers indicated their preference by using a mous
move a cursor to the selection box under the preferred
age and clicking. The observer could subsequently cha
his/her mind by clicking on the alternative box. When t
observer was satisfied with his/her selection, he/she clic
on an enter button to move to the next trial.

The images were viewed from a distance of 60 cm. T
images ranged in width from 17 to 19 cm~subtending vi-
sual angles 16.1° to 18.0°! and ranged in height from 13 to
25 cm ~subtending visual angles from 12.4° to 23.5°!. Im-
ages were shown in pairs on the monitor, one on the
and one on the right. Each image had a border of widt
cm which was rendered as the brightest simulated D65
luminant the monitor could produce~78 cd/m2!. The re-
maining area of the monitor emitted simulated D65 illum
nant but at a luminance level of about 20% of the bord
region ~measured at 14.9 cd/m2!.

Using four rendering methods gives six pairwise pres
tation combinations per image. For the 25 experimental
ages, this produces a stimulus set of 150 image pairs.

2.3.8 Observers

Twenty observers participated in the experiment~12 males
and 8 females! with an average age of 31~range 19–62!.
The experiment took place at Hewlett Packard Labs in P
Alto and the observers were recruited by posting fly
around the building complex. The observers were a mixt
of Hewlett Packard employees and outside friends and f
ily. Only color normal observers participated. Color visio
was tested using the Ishihara color plates.36

2.3.9 Data analysis

The aim of our analysis was to summarize image tone ch
acteristics using simple tone variables, and to determ
whether these variables predicted image preference.
hoped to identify systematic relationships between pre
ence ratings and tone variables. Thus our data analysis
two important components: the procedure used to transf
the pairwise image judgments to image preference rati
and the procedures used to extract variables that cap
image tone-mapping characteristics.

2.4 Image Ratings

The raw data consisted of pairwise rankings between
four different renderings of each image. For each image,
used a regression based scaling method23 to convert the
pairwise rankings topreference ratingsfor each of the four
3-5 Apr–Jun 2005/Vol. 14(2)
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
versions. Denote these ratings asp j
i where the superscripti

denotes the image (1< i<25) and the subscriptj denotes
the rendering version (1< j <4, algorithms as numbere
above!. Within image, these ratings for the four differe
versions of an image are directly comparable. Since
preference judgments were made across images, how
the ratings across images are not necessarily comme
rate.

Although we cannot make comparisons of preferen
ratings across images, we can make such comparison
differences in preference ratings. Under assumptions
we found reasonable,23 the four ratings generated for eac
image lie on an interval scale. The unit of this scale cor
sponds to one standard deviation of Gaussian percep
noise that observers are assumed to experience when
ing preference judgments, and the unit is thus common
the ratings generated for all 25 images. What differs acr
images is the origin of the scale, which is assigned a
trarily by the regression method. To remove the effect
origin, we can computedifference ratingsbetween thej’th
and k’th renderings,p jk

i 5p j
i 2pk

i (1< j ,k<4). Because
the rating scale constructed for each image has a com
unit, the difference ratings are commensurate across
ages. Thus we can explore whether there are image
characteristics whose differences predict difference ratin

From the four renderings for each image, we can ta
six pairwise differences. Only three of these are indep
dent, however, in the sense that given any three pairw
differences the other three may be reconstructed. To a
this redundancy, we used only the difference ratingsp12

i ,
p23

i , andp34
i ~1<i<25! in the analysis.

2.5 Image Tone Characteristics

To describe image tone characteristics, we used the L* co-
ordinate of the CIELAB uniform color space.37 This mea-
sure of luminance is normalized to a white point, and
normalized values are transformed so that equal differen
in L* represent approximately equal differences in the p
ception of brightness. The maximum monitor output~all
three phosphors set at the maximum! was used as the whit
point for converting image luminance to L* . We considered
two summary measures of the L* histogram: the mean L*
value and the standard deviation of the L* values. For each
imagei, we denote the mean L* of the j’th rendering value
by m j

i and the standard deviation of the L* values bys j
i .

