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Abstract 13 

An emerging view in perceptual learning is that improvements in perceptual sensitivity 14 

are not only due to enhancements in early sensory representations but also due to 15 

changes in post-sensory decision processing. In humans, however, direct 16 

neurobiological evidence of the latter account remains scarce. Here, we trained 17 

participants on a visual categorization task over three days and used multivariate pattern 18 

analysis of the electroencephalogram to identify two temporally-specific components 19 

encoding sensory (Early) and decision (Late) evidence, respectively. Importantly, the 20 

single-trial amplitudes of the Late, but not the Early component, were amplified in the 21 

course of training and these enhancements predicted the behavioural improvements on 22 

the task. Correspondingly, we modelled these improvements with a reinforcement 23 

learning mechanism, using a reward prediction error signal to strengthen the readout of 24 

sensory evidence used for the decision. We validated this mechanism through a robust 25 

association between the model’s decision variables and our Late component’s 26 

amplitudes indexing decision evidence. 27 

  28 
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Introduction 29 

Consider an image intelligence analyst inspecting a large array of noisy CCTV or 30 

satellite images in order to identify targets that might pose a real security threat. Her 31 

ability to perform this task successfully depends on her years of experience in 32 

interpreting such images. This example highlights that training and experience are 33 

required to induce long-lasting improvements in our ability to make decisions based on 34 

ambiguous sensory information a phenomenon commonly referred to as perceptual 35 

learning 1,2. Despite the prevalence and obvious utility of this phenomenon in everyday 36 

life (e.g. learning in an ever-changing environment to make better predictions and plan 37 

future actions), its neural substrates and how these affect decision-making remain 38 

elusive. 39 

 40 

Several psychophysical studies offered evidence linking perceptual learning with 41 

enhancements in early sensory representations 3-9 and with changes in post-sensory 42 

processing relating to attention and decision making 10-12. In line with the latter account 43 

(i.e. late influences), recent experimental work in non-human primates (NHP) 13,14 offered 44 

compelling evidence that perceptual learning in decision making can affect how early 45 

sensory representations are interpreted downstream by higher-level areas to form a 46 

decision.  47 

 48 

Correspondingly, recent functional magnetic resonance imaging (fMRI) experiments in 49 

humans started to address the question of whether perceptual learning affects later 50 

processing stages 15-18. To date, however, little has been done to exploit time-resolved 51 

electrophysiological signatures that can accurately differentiate between early stimulus 52 

encoding and late decision-related processing. Here, we test the extent to which 53 

perceptual learning alters post-sensory encoding of decision evidence in humans by 54 
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recording electroencephalography (EEG) data during a face/car perceptual 55 

discrimination experiment (Fig. 1a) over the course of three days. Previously, using this 56 

task and single-trial multivariate discriminant analysis of the EEG we identified two 57 

temporally distinct neuronal components that discriminated between the stimulus 58 

categories: an Early component that occurred around 170 ms after stimulus presentation 59 

and a Late component that occurred around 300 ms post-stimulus 19-23. 60 

 61 

We showed that compared to the Early one, the Late component was a better predictor 62 

of behaviour 20, it systematically shifted later in time with perceived task difficulty 19 and it 63 

was a significantly better predictor of trial-by-trial changes in the rate of evidence 64 

accumulation (i.e. drift rate) in a drift diffusion model 19,23. Finally, while the Early 65 

component amplitudes remained unaffected when the same (face/car) stimuli were 66 

coloured red or green and the task was switched to colour discrimination those of the 67 

Late component were reduced almost to zero 19,22,23. Taken together these findings 68 

indicated that the Early component encodes the incoming sensory evidence, whereas 69 

the Late component indexes, post-sensory, decision-relevant evidence. These previous 70 

findings are intriguing because they establish a benchmark against which to evaluate the 71 

extent to which perceptual learning influences earlier vs. later stages of decision making. 72 

 73 

Specifically, here we test how activity associated with each of these Early and Late EEG 74 

components is affected by training. We hypothesize that if perceptual learning primarily 75 

alters post-sensory encoding of decision evidence, discrimination performance for our 76 

Late but not the Early component should systematically increase across the three 77 

training sessions. Similarly, as perceptual sensitivity improves with training we expect 78 

the Late component to move earlier in time, reflecting a decrease in perceived task 79 

difficulty. Moreover, our ability to exploit single-trial variability in the EEG will offer a 80 
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mechanistic characterization of these effects by establishing whether improvements in 81 

discrimination are a result of gain modulation (i.e. amplification of the differential 82 

response) of the component amplitudes, a reduction in the trial-to-trial variability (i.e. 83 

noise) of the component amplitudes or both.  84 

 85 

Finally, we explore the possibility that these improvements can be understood in terms 86 

of a reinforcement learning (RL) mechanism 14,17,24-26, whereby the connections between 87 

early and late decision processing stages are strengthened via a reward prediction error, 88 

gradually enhancing the readout of relevant information and leading to improved 89 

perceptual sensitivity. 90 

 91 

Results 92 

We collected behavioural and EEG data from 14 participants during a speeded face vs. 93 

car categorization task using noisy stimuli that varied in the amount of available sensory 94 

evidence (i.e. phase coherence of the stimuli). Visual feedback was provided for each 95 

response prior to the presentation of the next stimulus (Fig. 1a). Participants performed 96 

the same task on three consecutive days. Using a mixed-effects logistic regression 97 

analysis, we found that accuracy was significantly improved ( = 19.37, p < 0.001, 98 

Fig. 1b) over the three training days. Using a mixed-effects linear regression analysis, 99 

we found that reaction times (RT) were significantly reduced over the three training days 100 

(  = 8.92, p < 0.003, Fig. 1c). We note that, as expected, we also found a main 101 

effect of stimulus difficulty, with accuracy increasing ( = 28.08, p < 0.001) and RT 102 

decreasing ( = 21.24, p < 0.001) with the amount of sensory evidence, respectively. 103 

