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1Visual Computing Laboratory, ISTI-CNR, Italy
2Université de Poitiers, CNRS, XLIM-SIC UMR 7252, France

3Université de Lyon, CNRS, Insa-Lyon, LIRIS UMR 5205, France
4Centre of Computer Graphics and Visualization, University of West Bohemia, Czech Republic

5GIPSA-lab, CNRS UMR5216, France

Abstract

Almost all mesh processing procedures cause some more or less visible changes in the appearance of objects rep-
resented by polygonal meshes. In many cases, such as mesh watermarking, simplification or lossy compression,
the objective is to make the change in appearance negligible, or as small as possible, given some other con-
straints. Measuring the amount of distortion requires taking into account the final purpose of the data. In many
applications, the final consumer of the data is a human observer, and therefore the perceptibility of the introduced
appearance change by a human observer should be the criterion that is taken into account when designing and
configuring the processing algorithms.
In this review, we discuss the existing comparison metrics for static and dynamic (animated) triangle meshes. We
describe the concepts used in perception-oriented metrics used for 2D image comparison, and we show how these
concepts are employed in existing 3D mesh metrics. We describe the character of subjective data used for evalu-
ation of mesh metrics and provide comparison results identifying the advantages and drawbacks of each method.
Finally, we also discuss employing the perception-correlated metrics in perception-oriented mesh processing al-
gorithms.

Categories and Subject Descriptors (according to ACM CCS): Models And Principles [H.1.2]: User/Machine
Systems—Human Factors

1. Introduction

With technological advances in telecommunication, hard-
ware design and multimedia, the use of 3D data is now well
established in several industrial domains, like digital enter-
tainment, scientific visualization, computer-aided design, ar-
chitecture and many others. The 3D content is mostly rep-
resented by polygonal meshes, or sequences of polygonal
meshes (i.e. dynamic meshes), which may be associated with
colour information or texture maps. For its transmission,
protection, visualization or manipulation, this 3D content is
subject to a wide variety of processing operations such as
compression, filtering, simplification, watermarking, and so
forth. These operations introduce distortions which may al-
ter the visual quality of the 3D content; this is a critical issue,
as these processing operations are often targeted at human-
centred applications with viewing as the intended use.

A main problem is that most existing processing algo-
rithms (e.g. simplification, watermarking, compression) are

driven and/or evaluated by simple metrics like Hausdorff
distance and root mean square error (RMS), which are not
correlated with human vision. For instance, the three dis-
torted models on the right in Figure 1 are all associated with
the same RMS distance from the original model (on the left);
however, the respective visual quality of each of them is
very different. Hence, some objective quality metrics have
been introduced; their goal is to produce a score that pre-
dicts the subjective visual quality (or the visual impact of the
distortion) of a distorted 3D model with respect to a refer-
ence (distortion-free) model. These objective scores should
be statistically consistent with those of human observers.
Such perception-oriented metrics are of major importance
for Computer Graphics; they provide a whole new paradigm
for the evaluation, control and optimisation of many kinds of
processing operations.

In the field of 2D image processing, the research on ob-
jective quality assessment metrics is highly developed, and
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Figure 1: Original and distorted versions of the Horse model, all associated with the same maximum root mean square
error (MRMS = 1.05×10−3). (a) Original model. Results after (b) watermarking from Wang et al. [WLDB11], (c) Laplacian
smoothing [Tau00], (d) Gaussian noise addition.

some of the quality metrics for 3D meshes build on the con-
cepts originally proposed in the context of image quality
evaluation. Hence, the next section presents quality metrics
and perceptually-related works for 2D images. Then, sec-
tions 3 and 4 respectively present these topics for 3D static
and dynamic meshes. Section 5 attempts to evaluate and
compare these metrics, while section 6 focuses on two ap-
plications for which perceptual metrics are highly relevant:
compression and watermarking.

2. Human perception and metrics for 2D images

This section is constructed around two parts. In the first part,
an overview is given of the main characteristics of human
perception that have been widely exploited in recent years.
It allows one to have a better understanding of the major phe-
nomena of the Human Visual System (HVS), such as sensi-
tivity to contrast, visual masking, and so on. The second part
tackles the very active field of quality assessment of 2D im-
ages by highlighting the different families of metrics and the
ways the HVS is integrated in the developed models.

2.1. Human perception

Understanding human perception and cognition, and model-
ing the Human Visual System (HVS) behavior is an essen-
tial step for developing image-based applications [Wan95].
This allows one to take advantage of the end-user percep-
tion in order to hide or highlight specific details and thus
evaluate the perceived quality of an image or an image se-
quence [SPC04, Win02].

The HVS perceives a stimulus depending on its
colour/intensity, orientation, and also on its spatial distribu-
tion. This important phenomenon caused by the visual cor-
tex allows one to avoid capturing useless information (e.g. a
white and black grating at a high spatial frequency will be
seen as a grey stimulus). Figure 2 has been introduced by
Campbell and Robson [CR68] to explain the phenomenon.

It represents a sine-wave stimulus varying in contrast on the
y-axis and in spatial frequency on the x-axis. One can deter-
mine his own contrast sensitivity by identifying the different
points beyond which the stimulus cannot be distinguished
from the background.

Several works have been focused on the study of this char-
acteristic, leading thus to the definition of the contrast sensi-
tivity function (CSF) used in the construction of many algo-
rithms (metrics) and systems in the imaging field. Generally,
a band-pass filter characterises the luminance CSF with a
peak frequency between 4 and 6 cpd (cycles by degree) and
a cut-off around 30 cpd. One of the most popular analytical
models was introduced by Mannos and Sakrison [MS74] in
the 70s for the development of the first image quality metric
for encoded monochrome images. Another simple model has
been provided by Movshon and Kiorpes [MK88] as a three
parameter exponential function. Daly proposed in his Visual
Difference Predictor (VDP) [Dal93] a CSF model using sev-
eral parameters, including radial spatial frequency (orienta-
tion), luminance levels, image size, image eccentricity, and
viewing distance, allowing one to take into account a wide
range of viewing conditions. This results in an anisotropic
band-pass CSF giving more sensitivity to horizontal and ver-
tical spatial frequencies in comparison to diagonal frequen-
cies. Another complete and complex model has been pro-

Figure 2: Campbell and Robson chart [CR68].
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M. Corsini, M.C. Larabi, G. Lavoué, O. Petřík, L. Váša, K. Wang / Perceptual metrics for static and dynamic triangle meshes

Figure 3: Velocity dependent Contrast Sensitivity Function
as defined empirically by Kelly [Kel79].

posed by Barten [Bar99] starting from a large amount of
psychophysical data. It takes into account four parameters,
including mean luminance, spatial frequency, stimulus size
and pupil diameter. This flexibility of Barten’s CSF comes
with the price of model complexity and, in contrast to Daly’s
CSF, it is incapable of predicting orientation effects.

The previous CSF models are based on the detection
threshold related to the detection of a stimulus by the HVS.
However, when addressing quality assessment tasks, the
HVS performs more than simple detection because it needs
to discriminate between two stimuli (for a full reference
evaluation) or between the provided stimulus and an implicit
reference (for a no-reference evaluation). For those tasks,
an estimation of the discrimination threshold for the con-
struction of CSF is more appropriate. This was the focus of
the work performed by Larabi et al. [LBF06], from which
they proposed a CSF model constructed after extensive psy-
chophysical experiments.

Few works have been dedicated to chromatic CSFs. It
is admitted that chromatic mechanisms are of a low pass
behavior with cutoff frequencies lower than those of lumi-
nance. This behavior is partially explained by the fact that
edge detection/enhancement does not occur in the chromatic
dimension [Fai05].

In addition to the sensitivity to spatial frequency, the hu-
man visual system is sensitive to motion. The CSF is thus
dependent on the velocity of the stimulus, as demonstrated
by Kelly [Kel79] through experiments measuring threshold
contrast for viewing travelling sine waves. Figure 3 shows
the variation of the CSF function of the velocity.

Visual masking defines the reduction in the visibility
of one stimulus due to the simultaneous presence of an-
other. This phenomenon is strongest when both stimuli have
the same or similar frequency, orientation, and location
[SPC04]. There are two types of visual masking. First, the
luminance masking caused by the brightness sensitivity of
the HVS, which is maximised on a distortion with a medium

background intensity and reduced when the distortion hap-
pens on a very low or very high intensity background. Sec-
ond, the texture masking pointing out the maximised visi-
bility of a stimulus on homogeneous regions rather than on
textured ones [Wan95].

Visual masking has been widely used in image/video
compression, watermarking, computer graphics, quality as-
sessment and so on. For instance, Ferwerda et al. proposed a
visual masking model allowing one to predict the influence
of one visual pattern on another [FSPG97]. In a different
field, Kutter et al. designed a vision-based masking model
for spread-spectrum image watermarking [KW02]. Finally,
Daly exploited both luminance and contrast masking for the
definition of VDP [Dal93]. The developed models have been
used by several authors in order to take into account this par-
ticularity of the HVS.

Another aspect of human perception that has been widely
explored and used in the last few years is related to visual
saliency. This property is fundamental in the exploration of
the surrounding visual world. Analysis of visual attention is
considered a very important element in human perception
because of its suitability in various computer vision applica-
tions. Eye tracking is the main way to studyi and understand
this property. One of the most famous and often-cited stud-
ies was performed by Yarbus in the 60s [Yar67]. The aim of
this study was the illustration of differences in visual explo-
ration paths during interpretation of a given scene. There-
fore, Yarbus showed Ilya Repin’s painting to several ob-
servers and assigned to them different viewing tasks. The vi-
sual paths of these observers is reported on Figure 4. Yarbus
noted that the observation of stationary objects such as im-
ages, for example, translates into a sequence of saccades and
fixations on key/interest points of the observed object. The
eye moves between locations with the most information. The
duration of a fixation is then proportional to the quantity of
conveyed information. From Figure 4, one can notice that
the visual path corresponding to a free exploration is dif-
ferent from the path obtained when subjects were asked to
judge the material status of the family and which itself is
different from the path when they were asked to guess the
age of different individuals.