These are both global tone variables, computed from
entire image. Note thatm j

i is in essence a measure of th
overall luminance of the image, whereass j

i is in essence a
measure of image contrast.

A preliminary analysis indicated that to the extent ima
quality ratings depended on the tone characteristicsm j

i and
s j

i , this dependence was not monotonic. This observa
makes intuitive sense. Consider the mean L* valuem j

i . An
image with am j

i value equal to zero will be entirely blac
and not provide a satisfactory rendering. Similarly, an i
age with a very largem j

i value will be entirely white.
Clearly a rendering with am j

i value between the two ex
tremes is indicated. Similar arguments apply tos j

i .
02300Journal of Electronic Imaging
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To account for a possible nonmonotonicity of the rel
tion between image quality and the tone characteristicsm j

i

ands j
i , we considered transforms of these variables:

m̃ j
i 5um j

i 2m0u,
~1!

s̃ j
i 5us j

i 2s0u.

Here the parameterm0 represents theoptimal valuefor m j
i ,

that is the value that leads to the highest image qua
across all images and renderings, and thus deviations om j

i

from m0 should correlate with reduced image quality. Sim
larly, the parameters0 is the optimal value fors j

i .

2.6 Analysis

As noted previously, our data set does not provide us w
direct access to image quality, but rather to quality diffe
ence ratingsp jk

i between pairs of images. To ask wheth
image tone characteristics predict image quality, we inv
tigated whether differences between the tone variablesm̃ j

i

and s̃ j
i predict the difference ratingsp jk

i . Specifically, we
defined the tone variables differencesm̃ jk

i 5m̃ j
i 2m̃k

i and
s̃ jk

i 5s̃ j
i 2s̃k

i and examined the linear dependence ofp jk
i

on each of these differences. Since each transformed v
able depends on its corresponding optimal value, numer
parameter search over the optimal value was used to m
mize the predictive value (R2) of m̃ jk

i and s̃ jk
i .

2.7 Face Images

In follow-up questioning conducted at the end of the e
periment, many observers commented that for images c
taining people, the appearance of faces was an impor
factor in their decision making. For images containin
faces ~17 of 25! we examined the face regions in mor
detail and defined face subimages so the tone charact
tics of these regions could be extracted. The subima
were defined by hand: an example of how a face subim
was defined is shown in Fig. 2.~One image had two faces
only the foreground face was used for this analysis.! The
faces were of various ethnicities~8 Caucasian, 4 African-
American, 3 Asian, 1 Hispanic, and 1 Polynesian!.

For the images containing faces, we repeated our an
sis of difference ratings when the tone characteristics
pended only on the pixels in the face subimage. We den

Fig. 2 Face subimages were created by cropping the faces out of
the images as illustrated.
3-6 Apr–Jun 2005/Vol. 14(2)
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these difference ratings bym̃ f aceI jk
i ands̃ f aceI jk

i . Note that
these are local tone variables, in that they depend only o
subregion of the entire image.

3 Results

Figure 3 shows the difference ratingsp jk
i plotted against

tone characteristic differencesm̃ jk
i ~top panel! ands̃ jk

i ~bot-
tom panel! for our entire data set. From the figure, we c
see that any systematic dependence of difference rating
m̃ jk

i is weak at best, but that there is a clear dependenc
the difference ratings ons̃ jk

i . Note that the negative slop
of the dependence shown in the bottom panel of Fig
makes sense: if a renderingj is preferred to imagek ~posi-
tive difference ratingp jk

i ), then the deviation of imagej’s
L* standard deviation from its optimal value is smaller th
the corresponding deviation for imagek ~negative s̃ jk

i ).
These conclusions are confirmed by statistical tests on
significance of the linear relation between thep jk

i and each
independent variable. TheR2 value for m̃ jk

i is small ~0.07!
but significant (p,0.05), whereass̃ jk

i explains a substan
tial fraction of the variance (R250.31, p,0.001). The op-
timal value found form0 was 46.6, whereas that found fo
s0 was 17.8.