There was no interaction between the amount of sensory evidence and training day on 104 

either measure (accuracy: = 0.16, p = 0.68, RT: = 0.383, p = 0.54).  105 



 6

 106 

Next, we sought to identify the Early (sensory) and Late (decision-related) EEG 107 

components that discriminate between face and car trials and investigate how these are 108 

affected by training. To this end, we used a single-trial multivariate discriminant analysis 109 

27,28 to identify linear spatial weightings of the EEG sensors, which best discriminated 110 

between the two trial types. For each participant, we estimated, within short pre-defined 111 

time windows of interest, a projection in the multidimensional EEG space (i.e. a spatial 112 

filter) that maximally discriminated between the two categories on stimulus-locked data 113 

(Eq. 1; see Methods). Applying this spatial filter to single-trial data produced a 114 

measurement of the resultant discriminating component amplitude (henceforth ). 115 

Component amplitudes can be thought of as indexing the quality of the evidence in each 116 

trial, in that a high positive amplitude reflects an easy face trial, an amplitude near zero 117 

reflects a difficult trial, and a high negative amplitude reflects an easy car trial (Fig. 2a). 118 

We used the area under a receiver operating characteristic curve (i.e. Az-value) with a 119 

leave-one-out trial cross validation procedure to quantify the discriminator's performance 120 

(i.e. the degree of separation in the single-trial amplitude distributions associated with 121 

each stimulus category). 122 

 123 

Our discriminator’s performance as a function of stimulus-locked time revealed the 124 

presence of two temporally specific components (Fig. 2b; Early, mean peak time: 187 125 

ms; Late, mean peak time: 431 ms), consistent with our previous work 19-23. Most 126 

crucially, even though both the Early and Late components reliably discriminated 127 

between image categories, only the discrimination performance for our Late component 128 

appeared to systematically increase across the three training days. To formally test for 129 

this effect we extracted subject-specific peak Az-values for each of the Early and Late 130 

components and run a mixed-effects linear regression analysis with training day, 131 



 7

component (i.e. Early vs Late) and their interaction as separate predictors. We found a 132 

significant main effect of training day (  = 7.61, p = 0.006), a main effect of 133 

component ( 	= 5.0371, p = 0.025) and a significant interaction between the two 134 

( = 7.46, p = 0.006), indicating that discriminator performance for the Late 135 

component increased systematically across training days, whereas that of the Early 136 

component remained unchanged (Fig. 2c). Taken together, these results provide 137 

compelling evidence that it is primarily the encoding of the decision evidence in the Late 138 

component, rather than the sensory evidence in the Early component, that is being 139 

enhanced in the course of training. 140 

 141 

In previous work 20, we showed that, unlike the Early component, the peak time of the 142 

Late component moved later in time as perceived task difficulty increased, consistent 143 

with longer integration times for more difficult decisions 29-31. Here, we exploit this finding 144 

to provide additional evidence linking the Late component with the process of learning. 145 

Specifically, we hypothesized that the latency of the Late component should move 146 

earlier in time as learning unfolds (i.e. as choices become easier). Using a separate 147 

mixed-effects linear regression analysis we found a significant main effect of training day 148 

( = 21.56, p < 0.001), a main effect of component ( = 51.3, p < 0.001;) and a 149 

significant interaction of the two ( = 51.75, p < 0.001) on component peak times, 150 

indicating that the Late component peak times were reduced systematically across 151 

training days, whereas those of the Early component remained unchanged (Fig. 2d). 152 

These findings reinforce the notion that it is the temporal dynamics of the Late decision-153 

related component that change as a function of training. 154 

 155 

To better understand the mechanism by which improvements in discrimination 156 
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performance for the Late component came about, we capitalized on the single-trial 157 

variability in the component amplitudes. Specifically, we tested whether there was an 158 

increase in the distance between the mean face and car component amplitudes in the 159 

Late component ( − ; Fig. 3a), a reduction in the trial-by-trial variability around those 160 

means ( ( , ) ; Fig. 3b) or a combination of both. We ran a mixed-effects linear 161 

regression analysis, with the amount of sensory evidence, training days, and their 162 

interaction as separate predictors.   163 

 164 

As expected from previous findings 20,22,23 we found a main effect of the amount of 165 

sensory evidence on the means ( = 11.52, p < 0.001, Fig. 3c) but not on the 166 

variance of these component amplitudes ( = 0.38, p = 0.53, Fig. 3d). Crucial to this 167 

work, we also found a main effect of training day on the mean responses ( = 6.72, p 168 

= 0.009, Fig. 3c), but not on the variance of these component amplitudes ( = 2.76, p 169 

= 0.1, Fig. 3d). No significant interaction effects of sensory evidence and training day 170 

were observed ( = 0.03, p = 0.86 and = 0.25, p = 0.61, means and variance 171 

respectively). These results suggest that the improvements in discrimination 172 

performance for the Late component over the course of training are primarily the result 173 

of gain modulation (i.e. enhanced sensory readout leading to amplification of the 174 

differential response) of the component amplitudes rather than a reduction in the trial-to-175 

trial variability in these amplitudes. 176 

 177 

To establish a concrete link between our EEG component amplitudes and improvements 178 

in behaviour we ran a separate logistic regression analysis whereby trial-by-trial changes 179 

in the amplitudes (i.e. ’s) of the Early and Late components over all training days were 180 

used to predict participants’ choices on individual trials (i.e. face choice probability, 181 
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coded as 1 (0) for face (car) choices, respectively). Using the resulting subject-specific 182 

regression coefficients we found that our Late component was both a reliable predictor 183 

of participants’ choices (t-test, t(13) = 11.52, p < 0.001) and a significantly better 184 

predictor compared to the Early component (paired t-test, t(13) = 2.949, p = 0.011).  185 