Visual saliency models try to mimic the human visual
system in order to reproduce the saliency property on an
image or a video sequence. Most of the proposed mod-
els in the literature are static and do not take into account
motion which represent important information. There are
two types of computational models for saliency depending
on what the model is driven by: a bottom-up saliency us-
ing low-level features (e.g. contrast) [IKN98, BT06, HZ08,
RvdLBC08, MPG∗09] and a top-down saliency focusing on
tasks/semantics [TOCH06, KTZC09]. Of course, top-down
algorithms are more complex than bottom-up ones but they
allow one to take into account high-level features such as
faces and texts. Hence, it has been demonstrated recently
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Figure 4: Experiments performed by Yarbus [Yar67] on how the task given to a person influences the eye movement.

that the latter attract the human gaze independently of the
assigned task [CFK09].

Beyond what has been discussed already, the phenomena
related to colour perception are confusing by their number
and specificity. Hence, colour appearance has captured the
attention of many researchers for decades. One of the ma-
jor problems is related to the WYSIWYG (What You See
Is What You Get) paradigm in many applications such as
printing, textiles, multimedia, cinema, etc. Depending on the
media, colour does not always seem similar, as, for exam-
ple, the printed image could be different from the same dis-
played on a screen. The perception of a colour stimulus is
partly dependent on the environment’s properties, such as
background colour and lighting conditions. In order to en-
sure the invariability of the perceived colour and its qual-
ity at the same time, the CIE (Commission International de
l’Eclairage / International Lighting Commission) developed
several models such as the CIE Lab [Sch07], CIECAM97
and CIECAM02 [Fai05], the most accomplished and stable
one. The objective of a colour appearance model (CAM) is
to correct the colour stimulus to ensure its invariability in
different environments. This correction is illustrated in Fig-
ure 5 where the same colour stimuli are perceived as differ-
ent (Figure 5-a) because of the use of different backgrounds.
This phenomenon is known as simultaneous contrast and is
corrected by CIECAM02 and the results allow one to have a
closer colour stimulation (Figure 5-b).

In order to extend colour appearance models to images,
Tulet et al. [TLF08] conducted psychophysical experiments
to understand the effect of spatial frequencies on the appear-
ance of a complex stimulus. This study resulted in a com-

putational model allowing the rendering of complex stimuli,
i.e. images, based on their spatial structure.

There are other characteristics that can be taken into ac-
count in the framework of image quality assessment, such as
luminance adaptation, simultaneous contrasts, temporal sen-
sitivity, binocular rivalry/compensation [BL12] and so on.

2.2. Quality metrics for 2D images

Image quality assessment has attracted many researchers in
the last decade. This has resulted in the development of hun-
dreds of quality metrics for various applications and types
of images. Generally, image quality metrics can be classi-
fied into three categories, including full-reference (FR), re-
duced reference (RR) and no-reference (NR), according to
the availability of the original image [Kee02, WSB03]. FR
and RR metrics require at the quality evaluation stage that
full or partial information on both images is present, the ref-
erence and the distorted one. RR metrics are very challeng-
ing because they are used for applications where the orig-
inal image is not available, as is the case of all transmis-
sion/broadcast systems. Several metrics have been proposed
in recent years and are described in [NLF10, WS05]. NR
metrics are distortion-based; the specialised metric looks for
a specific artifact in the image and evaluates the level of an-
noyance introduced by that distortion without any cue of the
original, as those described in [PLR∗04, MK05, BS06].

In this section, the focus is put on the FR metrics because
they are the most successful metrics and the most addressed
ones. Several benchmarks have been made in order to study
the performance of these metrics with regard to human judg-
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-a-

-b-

Figure 5: Colour appearance problem: a- before
CIECAM02 correction and b- after CIECAM02 correction.

ment. An important effort has been made by the develop-
ment of web-applications dedicated to FR metrics (http:
//www.qualimage.net), including a benchmark ser-
vice, an online quality assessment using selected metrics and
a documentation service [NLF11]. Before starting the de-
scription of the signal-oriented metrics, it is important to talk
about the colour fidelity metrics. Several experiments, such
as the one performed by Yendrikhovskij [Yen98], showed
that in the cognitive process, the image quality is going
through a kind of fidelity measurement between the colours
of the scene and the memory colours like sky, grass, etc.
Therefore, the CIE proposed two colour difference equa-
tions named ∆E94 and ∆E2000 respectively in 1994 and
2000 [BAR∗91]. The second equation is more complex and
takes into account more phenomena than the first one. Be-
sides these colour difference equations, Zhang and Wan-
dell proposed an extension to the CIELAB ∆E [ZW97]
named s-CIELAB. After a colour transform into an antago-
nist colour space, each component of the image is filtered us-
ing a separable 2D spatial filter. Finally, an extension called
x-CIELAB has been proposed [RLFM08], introducing a fil-
ter using an anisotropic contrast sensitivity function (CSF)
built by estimating the perception threshold.

The signal-oriented metrics do not take into account any
comprehensive HVS model with regard to quality evalua-
tion. They are mainly based on a signal modeling process
and are often application-dependent (compression, transmis-
sion, etc.). The metrics falling into this category are often
suitable for real-time applications because of their low com-
plexity. The most common simple metric is still the peak
signal-noise ratio (PSNR) metric for the balanced compro-
mise it provides between its complexity and performance.
The often-cited SSIM (Structural SIMilarity) index, intro-
duced by Wang and Bovik [WBSS04], exploits an important
aspect of HVS perception linked to structural information.
With a more theoretical definition, the VIF [SB06] has been
developed as an extension of the information fidelity crite-
rion (IFC) [SBd05] with the aim to quantify the loss of im-
age information due to the distortion process and explore the
relationship between image information and visual quality.

The second type of full-reference metrics uses a single-
channel modeling of the human visual system (HVS). In this
context, the HVS is seen as a spatial filter whose character-
istics are given by the contrast sensitivity function (CSF),
for example. The first metric developed under this frame-
work is that of Mannos and Sakrison [MS74]. The princi-
ple of this metric is to weight the spectrum of the error im-
age between the original image and the degraded one, using
a CSF obtained from psychophysical experiments based on
the detection of sinusoidal gratings. Chandler and Hemami
proposed an efficient metric called VSNR for quantifying
the visual fidelity of natural images based on near-threshold
and supra-threshold properties of human vision [CH07]. It is
based on visual masking and visual summation for detecting
distortions and uses low-level features if it is beyond supra-
thresholds.

The perceptual metrics represent an interesting approach
in the evaluation of image quality. A summary of various
studies carried out in this context shows that these metrics
are modeled on the operation of the HVS and use the per-
ceptual factors that are known to have a direct influence on
the visibility of distortions [PS00]. A generic block diagram
of these metrics is given in Figure 6.

The flowchart starts with a colour conversion allowing one
to transpose both reference and impaired images into a per-
ceptual colour space. At this point, an emphasis is usually
placed on the luminance component because it is believed
that the performance gain, generated by the consideration of
colour, is far from balancing the complexity induced by the

Figure 6: Block diagram of perceptual metrics.
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processing of the chrominance channels. Then, a perceptual
decomposition (multi-channel decomposition) is applied in
order to take into account the spatial-frequency sensitivity
of the HVS. The most used decompositions are those of
Daly [Dal94], Lubin [Lub93] and Watson [Wat87] and the
output of this block results in a set of luminance images. For
each of these images, a local contrast is calculated at each
point. The masking block aims to exploit the masking abili-
ties of the HVS described in the previous section. Its role is
to specify for each sub-band and for each point the variation
of the visibility threshold when the masking effect is taken
into account. These values allow one to keep only the errors
located above the threshold and thus contributing to the es-
timation of the final quality. Finally, the pooling stage is de-
signed to reduce this dimensionality of the computed data.
Generally, the pooling is performed in two steps. The first
where the error images spread across all frequency channels
are combined into a single error image (the frequency pool-
ing). The second step is dedicated to the spatial pooling and
is to combine the spatial errors in a final measure that repre-
sents the score given by the algorithm to the impaired image.

The most representative examples of such a structure
are the Visible Difference Predictor (VDP) introduced by
Daly [Dal93] and the metric proposed by Karunasekera and
Kingsbury [KK93]. Perceptual metrics, as described, are
generic metrics. They can be used for any type of impair-
ments and are known to have a high rate of correlation with
subjective scores. However, the use of increasingly complex
models of the HVS tends to increase their computational
complexity.

3. Metrics for static 3D meshes

In this section we provide an overview of the perceptually-
motivated metrics developed over the years by CG re-
searchers for static 3D meshes. Mesh simplification,
perceptually-driven rendering, and evaluation of specific ge-
ometry processing algorithms, such as compression and wa-
termarking, are the main fields of applications of this type of
perceptual metric. First we provide a discussion concerning
some important issues about the properties of the perceptual
metrics. Then, we review in detail the most important met-
rics developed during recent years.