Fig. 3 Prediction of difference ratings from global tone characteris-
tics. The figure plots the difference ratings obtained for all images in
Experiment 1 against ũ jk

i (top panel) and s̃ jk
i (bottom panel).
02300Journal of Electronic Imaging
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The predictive value ofm̃ jk
i ands̃ jk

i is greater for images
containing faces than for nonface images. The four pan
of Fig. 4 show the difference ratings plotted against them̃ jk

i

~top panels! ands̃ jk
i ~bottom panels! for the face~left pan-

els! and nonface~right panels! images separately. The lin
ear predictive value ofm̃ jk

i and s̃ jk
i is significant only for

the face images, and again only the global L* standard
deviation accounts for a substantial proportion of varian
~Face images,m̃ jk

i : R250.09, p,0.05; face images,s̃ jk
i :

R250.58, p,0.001; nonface images,R250.04, m̃ jk
i : p

50.34; nonface images,s̃ jk
i : R250.00,p50.83.)

We focused on the face images for further analysis a
considered whether the local tone variable differen
m̃ f aceI jk

i and s̃ f aceI jk
i extracted from the face region pro

vided additional predictive value. Figure 5 plots the diffe
ence ratings for the face images against these two a
tional variables. Both local tone characteristics a
predictive of the difference ratings (m̃ f aceI jk

i : R250.59, p
,0.001; s̃ f aceI jk

i : R250.29,p,0.001).
The analysis previously presented shows that both

global and local~face region! tone characteristics were pre
dictive of image quality: differences in each variable sep
rately are significantly correlated with the difference ra
ings. We used multiple regression to ask how well all fo
variables could jointly predict image quality. The overa
R2 when the difference ratings were regressed onũ jk

i , s̃ jk
i ,

m̃ f aceI jk
i , and s̃ f aceI jk

i was 75%. Stepwise regressio
showed that almost all of the explanatory power was c
ried by two of the four variables:s̃ jk

i and m̃ f aceI jk
i . These

two variables alone provided anR2 of 0.72. Figure 6 shows
the measured difference ratings for the face images plo
against the predictions based ons̃ jk

i and m̃ f aceI jk
i . If the

two variables were perfect predictors of image quality, t
data would fall along the diagonal line.

Recall that the data analysis involves finding the optim
values for the tone variabless̃ jk

i and m̃ f aceI jk
i . Figure 7

shows a plot of how theR2 measure for the face image
varies with the optimal valuess0 andm f aceI0 . The optimal
values0 was 17.8, whereas that form f aceI0 was 48.7.

To test if the optimal values varied across ethnicities,
divided the images into two groups~8 Caucasian image
and 9 non-Caucasian images! and then re-ran the analysis
The results for the two groups were very similar for fa
mean and standard deviation L* values (m f aceI0 values
were, Caucasian images: 48.6, non-Caucasian images:
and s f aceI0 values were, Caucasian images: 19.2, no
Caucasian images: 18.4! but differed somewhat for globa
L* standard deviation (s0 values were, Caucasian image
15.4, non-Caucasian images: 20.7!. Although the perfor-
mance of each of the four algorithms was not of prima
concern in this paper, a summary of the preferences
shown in Table 1 for completeness. Note that Holm
method performed particularly well overall.

The data from Experiment 1 support the following co
clusions: ~i! We were unable to find a tone variable th
predicted perceptual image quality for nonface images.~ii !
For face images, a number of tone variables were sign
cantly correlated with the difference ratings. Two variab
accounted for the majority of the variance in the data t
3-7 Apr–Jun 2005/Vol. 14(2)
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Journal of
Fig. 4 Prediction of difference ratings from global tone characteristics, face images (left panels) and
nonface images (right panels) shown separately. The difference ratings obtained for all images in
Experiment 1 against ũ jk

i (top panels) and s̃ jk
i (bottom panels) are plotted.
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if-
we could explain. These were the difference in L* standard
deviations across the entire image (s̃ jk

i ) and the mean L*
value difference for the face subimage (m̃ f aceI jk

i ). ~iii ! The
data allowed identification of optimal values for each
these variables.

4 Experiment 2

The results from Experiment 1 suggest that for images c
taining a face, the standard deviation of image lumina
values and the mean luminance level of the face itself d
good job of predicting predictive image quality. In Expe
ment 2, we explored the effect of face mean luminance
more detail. We used a diverse set of face images tha
cluded people with a wide range of skin tones and ima
with multiple faces.