 186 

Though the novelty of our work rests primarily with the EEG results, we also test the 187 

view that the observed perceptual improvements in behaviour might involve a RL-like 188 

mechanism similar to that proposed for reward-based learning 14,17,26,32. To this end, we 189 

modelled our participants’ choices using a RL model (see Methods). In brief, the model 190 

makes choices based on a decision variable (DV), with positive values indicating a 191 

higher likelihood of a face choice and negative values indicating a higher likelihood of a 192 

car choice. The DV reflects the representational strength of the presented stimulus on a 193 

given trial and corresponds to the stimulus sensory evidence scaled by the absolute 194 

difference between its signal weight and a noise weight for the antagonistic stimulus. 195 

Whilst the role of the former is to enhance the sensory read-out of the presented 196 

stimulus, the latter captures the extent to which the antagonistic stimulus interferes with 197 

the processing of the available sensory evidence.  198 

 199 

In the RL framework employed here these weights are updated by means of a prediction 200 

error signal, which quantifies the discrepancy between the expected and actual value of 201 

the decision outcome on each trial. To account for the possibility that signal and noise 202 

weights may be differentially updated the prediction error signal is scaled by separate 203 

learning rates in each of the two weight updates. The mechanism of this update is such 204 

that on a given trial a correct choice will always lead to an increase of the chosen 205 

stimulus signal weight and to a decrease of the unchosen stimulus noise weight, yielding 206 

enhanced signal to noise ratio for the correctly chosen stimulus. Crucially this update is 207 
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also scaled by the chosen stimulus representation, which exerts a further consolidating 208 

effect on perceptual learning (see Methods).  209 

 210 

We fit the model to individual participant data and found a highly significant 211 

correspondence between the model’s accuracy predictions and actual behaviour (r = 212 

0.882, p < 0.001 – Fig. 4a). We also compared the model with two competing 213 

alternatives (i.e. a model with signal and noise weights updated with only one learning 214 

rate and a model with only a single perceptual weight) using Bayesian Model Selection 215 

(BMS) that accounts for inter-subject variability by treating each model as a random 216 

effect. We found that our model provided a better fit to the observed choice behaviour 217 

(see Methods and Figure 4a). Consistent with an enhanced readout of sensory evidence 218 

we observed a subject-wise gradual build-up in the trial-by-trial estimates of the signal 219 

weights mirrored by a gradual decrease in the noise weight estimates (e.g. Fig. 4b and 220 

4c respectively). Between-day comparisons (1 vs. 2 and 2 vs. 3) of subject-wise mean 221 

DVs (Fig. 4d; paired t-test: t1vs2 (13) = -6.77 p <0.001; t2vs3 (13) = -2.36 p=0.02) and 222 

aggregate perceptual weights (Fig. 4e; signal weights: paired t-test: t1vs2 (13) = -6.74 p < 223 

0.001; t2vs3 (13) = -2.36 p =0.02; noise weights: paired t-test: t1vs2 (13) = 6.74 p < 0.001; 224 

t2vs3 (13) = 2.35 p =0.02) revealed a significant effect of learning as observed in 225 

behaviour.  226 

 227 

To offer neurobiological validity to the model we performed two additional analyses. 228 

Firstly, we correlated the single-trial DVs estimated by the model with our EEG 229 

component amplitudes. We predicted that if the brain computes a version of our model-230 

based DVs to drive choices then one should observe a systematic amplification of the 231 

DV with training and a significant correlation with our Late EEG component shown to 232 

index decision evidence. To this end we ran another regression analysis whereby the 233 
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single-trial amplitudes of our Early and Late components were used to predict the 234 

model’s DVs. We found that our Late component was both a reliable predictor of the 235 

model’s DVs (Fig. 4f; t-test, t(13) = 21.81, p < 0.001) and a significantly better predictor 236 

than the Early component (Fig. 4f; paired t-test, t(13) = 3.06, p = 0.009).  237 

 238 

Secondly, we separated our trials into four bins (quartiles) based on the model-predicted 239 

magnitudes of the prediction error (PE) signal, which is thought to guide learning. We 240 

then ran a single-trial discriminant analysis on feedback-locked EEG data between the 241 

very low and very high PE trial groups (i.e. we kept the middle two quartiles as “test” 242 

data – see below). This analysis revealed a centroparietal EEG component peaking on 243 

average at 354ms post-feedback (Fig. 5a). The timing and topography of this component 244 

are consistent with previous work on feedback-related processing in the human brain 245 

using a probabilistic reinforcement learning task 33,34.  246 

 247 

To formally test whether this EEG component was parametrically modulated by the 248 

magnitude of the PE signal, we computed discriminator amplitudes ( ) for trials with 249 

intermediate magnitude levels (i.e. those left out from the original discrimination 250 

analysis). Specifically, we applied the spatial filter of the window that resulted in the 251 

highest discrimination performance for the extreme PE magnitude levels to the EEG 252 

data with intermediate values. We expected these “unseen” trials would show a 253 

parametric response profile such that the resulting mean component amplitude at the 254 

time of peak discrimination would proceed from very low < low < high < very high PE 255 

magnitude. Using this approach, we demonstrated that the mean discriminator output for 256 

each quartile increased as a function of the model’s PE magnitude (all pair-wise t-test 257 

comparisons across adjacent trial groups: P values < 0.001; Fig. 5b), thereby 258 

establishing a concrete link between the model’s PE estimates and our feedback-related 259 
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EEG component. Taken together, these findings provide further evidence that perceptual 260 

learning enhances decision-related evidence, likely via a RL-like mechanism. 261 

 262 

Discussion 263 

 264 

In this work, we offer the evidence from time-resolved electrophysiological signals in 265 

humans linking perceptual learning with post-sensory processing during a perceptual 266 

categorization task. Specifically, we showed that improvements in behavioural 267 

performance were accompanied primarily by late enhancements in decision-related 268 

evidence. In particular, we demonstrated that single-trial amplitudes of a late EEG 269 

component indexing decision evidence19,20,23,35 were amplified in the course of learning, 270 

such that these representations became more robust to noise (rather than a reduction in 271 

noise as such). In contrast a temporally earlier component encoding sensory (stimulus) 272 

evidence – even in the absence of a face/car decision task19 – was not affected by 273 

training. These findings suggest that it is the strengthening of the connections between 274 

early sensory encoding and downstream decision-related processing that are driving 275 

