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Human perception is shaped by past experience on multiple time-

scales. Sudden and dramatic changes in perception occur when prior

knowledge or expectations match stimulus content. These immediate

effects contrast with the longer-term, more gradual improvements

that are characteristic of perceptual learning. Despite extensive

investigation of these two experience-dependent phenomena, there

is considerable debate about whether they result from common or

dissociable neural mechanisms. Here we test single- and dual-

mechanism accounts of experience-dependent changes in perception

using concurrent magnetoencephalographic and EEG recordings of

neural responses evoked by degraded speech. When speech clarity

was enhanced by prior knowledge obtained from matching text,

we observed reduced neural activity in a peri-auditory region of the

superior temporal gyrus (STG). Critically, longer-term improvements

in the accuracy of speech recognition following perceptual

learning resulted in reduced activity in a nearly identical STG region.

Moreover, short-term neural changes caused by prior knowledge

and longer-term neural changes arising from perceptual learning

were correlated across subjects with the magnitude of learning-

induced changes in recognition accuracy. These experience-dependent

effects on neural processing could be dissociated from the neural

effect of hearing physically clearer speech, which similarly enhanced

perception but increased rather than decreased STG responses.

Hence, the observed neural effects of prior knowledge and percep-

tual learning cannot be attributed to epiphenomenal changes in

listening effort that accompany enhanced perception. Instead, our

results support a predictive coding account of speech perception;

computational simulations show how a single mechanism, mini-

mization of prediction error, can drive immediate perceptual

effects of prior knowledge and longer-term perceptual learning of

degraded speech.

perceptual learning | predictive coding | speech perception |
magnetoencephalography | vocoded speech

Successful perception in a dynamic and noisy environment
critically depends on the brain’s capacity to change how sen-

sory input is processed based on past experience. Consider the way
in which perception is enhanced by accurate prior knowledge or
expectations. Sudden and dramatic changes in subjective experi-
ence can occur when a distorted and otherwise unrecognizable
perceptual object is seen or heard after the object’s identity is
revealed (1–4). Such effects occur almost immediately; striking
changes in perceptual outcomes occur over a timescale of seconds
or less. However, not all effects of past experience emerge as
rapidly as these effects of prior knowledge. With perceptual
learning, practice in perceiving certain types of stimuli results in
gradual and incremental improvements in perception that develop
over a timescale of minutes or longer (Fig. 1A) (5, 6, 7). Critically,
perceptual learning can generalize beyond the stimuli experienced
during training, e.g., to visual forms presented in different retinal
positions or orientations or spoken words that have not been heard
before (6, 8–10). Thus, perceptual learning may have great potential
in ameliorating sensory deficits (11–13), and understanding the
neural and computational mechanisms supporting learning is critical.
Although prior knowledge and perceptual learning are both

experience-dependent forms of perceptual improvement, the

distinct time courses of their effects suggest that they originate
in different brain mechanisms. Dual-mechanism accounts there-
fore propose that the influence of prior knowledge resides at a
hierarchically late (e.g., decision) stage of processing and attribute
the effect of learning to offline synaptic changes in earlier-level
sensory cortex that take place after sensory stimulation (14, 15).
However, other work has shown that perceptual learning of de-
graded stimuli is enhanced if accurate prior knowledge is provided
before the presentation of degraded or otherwise ambiguous
sensory input (6, 14, 16–18). Consistent with this behavioral as-
sociation, alternative single-mechanism accounts have proposed
that a single system containing multiple interacting levels of rep-
resentation supports the effects of both prior knowledge and
perceptual learning (15, 19, 20). According to these single-mech-
anism accounts, abstract higher-level representations derived from
prior knowledge are used to inform and guide earlier, lower-level
sensory processes. These interactions not only modulate immedi-
ate perceptual outcomes but also lead to subsequent learning:
Early sensory processing is modified to ensure that presentations
of similar stimuli are more processed effectively in the future.
Thus, this account makes two key experimental predictions,
that (i) prior knowledge and perceptual learning should affect
neural responses in the same brain network and (ii) the effect of
prior knowledge observed online during perception should predict
the magnitude of subsequent perceptual learning. However, be-
cause the brain systems supporting the influences of prior
knowledge and perceptual learning typically have been observed
separately (3, 4, 21–26), neither of these predictions has been
tested successfully before.
In this study, we obtained concurrent high-density EEG and

magnetoencephalographic (MEG) recordings to compare the
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impact of prior knowledge and perceptual learning on neural re-
sponses to degraded speech (Fig. 1B). Speech is an ideal stimulus
for exploring this relationship because it is well established that
listeners rely heavily on both prior knowledge and perceptual
learning for successful perception, especially in noisy conditions or
when the speech signal is degraded (6, 27–33). Therefore, using
the same stimulus, in the same participants, and in the same ex-
periment, we could test whether these two experience-dependent
changes in perception modulate common or dissociable neu-
ral mechanisms. In addition, we compared these experience-
dependent improvements in speech intelligibility with the im-
provements resulting from hearing physically clearer speech (Fig.
1C). This comparison helps rule out neural changes attributable to
changes in listening effort or success that are a downstream con-
sequence of improved perception as opposed to the intrinsic
changes in underlying perceptual mechanisms (34).

Results

Behavior. To assess the effect of prior knowledge on the imme-
diate subjective clarity of degraded speech, participants com-
pleted a modified version of the clarity-rating task previously
used in behavioral and MEG studies (Fig. 1B) (23, 35). In this
task, listeners are presented with spoken words varying in their
amount of sensory detail (and therefore in their intrinsic intel-
ligibility) and are asked to report their subjective experience of
speech clarity. Alongside these changes in subjective clarity resulting
from physical changes intrinsic to the speech signal, listeners’
prior knowledge of the abstract phonological content of speech
was manipulated by presenting matching or mismatching text
before each spoken word. Consistent with previous findings, and
as shown in Fig. 2A, speech clarity was enhanced significantly

both when sensory detail increased [F (2, 40) = 295, P < 0.001]
and when listeners had prior knowledge from matching written text
[F (1, 20) = 93.2, P < 0.001].
This initial period when prior knowledge was used to support

perception was designated the “training phase” based on previous
work showing that trials in which degraded speech follows
matching written text enhance immediate perception (35) and also
facilitate longer-term perceptual learning (6, 16). To assess the
magnitude of learning in each listener, we measured the accuracy
of speech recognition in pretest and posttest evaluations that oc-
curred before and after the training phase (Fig. 1B). Participants
heard different words across each of the phases of the experiment,
enabling us to assess perceptual learning rather than item-specific
learning or memory. To ensure further that learning-related
changes in perception could be distinguished from other, non-
learning changes (e.g., increased task familiarity, fatigue, and
other factors), we included conditions in which we expected
speech recognition to be at floor and ceiling levels of accuracy
throughout. Specifically, our comparison of post- vs. pretest
speech recognition included a more extreme range of sensory
detail than obtained during the training phase, i.e., one-channel
(unintelligible), six-channel (partially intelligible), and 24-channel
(highly intelligible) speech. Perceptual learning would be expected
only for the partially intelligible six-channel speech; thus, by
assessing the statistical interaction between sensory detail and
phase (post- vs. pretest), we could remove any nonlearning in-
fluences on behavioral or neural responses. (For a similar ap-
proach, see refs. 21 and 22.)
As shown in Fig. 2B, we observed a highly significant increase in

the accuracy of speech recognition at post- vs. pretest, indicating a
robust perceptual learning effect [F (1, 20) = 44.6, P < 0.001].
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Fig. 1. Overview of study design. (A) Illustration of the

distinction between the immediate influence of prior

knowledge and the more gradual influence of per-

ceptual learning. (Left) For mismatching prior knowl-

edge (provided by written presentation of the word

“song” before the presentation of the degraded spo-

ken word “moon”), perceptual clarity is low. However,

seconds later, perceptual clarity is enhanced dramati-

cally if prior knowledge matches speech content.