3.1. View-dependent and view-independent metrics

It is convenient to categorise the perceptual metrics for static
meshes in two well-separated categories: the image-based
ones and the geometry-based ones. We found this categorisa-
tion very important since many times the domain where the
perceptual metric works and the relative perceptual mecha-
nisms involved are not sufficiently emphasised. The metrics
which belong to the first category work in image space by
applying the perceptual mechanisms of the HVS to a still
image generated through rendering techniques from the 3D

data. This means that these metrics are view-dependent. Usu-
ally, where the view-dependency is a limit for the specific
application, the image-based metrics are evaluated on a set
of images created using different views of the 3D objects.
We underline that this approach is not completely reliable,
due to the fact that accurate perceptual studies conducted by
Rogowitz and Rushmeier [RR01] demonstrated that, in gen-
eral, the visual perception of a set of images of a certain 3D
object is different from that perceived by a human observer
of the 3D model in a graphics application.

In the second category, the perceptual metrics work by
analyzing the geometry of the 3D models to predict per-
ceptual impairments or evaluate other perceptual quality as-
pects, making the evaluation view-independent. Hence, the
geometry of the model is the domain of this type of metric.
In this case, more complex perceptual mechanisms are in-
volved, such as the role of movement of the 3D object in a
computer animation video or by user interaction. Also, the
feedback between the movement of the object and the ac-
tions of the user should be considered, even if this aspect is
in general not taken into account by the existing metrics.

3.2. Black-box and mechanistic approaches

As raised in section 2, there are two different approaches
to developing perceptual metrics: mechanistic (i.e. HVS-
based) and black-box (i.e. signal-oriented). The mechanistic
approach takes into account the complex mathematical mod-
els of the psychophysical and physiological mechanisms of
the HVS in order to develop the perceptual metric while the
black-box approach does not rely on how the visual system
works but attempts to define a function that, given the visual
stimulus as input, is able to predict how much some specific
visual artifacts will be perceived by a human observer; this
approach is preferable when it is difficult to determine how
to integrate the different visual stimuli involved. In Com-
puter Graphics both mechanistic and black-box approaches
have been used for the development of image-based percep-
tual metrics. The model-based perceptual metrics, instead,
usually employ the black-box approach due to the complex-
ity of the perceptual mechanisms involved.

3.3. Image-based perceptual metrics

Concerning perceptually-based mesh simplification, Lind-
strom and Turk [LT00] proposed to render the model be-
ing simplified from several viewpoints and use a fast image
quality metric to evaluate the impact of the simplification.
Lindstrom [Lin00] proposed using a perceptual image metric
based on a simplified version of the Sarnoff Model [Lub95].
The final result is a simplified 3D model which minimises
the perceived visual differences in the image set. This algo-
rithm is particularly effective for textured 3D models.

Luebke and Hallen [LH01] developed a perceptually-
based simplification algorithm based on a simplified version
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of the Contrast Sensitivity Function. They map the change
resulting from a local simplification operation to a worst-
case contrast and a worst-case frequency and then determine
whether this operation will be imperceptible; their model
also takes into account silhouette changes. Their method was
then extended by Williams et al. [WLC∗03] to integrate tex-
ture and lighting effects. These latter approaches are view-
dependent; however, they consider the 3D geometry infor-
mation.

More recently, Qu and Meyer [QM08] considered the vi-
sual masking properties of 2D texture maps to drive simpli-
fication and remeshing of textured meshes. Two perceptual
metrics are proposed to evaluate the potential masking effect
of the surface signals (textures, bump maps, etc); one based
on the Sarnoff VDM [Lub95] and another based on the vi-
sual masking function employed to optimise the quantisation
in the JPEG2000 [ZDL02]. The perceptually-based remesh-
ing algorithm is driven by the masking map computed in
the parametric space of the textures. Not only texture maps
but also bump maps are taken into account for its calcula-
tion. The final remeshing can be view-independent or view-
dependent depending on the visual effects considered. For
example, specular reflection introduces a view-dependent ef-
fect. The simplification-driven algorithm takes into account
an average masking importance map that emerges from the
analysis of the 3D object from several viewpoints.

The objective of perceptually-driven rendering is to deter-
mine, according to the location of the observer, the amount
of accuracy to use during the rendering, for example chang-
ing the Level Of Detail (LOD) of certain models or reduc-
ing/augmenting sampling density in ray-tracing rendering
systems. One of the first studies of this kind was that of
Reddy [Red97], which analysed the frequency content in
several pre-rendered images to determine for each model the
best LOD to use in a real-time rendering system.

Ferwerda et al. [FSPG97] proposed a perception model
for Computer Graphics with particular attention to the mask-
ing model, extending the original Daly VDP operator, which
demonstrates how surface texture can hide some visual arti-
facts of the geometry in given shading conditions, in partic-
ular polygonal tessellation.

Bolin and Meyer [BM98] used a perceptual model to opti-
mise the sampling for ray-tracing algorithms. The visual dif-
ferences operator developed by Bolin and Meyer is a simpli-
fied version of the Sarnoff VDM [Lub95], modified to take
into account also the chromatic aberration effect to deal with
colour images. This is achieved by considering the variations
of chromatic/achromatic CSF. This operator is used to drive
adaptively the sampling in a ray tracing framework.

Ramasubramanian et al. [RPG99] proposed a rendering
framework to considerably reduce the overhead of incorpo-
rating a perceptual metric into a rendering system. First, they
evaluated a perceptual threshold map taking into account the
direct illumination of the scene and then this map is used to

add indirect illumination, which is usually the most com-
putational expensive task in a global illumination rendering
system.

Another interesting approach is that of Dumont et
al. [DPF03], which proposed a real-time rendering system
capable of optimising the performance in terms of image
quality and frame rate, taking appropriate decisions. The
proposed framework is based on a decision-theory approach.
According to decision theory, it is possible to formalise the
problem as maximising the utility of certain choices, i.e.
rendering actions, given a set of constraints. Constraints
take into account resource limitations. The rendering actions
consider the approximation the system can make, such as
choosing a LOD or deciding the resolution of a texture. The
perceptually-based utility metrics used to select texture reso-
lution and evaluate mesh elements for radiosity computation
are based on the VDP version developed by Ramasubrama-
nian et al. [RPG99] due to its accuracy and computational
efficiency.

Recently, perceptual evaluation has been moved to a
higher level of investigation concerning visual mechanisms.
For example, Ramanarayanan et al. [RFWB07] proposed the
new concept of visual equivalence; images are said to be
visually equivalent if they convey the same impressions of
scene appearance. In this work, the authors explore how the
perception of geometry, material and illumination in a scene
are affected by lighting environment changes.

Some other interesting methods have recently been pro-
posed: Zhu et al. [ZZDZ10] studied the relationship between
the viewing distance and the perceptibility of model details
using 2D metrics (VDP and SSIM); Aydin et al. [AvMS10]
and Herzog et al. [HCA∗12] introduce quality metrics focus-
ing respectively on video and images synthetically generated
by computer graphics rendering techniques. Finally, Bosc
et al. [BPL∗11] introduce a quality metric for synthesised
views generated from depth-image-based rendering (3DTV
application).

3.4. Model-based perceptual metrics

The main limitation of the image-based metrics in the con-
text of Computer Graphics applications is that, as just pre-
viously mentioned, in general, as demonstrated by the ex-
periments conducted by Rogowitz and Rushmeier [RR01],
the perceived degradation of still images may not be ade-
quate to evaluate the perceived degradation of the equivalent
3D model. In their work, they demonstrated that the subjects
evaluated differently the quality of a simplified 3D model if
an animation or a set of static frames of the same animation
were used. The main reason is that the object’s movement
introduces changes in the perception of differences that are
difficult to integrate in the perceptual metric.

One of the first attempts to integrate image movement,
visual attention and saliency was the work of Yee et
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al. [YPG01], which combined the many aspects in a final
map called the aleph map, used during the rendering of
the computer animation. Myszkowski [Mys02] proposed an
extension of the VDP for quality evaluation of computer-
generated animations and applied such metrics to speed-
up global illumination rendering. The application of these
spatio-temporal perceptual metrics in the context of 3D
model visual fidelity evaluation has, to our knowledge, never
been investigated. This is an interesting direction for future
research in object-based perceptual metrics.

Model-based metrics are used in different contexts. One
of these is to control mesh simplification algorithms, in order
to reduce the number of vertices while preserving the visual
appearance. Kim et al. [KKK02] stated that human vision is
sensitive to curvature changes and proposed a Discrete Dif-
ferential Error Metric (DDEM). In a different way, Howlett
et al. [HHO04] drove their simplification to emphasise vi-
sually salient features determined through an eye tracking
system. Lee et al. [LVJ05] follow a similar approach, but
automatically extract the saliency from the input mesh by
computing multiresolution curvature maps.

Recently, several researchers have investigated the use of
black-box perceptual metrics for the evaluation of specific
artifacts. Karni and Gotsman [KG00], in order to evaluate
properly their compression algorithm, consider the Geomet-
ric Laplacian, which represents a measure of the smooth-
ness of each vertex. Starting from the Geometric Lapla-
cian, they derived a visual metric to compare two 3D ob-
jects (abbreviated as GL1 in Table 1). Subsequently, Sorkine
et al. [SCOT03] proposed a different version of this metric
(GL2), which assumes slightly different values of the param-
eters involved.

Tian and AlRegib [TA04] and Pan et al. [PCA05] pro-
posed simple quality metrics dedicated to optimising the
transmission of textured meshes; their metrics respectively
rely on geometry and texture deviations [TA04] and on tex-
ture and mesh resolutions [PCA05]. Their results underline
the fact that the perceptual contribution of image texture is,
in general, more important than the model’s geometry.