perceptual learning in our task. 276 

 277 

Crucially, we also showed that the onset of the late component (which on average 278 

coincides with the onset of decision evidence accumulation 36-38) systematically moves 279 

earlier in time with training. This finding is particularly interesting since we have 280 

previously observed comparable temporal shifts in this component while manipulating 281 

task/stimulus difficulty 19,20,23. We view this as additional evidence that our learning 282 

effects on the late component lead to changes in perceptual sensitivity. More 283 

specifically, the earlier the onset time of the late component the stronger the behavioural 284 

improvements, consistent with a decrease in perceived task difficulty. These temporal 285 
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changes are also in line with a faster and more efficient accumulation of evidence as 286 

often predicted by sequential sampling models of decision making 29-31 (e.g. increases in 287 

the drift-rate and decrease in nondecision time variability).  288 

 289 

Consistent with previous accounts 14,17 we also showed that these learning-induced 290 

behavioural improvements could be reliably explained in terms of a RL mechanism (see, 291 

e.g., 39). More specifically, we showed that a model that uses a prediction error signal 292 

24,25,40,41 to continuously adjust the stimulus specific perceptual weights on the sensory 293 

evidence 26 led to amplification of the relevant stimulus representations in the course of 294 

training (i.e. making them more robust to noise). We further demonstrated that trial-by-295 

trial changes in our Late EEG component shown to index decision evidence reliably 296 

tracked the amplification of sensory information predicted by the model. These results 297 

imply that perceptual learning involves an enhanced readout of sensory information 298 

during decision making likely via a RL-like process, endorsing the view of a domain-299 

general learning mechanism 24. It is worth noting that whilst it is true that our task did not 300 

involve any explicit reward as a reinforcer, we view the implicit rewarding nature 301 

associated with correct responses as a “teaching signal” for strengthening the neural 302 

representation of sensory contingencies 26. 303 

 304 

Research on perceptual learning has recently focused on the extent to which perceptual 305 

learning is due to improvements in sensory abilities that are (informationally and 306 

temporally) earlier than the decision process itself or due to improvements in post-307 

sensory and decision-related processing. Consistent with the former account, several 308 

psychophysics studies have demonstrated that perceptual learning is often highly 309 

specific to the location and other properties of the stimuli 3-9, implying specificity to the 310 

trained retinal location 42,43. Similarly human fMRI studies offered evidence of activity 311 
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enhancements in retinotopic areas corresponding to the trained visual fields 44 and 312 

increased responses along the whole hierarchy of early visual areas that correlated with 313 

improvements in behavioural performance following training over the course of several 314 

weeks 45,46. These results are further corroborated by EEG recordings in humans 315 

showing post-training improvements in early visually-evoked components over occipital 316 

electrode sites 47-49 and electrophysiological recordings in NHPs linking behavioural 317 

performance with improvements in perceptual sensitivity in primary sensory areas 50-52.  318 

 319 

In contrast, other psychophysical studies proposed that perceptual learning can also 320 

arise from changes in how sensory signals are read out or interpreted by decision-321 

making mechanisms 32,53,54 rather than from changes in primary sensory areas as such. 322 

Neural evidence in support of this interpretation comes from NHP electrophysiology 323 

studies 13,14, demonstrating that perceptual learning on a motion discrimination task 324 

affects downstream decision accumulator areas, rather than regions encoding the 325 

sensory evidence (i.e. motion direction). Specifically, accumulator neurons improved 326 

responsiveness to the decision evidence in the course of learning (as reflected in 327 

steeper evidence accumulation slopes), with these improvements being proportional to 328 

the animals’ performance on the task. Correspondingly, recent fMRI studies in humans 329 

started to explore the effect of learning on the activity and connectivity patterns of 330 

higher-level ventral temporal 55,56 and decision-related regions 15-18.  331 

 332 

These seemingly discrepant accounts of the temporal locus of perceptual learning may 333 

be reconciled by considering differences in the experimental demands of the task at 334 

hand. For example, a recent theoretical account proposed a unified two-stage model of 335 

perceptual learning 57-59. According to this model, there are two distinct types of plasticity 336 

underlying perceptual learning: feature-based plasticity and task-based plasticity. On the 337 
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one hand, feature based plasticity affects early sensory processing stages and occurs 338 

with mere exposure to stimuli, regardless of whether the stimuli are relevant to the task 339 

or not. Task-based plasticity, on the other hand, can be thought of as a higher-level 340 

processing stage arising from direct and active involvement in a behavioural task. In this 341 

formulation, the relative contribution of the two plasticity types to the overall 342 

enhancement in performance hinges largely on the training procedures, the stimuli and 343 

the intricacies of the task used in learning 60. 344 

 345 

More specifically, a distinction could be drawn between tasks that involve learning of 346 

relatively primitive stimulus features such as orientation, spatial frequency or contrast 347 

and those employing more complex stimuli such as objects and faces 59. Although 348 

learning of highly primitive features could occur locally at the level of early sensory 349 

processing, more complex stimuli (made up of a combination of primitive features) might 350 

require active involvement of downstream higher-level sensory or decision-related areas. 351 

In our design, for instance, complex object categories are used and phase 352 

discrimination, which is shown to involve processes beyond early visual cortex 61, is 353 

required to perform the task reliably. As such, our findings appear to rely heavily on the 354 

enhancement of the relevant stimulus representations during post-sensory, rather than 355 

early sensory processing.  356 

 357 

In summary, our study provides critical insights into the neurobiology of perceptual 358 

learning and offers strong support to the notion that neuronal plasticity can occur at 359 

multiple time-scales and locations, depending on task demands and context. As such 360 

our findings can help revise existing theories of perceptual learning focusing only on 361 

early sensory processing and provide the foundation upon which future studies continue 362 

to interrogate the neural systems underlying perceptual decision making.  363 
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 364 

Methods 365 

Participants 366 

Fourteen subjects (7 female and 7 male, age range 23-28 years) participated in this 367 

study. All were right handed, had normal or corrected-to-normal vision and reported no 368 

history of neurological problems. The study was approved by the College of Science and 369 