4.1 Methods

The methods were the same as for Experiment 1 excep
the following.

4.1.1 Image acquisition

Images were acquired using the Kodak DCS-420 dig
camera. Fifteen images were selected, all of which w
portraits taken under daylight. Face subregions were a
02300Electronic Imaging
-

-
s
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n

identified by hand. Ten contained only one subject~5 Cau-
casian, 3 African-American, 2 Asian! and five contained
multiple subjects~1 of Caucasians only, 2 with African
Americans only, and 3 with a mixture of ethnicities!. For
the images containing multiple faces, the identified fa
subregions included all faces. The dynamic range of
images, computed as described for Experiment 1, va
between 37 and 245.

4.1.2 Image processing

We wanted to generate rendered images with different f
luminance levels with minimal changes to the L* standard
deviation. This was done by applying a smooth global to
mapping curve to the images, with the curve parame
chosen so that the output images had the desired face
gion mean L* and L* standard deviation tone characteri
tics. Face subimages were selected by hand and 5 vers
of each image were created with different mean face*
target values~42, 48, 52, 56, and 62! and with the L*
standard deviation value held fixed at approximately 18
Five different renderings per image produced ten poss
pairwise presentations for each of the fifteen images. D
ference ratingsp12

i , p23
i , p34

i , p45
i and corresponding dif-

ferences in tone variables were used in the analysis.
3-8 Apr–Jun 2005/Vol. 14(2)
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4.1.3 Observers

Nineteen color normal observers participated in the exp
ment ~12 males and 7 females! with an average age of 3
~range 23–62!. Eight of the observers had previously pa
ticipated in Experiment 1.

4.2 Results

The data were analyzed in the same fashion as were
data for Experiment 1 with respect to the predictive pow
of the m̃ f aceI jk

i variable. The top panel of Fig. 8 shows
scatter plot of the difference ratings against mean fa
region L* value differences. For images with multip
faces, the mean face L* value was used. The regressio
results showed that this tone characteristic difference
significantly correlated with the difference ratings (p
,0.001) and that percent variance explained wasR2

50.49. This replicates and extends the results of Exp
ment 1 with respect to this tone characteristic.

After the experiment, observers were given a chance
provide comments and feedback. In Experiment 2, a nu
ber of observers noted that some renderings of three of
images contained visible artifacts in the facial regions, a
that these artifacts had a strong negative influence on t
preference for those images. Post-hoc examination of

Fig. 5 Prediction of difference ratings from face-region tone charac-
teristics, face images only. The difference ratings obtained for the
face images in Experiment 1 against ũ faceI jk

i (top panel) and s̃ faceI jk
i

(bottom panel) are plotted.
02300Journal of Electronic Imaging
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images confirmed the observer reports. We believe the
tifacts arose because the tone-mapping procedure amp
the noise in some of the darker image regions. Because
interest was in tone characteristics, not artifacts, it seem
of interest to repeat the analysis with the three problem
images excluded. This led to an increase in the percen
variance accounted for by the face L* mean difference
variable, withR250.66 rather than 0.49. The bottom pan
of Fig. 8 shows the relation between difference ratings a
this variable after the exclusion.

As part of the analysis, numerical search was again u
to find valuem f aceI0 that optimizedR2. This value was
49.2 when the full data set was analyzed and 46.5 with
three images excluded, both very close to the value of 4
found in the first experiment. The dependence of theR2

value on the optimal parameter is shown in Fig. 9 for t
two cases.

We examined if the optimalm f aceI0 value varied across
ethnicities. The images were divided into two groups~4
images of Caucasians, 6 images of non-Caucasians!. Five
of the images were not included~2 had multiple faces of
different ethnicities and three has visible artifacts in t
face region as discussed above!. We re-ran the analysis an
the results for the two groups were very similar (m f aceI0
values were, Caucasian images: 46.3, non-Caucasian
ages: 45.7!.