(Right) Perceptual learning results from practice at

perceptual tasks (e.g., recognition of degraded speech)

leading to gradual improvements in perceptual clarity

over a timescale of minutes, hours, or days. (B) Time-

line of the experiment including a timeline of example

trials for the pretest, training, and posttest phases.

Training trials were divided into three blocks (Train

1/Train 2/Train 3). (C) Summary of changes in behavioral

outcomes resulting from experimental manipulations of

sensory detail, prior knowledge, and perceptual learning.

All three manipulations enhance perceptual clarity or

accuracy and decrease listening effort.
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Furthermore, there was a significant interaction between
phase (pre/posttest) and sensory detail [one, six, or 24 channels;
F (2, 40) = 32.8, P < 0.001]. Planned contrasts of posttest >

pretest for each level of sensory detail revealed that learning was
significant only for six-channel speech [six channels: t (20) = 6.4,
P < 0.001; one channel: t (20) = −0.095, P = 0.463; 24 channels:
t (20) = 0.543, P = 0.296]. Although the average improvement in
the accuracy of speech recognition resulting from learning was
∼10%, individual learning scores varied considerably, with some
participants improving by as much as 22% and others showing
numerical reductions in recognition accuracy by up to 5%
(Fig. 2C).

MEG and EEG Training Phase. In the first stage of MEG and EEG
analysis, we identified the timing and spatial distribution of neural
responses modulated by manipulations of immediate speech
clarity during the training phase. We observed effects in a fronto-
temporal network for both sensory detail and prior knowledge
manipulations that emerged during the late (more than ∼232 ms)
portions of the evoked response. All reported effects are family-
wise error (FWE)-corrected for multiple comparisons across
sensors and time at the P < 0.05 level, unless stated otherwise.
Within the MEG (gradiometer) sensors, the first observable ef-

fect of increasing sensory detail involved an increase in neural re-
sponse at 232–332 ms (Fig. 3A). In contrast, providing matching
prior knowledge resulted in a decreasedMEG response at 232–800ms
(Fig. 3B). Distributed source reconstruction using all sensors
(EEG and MEG magnetometers and gradiometers) localized
both these effects to the left temporal cortex (including the su-
perior temporal gyrus, STG) (Fig. S1A). Spatially overlapping
but opposite effects of sensory detail and prior knowledge in the
STG are consistent with previous observations of neural re-
sponses to changes in the subjective clarity of degraded speech (23).
As in this previous work, the pattern was reversed in EEG sensors,

with decreased and increased neural responses for effects of
sensory detail and prior knowledge, respectively (Fig. S2A).
These latter effects localized to neural sources in the left inferior
frontal gyrus and to more posterior frontal sources in pre- and
postcentral gyri (Fig. S1A). Hence, enhancements in subjective
speech clarity modulate late brain responses in a fronto-temporal
network; the precise expression of this modulation depends on
the source of the clarity enhancement (i.e., increased sensory
detail or matching prior knowledge) and the neural locus of
underlying generators (i.e., temporal or frontal cortex). Note that
if these effects were caused simply by reduced listening effort
rather than by more specific changes in intrinsic perceptual pro-
cessing, one would not expect to observe any of the above disso-
ciations between the manipulations of sensory detail and prior
knowledge. We will return to this point in Discussion.
For our next stage of analysis, we tested whether neural pro-

cesses that are modulated by prior knowledge also contribute to
longer-term learning (as assessed by improved recognition accuracy
at post- vs. pretest). We used the sensor-space clusters showing a
significant effect of prior knowledge to define sensor × time vol-
umes of interest (VOIs) from which we extracted the MEG/EEG
signal (averaged across sensors and time for each participant). We
then tested whether the difference between matching and mis-
matching conditions in each of these VOIs was significantly cor-
related across subjects with the magnitude of improvement in
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Fig. 2. Group-level behavioral results. (A) In the training phase, matching

prior knowledge from written text led to an enhancement in immediate

speech clarity, as did the provision of increasing speech sensory detail. Error

bars represent ± two within-subject SEMs, similar to 95% confidence intervals

(85). Asterisks show the significance of planned t test comparisons (***P <

0.001). (B) Speech recognition accuracy was enhanced after training (at post-

test) compared with before training (at pretest), reflecting long-term per-

ceptual learning. Perceptual learning was significant only for speech with an

intermediate amount of sensory detail (six channels). (C) Box plots showing

variability in the magnitude of improvement in speech recognition (perceptual

learning). Red lines indicate the median, black box edges represent 25th and

75th percentiles, black lines cover the range of data points excluding outliers,

and red squares mark individual outliers. ch, channels.
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speech recognition post- vs. pretest (measured in the six-channel
condition for which performance was not at floor or ceiling). Note
that these two dependent measures are statistically independent
(36); therefore we could test for correlations between them without
double-dipping (37, 38). As shown in Fig. 3C, only one MEG VOI
(in the right hemisphere, at 312–792 ms) that was modulated by
prior knowledge significantly predicted individual differences in
the magnitude of learning [one-tailed Pearson’s r = −0.51, n = 21,
P (uncorrected) = 0.009; P < 0.025 Bonferroni-corrected across
two MEG VOIs].

MEG and EEG Pre- and Posttest Phases. Having characterized the
manner in which neural responses were modulated by prior
knowledge during training, we next assessed how neural responses
changed from the pre- to the posttest phase; these neural changes
accompany enhanced speech perception resulting from perceptual
learning. As in the training phase, speech was presented with
different amounts of sensory detail. Hence, we first tested whether
the same effect of sensory detail was present as during the training
phase, despite listeners performing a different (speech recognition)
task. As shown in Fig. 4A, increasing sensory detail again resulted
in an increased MEG response at 200–800 ms, similar to our
previous MEG observations for this manipulation during clarity-
rating tasks (23) and for hemodynamic studies that used either
clarity-rating (39, 40) or speech-recognition tasks (22, 24, 41).
We next assessed the effects of our critical learning manipula-

tion (i.e., the changes in neural responses post- vs. pretest). As
shown in Fig. 4B, the first observable effects of learning occurred
at 40 ms after speech onset and involved reductions in MEG re-
sponses following training (one cluster over the left-hemisphere
sensors at 40–112 ms and another over the right hemisphere at
68–108 ms). A later effect also was present at 448–760 ms but with
an opposite polarity (i.e., increased MEG response posttraining).
To test whether neural responses post- vs. pretest reflect per-

ceptual learning, as opposed to possible confounding factors such
as task familiarity, we assessed the statistical interaction between

experiment phase (pre/post test) and sensory detail (one, six, or
24 channels). We tested for this interaction in VOIs defined from
the clusters showing a significant effect of post- vs. pretest (similar
to our previous VOI analysis for the training phase). As shown
in Fig. 4C, the early post- vs. pretest VOI in the right hemisphere
(at 68–108 ms) showed a significant interaction with sensory
detail [F (2, 40) = 6.63, P (uncorrected) = 0.004; P < 0.025
Bonferroni-corrected across three MEG VOIs]. The same inter-
action effect was apparent in the left hemisphere (at 40–112 ms),
at an uncorrected threshold [F (2, 40) = 3.33, P (uncorrected) =
0.046; P = 0.138 Bonferroni-corrected across three MEG VOIs].
In the right-hemisphere VOI (68–108 ms), where the interaction
was more reliable, pairwise post hoc comparisons for each sen-
sory detail condition revealed a significant decrease in MEG
signal at post- vs. pretest for six-channel speech, as observed in
the behavioral data [one-tailed t (20) = −6.99, P < 10−6; P < 0.001
Bonferroni-corrected across three comparisons] and also for
24-channel speech [one-tailed t (20) = −5.26, P < 10−4; P < 0.001
Bonferroni-corrected across three comparisons]. In contrast,
there was no significant decrease for one-channel speech [one-
tailed t (20) = −1.26, P = 0.112; P = 0.335 Bonferroni-corrected
across three comparisons]. Distributed source reconstruction of the
interaction effect {[posttest − pretest (six channels + 24 channels)] <
[posttest − pretest (one channel)]} revealed a bilateral neural source
in the STG (Fig. S1B).
Thus, like the effect of prior knowledge, learning modulated