Engineering Ethics Committee at the University of Glasgow (CSE01353) and informed 370 

consent was obtained from all participants. 371 

 372 

Stimuli 373 

We used a set of 18 face and 18 car images (image size 512 x 512 pixels, 8-bits/pixel), 374 

adapted from our previous experiments 19,20. Face images were selected form the Face 375 

Database of the Max Planck Institute of Biological Cybernetics 62 and car images were 376 

sources from the internet. Both image types contained equal numbers of frontal and side 377 

views (up to ±45). All images were equated for spatial frequency, luminance and 378 

contrast and they all had identical magnitude spectra (average magnitude spectrum of 379 

all images in the database). We manipulated the phase spectra of the images using the 380 

weighted mean phase 63 technique to change the amount of sensory evidence in the 381 

stimuli as characterized by their % phase coherence. We selected two levels of sensory 382 

evidence for this study (32.5% and 37.5 % phase coherence) that are known to yield 383 

performance spanning psychophysical threshold, based on our previous studies 19,20. A 384 

Dell Precision Workstation (Intel Core 2 Quad) running Windows 7 (64 bit) with an ATI 385 

FirePro 2270 graphics card and PsychoPy 1.8 presentation software 64 controlled the 386 

stimulus display. Images were presented on a Dell 2001FP TFT monitor (resolution, 387 

1600x1200 pixels; refresh rate, 60 Hz). Subjects were positioned 75cm from the monitor 388 

and each image subtended approximately 6 x 6 degrees of visual angle.  389 
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 390 

Behavioural task 391 

Subjects performed a simple image categorization task whereby they had to classify an 392 

image either as a face or car. The stimulus was presented for 50 ms and subjects were 393 

asked to make a response as soon as they had formed a decision, with a response 394 

deadline set at 1.25 s.  Subjects indicated their decision with a button press on a 395 

response device (Cedrus RB-740) using their right index and middle fingers for a face 396 

and a car response, respectively. Subjects received visual feedback following each 397 

response that lasted for 500 ms. A tick and a cross were presented for a correct and an 398 

incorrect response, respectively (subtended 0.7 x 0.7 degrees of visual angle). A cross 399 

was also shown when subjects failed to make a response within the pre-allocated 400 

duration of 1.25 s following the stimulus. Feedback was followed by an inter-trial interval 401 

that varied randomly in the range between 1 – 1.5 s. There were a total of 288 trials 402 

(divided equally between the two image categories and the two levels of sensory 403 

evidence), presented in 4 blocks of 72 trials with a 60 s rest period between each block. 404 

The entire experiment lasted approximately 20 minutes. Each subject performed this 405 

task on three consecutive days, with the experiment taking place at the same time on 406 

each day. On the first day, subjects performed a short practice session of the face/car 407 

categorization task with high % phase coherence stimuli (50%) to familiarize themselves 408 

with the structure and pace of the task.  409 

 410 

EEG data acquisition  411 

EEG was collected inside an electrostatically shielded booth using a 64-channel EEG 412 

amplifier system (BrainAmps MR-Plus, Brain Products, Germany) and recorded using 413 

Brain Vision Recorder (BVR; Version 1.10, Brain Products, Germany) with a 1000 Hz 414 

sampling rate and an analogue bandpass filter of 0.016-250 Hz. The EEG cap consisted 415 
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of a 64 Ag/AgCl actiCAP electrodes (Brain Products, Germany) positioned according to 416 

the international 10–20 system of electrode positioning. The ground electrode was 417 

embedded in the EEG cap and placed along the midline between electrode Pz and Oz. 418 

The reference electrode was placed on the left mastoid. All input impedances were kept 419 

below 10 kΩ. For each participant, an effort was made to position the EEG cap in a 420 

consistent manner across the three training days, by keeping the distance between 421 

electrodes and certain anatomical landmarks (i.e. outer canthi, inion, nasion) constant. 422 

Experimental event codes and button responses were also synchronized with the EEG 423 

data and collected using the BVR software.   424 

 425 

EEG pre-processing 426 

We performed basic pre-processing of the EEG signals offline using Matlab (Mathworks, 427 

Natick, MA). Specifically, we applied a 0.5 Hz high-pass filter to remove DC drifts, and 428 

100 Hz low pass filter to remove high frequency artefacts not associated with 429 

neurophysiological processes. These filters were applied together, non-causally to avoid 430 

distortions caused by phase delays (using MATLAB “filtfilt”). The EEG data was 431 

additionally re-referenced to the average of all channels. 432 

 433 

Eye-movement artefact removal 434 

Prior to the main experiment, we asked our participants to complete an eye movement 435 

calibration task during which they were instructed to blink repeatedly upon the 436 

appearance of a fixation cross in the centre of the screen and then to make several 437 

horizontal and vertical saccades according to the position of the fixation cross. The 438 

fixation cross subtended 0.4 x 0.4 degrees of visual angle. Horizontal saccades 439 

subtended 15 degrees and vertical saccades subtended 10 degrees. This exercise 440 

enabled us to determine linear EEG sensor weightings corresponding to eye blinks and 441 
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saccades (using principal component analysis) such that these components were 442 

projected onto the broadband data from the main task and subtracted out 27.  443 

 444 

Single-trial discriminant analysis 445 

To discriminate between face and car trials we applied a linear multivariate classifier to 446 

stimulus-locked EEG data, using the sliding window approach we used in previous work 447 