5 Discussion

5.1 Summary

The paper presents experiments that explore whethe
number of simple image tone characteristics are predic
of perceptual image quality. For the nonface images
studied, we were unable to identify any such variables.
images consisting primarily of faces, however, the resu
suggest that the best image quality results when the face*

Fig. 6 Measured difference ratings plotted against difference rat-
ings predicted as the best linear combination of s̃ jk

i and ũfaceI jk
i for

the face images of Experiment 1. If the predictions were perfect, the
points would fall on the diagonal line. The error bars show 61 stan-
dard error of measurement for the difference ratings, computed us-
ing a resampling method (Ref. 41). The raw preference data were
resampled 50 times. For each resampling, difference ratings were
computed and the standard deviation of the resulting difference rat-
ings was taken as the standard error.
3-9 Apr–Jun 2005/Vol. 14(2)
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
luminance is in the range 46–49, and the standard de
tion of the image L* luminances is approximately 18. Th
conclusion was suggested by the results of Experimen
and the conclusion concerning the optimal level of face*
was confirmed directly in Experiment 2.

The images used in our experiments contained fa
with a wide variety of skin tones. Analysis of Caucasi
and non-Caucasian subgroups suggest that the conclu
concerning optimal face L* level may generalize to a wid
array of face images. We do note, however, that our im

Fig. 7 Optimal values s0 and ufaceI0 for the face images used in
Experiment 1. Each panel plots the percent variance explained by a
single tone characteristic (top panel: s̃ jk

i ; bottom panel: ũ faceI jk
i ) as

a function of the corresponding optimal value (top panel: s0 ; bottom
panel: ufaceI0).

Table 1 The overall percentage of times the output of each tone-
mapping method was chosen as the preferred image in Experiment
1. Results for each algorithm were obtained by taking all of the
pairwise comparisons involving the output of each algorithm and
computing the percentage of times the output of that algorithm was
chosen as preferred. Data were aggregated across all images and
observers.

Images
Clipping

(%)
Histogram

(%)
Larson

(%)
Holm
(%)

All 26.4 19.0 19.0 35.7

Face 30.0 15.7 16.2 38.2

Nonface 18.8 25.9 24.9 30.4
023003Journal of Electronic Imaging
-

,

s

ns

e

sample was relatively small and that follow-up work mig
profitably probe the generality of our results. For examp
we do not know how sensitive the data are to the no
properties of the camera sensors. The analysis of the
periment 1 data by ethnicity also suggests that the opti
global L* standard deviation for the rendered image m
depend on ethnicity, although again the generality of t
result is not clear.

5.2 Other Image Statistics

In addition to the image tone characteristics on which
previously reported in detail, we also examined other p
sible predictors of image quality. These included chroma
variables and a histogram difference measure. The hi
gram difference measure increased with the difference
tween the luminance histogram of the input and output
the tone-mapping algorithms. The chromatic variables
not provide predictive power. This is perhaps not surpris
given that the images were all color balanced to a comm
illuminant and that the tone-mapping algorithms did n
affect pixel chromaticities. The histogram difference me
sure was correlated with image quality for the face imag

Fig. 8 Prediction of difference ratings from face-region tone charac-
teristics, for Experiment 2. The difference ratings against ũ faceI jk

i are
plotted. The top panel shows the full data set and the bottom panels
shows the data when three images with artifacts were excluded.
-10 Apr–Jun 2005/Vol. 14(2)
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Delahunt, Zhang, and Brainard: Perceptual image quality . . .
A stepwise regression analysis, however, showed that
ing the histogram difference measure to the face L* and
image L* standard deviation did not explain substant
additional variance.

Holm16,38 has suggested that classifying images ba
on histogram properties and then applying different to
mapping depending on the classification can be effect
To explore this, we computed Holm’skey valuestatistic
from our input image histograms and divided the sce
into two sets, low key and high key, based on this statis
Low-key scenes have luminance histograms that
skewed toward dark values, whereas high-key scenes
luminance histograms that are skewed toward light valu
In Experiment 1, we found that the relation between glo
L* value and image quality was strong for the low-k
scenes and not significant for the high-key scenes, whe
the relation between global L* standard deviation and im
age quality was significant for both low- and high-ke
scenes. There was a difference in optimal global L* stan-
dard deviation between the two sets, but this difference
not stable with respect to small perturbations of the cr
rion key value used to divide the data set. In Experimen
the dependence on face L* values was significant for both
low- and high-key scenes with the optimal value varyi
between 52~low-key! and 47~high-key!. Further experi-
ments focused on the stability of scene key as a modul
of optimal tone characteristics, as well as on other poten
higher-order histogram statistics~e.g., degree of bimodal
ity!, would be of interest.