neural responses in the STG. Intriguingly, these two effects oc-
curred at markedly different latencies (>232 ms for prior knowl-
edge during training vs. 68–108 ms for perceptual learning shown in
the comparison of post- vs. pretest), a point to which we will return
in Discussion. Additionally, the observation of post- vs. pretest
changes in early MEG responses for 24-channel (as well as for six-
channel) speech suggests that the neural effects of perceptual
learning occur whenever speech is degraded but intelligible,
whether or not behavioral changes in recognition accuracy are
observed (accuracy scores were at ceiling for 24-channel speech
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throughout). Behavioral measures that are more finely grained
than recognition accuracy, such as response times or confidence,
might reveal a behavioral effect for the 24-channel condition also.
Note that our design is not optimal for observing the effects of
response time, because listeners were asked to wait for a cue
before giving their response to avoid contaminating the MEG
data with motor responses. Nonetheless, the presence of an in-
teraction between sensory detail and post- vs. pretest allows us to
rule out explanations of this effect in terms of nonlearning in-
fluences (e.g., increased task familiarity, fatigue, and other fac-
tors) on neural responses.
As an additional test of whether early MEG differences be-

tween responses post- vs. pretest were caused by neural effects
of perceptual learning, we correlated the MEG signal in each
of the two VOIs described above (averaged over the six- and
24-channel conditions that showed the strongest neural reduc-
tions) with the magnitude of improvement in recognition accu-
racy post- vs. pretest (for six-channel speech only, because
performance was at ceiling for 24-channel speech). As shown in
Fig. 4D, we found a significant correlation across subjects in
the right hemisphere VOI [one-tailed Pearson’s r = −0.46, n =

21, P (uncorrected) = 0.019; P < 0.05 Bonferroni-corrected
across two MEG VOIs]. This test also was significant when
correlating the MEG signal with the improvement in recognition
accuracy averaged over the six- and 24-channel conditions [one-
tailed Pearson’s r = −0.51, n = 21, P (uncorrected) = 0.0087; P <

0.025 Bonferroni corrected across two MEG VOIs]. In the left
hemisphere, where the interaction between phase and sensory
detail was weaker, there was no corresponding correlation (one-
tailed Pearson’s r = −0.042).
EEG sensor-space responses for this phase of the experiment

were analyzed also and showed a similar reduction post- vs. pre-
test, although at an intermediate latency of 124–220 ms (Fig. S2B).
However, this effect did not interact with sensory detail, nor did it
correlate with the magnitude of improvement in speech recogni-
tion over the test phases.
A final test for this stage of our analysis was designed to de-

termine whether the early effect of perceptual learning on neural
responses post- vs. pretest also was present during the training
phase. We used the two early clusters showing an effect of post-
vs. pretest to define VOIs within which we assessed how MEG
responses evolved over the three blocks of the training phase. As
with the early effect of post- vs. pretest, the right hemisphere
VOI (at 68–108 ms) showed a significantly reduced MEG re-
sponse over the three training blocks [F (2, 40) = 7.42, P (un-
corrected) = 0.0018; P < 0.05 Bonferroni-corrected across two
MEG VOIs] (Fig. S3A). Furthermore, planned comparisons
revealed a significant correlation across subjects between the
train 3 < train 1 effect and the magnitude of improvement in the
recognition of six-channel speech post- vs. pretest (one-tailed
Pearson’s r = −0.54, n = 21, P < 0.01) (Fig. S3B). In the left-
hemisphere VOI (at 40–112 ms), the MEG response also was
reduced significantly over the three training blocks [F (2, 40) =
11.80, P < 0.001], but the contrast of train 3 < train 1 did not
correlate significantly across subjects with the magnitude of im-
provement in speech recognition post- vs. pretest (one-tailed
Pearson’s r = −0.24).

Source Dipole Analysis. In our final analysis, we further tested
whether the same neural source in the temporal lobe was modu-
lated by prior knowledge and perceptual learning or whether these
two effects originated from spatially distinct neural sources (e.g.,
in the STG versus the middle temporal gyrus) (25, 26). We did
so by using a more constrained method of source reconstruction
(42) in which the center of neural activity in a local cortical patch
was modeled as a single focal source (an equivalent current dipole,
ECD) with a “soft” Bayesian prior for locations in bilateral STG.
We used two ECD sources (one in each hemisphere) to model

single-subject MEG activity modulated by prior knowledge at 312–
792 ms (matching–mismatching) and by perceptual learning at 68–
108 ms {[post-pre(6+24 channels)] − [post-pre(one-channel)]}.

As shown in Fig. 5A, the mean locations for both prior knowledge
(left hemisphere: x = −46, y = −29, z = +5; right hemisphere: x =
+44, y = −27, z = +6) and perceptual learning (left hemisphere:
x = −47, y = −26, z = +12; right hemisphere: x = +53, y = −26, z =
+3) manipulations were estimated to lie within the STG [assigned
objectively by the Statistical Parametric Mapping (SPM)
anatomy toolbox; see ref. 43] and in close proximity to each
other (mean locations were 7.68 mm apart in the left hemi-
sphere, and 9.54 mm apart in the right hemisphere). Repeated-
measures ANOVA of MNI coordinates with manipulation (prior
knowledge/perceptual learning) and hemisphere (left/right) as
factors revealed a significant interaction between manipulation
and hemisphere along the superior/inferior axis [F (1, 20) = 5.49,
P < 0.05]. Planned contrasts revealed a more superior STG source
modulated by perceptual learning vs. prior knowledge only in the
left hemisphere [left hemisphere: one-tailed t (20) = 2.06, P <

0.05; right hemisphere: one-tailed t (20) = 0.538, P < 0.3]. No
other differences in location were significant, although there was a
marginal main effect of manipulation on distance from the mid-
line [F (1, 20) = 4.25, P = 0.053] together with a marginal in-
teraction of manipulation × hemisphere [F (1, 20) = 3.07, P =

0.095] reflecting a tendency for a more lateral source modulated
by prior knowledge in the right hemisphere [right hemisphere:
one-tailed t (20) = 2.76, P = 0.006; left hemisphere: one-tailed
t (20) = 0.212, P = 0.418]. The same pattern of results was obtained
when looser constraints on the prior locations were used (Methods).
This ECD analysis therefore suggests that the prior knowledge

and perceptual learning effects have nearly identical spatial or-
igins. Although the precise locations are statistically different in
the left hemisphere, both locations were confirmed to reside in
the same anatomical structure (left STG). The corresponding lo-
cations in the right hemisphere are numerically indistinguishable.
The difference in ECD location observed in the left hemisphere
could reflect a subtle difference in the distributions of neural ac-
tivity occurring within overlapping regions of the STG, leading to
differently estimated locations for the modeled sources (44).
Planned contrasts of source strength support earlier sensor-

space and distributed-source reconstruction analyses (Fig. 5B).
Bilateral STG showed significant reductions in neural activity
resulting from prior knowledge [at 312 to 792 ms; left hemisphere:
t (20) = −8.58, P < 0.001; right hemisphere: t (20) = −2.68, P <