(e.g., 20,65). Specifically, we identified a projection of the multichannel EEG signal,	 ( ), 448 

where i = [1…T] and T is the total number of trials, within a short time window that 449 

maximally discriminated between the two stimulus categories. All time windows had a 450 

width of Ν = 50 ms and the window centre τ was shifted from -100 to 1000 ms relative to 451 

stimulus onset, in 10 ms increments. More specifically, we used logistic regression 27 to 452 

learn a 64-channel spatial weighting, ( ), that achieved maximal discrimination at each 453 

time window, arriving at the one-dimensional projection ( ), for each trial i and a given 454 

window τ: 455 

 456 ( ) = ∑ ( ) ( )//         (1) 457 

 458 

where ⊥ is used to indicate the transpose operator. Note that our classifier is designed to 459 

return activity from processes that help maximize the difference across the two 460 

conditions of interest while minimizing the effect of processes common to both 461 

conditions. In doing so the classifier tries to map positive and negative discriminant 462 

component amplitudes (i.e. ( )) to face and car trials, respectively. In other words, 463 

large positive values indicate a higher likelihood of a face stimulus, large negative values 464 

a higher likelihood of a car stimulus and values near zero reflect more difficult stimuli 465 

(see Fig. 2a for an example). This procedure in effect scales the resulting discriminating 466 
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component amplitudes in a manner that is directly comparable across the three training 467 

days. The same discrimination procedure was also applied on feedback-locked data to 468 

discriminate between trials with low versus high prediction error magnitudes (as 469 

estimated by our model – see below). 470 

 471 

We quantified the performance of the discriminator at each time window using the area 472 

under a receiver operating characteristic (ROC) curve, referred to as an Az-value, using 473 

a leave-one-out trial procedure 66. Furthermore we used a bootstrapping technique to 474 

assess the significance of the discriminator by performing the leave-one-out test after 475 

randomizing the trial labels. We repeated this randomization procedure 1000 times to 476 

produce a probability distribution for Az, and estimated the Az value leading to a 477 

significance level of p < 0.01. 478 

 479 

Given the linearity of our model we also computed scalp topographies of the 480 

discriminating components resulting from Eq. 1 by estimating a forward model as: 481 

 482 (τ) = 	 ( ) ( )( ) ( )       (2) 483 

	484 

where ( ) is now organized as a vector (τ), where each row is from trial i, and ( ) is 485 

organized as a matrix, (τ), where rows are channels and columns are trials, all for time 486 

window τ. These forward models can be viewed as scalp plots and interpreted as the 487 

coupling between the discriminating components and the observed EEG 27.  488 

 489 

Single-trial regression analyses 490 

To analyse the behavioural and neural data resulting from our EEG discrimination 491 
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analysis we use a mixed-effects general linear modelling (GLM) approach. These GLM 492 

models are similar to repeated-measures ANOVA models but they offer a better account 493 

for inter-subject response variability (by incorporating subjects as a random effect) and 494 

allow the mixing of both continuous and categorical variables 67,68. Details of the 495 

dependent and predictor variables used for each regression analysis are given in the 496 

main text. The significance of a predictor variable or set of variables is tested using a 497 

log-likelihood ratio test, whereby the log-likelihood of the model with all predictors is 498 

compared to the log-likelihood of the model without the predictors being tested. The 499 

difference in the log-likelihood of two models is distributed according to a  distribution 500 

whose degrees of freedom equal the difference in the number of parameters in the two 501 

models. We fit these mixed-effects models using the lme4 package 502 

(http://cran.rproject.org/web/packages/lme4/index.html) using R (http://www.r-503 

project.org). We note that repeating these analyses using a conventional ANOVA 504 

approach yielded virtually identical results, further highlighting the robustness of our 505 

effects. 506 

 507 

To demonstrate that our Late EEG component was a better predictor of behaviour 508 

compared to the Early one, we ran a separate logistic regression analysis. Specifically, 509 

for each participant the trial-by-trial discriminant amplitudes ( ’s) for the two components 510 

(over all training days) were used as separate regressors to predict each participant’s 511 

face choice probabilities ( ( )) on individual trials (i.e. ( ) = 1 [0] for face [car] choices) 512 

as:  513 

 514 ( ) = 1/(1 + [ ])       (3) 515 

 516 
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Then, to establish a more reliable trial-by-trial association between Late brain activity 517 

and choice behaviour, we tested: 1) whether the Late regression coefficients across 518 

subjects ( 's) come from a distribution with mean greater than zero (using an one 519 

sample t-test) and 2) whether the Late regression coefficients across subjects ( 's) 520 

come from a distribution with mean greater than those of the Early one ( 's) (using a 521 

paired t-test). For all analyses, we provide exact p values where possible, but values 522 

below 10-3 are abbreviated as such (i.e. p < 0.001).  523 

 524 

Reinforcement learning model 525 

We used a variant of the Rescorla-Wagner reinforcement learning model to account for 526 

perceptual improvements in the course of learning 14,17,26. In this model perceptual 527 

decisions are driven by a decision variable ( )  denoting the subject’s hidden 528 

representations of sensory contingencies (i.e. association between sensory evidence 529 

and stimulus category). The strength of such representations is modulated via dynamic 530 

updates of category specific perceptual weights based on feedback information, thereby 531 

accounting for potential differences in learning trajectories between the stimulus 532 

categories. Indeed, compared to previous work that used a single stimulus-invariant 533 

perceptual weight 14,17 the introduction of category-specific perceptual weights is 534 

designed to capture subject-wise choice biases in that, subjects might have a choice 535 

bias towards cars or faces and likewise might display an increasing ability to recognize 536 

cars or faces throughout the task. 537 

 538 

Moreover, our perceptual weights comprise signal and noise weights. Whilst the former 539 

is designated to enhance stimulus representation in the course of learning, the latter 540 

accounts for the interference exerted by the antagonistic stimulus against the acquisition 541 

of the correct sensory contingencies. Thus, in our model perceptual learning is expected 542 
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to occur via gradually increasing signal weights as well as gradually decreasing noise 543 

weights. Compared to previous RL-like perceptual models14,17, this better captures 544 

instances whereby improved task performance depends both on greater ability to 545 

recognize a given stimulus as well as greater ability to rule out the antagonistic stimulus. 546 

In other words on a face trial subjects might correctly choose face partly because they 547 

are able to identify face-like features and partly because they are able to recognize that 548 

there are no car-like features. 549 

 550 

More specifically, on each trial  decision activities specific to each stimulus category 551 ( , 	 ∈ 	 , ) were estimated as the stimulus specific sensory evidence 552 ( ) scaled by the absolute difference between the stimulus specific signal weight 553 