5.3 Relation to Other Work

The work here emphasizes comparisons are among im
displayed on a common output device, so that the dyna
range of the comparison set is constant. This is a reason
choice for the goal of improving the appearance of ima
acquired with current digital cameras, whose image cap
range is approximately matched to current display techn
ogy. In contrast, a number of papers have examined to
mapping across large changes in dynamic range betw

Fig. 9 Optimal value ufaceI0 for Experiment 2. The plot shows the
percent variance explained by ũfaceI jk

i as a function of the optimal
value ufaceI0 . Thin line: full data set. Thick line: data set when three
images with artifacts were excluded.
023003Journal of Electronic Imaging
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input and output.8,15,17,18,20,39The experimental method
and analysis presented here are general and could be
to evaluate the efficacy of these methods for high-dyna
range imagery.

A second feature of our work is our focus on the to
characteristics of the displayed images, rather than on
functional form of the tone-mapping curve. The results p
sented here suggest that there is considerable utility in
amining tone characteristics. Other recent experime
work19,20 has focused on the efficacy of tone-mapping o
eratorsper se. These two approaches may be viewed
complementary. Also of note is the diverse set of psyc
physical techniques that have been employed ac
studies.19,20,39Here we have focused on image preferen
which is conceptually quite different from perceptual fide
ity.

5.4 Using the Results

Although our positive results only apply to images th
contain faces, such images probably form a large prop
tion of those acquired by the average camera user—m
consumers take pictures of their friends and families. Th
our results have the potential for leading to useful practi
algorithms.

Since our work shows how preference for images c
taining faces depends on tone variables, tone-mapp
methods might profitably include algorithms to identify im
ages that contain faces and to apply appropriate map
parameters to these images.~Face recognition software ha
advanced greatly in recent years. See recent review
Pentland and Choudhury40!. Indeed, the present work le
directly to the development of a novel proprietary ton
mapping algorithm at Agilent Laboratories.42 The idea that
empirical image preference studies can enable developm
of effective image processing algorithms was also s
ported by our earlier study.4 We believe further studies hold
the promise of providing additional algorithmic insights.

Acknowledgments

The authors wish to thank Jerry Tietz for help with ima
acquisition and Jack Holm and Jeff DiCarlo for help wi
image processing and implementation of tone-mapp
methods. Jack Holm also helped with the experiment ro
setup. Finally they would like to thank Russell limura, Am
non Silverstein, Joyce Farrell, and Yingmei Lavin for hel
ful suggestions.

References

1. C. J. Bartleson, ‘‘Memory colors of familiar objects,’’J. Opt. Soc. Am.
50, 73–77~1960!.

2. S. M. Newhall, R. W. Burnham, and J. R. Clark, ‘‘Comparison
successive with simultaneous color matching,’’J. Opt. Soc. Am.47~1!,
43–56~1957!.

3. R. M. Boynton, L. Fargo, C. X. Olson, and H. S. Smallman, ‘‘Ca
egory effects in color memory,’’Color Res. Appl.14, 229–234~1989!.

4. P. Longere, X. Zhang, P. B. Delahunt, and D. H. Brainard, ‘‘Perc
tual assessment of demosaicing algorithm performance,’’Proc. IEEE
90, 123–132~2002!.

5. H. de Ridder, ‘‘Naturalness and image quality: saturation and lig
ness variation in color images of natural scenes,’’J. Imaging Technol.
40~6!, 487–493~1996!.
-11 Apr–Jun 2005/Vol. 14(2)



ma
es,’

ge
anc

g

uc-

the

om

ity

e
.

of

hic

or

ge

p-
rity
tut

ing

e-

m-

CS-
any

ge
es

tion
e-

d/

es

om
ns,’
pli-

ysis

’

tion

,’’

a-

s:

y,

ce
. 2

s,’’

on-

nd
idal
No.