0.01] and from perceptual learning [at 68 to 108 ms; left hemi-
sphere: t (20) = −2.87, P < 0.01; right hemisphere: t (20) = −3.28,
P < 0.01]. We also confirmed that increasing sensory detail (24
channels vs. one channel) led to the opposite effect, i.e., increased
activity, in this region [from 204 to 740 ms; left hemisphere: t (20) =
5.58, P < 0.001; right hemisphere: t (20) = 3.43, P < 0.01]. Fur-
thermore, as shown in Fig. 5C andD, the reduction in the magnitude
of source strength in the right STG resulting from prior knowledge
(matching vs. mismatching) correlated significantly across subjects
with the behavioral magnitude of six-channel speech learning (one-
tailed Pearson’s r = −0.40, n = 21, P < 0.05), as did the reduction in
the magnitude of activity in right STG resulting from perceptual
learning (post- vs. pretest averaged over six and 24 channels; one-
tailed Pearson’s r = −0.55, n = 21, P < 0.01). As with earlier sensor-
space analyses, these correlations were not present in the left hemi-
sphere (prior knowledge: one-tailed Pearson’s r = −0.09; perceptual
learning: one-tailed Pearson’s r = −0.09).

Discussion

In the current study, we tested whether the influences of prior
knowledge and perceptual learning on speech perception arise
through common or dissociable neural mechanisms. When the
perception of degraded speech was supported by prior knowl-
edge of abstract phonological content (provided by the prior
presentation of matching written text), we replicated previous
findings of reduced speech-evoked responses in a peri-auditory
region of the STG (23). Critically, perceptual learning reduced
activity in a nearly identical region of the STG, and this reduction
correlated across subjects not only with the magnitude of the
learning-related change in behavior but also with the magnitude
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of the reduction in STG activity caused by prior knowledge. Thus,
these findings are consistent with a single-mechanism account:
More accurate prior expectations for degraded speech drive both
immediate and longer-term changes in sensory processing.

Common Mechanisms for Prior Knowledge and Perceptual Learning.
Previous behavioral studies have shown that the provision of
relevant prior knowledge enhances both immediate perceptual
clarity (1, 29, 35, 45, 46) and perceptual learning of degraded
speech (6, 14, 16–18). However, our work goes beyond these
behavioral studies by identifying a common neural signal (re-
ductions in the STG response) that is associated with both these
effects. Thus, we present the strongest evidence to date for a
single underlying mechanism.
One key issue in proposing a single-mechanism account is ruling

out the possibility that reductions in neural activity caused by prior
expectations and perceptual learning reflect changes in listening
effort that are a downstream consequence of enhanced sensory
processing. The need to distinguish between changes that reflect
the outcome of learning and the mechanisms that support learning
itself is an acknowledged issue for studies of perceptual learning in
a range of domains (34). The present study dissociated the neural
effects of prior knowledge and perceptual learning from effects
caused by changes in sensory detail. Rather than reducing neural
responses, improved speech intelligibility resulting from physically

clearer speech produced an increased STG response (compare
Figs. 1C and 5B). This increased response rules out the possibility
that reductions in response reductions are caused by epiphe-
nomenal changes in listening effort. Instead, our results support
more specific conclusions concerning predictive neural mecha-
nisms that we argue are responsible for changes in perception; we
expand on these conclusions later.
Despite the cross-subject correlations between the influences

of prior knowledge and perceptual learning, with nearly identical
spatial origins, we observed differences in the timing of imme-
diate and longer-term neural changes. The perceptual learning
effect in the STG was revealed as an early (∼100 ms) reduction
in the magnitude of the speech-evoked response, whereas the
response reduction caused by matching prior knowledge was
observed at a later latency (from 232 ms onward) as a sustained
modulation of the speech-evoked response. Despite this differ-
ence in timing, we maintain that these findings are consistent
with single-mechanism accounts. In these single-mechanism ac-
counts, the influence of prior knowledge on sensory processing is
contingent on information returning from higher-order levels of
representation (19, 20). In our study, these higher-level repre-
sentations were derived from prior written text, which can pro-
vide only abstract (i.e., nonacoustic) information about the
phonological content in speech (23, 47). The processing of this
higher-level information may invoke a delay in the top-down
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Fig. 5. Group-level source dipole analysis of MEG

gradiometer data. (A) Group means of source dipole

locations (shown as circles) overlaid onto an MNI-

space template brain for the neural effect of prior

knowledge (matching–mismatching) and perceptual

learning {[post–pretest (6+24 channels)] < [post–

pretest (one channel)]}. The spatial extent of the el-

lipses represents ± two SEMs. Also shown (yellow

circle) is the location prior mean used for the dipole

estimation procedure. (B) Dipole source strength in

the left and right STG as a function of increasing

sensory detail (24 channels vs. one channel), prior

knowledge (matching–mismatching), and perceptual

learning (post- vs. pretests). Error bars indicate ± two

within-subject SEMs. Asterisks show the significance of

planned comparisons: **P < 0.01; ***P < 0.001. (C) Right

STG dipole within which the effect of prior knowledge

(matching–mismatching conditions) on source strength

correlated across subjects with the behavioral magni-

tude of perceptual learning (improvement in speech

recognition post- vs. pretest for six-channel speech). (D)

Right STG dipole within which the effect of perceptual

learning (post- vs. pretest averaged over six- and 24-

channel speech) on source strength correlated across

subjects with the magnitude of learning-related

change in behavior (improvement in speech recogni-

tion post- vs. pretest for six-channel speech). ch, chan-

nels; M, matching; MM, mismatching.

6 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1523266113 Sohoglu and Davis

www.pnas.org/cgi/doi/10.1073/pnas.1523266113


effect of prior knowledge on sensory processing in the STG (e.g.,
if the higher-level phonological correspondence between speech
and prior written text is first assessed by frontal or somatomotor
regions). However, once top-down modulation of STG activity
has occurred, any effect will be preserved in the long-term
changes in synaptic connectivity intrinsic to the STG or in the
connectivity between this region and higher-level cortex. In
subsequent trials, these long-term changes will shape early,
bottom-up processing of future speech signals, even in the ab-
sence of top-down feedback (20).
The timing of the response reduction caused by perceptual

learning in the STG is remarkably early. This finding is without
precedent in previous functional MRI studies investigating per-
ceptual learning of degraded (vocoded) speech, not only because
of the lack of temporal resolution in previous studies but also
because these studies primarily have observed the effects of
learning in the thalamic or parietal and prefrontal regions (21, 22)
but not in the STG regions that are central to functional neuro-
anatomical accounts of speech perception (48, 49). However, the
finding is consistent with other neurophysiological and eye-track-
ing studies showing early changes in speech processing after per-
ceptual learning of synthetic (50–52) and ambiguous (53) speech
sounds and suggests that the long-term changes in sensory pro-
cessing observed here might have a more general role in sup-
porting the perception of degraded and accented speech. In the
next paragraphs we discuss some of the implications of these
findings for a single-mechanism account of perception and per-
ceptual learning of speech based on predictive coding principles.