Following the idea that a measure of the visual artifacts
produced by watermarking should be based on the amount
of roughness introduced on the surface, Corsini and Drelie
Gelasca et al. [CGEB07] proposed two perceptual metrics
for quality evaluation of watermarking algorithms (abbre-
viated as 3DWPM1 and 3DWPM2 in Table 1). The water-
marking visual impairment is evaluated by considering the
increment of total roughness between the original model and
the watermarked model. Two ways to measure model rough-
ness were proposed. The first one [CDGE05] is a rough-
ness measure based on a variant of the method by Wu et
al. [WHST01], based on statistical considerations about the
dihedral angles, i.e. the angle between the normals of two
adjacent faces. In order to take into account the scale of the
roughness, the per-face roughness is turned into a per-vertex

roughness and rings of different size (1-ring, 2-ring, etc.) are
considered during roughness evaluation. The total roughness
of the 3D object is the sum of the roughnesses of all vertices.
The second method by Drelie Gelasca et al. [DGECB05] is
based on the consideration that visual artifacts should be bet-
ter perceived on smooth surfaces. So, a smoothing algorithm
is applied to the mesh and then the roughness is evaluated as
the variance of the differences between the smoothed version
of the model and its original version.

In the ambit of quality evaluation of 3D watermarking al-
gorithms, Lavoué et al. [LDD∗06] proposed a perceptually-
inspired metric called the Mesh Structural Distortion Mea-
sure (MSDM). This metric follows the concept of struc-
tural similarity introduced for 2D image quality assessment
by Wang et al. [WBSS04]: differences of curvature statis-
tics (mean, variance, covariance) are computed over corre-
sponding local windows from both meshes being compared.
A global measure between the two meshes is then defined
by a Minkowski sum of the distances over the local win-
dows (one local window per vertex is considered). A multi-
resolution improved version, named MSDM2, has recently
been proposed in [Lav11]. It provides better performance
and allows one to compare meshes with arbitrary connec-
tivities. These metrics are available online within the MEPP
platform http://liris.cnrs.fr/mepp/.

Recently, Bian et al. [BHM08, BHM09] developed a
geometry-based perceptual metric (abbreviated as SF in Ta-
ble 1) based on the strain energy, i.e. a measure of the en-
ergy which causes the deformation between the original and
the processed mesh. The idea is that the more the mesh is
deformed, the higher is the probability that the observer per-
ceives the difference between the processed and the original
mesh. The strain energy calculation on the mesh is simplified
by considering that each mesh element (a triangular mesh
is assumed) is perturbed along its plane. It is important to
underline that this metric is suitable for small deformations
only. The perceptual distance between the original model
and the perturbed one is defined as the weighted average of
the strain energy over all triangles of the mesh, normalised
by the total area of the triangular faces. Bian et al. tested
some variants of this metric by choosing different weights,
but from their experimental results they concluded that the
unweighted version gave results similar to the tested vari-
ants; hence it is preferable due to its simplicity.

4. Metrics for dynamic 3D meshes

The approaches to dynamic mesh distortion evaluation can
be generally separated into two main classes: the ones based
on some static mesh distortion metric, which is applied in a
per-frame fashion, and the ones specifically tailored to the
case of dynamic meshes.

The first class inherits all the problems of the original met-
rics, i.e. any metric that fails to correlate with human per-
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ception in the static case will most likely also fail when ap-
plied to the dynamic case. Moreover, with the addition of
animation, a new class of temporal artifacts may appear, and
a proper metric probably should detect this kind of artifact
as well. However, temporal artifacts of course cannot be de-
tected by a static mesh metric applied in per-frame fashion.

A typical example of such an artifact might be a smooth
distortion, such as adding one period of a sine wave to the X
coordinates of a particular frame. If the amplitude of the sine
is small, then such a distortion will be almost unnoticeable
on the static mesh. A subsequent frame might be influenced
by the same kind of distortion, only this time using a cosine.
Both frames contain a distortion that is hard to notice on its
own. However, in a playing animation, the effect of oscil-
lating between sine and cosine distortion is probably quite
visible.

4.1. Static mesh metrics applied on dynamic meshes

As mentioned before, any of the metrics for static meshes
presented in previous sections can be applied on dynamic
meshes in the per-frame fashion, using the per-frame result
sum, average or maximum as a result. Some authors dis-
play the result of some particular static mesh metric for each
frame in the form of a time dependency graph.

Early papers on dynamic mesh compression, such as
[Len99] and [IR03], have used average SNR to evaluate the
amount of distortion caused by the lossy encoding. Later, af-
ter publication of the Metro tool, metrics based on Hausdorff
distance became more popular. Some papers – [MZP06],
[AK09] – show temporal development of RMSE or its av-
erage, while others – [HKL09] – show the temporal devel-
opment of Hausdorff distance.

The common problem of all these metrics is the lack
of correlation with human perception, which has already
been identified in one of the first works on dynamic mesh
compression by Lengyel [Len99]. The work of Lee et al.
[LKT∗07], where the sum of Discrete Shape Operator dif-
ferences is used (similar to the metric in [KG00]), is one
of the few exceptions, where a perceptually motivated static
mesh metric has been used for dynamic mesh comparison.
But, even in this case, the metric cannot capture any tempo-
ral artifacts that may arise in dynamic mesh processing.

4.2. KG error

A metric used quite commonly in dynamic mesh compres-
sion is the KG error, proposed by Karni and Gotsman in
[KG04]. The metric is designed specifically for animated
triangle meshes. It works on matrices describing original
and distorted meshes, where columns of the matrices de-
scribe trajectories of respective vertices of the animation.
Having a matrix M describing the original animation se-
quence, and a matrix M′ describing the distorted version,

the metric uses the Frobenius norm of the matrix differ-
ence ‖M −M′‖ and produces a normalised version (for de-
tails see [KG04]) of this value as the result. Therefore, hav-
ing function AMSE(M,M′) that computes the average mean
squared error between animations represented by matrices M
and M′, the KG error can be rewritten in the form of function
KG(M,M′) = f (M,AMSE(M,M′)). Due to this fact, one
might expect that the KG error metric will show the same
insufficiencies as any other averaged static metric based on
MSE.

4.3. Da error

Another metric designed specifically for animated meshes
has been proposed by Jang et al. in [JKJ∗04]. This metric
cannot be expressed in terms of per-frame static mesh metric
results, because it works on ribbons formed by error vectors
in subsequent frames. An error vector is a vector connect-
ing the original and distorted position of a particular vertex
in a particular frame. The Da error metric works on a sim-
plified version of error vectors, taking always only a single
coordinate into account. The error vectors associated with a
particular vertex in two subsequent frames form a ribbon-
like structure in 2D space (coordinate + time), and the Da

error metric computes the area of this ribbon and uses it as a
contribution of the particular vertex to the overall error. The
metric obtains the contributions from all the vertices and all
pairs of subsequent frames of the animation, finally normal-
ising the result by dividing by the largest span in all direc-
tions.

Although the metric is defined in a form that is only ap-
plicable to dynamic meshes, its relation to perceptual differ-
ence is not clear, and the design is not based on any percep-
tual experiment that would support it. Moreover, there are
at least two intuitive flaws in the metric that indicate that its
relation to perception is rather vague. These are:

1. Preference to oscillating vertices. The metric uses a dif-
ferent formula for straight and twisted vertices in order to
correctly compute the ribbon area. However, this leads to
a smaller contribution from vertices oscillating around a
central position (an obvious temporal artifact) than from
vertices that are constantly dislocated in time.

2. Lack of rotation invariance. Due to the per-coordinate
processing, the metric produces different results in co-
ordinate systems that are rotated with respect to each
other. However, a natural expectation is that a metric re-
sult should be translation and rotation invariant.

In spite of these limitations, the Da metric has been used
in some papers dealing with dynamic mesh compression
( [MSK∗05], [MSKW06], [MSK∗06]), and it even became
part of the MPEG-4 standard in the form of Animation
Framework eXtension Core Experiments Description [ISO].

c© The Eurographics Association 2012.

143
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4.4. 4D Hausdorff distance

A modification of Hausdorff distance that goes beyond av-
eraging the metric over all the frames has been proposed
in [VS06] by Váša and Skala. The metric works in a 4D
space, where the fourth dimension is the time of the anima-
tion. A triangle in two subsequent frames forms a 4D prism
in the 4D space. These prisms are coherently subdivided into
4D tetrahedra for easier manipulation, and the metric works
on these tetrahedra in a manner equivalent to Hausdorff dis-
tance evaluation in 3D.

The main advantage of the metric is that it is able to de-
tect temporal proximity of surfaces, which was not possible
with the metrics based on static mesh comparison. However,
the metric requires an additional parameter, a constant relat-
ing the spatial and temporal distances. The proper value of
such a constant is not easy to obtain. It could probably be
determined in a subjective experiment; however, the authors
suggest using only the usual (average) speed of vertices in
the animation as a relating factor.

Apart from that, the metric also has other disadvantages,
such as high computational cost, high memory requirements,
and also insufficiencies related to the core idea of Hausdorff
distance and its lack of correlation with human perception.
Therefore, the metric has not been used in practice.

4.5. STED error

The first, and so far the only attempt at a perceptual met-
ric for dynamic meshes is the STED error proposed by Váša
and Skala [VS11]. It is based on the observation that per-
ception of distortion is related to local and relative changes
rather than global and absolute changes of vertex positions.
The metric works on edges as basic primitives, and computes
the relative change in length for each edge of the mesh in
each frame of the animation. Subsequently, for each vertex,
the standard deviation of relative edge lengths is computed
within a topological neighbourhood of the vertex. This devi-
ation is then used as a contribution of the vertex to the spatial
part of the error metric, assuming that high local deviation
relates to higher local distortion and thus higher perceived
error.