( ) and the noise weight of the antagonistic stimulus ( \ ): 554 

 555 = | − |  556 = | − |         (4) 557 

 558 

As perceptual learning progresses, the estimates of signal and noise weights grow apart 559 

and so does their distance (i.e. absolute difference) on the real line. As a result, the 560 

read-out of sensory evidence is increasingly enhanced reflecting the improving ability to 561 

discriminate between perceptual stimuli in the course of training. 562 

 563 

Whilst the magnitude of  was defined according to the percentage of phase 564 

coherence in the stimulus (0.325 and 0.375 for low and high coherence trials 565 

respectively), its sign was related to stimulus category (positive for faces and negative 566 

for cars). This ensured decision activities to be a signed quantity, whose magnitude 567 
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tracked the time-varying strength of stimulus representation. 568 

 569 

Trial-by-trial estimates of the  were computed based on the decision activity of the 570 

presented stimulus: 571 

 572 = 	            (5) 573 

 574 

Note that the  too is a signed quantity with positive values indicating a higher 575 

likelihood of a face choice and negative values indicating a higher likelihood of a car 576 

choice and as such is directly comparable with the sign of our EEG discriminator 577 

component amplitudes . Correspondingly, both the model’s s and our component 578 

amplitudes are orthogonal to potentially confounding quantities such as task (stimulus) 579 

difficulty, decision confidence (or uncertainty) and expected value, all of which covary 580 

with the absolute value of the  and  (i.e. both high positive and high negative  and 581 

 values correspond to easier, more confident and thereby higher expected value 582 

choices). 583 

 584 

Subject-wise  trajectories were then mapped to choice propensities (i.e. probabilities) 585 

using a sigmoid function: 586 

 587 = ( )         (6) 588 

 589 

where ( ) = 1/(1 + ) is the sigmoid function and  the inverse of the temperature 590 

representing the degree of stochasticity in the decision function. Next, the expected 591 

value ( ) of the outcome on the same trial was computed based on the modulus 592 
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(absolute value) of the  as:	 = ( | | ). In other words, whilst high positive 593 

and high negative  values (subjectively easier choices) increase the  of the 594 

outcome (and therefore the expected probability of being rewarded), values near zero 595 

(subjectively difficult choices) reduce it.  596 

 597 

Finally, on each trial, given reward feedback  (coded as 1 and 0 for reward and no 598 

reward respectively), perceptual weights were updated via a prediction error signal, 599 = − 	 , which quantified the degree of deviation between the actual and expected 600 

outcome, scaled by a learning rate parameter  and an associativity component 601 

( ) whose role was to dynamically modulate the updating of perceptual 602 

weights depending on the strength of sensory evidence ( )and strength of the 603 

chosen stimulus representation ( ): 604 

 605 = + 	   606 

\ = \ + 	 \        (7) 607 

 608 

where subscript \ ℎ  indicates the unchosen stimulus. Note that the signal weight of 609 

the unchosen stimulus and the noise weight of the chosen stimulus were not updated. 610 

The sign of the update was determined by the prediction error so that whilst correct 611 

choice trials resulted in an increase of signal weights and a decrease of noise weights, 612 

incorrect choice trials had an opposite effect on the updating of perceptual weights. For 613 

example on a face trial whilst a correct face choice would result in an increase of  614 

and a reduction of	  an incorrect car choice would yield an increase of  and a 615 

reduction of . Moreover, the learning/unlearning of correct/incorrect sensory 616 

contingencies underpinned by this dynamic updating of perceptual weights was further 617 
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facilitated by the strength of the stimulus representation . In other words, the 618 

stronger the stimulus representation the greater the impact of the prediction error on 619 

perceptual learning (via the updating of perceptual weights) and vice versa. 620 

 621 

We fitted two variants of this model, one with a single learning rate and one with two 622 

different learning rates for the signal and noise weights’ updates, respectively. The latter 623 

model allowed for the possibility that signal and noise weights may be differentially 624 

updated therefore probing subject-specific biases in perceptual information processing. 625 

In other words, whilst some subjects might boost the signal to noise ratio for a given 626 

stimulus by primarily enhancing signal weights, others might achieve the same result by 627 

primarily reducing noise weights. Whilst the total number of free parameters in the first 628 

variant of the model was four ( , , , ) the number of free parameters in the second 629 

variant was five ( , , , , )  where , 	 represent the initial perceptual 630 

weights’ estimates (i.e. on the first trial) for face and car stimuli. In addition, we also fitted 631 

a simple perceptual RL model (as described in 14,17), whereby the read-out of sensory 632 

evidence was scaled only by a signal weight and the trial-by-trial updating of this signal 633 

weight was driven by a prediction error computed as previously illustrated. The number 634 

of free parameters in this model was four ( , , , )  where  represents the 635 

indecision point in the choice sigmoid function. 636 

 637 

Model fitting procedure and model comparison 638 

In order to prevent overfitting, for each subject  we found the maximum a posteriori 639 

estimate of the model free parameters: 640 

 641 = 	 	 ( | ) ( | )        (8) 642 
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 643 

where ( | )  is the cross-entropy loss function between empirical and predicted 644 

choices  given the model parameters  and ( | )  is the prior distribution on the 645 

model parameters  given the population-level hyperparameters . Priors were defined 646 

as normal distributions ( , ) where  was sampled from a normal distribution with 647 

mean 0 and standard deviation 1 and  was set to 1e2.  To preserve the parameters’ 648 

natural bounds, log ( ) and logit ( ) transforms of the parameters were implemented.  649 

 650 

We subsequently performed formal Bayesian model comparison between the 3 models 651 

to determine the one that best fitted our behavioural data. This approach treats each 652 

model as a random-effect at the between subject-level and therefore is more robust to 653 

outliers than fixed-effect approaches 69. Specifically, we first estimated the subject-wise 654 