A Predictive Coding Account of Speech Perception and Perceptual

Learning. Several computational accounts have proposed that a
single mechanism underpins the influences of both prior knowl-
edge and perceptual learning (19, 20, 54). We argue that one
account in particular, predictive coding, explains our findings most
completely (19, 55–61). This account, depicted in Fig. 6A, pro-
poses that perception arises from a hierarchical Bayesian in-
ference process in which prior knowledge is used top-down to
predict sensory representations at lower levels of the cortical hi-
erarchy. The difference between the observed and predicted
sensory input is computed at lower levels, and only discrepant
sensory input (prediction error) is propagated forward to update
higher-level perceptual interpretations. This predictive coding
theory makes a specific neural proposal concerning the mecha-
nisms by which the immediate influences of prior knowledge and
longer-term perceptual learning operate. In this view, each time
neural processing changes online to reduce prediction error (e.g.,
during exposure to spoken words preceded by matching written
text), synaptic connectivity between higher-level and sensory rep-
resentations (and vice-versa) is adjusted incrementally to match the
long-term statistics of sensory input, thereby also reducing pre-
diction error for future presentations of similar sounds (e.g., speech
produced with similar vocoding parameters or by talkers with the
same accent).
Computational simulations illustrate how this predictive cod-

ing architecture provides a unifying explanation for the observed
dissociation between the neural effect of increased sensory detail
and the effects of prior knowledge and perceptual learning; a
summary of the simulation method is shown in Fig. 6A and sim-
ulation outcomes are shown in Fig. 6 B and C; full details are
presented in Fig. S4 and in SI Methods and simulation parameters
are listed in Table S1. These simulations show how listening con-
ditions in which top-down predictions can more accurately explain
sensory input (e.g., from prior knowledge or perceptual learning)
result in reduced prediction error and therefore in reduced neural
activity while improving perceptual outcomes. Critically, this pre-
dictive coding mechanism explains how increases in sensory detail
lead to the opposite effect on neural responses, despite producing
the same behavioral outcome: An increase in sensory information
necessarily results in a larger prediction error unless there is an
accompanying prediction for that sensory information. These op-
posing effects are consistent with our observations in the STG

and are difficult to explain with accounts in which STG activity is a
simple function of perceptual clarity or listening effort (23). Thus,
our results are better explained by predictive coding theory in
which a single mechanism, minimization of prediction error,
drives the immediate perceptual effects of prior knowledge and
sensory detail as well as the longer-term perceptual learning of
degraded speech.
To simulate longer-term perceptual learning of degraded speech,

we use changes in the precision or variance of sensory predictions.
Optimal perceptual outcomes and minimal prediction errors occur
when the precision of sensory predictions match the precision of
the sensory input (62). Such changes increase the amount of in-
formation in updated perceptual hypotheses and hence the ac-
curacy of perceptual outcomes while decreasing the magnitude
of prediction error. These changes therefore are in line with the
behavioral and neural effects of perceptual learning observed in
our experiment. As described in SI Discussion, this account pro-
vides a neural implementation of “attentional weighting” theories
of perceptual learning (5); with learning arising from Hebbian
weight updates that minimize prediction errors when degraded
speech matches prior predictions. This account therefore explains
why perceptual learning of vocoded speech is enhanced when the
content of degraded speech is predicted accurately (6, 18); these trials
lead to learning by allowing listeners to attend more appropriately
to informative sensory features in degraded speech (5, 7, 62, 63).

Methods
Participants. Twenty-one (12 female, 9 male) right-handed participants were

tested after giving informed consent under a process approved by the

Cambridge Psychology Research Ethics Committee. All were native English

speakers, aged 18–40 y (mean ± SD, 22 ± 2 y) and had no history of hearing

impairment or neurological disease based on self-report.

Spoken Stimuli. A total of 936 monosyllabic words were presented in spoken

or written format. The spoken words were 16-bit, 44.1 kHz recordings of a

male speaker of southern British English, and their duration ranged from

372–903 ms (mean ± SD = 591 ± 78 ms).

The amount of sensory detail in speech was varied using a noise-vocoding

procedure (64), which superimposes the temporal envelope from separate

frequency regions in the speech signal onto white noise filtered into cor-

responding frequency regions. This procedure allows parametric variation of

spectral detail, with increasing numbers of channels associated with in-

creasing intelligibility. Vocoding was performed using a custom Matlab

script (The MathWorks, Inc.), using 1, 3, 6, 12, or 24 spectral channels loga-

rithmically spaced between 70 and 5,000 Hz. Envelope signals in each

channel were extracted using half-wave rectification and smoothing with a

second-order low-pass filter with a cutoff frequency of 30 Hz. The overall

rms amplitude was adjusted to be the same across all audio files.

Each spoken word was presented only once in the experiment so that

unique words were heard in all trials. The particular words assigned to each

condition were randomized across participants. Before starting the speech-

recognition and clarity-rating tasks, participants completed brief practice

sessions, each lasting approximately 5 min, that contained all the conditions

of the subsequent experimental phase but used a corpus of words different

from those used in the main experiment. Stimulus delivery was controlled

with E-Prime 2.0 software (Psychology Software Tools, Inc.).

Training Phase. During the training phase, participants completed a modified

version of the clarity-rating task previously used in behavioral and MEG

studies combined with a manipulation of prior knowledge previously shown

to enhance perceptual learning of degraded (vocoded) speech (Fig. 1B) (6, 18,

23). Speech was presented with three, six, or 12 channels of sensory detail.

Prior knowledge of speech content was manipulated by presenting mismatch-

ing or matching text before speech onset (Fig. 1B). Written text was composed

of black lowercase characters presented for 200 ms on a gray background.

Mismatching text was obtained by permuting the word list for the spoken

words. As a result, each written word in the mismatching condition also was

presented as a spoken word in a previous or subsequent trial, and vice versa.

Trials commenced with the presentation of a written word, followed 1,050

(±0–50) ms later by the presentation of a spoken word (Fig. 1B). Participants

were cued to respond by rating the clarity of each spoken word on a scale

from 1 (not clear) to 4 (very clear) at 1,050 (±0–50) ms after speech onset.

The response cue consisted of a visual display of the rating scale, and responses
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were recorded by a four-button box manipulated by the participant’s right

hand. Subsequent trials began 850 (±0–50) ms after the participant responded.

Manipulations of sensory detail (three-, six-, or 12-channel speech) and

prior knowledge of speech content (mismatching/matching) were fully

crossed, resulting in a 3 × 2 factorial design for this part of the experiment

with 78 trials in each condition. Trials were randomly ordered during each of

three presentation blocks of 156 trials.

Pre- and Posttest Phases. Before and after the training phase, participants

completed a speech-recognition task using unintelligible, partially intelligi-

ble, or highly intelligible vocoded words. Speech was presented with one, six,

or 24 channels of sensory detail, and participants were cued to respond by

reporting each spoken word 1,050 (±0–50) ms after speech onset (Fig. 1B).

The response cue consisted of a visual display of the words “Say word,” and

vocal responses were recorded with a microphone. Subsequent trials began

850 (±0–50) ms after the participant pressed a button on a response box

using the right hand.

To calculate the accuracy of speech recognition, vocal responses were first

transcribed using the DISC phonemic transcription in the CELEX database

(65). These transcriptions subsequently were compared with the phonemic

transcriptions of the word stimuli using a Levenshtein distance metric that

measures the dissimilarity between two strings (66). To convert this metric

into a measure of speech-recognition accuracy, the Levenshtein distance for

each stimulus–response pair was expressed as a percentage of the length of

the longest string in the pair and was subtracted from 100%. The result is a

highly sensitive measure of speech-recognition accuracy, similar to the pro-

portion of segments correctly recognized but with partial credit given for

segments recognized correctly but in incorrect positions. Even words that

are incorrectly recognized can produce highly accurate scores (e.g., report-

ing “haze” as “daze” would result in a score of 67%).

For this part of the experiment sensory-detail conditions (one-, six-, or 24-

channel speech) and phase (pre/post test) were combined to produce a 3 × 2

factorial design with 78 trials in each condition. The pre- and posttest phases

each consisted of 234 randomly ordered trials sampled equally from the

three sensory-detail conditions.