The metric also attempts to capture temporal artifacts by
working with virtual temporal edges: that is, edges that con-
nect position of a vertex in two subsequent frames. The dif-
ference between original temporal edge length and distorted
temporal edge length is then again used as a contribution to
the temporal part of the error metric. The metric normalises
the contributions of temporal edges using the speed of the
vertex in a local temporal window, thus taking into account
that "shaking" artifacts are more noticeable in areas that are
static or moving slowly.

Finally, the result is taken as a hypotenuse of the spatial
and temporal parts of the error. The metric has several pa-
rameters, such as the width of the topological neighbourhood

over which the contribution to spatial error is computed, or
a relating constant used in combining the spatial and tem-
poral parts. These parameters were set in order to obtain the
highest possible correlation with the results of a subjective
experiment that was carried out as a part of the work.

The STED error measure can be evaluated using a
command-line utility that can be downloaded from the fol-
lowing URL: http://compression.kiv.zcu.cz.

4.6. Simplification evaluation

While STED is primarily designed for situations, such as
compression, where the original and the distorted version of
the mesh both have an equal number of vertices and the same
connectivity, Larkin and O’Sullivan [LO11] focused on the
perception of distortion introduced by simplification of ani-
mated meshes of human characters. In this case, the distorted
version of the mesh has a lower number of vertices than the
original, which may cause visible artifacts. The authors iden-
tified three types of artifacts caused by simplification:

• texture (errors due to the interpolation of texture coordi-
nates)

• lighting (errors due to the interpolation of normals)
• silhouette (errors in the silhouette of the mesh)

They performed a user study to determine the influence of
each of these artifacts in static and dynamic cases on the
perception of the simplified mesh. The results of the study
show that the silhouette artifacts are the most easily iden-
tified by human observers, while the other two types have
a rather minor effect. The results also indicate that the an-
imation of the mesh itself does not change the perception
of artifacts, given that the mesh stays in the same location
on the screen. Movement of the mesh throughout the screen,
however, might have an impairing influence on the percep-
tion of error, as described by McDonnel et al. [MNO07]. Us-
ing these findings, Larkin and O’Sullivan devised a render-
based metric to evaluate the distortion caused by simplifica-
tion [LO11].

The metric is designed to quantify the perceptual change
of the mesh silhouette. Since the subjective experiment did
not prove that animation changes the perception of errors,
the metric only works on a single frame of the animation
(a static mesh). Similarly to the static mesh metric by Lind-
strom and Turk [LT00], it compares a series of renders of
the mesh from different viewing angles. To speed up the
process, the space occupied by the mesh is voxelised into
voxels small enough to cover one degree of visual angle on
the screen and only voxels intersecting the mesh surface are
used. For each such voxel, a render targeted at this voxel
and its neighbourhood is performed with the camera looking
along the silhouette. The renders of corresponding voxels
of the original and the simplified mesh are then compared
using a perception-correlated image metric – PerceptualDiff
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by Yee and Newman [YN04]. This metric returns the num-
ber of pixels that may be perceived as different between the
meshes. These pixel counts are averaged over all the surface
voxels to create the output value of the metric. The output
depends on the resolution and the field of view angle of the
renders, the size of the screen and the viewer distance from
the screen, which are the parameters of the metric.

The authors claim the metric to be a good indicator of
the perceived distortion caused by simplification of animated
meshes of human characters. They, however, do not provide
any values of correlation with subjective experiment results
to prove this claim. They also note that the subjective tests
were performed from a single point of view, while the metric
considers any point of view on the mesh.

Still regarding simplification, Bulbul et al. [BKCG10]
proposed a saliency estimator for dynamic meshes, similar
to the static mesh saliency estimator from Lee et al. [LVJ05];
this estimator integrates several features such as colour, ge-
ometry and motion and was used to drive a simplification
algorithm (i.e. salient regions are more preserved).

4.7. Fidelity of physical simulations

Dynamic mesh data sets can be created by various methods,
one of which is physical simulations. Such animations have
unique characteristics, which make them an important part
of dynamic mesh processing research. For example, while
skeletal animations are relatively easy to compress using
skinning- or clustering-based compression algorithms, using
similar techniques on animations based on physical simula-
tions might not be as effective and a different method may
produce better results.

In the case of simulation-generated dynamic scenes, be-
sides evaluating the perceptual difference of a distorted
physical simulation animation from a reference simula-
tion, we can also evaluate the perceptual plausibility of the
physics in the simulation. Based on a series of subjective ex-
periments, O’Sullivan et al. [ODGK03] proposed a design
of a visual fidelity metric for physically-based simulations
of colliding objects. The metric estimates a probability P(A)
of perceiving a simulation as implausible:

P(A) = f
(

Pangular(A),Pmomentum(A),Pspatiotemporal(A)
)

,
(1)

where Pangular is the probability of spotting an error in the
post-collision angles of the objects, Pmomentum is the proba-
bility of perceiving the post-collision speeds of the objects as
implausible and Pspatiotemporal is the probability of seeing a
gap between the colliding objects at the time of the collision
or a delay between the collision and the subsequent move-
ment. Details on the definition of these probabilities can be
found in [ODGK03]. The authors do not describe the com-
bining function f , as they claim to have insufficient subjec-
tive experiment data to do so. Thus, they consider the three
components separately.

5. Subjective databases and evaluation

Perceptual metrics presented above aim at predicting the vi-
sual quality of a 3D (or 3D+t) model as perceived by a hu-
man observer. This perceived quality can also be directly and
quantitatively assessed by means of subjective tests; in such
tests, human observers directly give their opinion or some
ratings about the perceived quality of a corpus of distorted
models; a mean opinion score (MOS) is then computed for
each distorted object reflecting its average quality as appre-
ciated by the observers. The correlation between these sub-
jective Mean Opinion Scores and the objective scores com-
puted by the metrics provides an excellent indicator of the
performance of these metrics and a very good way to com-
pare them quantitatively.

This section presents the protocols usually used in subjec-
tive tests, the existing MOS databases and some evaluation
and comparison results regarding existing metrics.

5.1. Subjective test

Practically and whatever the type of media (image, video or
3D models), the design of a subjective test is composed of
the following steps:

1. A database is constructed containing different objects
(reference objects and distorted versions).

2. A subjective experiment is conducted where human ob-
servers directly give their opinion or some ratings about
the perceived distortions of the database objects. A mean
opinion score (MOS) is then computed for each distorted
object of the corpus: MOSi =

1
n ∑

n
j=1 mi j, where MOSi is

the mean opinion score of the ith object, n is the number
of test subjects, and mi j is the score (in a given range)

given by the jth subject to the ith object.
3. Since some observers may have used the rating scale dif-

ferently, a normalisation of the MOS values is usually
conducted, followed by a filtering of possible outlier sub-
jects according to the recommendation of the I.T.U. (In-
ternational Telecommunication Union) [Rec02]. The re-
liability of the MOS may also be checked by computing
the 95% confidence intervals or the intraclass correlation
coefficient.

4. The correlation is computed between the mean opinion
scores of the objects and their associated metric’s val-
ues; usually two correlation coefficients are considered:
the Spearman Rank Order Correlation, which measures
the monotonic association between the MOS and the met-
ric values and the Pearson Linear Correlation Coefficient,
which measures the prediction accuracy. The Pearson
correlation is computed after performing a non-linear re-
gression on the metric values, usually using a logistic or
a cumulative Gaussian function. This serves to optimise
the matching between the values given by the objective
metric and the subjective opinion scores provided by the
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subjects. This step allows the evaluation to take into ac-
count the saturation effects typical of human senses.

As raised recently by Ebrahimi [Ebr09], the design of sub-
jective tests producing reliable and reproducible MOS is a
delicate task which depends on several ingredients:

• The environment, i.e. type of monitors, viewing distances,
lighting conditions.

• The material, i.e. the test objects. The choice of the corpus
of models is critical to obtain reliable results; to be able
to generalise the results, the corpus should contain differ-
ent kinds of models and different types of distortions and
not focus on a specific scenario. In case of distortions of
different types, the range of their visual impacts have to
be correctly balanced. It is also usually better to present
worst case models (i.e. anchor conditions) to allow the
observers to calibrate their ratings.

• The methodology, i.e. how to present the distorted models
and how to rate them. A lot of protocols exist for present-
ing the stimuli and rating them, for instance, the distorted
model can be displayed together with its original version
(Simultaneous Double Stimulus) or alone (Single Stimu-
lus). The rating can be categorical adjectival (bad, poor,
fair, good, excellent), categorical numerical (1,2,3,4,5) or
on a continuous scale (e.g. ∈ [0,100]) and it can concern
either a quality or an impairment.

• The analysis of the data, i.e. how to make sure that MOS
are significant.

For image and video quality assessment, the International
Telecommunication Union has made recommendations for
test conditions and methodology [Rec99] [Rec02] [Rec07].
However, they cannot be transposed directly for 3D ob-
ject quality assessment. In particular, 3D (3D+t) model
rendering involves a whole set of supplementary parame-
ters [CGEB07]: the background, the light source, the ma-
terial and texture and the level of interactions. Currently, no
normalised recommendation exists for designing subjective
tests involving 3D (3D+t) models. The next subsection de-
scribes existing subjective databases (Corpus + MOS) and
details more particularly the three publicly-available ones.

5.2. Existing subjective databases

5.2.1. 3D static mesh

Several authors have made subjective tests involving 3D
models [RRP00] [WFM01] [RR01] [PCA05] [LDD∗06]
[CGEB07] [SSF07] [SSFM09] [Lav09]. Their experiments
have different purposes and use different methodologies.
Bulbul et al. [BCLP11] recently provided a nice overview
and comparison of their environments, methodologies and
materials.