Delahunt, Zhang, and Brainard: Perceptual image quality . . .
6. E. A. Fedorovskaya, H. D. Ridder, and F. J. J. Blommaert, ‘‘Chro
variations and perceived quality of color images of natural scen
Color Res. Appl.22~2!, 96–110~1997!.

7. T. Tanaka, R. S. Berns, and M. D. Fairchild, ‘‘Predicting the ima
quality of color overhead transparencies using a color-appear
model,’’ J. Electron. Imaging6~2!, 154–165~1997!.

8. G. W. Larson, H. Rushmeier, and C. Piatko, ‘‘A visibility matchin
tone reproduction operator for high dynamic range scenes,’’IEEE
Transactions on Visualization and Computer Graphics, available at
http://radsite.lbl.gov/radiance/papers~1997!.

9. C. N. Nelson, ‘‘Tone and color reproduction Part 1: Tone Reprod
tion,’’ The Theory of the Photographic Process, Macmillan, New York
~1977!.

10. C. J. Bartleson and E. J. Breneman, ‘‘Brightness reproduction in
photographic process,’’Photograph. Sci. Eng.11~4!, 254–262~1967!.

11. C. J. Bartleson and E. J. Breneman, ‘‘Brightness perception in c
plex fields,’’ J. Opt. Soc. Am.57, 953–957~1967!.

12. L. D. Clark, ‘‘Mathematical prediction of photographic picture qual
from tone-reproduction data,’’Photograph. Sci. Eng.11~5!, 306–315
~1967!.

13. R. G. W. Hunt, ‘‘The effect of viewing conditions on required ton
characteristics in colour photography,’’Brit. Kinematogr. Sound Telev
51, 268–275~1969!.

14. R. W. G. Hunt, I. T. Pitt, and P. C. Ward, ‘‘The tone reproduction
colour photographic materials,’’J. Photogr. Sci.17, 198–204~1969!.

15. E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, ‘‘Photograp
tone reproduction for digital images,’’ACM Trans. Graphics21, 267–
276 ~2002!.

16. J. Holm, ‘‘Photographic tone and colour reproduction goals,’’CIE
Expert Symp. ’96 on Colour Standards for Image Technology, 51–56
~1996!.

17. J. Tumblin, J. K. Hodgins, and B. K. Guenter, ‘‘Two methods f
display of high contrast images,’’ACM Trans. Graphics18, 56–94
~1999!.

18. J. M. DiCarlo and B. A. Wandell, ‘‘Rendering high dynamic ran
scenes,’’Proc. SPIE3965, 392–401~2000!.

19. F. Drago, W. L. Martens, K. Myszkowski, and H.-P. Seidel, ‘‘Perce
tual evaluation of tone mapping operators with regard to simila
and preference,’’ Report No. MPI-I-2002-4-002, Max-Planck-Insti
~2002!.

20. G. J. Braun and M. D. Fairchild, ‘‘Image lightness rescaling us
sigmoidal contrast enhancement functions,’’J. Electron. Imaging8,
380–393~1999!.

21. J. L. Simonds, ‘‘A quantitative study of the influence of ton
reproduction factors on picture quality,’’Photograph. Sci. Eng.5~5!,
270–277~1961!.

22. S. B. Novick, ‘‘Tone reproduction from colour telecine systems,’’Brit.
Kinematogr. Sound Telev.51~10!, 342–347~1969!.

23. D. A. Silverstein and J. E. Farrell, ‘‘Efficient method for paired co
parison,’’J. Electron. Imaging10~2!, 394–398~2001!.

24. Kodak, ‘‘Programmer’s reference manual models: DCS-200ci, D
200mi, DCS-200c, DCS-200m,’’ Report 2, Eastman Kodak Comp
~1992!.

25. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, ‘‘Ima
capture: simulation of sensor responses from hyperspectral imag
IEEE Trans. Image Process.10, 307–316~2001!.