Data Acquisition and Preprocessing. Magnetic fields were recorded with a

VectorView system (Elekta Neuromag) containing a magnetometer and two

orthogonal planar gradiometers at each of 102 positions within a hemispheric

array. Electric potentials were recorded simultaneously using 68 Ag-AgCl

sensors according to the extended 10–10% system and referenced to a sensor

placed on the participant’s nose. All data were digitally sampled at 1 kHz and

high-pass filtered above 0.01 Hz. Head position and electro-oculography ac-

tivity were monitored continuously using four head-position indicator (HPI)
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Fig. 6. Depiction of a predictive coding theory of the perception of degraded speech based on the current data, following standard assumptions (19, 55–61).

(A) The graphs depict simulated responses when hearing 24-channel vocoded speech during pre- and posttest phases (i.e., without a matching/mismatching prior). For

responses in other conditions see Fig. S4; for simulation methods see SI Methods and Table S1. Behavioral and neural outcomes are determined by the interactions

between two hierarchically organized levels of representation: sensory (acoustic–phonetic) features (STG) and phonological categories (frontal and somatomotor

regions). These representations are depicted in the bar graphs, intended to reflect neuronal activation over different regions of the cortex and organized by

perceptual similarity. Perceptual hypotheses about the phonological content of speech (e.g., two phonological categories, A and B, color-coded blue and red, re-

spectively) are formed in frontal regions and conveyed top-down to the STG as predictions for upcoming sensory features via weights (solid pink arrow) that encode

expected feature values (e.g., voice onset time, VOT). We have color coded these phonological predictions (and the corresponding sensory feature predictions and

prediction errors) to indicate their associated category, although activation values at the sensory level are always summed over the two categories. These feature

predictions are subtracted from the pattern of sensory input received by the STG, and the resulting feature prediction errors then are returned via weighted con-

nections (solid pink arrow) to the frontal regions and are used to update predictions for categories A and B. In this scheme, increases in speech sensory detail (broken

orange arrow) produce more informative feature-activation patterns in sensory input units that favor certain phonological categories (in the depicted example, a

sensory signal for category A). In contrast, both prior knowledge and perceptual learning manipulations modulate top-down predictions for future sensory activation

patterns, although in different ways. Changes in prior knowledge (broken blue arrow) modulate the relative likelihood of the two categories encoded by activity in

phonological prediction units. Perceptual learning (broken pink arrows) modulates the connection weights that map between categories and features. (B) Simulated

perceptual outcomes based on updated predictions in frontal phonological units for key experimental conditions. The relativemagnitude of the updated phonological

predictions for categories A versus B [log(A)-log(B)] accurately simulates the qualitative pattern observed in behavioral data: Clarity ratings and recognition accuracy

for category A are increased by all three manipulations (comparable to the changes shown in Fig. 1C). (C) Simulated feature prediction error values in different

perceptual conditions. The summed (absolute) prediction error simulates the qualitative pattern of neural responses in the STG (Fig. 5B). ch, channels.
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coils and two bipolar electrodes, respectively. A 3D digitizer (FASTRAK;

Polhemus, Inc.) was used to record the positions of the EEG sensors, HPI coils,

and ∼70 additional points evenly distributed over the scalp relative to three

anatomical fiducial points (the nasion and left and right preauricular points).

Data from the MEG sensors (magnetometers and gradiometers) were

processed using the temporal extension of Signal Source Separation (67) in

MaxFilter software (Elekta Neuromag) to suppress noise sources, compen-

sate for motion, and reconstruct any bad sensors. Noisy EEG sensors were

identified by visual inspection and were excluded from further analysis.

Subsequent processing was done in SPM8 (Wellcome Trust Centre for Neu-

roimaging) and FieldTrip (Donders Institute for Brain, Cognition and Be-

havior) software implemented in Matlab. The data were down-sampled to

250 Hz and epoched from −100 to 800 ms relative to speech onset. After

epoching, the data were baseline-corrected relative to the 100-ms prespeech

period and low-pass filtered below 40 Hz, and the EEG data were referenced

to the average over all EEG sensors. Finally, the data were robust averaged

across trials (68, 69) to down-weight outlying samples, minimize non–phase-

locked activity, and derive the evoked response. To remove any high-frequency

components that were introduced to the data by the robust averaging

procedure, low-pass filtering was repeated after averaging.

Sensor-Space Statistical Analysis. Before statistical analysis, the data were

converted into 3D (2D sensor × time) images by spherically projecting onto a

32 × 32 pixel plane for each epoch time-sample (between 0 and 800 ms) and

were smoothed using a 10 mm × 10 mm × 25 ms Gaussian kernel. In the case

of gradiometers, an additional step involved combining the data across each

sensor pair by taking the rms of the two amplitudes. Following conversion

into images, F tests for main effects were performed across sensors and time

while controlling the FWE rate across all three data dimensions using ran-

dom field theory (70). Reported effects were obtained by using a cluster

defining a height threshold of P < 0.001 with a cluster extent threshold of

P < 0.05 (FWE-corrected) under nonstationary assumptions (71).

Follow-up interactions and correlations with behavior were conducted on

MEG/EEG signals averaged across sensors and time from clusters showing

significant main effects (see Results for more details). Importantly, these

follow-up tests are statistically independent from the main effects and

hence can be conducted without double-dipping (36–38).

Source Reconstruction. To determine the underlying brain sources of the sensor-

space effects, distributedmodels were first used to reconstruct activity across the

whole cortex. The results of this first-source reconstruction subsequently in-

formed a more constrained ECD method of reconstructing focal sources. Both

these analyses depended on participant-specific forward models, using single

shell and boundary element models for the MEG and EEG sensors, respectively.

Computation of these forward models involved the spatial normalization of a

T1-weighted structural MRI scan obtained from each participant to the MNI

template brain in SPM8. The inverse transform of this spatial normalization was

used to warp the cortical, inner skull, outer skull, and scalp meshes of the

template brain to the participant’s MRI space. Sensor positions were projected

onto each subject’s MRI space by minimizing the sum of squared differences

between the digitized fiducials and the MRI scan fiducials and between the

digitized head shape and the template scalp mesh. For five participants, a

structural MRI scanwas not available; in these cases the spatial normalization of

the MNI template brain was based on the digitized fiducials and head shape.

For the distributed models, a multimodal source inversion scheme was used

to integrate data from all three neurophysiological measurement modalities

(EEG andMEGmagnetometers and gradiometers); this scheme has been shown

to givemore precise localization than obtained by considering eachmodality in

isolation (72). This scheme is implemented within the parametric empirical

Bayes framework of SPM8 (73–75). This approach allows the use of multiple

priors, in the form of source covariance matrices, which constrain the resulting

source solutions and are optimized by maximizing the negative free-energy

approximation to the model evidence (76). In the current study, we used the

LOR set of priors in SPM8, so that all sources were assumed a priori to be equally

activated (by specifying the source covariance matrix as an identity matrix) and

spatially correlated (by introducing a spatial dependency between mesh verti-

ces that were, on average, 6 mm apart). This method produces smooth solu-

tions similar to those obtained by the LORETA method (77), which are

appropriate for assessing activation overlap across participants. Multimodal

fusions of the data were achieved by using a heuristic to convert all sensor data

to a common scale and by weighting additional error covariance matrices for

each sensor type to maximize the model evidence (72, 75). Such an approach

allows the noise levels associated with each sensor type to be estimated directly

from the data; by maximizing the negative free energy, sensor types with high

estimated levels of noise contribute less to the resulting source solutions. A final

constraint was imposed so that source solutions were consistent across partici-

pants; this constraint has been shown to improve group-level statistical power

(74). Significant effects from sensor space were localized within the brain by

summarizing source power in the 1–40 Hz range for each participant and the

time window of interest using a Morlet wavelet projector (78). Time windows

were selected based on the temporal extent of significant statistical clusters

observed in sensor space. One exception to this method is the temporally ex-

tended increase in EEG response resulting from matching prior knowledge that

occurs 148–800 ms after speech onset (Figs. S1A and S2A). Because source re-

construction during this extended time window did not reveal reliable activa-

tions, we shortened the time window to 148–232 ms to localize only the onset

of this prior-knowledge effect. Source power estimates subsequently were

converted into one-tailed pairwise t statistics for each effect of interest. Given

that the goal of source reconstruction was to localize the neural generators of

sensor-space effects previously identified as significant, statistical maps of

source activity are displayed with an uncorrected voxelwise threshold (P < 0.05).