Subjective tests from Watson et al. [WFM01] and Ro-
gowitz and Rushmeier [RR01] focused on a mesh simpli-
fication scenario; their test databases were created by apply-
ing different simplification algorithms at different ratios on

Figure 7: Evaluation interface for the subjective test of
Pan et al. [PCA05]. The observers were asked to compare
the target stimulus (centre) with the two referential stimuli
(left and right) and assign it one of the following ratings:
very poor (1), poor (2), fair (3), good (4), very good (5).
Reprinted from [PCA05].

several 3D models. The purposes of their experiments were
respectively to compare image-based metrics and geometric
ones to predict the perceived degradation of simplified 3D
models [WFM01] and to study if 2D images of a 3D model
are really suited to evaluate its quality [RR01].

Rushmeier et al. [RRP00] and Pan et al. [PCA05] also
considered a simplification scenario; however, their 3D mod-
els were textured. These experiments provided useful in-
sights on how resolution of texture and resolution of mesh
influence the visual appearance of the object. Pan et al.
[PCA05] also provided a perceptual metric predicting this
visual quality and evaluated it quantitatively by studying the
correlation with subjective ratings from their experiment.

Corsini et al. [CGEB07] proposed two subjective exper-
iments focusing on a watermarking scenario; the material
was composed of 3D models processed by different water-
marking algorithms introducing different kinds of artifacts.
The authors then used the Mean Opinion Scores to evaluate
the effectiveness of several geometric metrics and proposed
a new perceptual one (see section 3) to assess the quality of
watermarked 3D models.

Below, we describe in more detail the subjective databases
from [LDD∗06] [Lav09] [SSF07], since 3D models and
MOS are publicly available:

• The LIRIS/EPFL General-Purpose Database [LDD∗06]
was created at the EPFL, Switzerland. It contains 88 mod-
els with between 40K and 50K vertices generated from 4
reference objects (Armadillo, Dyno, Venus and Rocker-
Arm). Two types of distortion (noise addition and smooth-
ing) are applied with different strengths and at four lo-
cations: uniformly (on the whole object), on smooth ar-
eas, on rough areas and on intermediate areas. These
distortions aim at simulating the visual impairment of
generic geometric processing operations (compression,
watermarking, smoothing). 12 observers participated to
the subjective evaluation; they were asked to provide a
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score reflecting the degree of perceived distortion between
0 (identical to the original) and 10 (worst case). The re-
sulting MOS were originally used to evaluate the perfor-
mance of the MSDM perceptual metric (see section 3).

• The LIRIS Masking Database [Lav09] was created at the
Université of Lyon, France. It contains 26 models with
between 9K and 40K vertices generated from 4 refer-
ence objects (Armadillo, Bimba, Dyno and Lion) specif-
ically chosen because they contain significantly smooth
and rough areas. The only distortion is noise addition
applied with three strengths. However, it is applied ei-
ther on smooth or rough regions. The specific objective
of this database was to evaluate the visual masking ef-
fect. It turns out that the noise is indeed far less vis-
ible on rough regions. Hence, the metrics should fol-
low this perceptual mechanism. 11 observers partici-
pated to the subjective evaluation. The data resulting
from this as well as the previous subjective experiment
can be downloaded from http://liris.cnrs.fr/

guillaume.lavoue/data/datasets.html.
• The IEETA Simplification Database [SSF07] was cre-

ated at the University of Aveiro, Portugal. It contains
30 models generated from 5 reference objects (Bunny,
Foot, Head, Lung and Strange) from 2K to 25K vertices.
The reference models have been simplified using three
different methods and two levels (20% and 50% of the
original number of faces). 65 observers participated in
the subjective evaluation; they were asked to provide a
score from 1 (very bad) to 5 (very good). Along with this
rating, in another phase of the test, the observers were
also asked about their preference among several simpli-
fied models presented together; this can also constitute
highly relevant information, which is, however, more dif-
ficult to exploit. The same authors have recently done
another subjective experiment using a larger corpus of
models [SSFM09]. However, only preferences were col-
lected. The data resulting from this subjective experiment
can be downloaded from http://www.ieeta.pt/

~sss/repository/.

5.2.2. 3D dynamic mesh

To the best of our knowledge, the only experiment dealing
with error perception in dynamic meshes was the one per-
formed by Váša and Skala [VS11] in their work propos-
ing the STED metric. Their setting used 5 dynamic meshes
(chicken, dance, cloth, mocap and jump), each in 9 versions,
using different kinds of both spatial and temporal distortion
of varying types (random noise, smooth sinusoidal dislo-
cation of vertices, temporal shaking and results of various
compression algorithms). Overall, there were 170 evalua-
tors; however, most of them only evaluated one or at most
two datasets, i.e. for each of the five datasets there were 37-
49 subjective evaluations. The users were asked to rate the
amount of perceived distortion on scale of 0-10. The users
had all the versions (including the original) available at the

same time (running on 10 computers), and they were asked
to use the whole scale of evaluation.

5.3. Evaluation results

Databases and Mean Opinion Scores produced by the sub-
jective tests presented above constitute an excellent basis
for comparing and evaluating existing perceptual metrics, by
studying the correlation between the MOS and the metric’s
values.

5.3.1. 3D static mesh

For model-based metrics (i.e. relying on the geometry),
a recent study [LC10] has provided an extensive quanti-
tative comparison of existing metrics by computing Pear-
son and Spearman correlations with MOS from the LIRIS
Masking Database and the LIRIS/EPFL General-Purpose
Database. These results were updated by the recent study
from [Lav11], which also provided correlation values on the
IEETA Simplification Database. Table 1 summarises these
correlation results. Most of the existing metrics cannot be
applied to evaluating simplification distortions because they
need the compared objects to share the same connectivity –
[KG00] [SCOT03] [BHM09] [LDD∗06] – or the same level
of details – [CGEB07].

As the table shows, the most recent MSDM2 metric pro-
vides very good results on all the databases; 3DWPM met-
rics also have a correct behaviour. On the contrary, the clas-
sical geometric distances, like Hausdorff and RMS, provide
a very poor correlation with human judgement. An impor-
tant point to raise is that the General-purpose and Masking
databases represent quite difficult scenarios (several differ-
ent models, several types of distortion, non-uniform distor-
tion); in simpler scenarios (one single uniform distortion,
like uniform noise addition, for instance), even simple ge-
ometric distances are able to correlate with the human judg-
ment; for instance, for the Simplification database (only one
type of distortion), the Hausdorff and RMS metrics provide
correct results. Moreover, in a purely watermarking scenario,
3DWPM metrics have been shown to provide very good re-
sults [CGEB07].

Unfortunately, image-based metrics have not been quan-
titatively tested on these public databases, whereas several
authors [WFM01] [CS06] have shown that, in a simplifi-
cation scenario, they provide very good results, better than
simple geometric distances. As also raised by Bulbul et al.
[BCLP11], it would be very interesting to compare quan-
titatively these image-based metrics to the most effective
model-based ones.

5.3.2. 3D dynamic mesh

The user opinions gathered by Váša and Skala in [VS11]
were evaluated using similar tools as described for the case
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General Purpose [LDD∗06] Masking [Lav09] Simplification [SSF07]
Spearman Pearson Spearman Pearson Spearman Pearson

Hausdor f f 13.8 1.3 26.6 4.1 49.4 25.5
RMS 26.8 7.9 48.8 17.0 64.3 34.4

GL1 [KG00] 33.1 12.6 42.0 15.7 N/A N/A
GL2 [SCOT03] 39.3 18.0 40.1 14.7 N/A N/A
SF [BHM09] 15.7 0.5 38.6 2.4 N/A N/A

3DWPM1 [CGEB07] 69.3 38.3 29.4 10.2 N/A N/A
3DWPM2 [CGEB07] 49.0 24.6 37.4 18.2 N/A N/A

MSDM [LDD∗06] 73.9 56.4 65.2 47.9 N/A N/A
MSDM2 [Lav11] 80.4 66.2 89.6 76.2 86.7 79.6

Table 1: Spearman and Pearson correlation (%) between Mean Opinion Scores and values from the metrics for the three
publicly-available subjective databases. These data have been synthesised from [LC10] [Lav11].

chicken dance cloth mocap
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

KGerror -53 -23 -54 -24 -27 14 -34 -50
Damean -49 -37 -53 -2 -24 13 -33 -49
Da peak -33 2 -60 -40 -29 20 -62 -53

Hausdor f f -32 2 -56 -36 -26 36 -53 -53
RMS -69 -63 -57 -30 -28 20 -42 -50

ST ED 97 95 94 96 92 95 98 92

Table 2: Spearman and Pearson correlation (%) between Mean Opinion Scores and values from the metrics for dynamic
meshes. These data have been taken from [VS11].

of static meshes, i.e. using the Spearman and Pearson co-
efficient. Five metrics were compared (KG error, Da error,
average Hausdorff distance, average RMS error and STED
error). The resulting Pearson coefficient was slightly neg-
ative for all the metrics except for STED. The results are
summarised in Table 2. By using the STED algorithm and
adjusting its parameters, the correlation with the results of
the subjective experiment reached more than 0.9 in all the
tests in terms of the Pearson coefficient.

6. Applications

6.1. Application to static mesh watermarking

In a static mesh watermarking [WLDB08a] algorithm, a
piece of information, i.e. a watermark, is embedded into
the functional part of a cover mesh. Applications of mesh
watermarking include copyright protection (robust water-
mark), mesh authentication (fragile watermark) and content
enhancement (high-payload watermark). In general, the em-
bedding of a watermark will inevitably introduce some dis-
tortion to the original cover mesh. It is important to keep this
distortion imperceptible to human eyes, so as to ensure that
its insertion does not influence the intended use of the model
and that the watermarked mesh does not look suspicious to
an attacker.