Laplace approximated log evidence for each model. We subsequently computed the 655 

model-wise exceedance probability (i.e. how confident we are that a model is more likely 656 

than any other model tested) using SPM8’s spm_BMS routine 70. We found that the 657 

exceedance probability of the model with 2 learning rates ( = 	0.88) was greater than 658 

those of the model with a single learning rate ( = 	0.11) and with a single perceptual 659 

weight ( = 	0.001) (see inset Fig. 4a). 660 

 661 

To assess the model’s goodness of fit we plotted the subject-wise empirical choice 662 

accuracy against the model’s predicted accuracy for different days and stimulus phase 663 

coherence levels. Additionally, we tested whether subject-wise model’s mean DVs and 664 

perceptual weights significantly increased over training as observed with behavioural 665 

performance. 666 

 667 
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Data availability 668 

The data that support the findings of this study are available from the corresponding 669 

author upon request.  670 

  671 
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Figure Legends 920 

 921 

Figure 1. Experimental design and behaviour. (a) Schematic representation of the 922 

experimental paradigm. Subjects had to categorize a noisy image presented for 50ms as 923 

a face or a car and indicate their choice with a button press within 1250ms following the 924 

stimulus presentation. Feedback was then presented for 500ms (a tick or a cross for a 925 

correct and an incorrect response, respectively) followed by an inter-stimulus interval 926 

(ISI) that varied randomly between 1-1.5s. Subjects performed this task on three 927 

consecutive training days. Sample face and car images at the two levels of phase 928 

coherence used in the task (32.5% and 37.5%) are shown on the right. (b) Proportion of 929 

correct choices and (c) Mean reaction times (RT) as a function of the three training days 930 

(1: blue, 2: green, 3: red) and the two levels of phase coherence of the stimuli, averaged 931 

across subjects. Faint lines represent individual subject data. Error bars represent 932 

standard errors across subjects.  933 

 934 

 935 

Figure 2. Post-sensory effects of perceptual learning. (a) Single-trial discriminator 936 

amplitudes ( ) for the Early (dotted) and Late (solid) component windows for faces 937 

(black) and cars (grey) at 37.5% phase coherence from a representative subject on the 938 

third training day. The component amplitudes are shown as histograms on the right, with 939 

a cutoff (the thick black line) to separate trials into positive vs. negative amplitudes, 940 

indicating a higher likelihood of a face and a car trial, respectively. (b) Multivariate 941 

discriminator performance (Az) during face-vs-car outcome discrimination of stimulus-942 

locked EEG responses across the three training days (1: blue, 2: green, 3: red), 943 

averaged across subjects, showing the presence of the Early and Late components. The 944 

dotted line represents the average Az value leading to a significance level of p = 0.01, 945 
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estimated using a bootstrap test. Faint lines represent individual subject data. (c) 946 

Average discriminator performance and scalp topographies for the Early (magenta) and 947 

Late (cyan) components across the three training days estimated at time of subject-948 

specific maximum discrimination. Faint lines represent individual subject data. Error bars 949 

represent standard errors across subjects. (d) Average onset times for the Early 950 

(magenta) and Late (cyan) components across the three training days. Faint lines 951 

represent individual subject data. Error bars represent standard errors across subjects. 952 

 953 

Figure 3. Enhanced readout of post-sensory decision evidence. (a) Schematic 954 

illustration of possible effects on the distribution of single-trial discriminator amplitudes in 955 

the course of learning. Top: increases in the distance between the mean response for 956 

faces and cars. Bottom: reduction in the variance of the face and car responses. Both 957 

examples lead to a smaller overlap (more separation) between the face and car 958 

distributions. (b) Changes in the mean distance between the face and car distributions 959 

for the Late component across the three training days (1: blue, 2: green, 3: red). (c) 960 

Changes in the variance of the face and car distributions for the Late component across 961 

the three training days. The faint lines in (b) and (c) represent individual subject data, 962 

while the error bars represent standard errors across subjects.  963 

 964 

Figure 4. Reinforcement learning model for perceptual choices. (a) Scatter plot showing 965 

the correlation between the performance of individual subjects and models, over the 966 

three training days and the two level of stimulus phase coherence (using the winning 967 

model). Inset: exceedance probabilities of three competing models (see Methods for 968 

details). (b) Individual trial estimates of the model’s decision variable (DV) for a 969 

representative subject over the course of the three training days, superimposed on the 970 

amount of stimulus-defined sensory evidence (black trace). (c) Signal (positive) and 971 



 37

noise (negative) perceptual weights for faces (solid) and cars (dashed) over the three 972 

training days for the same subject shown in (b). (d) Average magnitude of the model’s 973 

DVs across subjects over the course of the three training days. Individual subject data 974 

are also shown as point estimates. (e) Average signal (positive) and noise (negative) 975 

perceptual weights for faces (solid) and cars (faint) over the three training days. 976 

Individual subject data are also shown as point estimates. (f) Average regression 977 

coefficients reflecting the trial-by-trial association between the model’s DVs and the 978 

amplitudes of the Early and Late EEG components estimated over all training days. 979 

Individual subject data are also shown as point estimates.  980 

 981 

Figure 5. Electrophysiological correlates of prediction error (PE). (a) Multivariate 982 

discriminator performance (Az) during very low versus very high PE magnitude trials on 983 

feedback-locked EEG responses averaged across subjects and days revealing a late PE 984 

component. Discriminator performance and component peak times were comparable 985 

across the three days. The dotted line represents the average Az value leading to a 986 

significance level of p = 0.01, estimated using a bootstrap test. Faint lines represent 987 

individual subject data. Inset: average scalp topography associated with the PE 988 

component, estimated at time of subject-specific maximum discrimination. (b) Mean 989 

discriminator amplitude ( ) for the PE component, binned in four quartiles based on 990 

model-based estimates of the magnitude of the PE, showing a clear parametric 991 

response along the four trial groups. Quartiles 1 and 4 were used to train the classifier, 992 

while quartiles 2 and 3 contain “unseen” data with intermediate PE magnitude levels. 993 

Individual subject data are also shown as point estimates.  994 

 995 
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