Two ECD models were computed for each participant’s MEG planar gradi-

ometer data using the variational Bayes scheme implemented within SPM8

(42): one for the effect of prior knowledge time-averaged at 312–792 ms and

another for the effect of perceptual learning at 68–108 ms. To avoid local

maxima, the ECD procedure was run 100 times for each model using different

initial location and moment parameters and selecting the solution with the

highest model evidence. The mean prior locations for these models were lo-

cated in the left (x = −54, y = −26, z = +4) and right (x = +52, y = −16, z = +2)

STG as revealed in the distributed source reconstruction of the matching <

mismatching effect and had a SD in each direction of 5 mm. Across all gradi-

ometer sensors, the group mean percentage of variance explained by the

resulting ECD models was 75 ± 11% for the effect of prior knowledge and 77 ±

9% for the effect of perceptual learning. This analysis also was run with looser

constraints on the prior locations (SDs of 7.07 and 10 mm), but there was no

significant interaction between effect type (prior knowledge/perceptual

learning) and degree of constraint (5-/7-/10-mm SD) on ECD locations (all Ps >

0.1). Furthermore, when ANOVAs of dipole locations were conducted sepa-

rately for each degree of constraint, the same main effects (of effect type and

hemisphere) and interactions were significant across all degrees of constraint.

Thus, reported results (using SD = 5 mm) are robust over a wide range of

constraints on ECD locations. Source activity for the three critical contrasts

(sensory detail, prior knowledge, and perceptual learning) was extracted

from dipoles based on the mean location and orientation across ECD

models and participants by using the inverse of each participant’s forward

model (which maps activity from sources to sensors).
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SI Methods

In this predictive coding account of the perception of degraded
speech (depicted in Fig. 6A), perceptual and neural outcomes are
determined by interactions between two hierarchically organized
levels of representation: sensory (acoustic–phonetic) features
(assumed to be represented in the STG) and categorical pho-
nological representations (in higher-level inferior frontal and
precentral gyri). Simulations of these interactions were informed
by standard predictive coding views of perception (19, 55–61) in
which perceptual hypotheses generate predictions for expected
sensory input, and prediction errors (the difference between
expected and actual sensory input) are used to update perceptual
hypotheses. These updated perceptual hypotheses (Fig. 6B) are
assumed to correlate with behavioral outcomes (clarity ratings or
recognition accuracy). The summed absolute magnitude of the
prediction error (shown in Fig. 6C) is assumed to correlate with
the magnitude of neural responses measured in the STG in our
experiment. Our simulation therefore follows other predictive
coding accounts (19, 55, 60, 79) in assuming that prediction error
signals within neocortical hierarchies are generated by large
pyramidal neurons found in superficial cortical laminae. These
neurons are proposed to be a significant contributor to the MEG
signal because their dendrites are aligned and oriented perpen-
dicular to the cortical surface (80).
In our simulation of degraded speech perception, we explored

how a single sensory feature (e.g., VOT) could be used to dis-
tinguish between two phonological categories (e.g., voiced and
unvoiced segments such as /b/ and /p/). Feature and phonological
levels of representation were both modeled by assigning activa-
tion values to a set of units that represent a probability density
function (PDF) as depicted in the bar graphs of Fig. 6A and Fig.
S4). These PDFs might be instantiated neurally as population
codes (81, 82). For example, each unit along the x axis of a PDF
could represent a cortical region maximally responsive to the
phonological category or sensory feature indicated by its position
on the x axis. Thus, hearing the segment /b/ on a single trial
would produce maximal activation in a cortical region tuned to
that segment (corresponding to the peak of the PDF) and also
would produce activation in other regions tuned to perceptually
similar representations (corresponding to the tails of the PDF).
There were two units representing each of the two phonological
categories (A and B), whereas sensory feature representations
were more graded or continuous, encoding the distribution of
likely feature values over 21 arbitrarily scaled units.
Despite the considerable oversimplification in modeling the

processing of only a single sensory feature, VOT, our simulation
illustrates how predictive coding computations can explain the
impact of three key experimental manipulations of behavioral and
neural responses: changes in sensory detail, (mis)matching prior
knowledge, and perceptual learning. All three factors can en-
hance perceptual outcomes in a similar way (shown by the updated
state of perceptual hypotheses after processing new sensory input)
but differentially impact neural responses (i.e., the summed ab-
solute magnitude of prediction error).
Distributions of sensory features in the input were generated

from two underlying PDFs, one for each phonological category,
with the amount of sensory detail determining the area under the
two curves (i.e., the probability of each category being present in
the input). For highly degraded (one-channel) speech, the two
categories had nearly equally probabilities (0.55 vs. 0.45). For
clear (24-channel) speech, the two categories had very different
probabilities (0.95 vs. 0.05). For six-channel speech, the level of

sensory detail used to simulate manipulations of prior knowledge
and perceptual learning (see below), intermediate values (0.75 vs.
0.25) were specified. These parameter values are also listed in
Table S1.
When simulating the effects of sensory detail (24 channels versus

one channel) and perceptual learning (post- versus pretest phases),
predictions for the current sensory input were neutral (i.e., both
phonological categories were equally likely, with a probability of
0.5, reflecting the absence of strong prior knowledge from written
text in these conditions). However, when simulating effects of prior
knowledge (matching vs. mismatching), predictions were biased
toward one or other category (i.e., having a probability of 0.75 for
the predicted category and 0.25 for the nonpredicted category;
chosen to reflect the likelihood of prior expectations from written
text matching the sensory signal in the experiment). These per-
ceptual hypotheses were multiplied by a 2 × 21 element weight
matrix to generate a distribution of predicted sensory features
associated with these perceptual hypotheses. These weights specify
two PDFs that expressed the mean value of the sensory feature
and the SD or precision of the predicted sensory feature associ-
ated with each phonological category (see Table S1 for parameter
values used to generate these weights).
In simulating perceptual learning, reductions in prediction error

were attributed to changes in the variance or precision of predictions
for sensory features. Optimal perceptual outcomes and minimal
prediction errors occurred when the precision of sensory predictions
matched the precision of the sensory input (62). We therefore
simulated perceptual learning by contrasting perceptual outcomes
and prediction errors, during a pretraining period in which the
distribution of sensory features was more precise than predicted,
with a posttraining period in which predictions were made with an
increased precision that matched the sensory input (i.e., we used
identical parameters for the SD of the category-to-feature weights
and the sensory input in Table S1). This change in precision had
the effect of increasing the amount of information in updated
perceptual hypotheses and hence the accuracy of perceptual
outcomes while still decreasing the magnitude of prediction error
and hence the magnitude of the STG response. These changes
therefore are in line with the behavioral and neural observations
in our experiment.