In the literature, the mesh watermarking research has ben-

efited from the work on mesh perceptual quality assessment,
or more generally from the work on human visual percep-
tion, in two different ways. First, the properties of the human
visual system (mainly those of frequency sensitivity and vi-
sual masking) have been taken into account during the de-
sign of mesh watermarking algorithms, with the objective to
achieve a better performance. Second, the emergence of ob-
jective mesh visual quality metrics has facilitated fair com-
parisons between different algorithms. In the following, we
will present some details on these two points.

6.1.1. Use of HVS features for mesh watermarking

Use of frequency sensitivity. The geometry processing
community has empirically noticed that in general high-
frequency distortion on mesh surfaces is much more visible
than low-frequency distortion. This observation provides in-
sight regarding how to select watermark carriers in spectral
mesh watermarking methods. However, compared to 2D im-
ages, performing a spectral transform on 3D triangle meshes
is much more complicated. The standard solution is first
to construct an N ×N mesh Laplacian matrix (where N is
the number of vertices) and then to use its eigenvectors as
the transform basis [LZ10]. Different constructions of the
mesh Laplacian matrix yield different transform bases. Ex-
isting spectral mesh watermarking methods may use differ-
ent transforms, but they all embed a watermark, commonly
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represented by a sequence of bits, in low-frequency coeffi-
cients of the mesh spectrum. For example, Ohbuchi et al.
[OMT02] embed watermark bits only in the first 500 low-
frequency coefficients obtained after a combinatorial Lapla-
cian spectral analysis [KG00]. Lavoué et al. [LDD07] use
even fewer coefficients, i.e. roughly the first 100, but for the
very low-frequency coefficients the authors adaptively in-
crease the embedding intensity because, empirically, more
distortion can be introduced to these coefficients without be-
ing noticed. Liu et al. [LPG08] and Wang et al. [WLBD09]
develop watermarking methods based on a new mesh spec-
tral transform, namely the manifold harmonics transform
[VL08], but the altered coefficients are always limited to the
low-frequency end, i.e. approximately the lowest 100 fre-
quencies.

Recently, an explanation has been proposed for the effect
of different sensitivities of the HVS to the modifications of
different mesh frequency components [Tor11]. Actually, by
using results from Nodal sets theory [DF88] and some sim-
ple trigonometric computations, one can obtain the intrinsic
frequency of each transform basis vector (i.e. each eigen-
vector of the mesh Laplacian matrix) and relate this fre-
quency to the frequency as observed by human eyes under
a regular viewing condition (the observed frequency is ex-
pressed in cpd, cycles per degree). Subsequently, we can re-
late the modification of a mesh spectral component to the
HVS sensitivity as given by the contrast sensitivity func-
tion [MS74] (cf. Section 2.1), which is a function of the
observed frequency. In Figure 8(b) and (c) are shown two
deformed Venus models where low and high frequency co-
efficients have been altered, respectively. The observed fre-
quencies of the two deformations are respectively around 0.1
and 4.0 cpd. According to the contrast sensitivity function,
which has a peak at 4-6 cpd and drops very rapidly on either
side of this peak, we know that the deformation in Figure
8(c) should be much more visible than that shown in Figure
8(b).

Frequency sensitivity of the HVS has also been utilised
in other mesh watermarking methods that do not operate
directly in a mesh spectral domain. For example, in the
wavelet-based method of Wang et al. [WLDB08b], a robust
watermark is embedded in the coarsest resolution level of
a dense semi-regular mesh after it goes through a wavelet
decomposition. The authors argue that the introduced distor-
tion is of low frequency because after performing wavelet
synthesis, the distortion would be spread over the surface
and thus be smoothed. A similar strategy is employed in
the subdivision surface watermarking scheme of Lavoué
et al. [LDD07], where the watermark is embedded in the
(coarse) control mesh of the subdivision surface. After sub-
division, the watermark would be “diluted” on the mesh
surface. Finally, in the moment-based method of Wang et
al. [WLDB11], watermark bits are embedded through a low-
frequency deformation of the cover mesh in which the sur-
face is either globally pulled upwards or globally pushed

Figure 8: From left to right are respectively the original
Venus model, a deformed model after low-frequency mod-
ification in the spectral domain, and a model after high-
frequency deformation. The induced MRMS errors of the two
deformed meshes are exactly the same, but their visual im-
pairments are quite different due to different frequency sen-
sitivities of the HVS.

downwards. In this way, the resulting deformation more or
less follows the original shape of the surface and is of low
frequency.

Use of visual masking effect. As mentioned in Section 2.1,
the visual masking effect means that the existence of one vi-
sual signal may hide or reduce the visibility of another one.
In the case of mesh visual quality assessment, this mainly
implies that a local surface modification would be more vis-
ible in a smooth area than in a rough area.

The visual masking effect has been considered in some
mesh watermarking methods, with the objective to achieve
a better trade-off between watermark imperceptibility and
the robustness/payload. The basic idea mainly consists in
increasing the embedding intensity or the local embedding
payload (i.e. the number of locally embedded bits) in rough
areas of the cover mesh. Different roughness measures have
been proposed in the literature of mesh watermarking, re-
spectively based on the minimum [YIK03] or total [Bor06]
length of the incident edges of a vertex, the dihedral an-
gle between neighbouring facets [CW07] and the variance
of the facet normal directions [YPSZ01]. Lavoué [Lav09]
devises a roughness measure based on the curvature differ-
ence between the input mesh and a carefully smoothed ver-
sion. When applying this measure for mesh watermarking,
the author first computes the local roughness of a number
of mesh patches, and then sets adaptive embedding intensity
for each patch, i.e. the rougher the patch is, the stronger the
intensity will be. This adaptive embedding can, to some ex-
tent, improve the robustness of the watermarking method of
Ohbuchi et al. [OMT02], while ensuring the watermark im-
perceptibility thanks to the visual masking effect. Similarly,
Kim et al. [KBT10] show that by using the mesh roughness
measure of Corsini et al. [CGEB07] to adaptively determine
the local embedding strength, they can achieve a better trade-
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off between imperceptibility and robustness for the water-
marking schemes proposed in [Ben99] and [CM03].

It can be seen that there does not exist a predominant
roughness definition for polygonal meshes, at least in the
context of mesh watermarking. We think that in order to
find an adequate roughness definition, we may need to con-
duct psychovisual experiments to quantitatively and compar-
atively study the relationship between geometric quantities,
e.g. those mentioned in the previous paragraph, and human
visual perception and quality assessment.

6.1.2. Perceptually-based metric for mesh watermark

benchmarking

When evaluating the imperceptibility of their mesh wa-
termarking schemes, in most cases researchers simply use
purely geometric measures such as Hausdorff distance and
root mean squared error, or they just show some images of
the original and watermarked meshes and leave the reader to
judge the visual fidelity. This seems inadequate mainly for
two reasons. First, as demonstrated by the results in Table 1,
simple geometric measures do not correlate well with a sub-
jective assessment. Second, the quality of the images illus-
trating the original and watermarked meshes highly depends
on the viewpoint selection and the rendering technique used.
Therefore, in order to ensure a fair and efficient comparison
between different mesh watermarking algorithms, one rea-
sonable solution is to use perceptually-based objective met-
rics. This was actually the motivation of the work of Corsini
and Drelie Gelasca et al. [DGECB05,CGEB07] and Lavoué
et al. [LDD∗06].

Recently, MSDM has been integrated into a mesh wa-
termarking benchmark that is publicly available online
[WLD∗10]. Different from the simple geometric measures,
MSDM well reflects the visual fidelity between two meshes
and thus is appropriate for the watermark imperceptibil-
ity assessment (see Figure 9 for an example). Like the
widely used benchmarks for image watermarking [PAK98,
STN∗01], the basic idea of the mesh watermarking bench-
mark is to first fix thresholds of the introduced distortion and
payload of the watermark, and afterwards assess the robust-
ness against a series of common attacks. The authors of the
benchmark consider that only fixing a threshold on MSDM
is not sufficient, and it is also necessary to set a threshold of
the geometric error, so as not to exaggerate the amount of
low-frequency distortion introduced by watermark embed-
ding that is rather imperceptible. Indeed, this control of geo-
metric error is particularly important in applications such as
computer-aided design and medical imaging. For more de-
tails on the benchmark and the evaluation results of several
mesh watermarking schemes using the benchmark, readers
can refer to [WLD∗10] and [WLDB11].

Figure 9: On the left is the Venus watermarked using the
method of Wang et al. [WLDB11] (MRMS= 1.69 × 10−3,
MSDM= 0.13), and on the right is the Venus watermarked
using the method of Cho et al. [CPJ07] (MRMS= 0.936×
10−3, MSDM= 0.54). MSDM yields correct results that are
consistent with a subjective assessment.

6.2. Application to static mesh compression

The objective of compression is to reduce the size of the
3D data to improve storage and speed up transmission; it
usually involves finding different ways of representing the
mesh in order to remove data redundancy and maximise the
amount of data implicitly encoded. Mesh compression tech-
niques can be distinguished in two categories: single-rate
techniques, where the mesh data is compressed as a whole
and can only be decompressed after receiving the entire file,
and progressive techniques, where the mesh is transmitted as
a simple coarse mesh (low-resolution), and a refinement se-
quence allowing the viewer to update incrementally the level
of detail of the mesh during the transmission. Both single-
rate and progressive techniques introduce distortions on the
object surface, which can be due to quantisation or simpli-
fication (in the case of progressive techniques); their main
goal is to find the optimal compromise between the bitrate
and the distortion, i.e. how to obtain a minimal file size while
preserving high visual quality.