26. D. H. Brainard, ‘‘An ideal observer for appearance: reconstruc
from samples,’’ Report No. 95-1, UCSB Vision Labs Technical R
port, Santa Barbara, CA~1995!, http://color.psych.upenn.edu/brainar
papers/bayessampling.pdf

27. D. H. Brainard, ‘‘Bayesian method for reconstructing color imag
from trichromatic samples,’’IS&T 47th Annual Meeting, 375–379
~1994!.

28. D. H. Brainard and D. Sherman, ‘‘Reconstructing images fr
trichromatic samples: from basic research to practical applicatio
IS&T/SID Color Imaging Conf.: Color Science, Systems, and Ap
cations, 4–10~1995!.

29. M. J. Vrhel, R. Gershon, and L. S. Iwan, ‘‘Measurement and anal
of object reflectance spectra,’’Color Res. Appl.19~1!, 4–9 ~1994!.

30. D. H. Brainard and W. T. Freeman, ‘‘Bayesian color constancy,’J.
Opt. Soc. Am. A14~7!, 1393–1411~1997!.
023003Journal of Electronic Imaging
’

e

-

,’’

’

31. W. Frei and C. C. Chen, ‘‘Fast boundary detection: a generaliza
and a new algorithm,’’IEEE Trans. Comput.26, 988–998~1977!.

32. D. H. Brainard, ‘‘Calibration of a computer controlled color monitor
Color Res. Appl.14~1!, 23–34~1989!.

33. ISO, ‘‘Viewing conditions—for graphic technology and photogr
phy,’’ ISO 3664, 1998~E! ~1998!.

34. D. H. Brainard, ‘‘The psychophysics toolbox,’’Spatial Vis. 10~4!,
433–436~1997!.

35. D. G. Pelli, ‘‘The Video Toolbox software for visual psychophysic
transforming numbers into movies,’’Spatial Vis. 10~4!, 437–442
~1997!.

36. S. Ishihara,Tests for Colour-Blindness, Kanehara Shuppen Compan
Ltd., Tokyo, Japan~1977!.

37. CIE, ‘‘Recommendations on uniform color spaces, color-differen
equations, psychometric color terms,’’ Report No. Supplement No
to CIE Publication No. 15, Bureau Central de la CIE~1978!.

38. J. Holm, ‘‘A strategy for pictorial digital image processing,’’Proc. of
the IS\&T/SID 4th Color Imaging Conf., 194–201~1996!.

39. A. MacNamara, ‘‘Visual perception in realistic image synthesi
Comput. Graphics Forum20, 211–224~2001!.

40. A. Pentland and T. Choudhury, ‘‘Face recognition for smart envir
ments,’’Computer33~2!, 50–55~2000!.

41. B. Efron and R. LePage, ‘‘Introduction to bootstrap,’’Exploring the
Limits of Bootstrap, L. Billard, Ed., Wiley & Sons, New York~1992!.

42. X. Zhang, R. W. Jones, I. Baharav, and D. M. Reid, ‘‘System a
method for digital image tone mapping using an adaptive sigmo
function based on perceptual preference guidelines.’’ U.S. Patent
EP02000691~Jan. 2005!.

Peter Delahunt received his BS degree in
psychology from Lancaster University, En-
gland in 1996. He received his MA and
PhD degrees in psychology from the Uni-
versity of California, Santa Barbara, in
1998 and 2001, respectively. He is cur-
rently working as a human factors scientist
for Exponent Inc.

Xuemei Zhang received her bachelor’s
degree in psychology from Beijing Univer-
sity, master’s degree in statistics, and PhD
in psychology from Stanford University.
She is currently a research scientist work-
ing in Agilent Technologies Laboratories.

David Brainard received his AB in Physics
from Harvard University in 1982. He at-
tended Stanford University for graduate
school and received his MS degree in elec-
trical engineering and PhD in psychology,
both in 1989. He is currently professor of
psychology at the University of Pennsylva-
nia. His research interests include human
vision, image processing, and visual neuro-
science.
-12 Apr–Jun 2005/Vol. 14(2)