SI Discussion

In functional terms, an increase in the precision of sensory
predictions has the effect of increasing the amount of information
gained from sensory features. This increase in precision therefore
provides a neural implementation of “attentional weighting”
theories (5) in which perceptual learning derives from using in-
formative features during perception more appropriately while
down-weighting uninformative features (7, 62, 63). We note that
previous studies of perceptual learning of vocoded speech have
shown that enhanced consonant identification is associated with
increased information transmission for voicing and manner but
not for place of articulation features (83). This finding is con-
sistent with an attentional weighting account because it also has
been shown that place features are more degraded by vocoding
than voicing or manner features (64). Similar changes in in-
formation transmission—upweighting of informative phonetic
features—have been shown for perceptual learning of spectrally
rotated speech (84).
A significant contribution of the present experimental work is

that we show a cross-subject correlation between the magnitude
of the reduction of neural activity by prior knowledge during

Sohoglu and Davis www.pnas.org/cgi/content/short/1523266113 1 of 6

www.pnas.org/cgi/content/short/1523266113


training and the magnitude of perceptual learning (improved
speech recognition accuracy) for post- versus pretraining test
sessions. In our simulation, trials in which degraded speech fol-
lows matching text are associated with both a distinctive behav-
ioral outcome (i.e., confident perceptual identification) and a
triphasic profile of sensory prediction errors (Fig. S4B, matching
trials). A mechanism by which our simulation could explain the
observed cross-subject correlation is that, after successful percep-
tion, a Hebbian learning rule modifies the weights that link

phonological representations and sensory features. For this
account, the direction and magnitude of weight changes is de-
termined by the magnitude and sign of sensory prediction error.
The triphasic pattern of prediction error (Fig. S4B, matching trials)
therefore would result in weight changes that lead to a narrower
distribution of predicted sensory features on subsequent trials
(i.e., increased precision for sensory predictions)—exactly the
weight changes that differentiate the pretraining and posttraining
test sessions.
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Fig. S1. Distributed source reconstruction of sensor-space effects overlaid onto a template brain (using data from all sensors, including EEG and MEG

magnetometers and gradiometers). The upper and lower rows show lateral views of the left and right hemispheres, respectively. (A) Training phase. Red and

blue colors indicate increases and decreases in source power for enhanced speech clarity ratings, respectively. (B) Pre- and posttest phases. Red and blue colors

indicate increases and decreases in source power for enhanced speech recognition accuracy, respectively. ch, channels; M, matching; MM, mismatching.
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Fig. S2. Group-level effects in EEG sensors, plotted as in Fig. 3. (A) Training phase. (B) Pre- and posttest phases. ch, channels; M, matching; MM, mismatching.
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Fig. S3. (A) Effects of block number on neural responses during the training phase. From 68–108 ms after speech onset, the MEG response is reduced in

magnitude across the three blocks of the training phase (similar to the post- vs. pretest effect) in sensors shown as black circles on the topographic plot. Error

bars indicate ± two within-subject SEMs; the topography represents the difference in MEG response between training blocks 3 and 1. (B) The difference in MEG

(gradiometer) response between training blocks 3 and 1 also correlated across subjects with the magnitude of learning-related change in behavior (im-

provement in speech recognition post- vs. pretest for six-channel speech).
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Fig. S4. Predictive coding simulations of key experimental conditions. For an overview of the simulation method, see Fig. 6 and its accompanying legend and

SI Methods. A full set of parameters used for these simulations is listed in Table S1. (A) Sensory detail simulations (24 channels versus one channel during pre-

and posttest phases). In these conditions listeners heard speech without prior written text, and hence phonological categories A and B were equally predicted

(light blue boxes, equivalent to a neutral prior). As sensory detail increased from one channel to 24 channels, the sensory input more clearly favored category A

(orange boxes), leading to increased feature prediction error (shown in purple boxes, linked to neural responses in the STG) and, in turn, to updated pre-

dictions and more accurate perceptual outcomes (shown in green boxes, linked to clarity or recognition accuracy measures). (B) Prior knowledge simulations

(matching vs. mismatching conditions, six-channel speech heard during the training phase). In these simulations speech provided intermediate sensory evi-

dence for category A (orange boxes) which was inconsistent (mismatching trials) or consistent (matching trials) with prior predictions (light blue boxes).

Mismatching prior predictions resulted in a large discrepancy between predicted and actual sensory input and hence large errors in feature prediction (purple

boxes) associated with larger STG responses. In the mismatching condition, these prediction errors were insufficient to overcome the strong prediction for

category B leading to inaccurate perceptual outcomes (green box). By comparison, in the matching condition there was good correspondence between

predicted and actual sensory input (because both favored category A), resulting in small errors in feature prediction (purple box) and more accurate perceptual

outcomes (green box). (C) Simulated effects of perceptual learning (post- versus pretest phases, six-channel speech). As in the manipulation of prior knowl-

edge, errors in feature prediction were reduced in post- vs. pretest phases because of better correspondence between predicted and actual sensory input.

However, this reduction in prediction error arose even though speech in the pre- and posttest conditions was presented without prior written text and

therefore without strong predictions for specific categories, as in panel A. Rather, perceptual learning arose from changes in connection weights that map

between categories and features (shown as pink arrows), which increase their precision (i.e., reduce their variance) to match better the precision (variance) of

the sensory input. Before training, predictions for sensory features (light blue box) came from a more variable distribution than the sensory input and

therefore generated nonoptimal prediction errors (purple box). In effect, these predictions underestimated the informativeness of the sensory input, and

therefore updated predictions (green box) were not fully accurate. Posttraining, however, the distribution of predicted feature values (light blue box) more

closely approximated the sensory input (orange box), reflecting a more accurate estimate of the informativeness of the sensory input. These more accurate

predictions resulted in reduced feature prediction error (purple box) and more accurate perceptual outcomes (green box). Thus, perceptual learning in this

simulation arises through more appropriate weighting of sensory features in degraded speech signals (see SI Methods for details).
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Table S1. Full parameters for computational simulations described in Fig. 6 and Fig. S4 and associated legends

Simulation parameters

Condition

1 ch 24 ch MM (6 ch) M (6 ch) Pretest (6 ch) Posttest (6 ch)

Prediction (categories)

P A (B) 0.5 (0.5) 0.5 (0.5) 0.25 (0.75) 0.75 (0.25) 0.5 (0.5) 0.5 (0.5)

Category-to-feature weights

Mean A (B) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5)

SD A (B) 3 (3) 3 (3) 3 (3) 3 (3) 4 (4) 2 (2)

Sensory input (features)

P A (B) 0.55 (0.45) 0.95 (0.05) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25)

Mean A (B) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5) −2.5 (+2.5)

SD A (B) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

Other parameters

Update: 0.5

Feature set: −10:+10

See SI Methods for additional details. The first numerical values in each cell concern category A, and those in parentheses concern category B. P A (B)

specifies the relative probability (activation) for category A (or B) at the phonological level. The category-to-feature weights that converted these phonological

representations into sensory feature representations at a lower level (and vice-versa, that converted sensory prediction errors into phonological prediction

errors) are specified as PDFs, each with a mean and SD. Activations in sensory input units also are specified as PDFs (one for each of the two categories)

characterized by mean and SD parameters. The relative area under each of the two PDFs represents the probability of each category being present in the input.

These relative areas were used to simulate the manipulation of sensory detail, with increases in sensory detail leading to stronger sensory evidence for one or

the other category. The update parameter served to scale how much phonological predictions were updated in response to phonological prediction error. The

feature set parameter is a vector that specifies the range of units over which the PDFs were computed (essentially, the range of values in the x axis on the

feature graphs in Fig. 6 and Fig. S4). ch, channels; M, matching; MM, mismatching.
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