Compression has benefited from the work on mesh per-
ceptual quality assessment and human visual perception,
mostly in two ways. First, like for watermarking (see para-
graphs above), the properties of the human visual system
(frequency sensitivity and visual masking) have been in-
tegrated in the design of compression algorithms. Second,
several compression frameworks have integrated perceptual
metrics. In the following, these two points will be detailed.

6.2.1. Use of HVS features for mesh compression

Use of frequency sensitivity. Like for watermarking, sev-
eral compression methods have used the fact that high-
frequency distortion on mesh surfaces is much more visi-
ble than low-frequency. Sorkine et al. [SCOT03] conduct a
Laplacian spectral analysis and then encode the transformed
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Figure 10: (a) Original Max Planck, (b) results after high
pass spectral quantisation, (c) result after uniform Cartesian
quantisation. Models from (b) and (c) are associated with the
same rate. The distortion from (c) (which is high-frequency)
is clearly more visible than the distortion from (b) (which is
low frequency). Images taken from [SCOT03].

coordinates instead of the Cartesian coordinates; the strength
of their method, called High-Pass Quantisation, is that it con-
centrates the quantisation error at the low-frequency end of
the spectrum, which results in a quite imperceptible distor-
tion since fine details are preserved. Figure 10 illustrates
their results.

A side property of this frequency sensitivity is that the
low-resolution level-of-details, in a progressive compression
algorithm, do not need a high geometric precision; hence,
they can be quantised roughly without impacting their vi-
sual appearance. Indeed, a geometric distortion applied on
a low-resolution model (e.g. several hundreds of vertices) is
very difficult to perceive because it causes a low-frequency
geometric perturbation. Valette et al. [VCP09] and Lee et
al. [LLD12] considered this principle and applied coarse-to-
fine quantisation precision in their progressive compression
algorithm to improve the rate-distortion trade-off.

Use of visual masking effect. The visual masking effect has
been considered in mesh compression to hide quantisation
artifacts: Lavoué et al. [Lav09] classify the vertices into two
clusters (rough and smooth) according to their roughness
value; rough vertices are then quantised with a lower pre-
cision than smooth ones, hence improving the rate-distortion
trade-off. Roudet [Rou10] also considers roughness to seg-
ment the 3D mesh into patches and then consider an adaptive
wavelet scheme for compression.

6.2.2. Use of perceptual metrics to drive mesh

compression

The objective of compression is to optimise the rate-
distortion trade-off; hence, one relevant method to solve this
problem is to include a bit allocation process in the com-
pression algorithm, driven by an error metric. For instance,
Payan et al. [PA06] have proposed such a bit allocation pro-

cess for wavelet compression, based on the mean square er-
ror. Unfortunately, only few authors have used perceptual
metrics for this purpose. Tian and AlRegib [TA08] proposed
such a bit allocation framework for progressive compres-
sion of textured meshes; for a given bit budget, the opti-
mal combination of mesh and texture resolution is calcu-
lated by optimising a simple perceptual metric previously
defined in [TA04]. Cheng and Basu [CB07] considered a dif-
ferent scenario: they use the perceptual metric from Pan et
al. [PCA05] to propose a transmission strategy for regular
textured meshes optimising perceptual quality under packet
loss in wireless networks; they break up the texture and mesh
into packets by segmentation into overlapping components
and subsampling. They then generalise this approach to ir-
regular meshes [CYDB08]; the main idea is to distribute ad-
jacent vertices into separate packets, so that packet loss does
not result in a big gap, hence making possible a satisfactory
interpolation.

6.3. Application to dynamic mesh compression

The most common use of dynamic mesh metrics is evalua-
tion of distortion to the mesh caused by lossy compression.
Being able to quantify the impact of the processing on var-
ious dynamic mesh datasets, it is possible to compare the
performance of different processing methods to one another.
Depending on the target application, a suitable metric can be
chosen, e.g. a perceptually correlated one, if the mesh will be
presented to human viewers, or a mean-square-error-related
one for physical simulations or technical applications.

Compression of animated meshes has become an active
field of research in recent years, building on the achieve-
ments of static mesh compression. The usual setting is that
there is a series of static meshes, one for each frame of the
animation, on the input, and the task is to encode the data
into a data stream as short as possible, causing the small-
est possible distortion. The meshes representing the frames
are usually expected to share connectivity; thus, connectiv-
ity encoding is of little importance in this task, as the cost of
connectivity code is spread over all the frames of the anima-
tion.

Impressive data rates of less than 0.5 bpfv (bits per frame
and vertex) are achieved using the current state-of-the-art al-
gorithms by exploiting both spatial and temporal coherence
of the vertex positions. In search of further performance im-
provement, the research has recently focused on the problem
of distortion evaluation, where some interesting results have
already been obtained.

Until the proposal of the STED metric [VS11], there
were no published comparisons utilising a perceptually cor-
related metric focused on dynamic meshes. To compare a
new compression method with existing ones, the authors of
the method need to know the performance of all the meth-
ods in a single metric. Obtaining such results requires eval-
uating all of the methods with a metric of choice. Since the
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implementations of many of the methods are not publicly
available, and some of them are difficult to obtain due to li-
censing restrictions, most researchers tend to take a short-
cut and use the already published results of the methods.
But that means they also have to adopt the metric these re-
sults were measured by. This creates a certain metric lock-
in, where the same metrics, such as temporally-averaged
RMSE, Hausdorff Distance, or KG error, are continually
used, even though they have been proven not to correlate
with human perception.

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

S
T

E
D

 e
rr

o
r

bitrate [bits per frame and vertex]

STED-optimised Coddyac

KG-optimised Coddyac

STED-optimised FAMC

KG-optimised FAMC

Figure 11: Rate-distortion curves of the Coddyac [VS07]
and FAMC [MSK∗08] algorithms in the STED metric com-
pressing “cow” animation. Solid lines show the perfor-
mance when optimising for the KG error metric, dashed
lines denote optimisation for the STED metric.

Even when resulting meshes, processed by a particular
method, are available, using a different metric than the au-
thors did while creating the meshes to measure the distortion
may not lead to a fair comparison. The parameters of the
method were most probably set for optimal performance in
the original metric, which does not generally mean they will
be optimal for the new metric as well (see Figure 11). This
is very important, since animated mesh compression algo-
rithms usually require setting several configuration parame-
ters, which significantly influence the character of distortion
in the mesh. To perform a fair comparison using a particular
distortion metric, all the compared compression algorithms
need to be optimally configured with respect to that metric.
Petřík and Váša proposed an optimisation technique for con-
figuring a dynamic mesh compression algorithm optimally
with respect to a chosen metric [PV10]. This technique has
been subsequently used, together with the STED metric, in
the development of the perception-driven compression algo-
rithm published in [VP11]. The algorithm is based on Lapla-
cian coordinates encoding, which has been previously used
by Sorkine et al. [SCOT03] for the case of static meshes.
The results confirm the previous finding that the kind of arti-
facts caused by quantisation of Laplacian coordinates is less
perceptible than other kinds of artifacts.

Rus and Váša [RV12] proposed a method for smooth-
ing discontinuities between clusters (“mesh deblocking”)
in meshes processed by clustering-based compression algo-
rithms, such as FAMC [MSK∗08] and Clustered Coddyac
[RV10]. Such algorithms divide the mesh into several con-
nected subsets (clusters) based on a certain criterion (similar
motion of the vertices in a cluster, for example) and then en-
code these subsets separately. This procedure may cause the
borders of the clusters to overlap or shift apart (see Figure
12). Human vision is much more sensitive to such unusual
edges and discontinuities than, for example, RMSE-based
metrics, and similarly sensitive are perceptual metrics. The
deblocking method improves STED metric performance of
existing algorithms that have been tuned to minimise a non-
perception-correlated distortion metric, especially for low
bitrates.

Figure 12: A frame from the “dance” animation compressed
by the Clustered Coddyac algorithm [RV10] (left) and then
deblocked by the mesh deblocking method [RV12] (middle).
STED value improved from 0.055 to 0.047. The original is
shown on the right.

7. Conclusions

Evaluating the perceptibility of distortion caused by mesh
processing is currently still an open problem, and it seems
unlikely that there is ever going to be a perfect solution that
works in any circumstances. On the other hand, in recent
years great advances have been made, and current metrics
described in sections 3 and 4 provide a much better correla-
tion with human perception of distortion.

Apart from maximising the statistical correlation with hu-
man perception, as described in section 5, there are many
open questions in this area of research, some of which are
probably never going to be answered completely. The main
issues are:

• applicability of the metrics to various kinds of distortion
that might be caused by newly proposed and possibly
complex processing algorithms,
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• the ability of the metrics to accurately predict perceived
distortion in varying circumstances of the mesh usage,
such as the characteristics of the display device, the ren-
dering procedure, the viewing conditions and so on,

• applicability of the metrics to models of varying char-
acter and properties, such as model size, model rough-
ness/smoothness, or the amount of detail represented in
the model.

Even though it seems improbable that there is ever going
to be a metric that works for any model under any circum-
stances and with any kind of distortion, it can be safely as-
serted that the current perceptual metrics, such as MSDM2
and STED, have made a significant first step in that direc-
tion. From this point, some initial efforts have already been
made to continue the cycle of adopting the new metrics into
processing algorithms and the hope for the future is that this
process is going to provide feedback for construction of even
better perception-correlated metrics.
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