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Under typical viewing conditions, we can easily group
materials into distinct classes (e.g., woods, plastics,

textiles). Additionally, we can also make many other

judgments about material properties (e.g., hardness,

rigidity, colorfulness). Although these two types of

judgment (classification and inferring material

properties) have different requirements, they likely

facilitate one another. We conducted two experiments to

investigate the interactions between material

classification and judgments of material qualities in both

the visual and semantic domains. In Experiment 1, nine

students viewed 130 images of materials from 10

different classes. For each image, they rated nine

subjective properties (glossiness, transparency,

colorfulness, roughness, hardness, coldness, fragility,

naturalness, prettiness). In Experiment 2, 65 subjects

were given the verbal names of six material classes,

which they rated in terms of 42 adjectives describing

material qualities. In both experiments, there was

notable agreement between subjects, and a relatively

small number of factors (weighted combinations of

different qualities) were substantially independent of

one another. Despite the difficulty of classifying

materials from images (Liu, Sharan, Adelson, &

Rosenholtz, 2010), the different classes were well

clustered in the feature space defined by the subjective

ratings. K-means clustering could correctly identify class

membership for over 90% of the samples, based on the

average ratings across subjects. We also found a high

degree of consistency between the two tasks, suggesting

subjects access similar information about materials

whether judging their qualities visually or from memory.

Together, these findings show that perceptual qualities

are well defined, distinct, and systematically related to

material class membership.

Introduction

In everyday life, we are usually extremely good at
recognizing different materials, such as wood, plastic,
or soap, based on their visual appearance. For
example, if we look at an office chair, we not only
identify that the object as a whole is a chair, but can
also readily identify what the component parts are
made out of—stainless-steel legs, textile covering,
plastic armrests, and so on. Indeed, based on our
subjective experience, it seems likely that our ability to
identify different classes of material probably rivals our
ability to identify different classes of object. The range
of materials we encounter is vast, and yet we can make
many remarkably subtle material judgments, such as
whether fruit is freshly cut or half an hour stale or
whether furniture is veneered with real or fake wood.

One interesting related observation is that most
materials that we encounter appear to belong to some
kind of natural class, such as ‘‘plastic,’’ ‘‘metal,’’
‘‘stone,’’ or ‘‘fabric.’’ A few example materials are
presented in Figure 1. Even if we do not have a readily
available verbal name for a given class of material (e.g.,
‘‘the stuff on the inside surface of a banana skin’’), we
can usually relate a given example of the material to a
psychological concept and liken the material to other
similar exemplars we have seen previously. This is an
impressive achievement because the members of a given
class can vary widely in terms of their visual
appearance. For example, the natural class ‘‘metal’’
includes such diverse appearances as mercury, copper,
lead, and bronze. Metal objects come in an enormous
variety of shapes and sizes, from needles to manhole
covers to helicopters, and yet somehow we are able to
group metal materials together and make inferences
about new exemplars based on our experiences with
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other members of the class. This is a major challenge
for the visual system to overcome.

To make matters more difficult, in image terms,
members of different classes may sometimes be more
similar to one another than to members of the same
class. For example, the reflectance properties, shape,
and mesoscale texture of a piece of limestone may be
more similar to bread or sponge than to a quartz
crystal, and yet we most probably group both limestone
and quartz into the class of ‘‘stones’’ while ‘‘sponge’’
and ‘‘bread’’ are quite different categories. Clearly, the
process of assigning a given material to an appropriate
class is computationally a difficult problem for the
brain to solve. Rather little is known about how we
recognize and classify materials, at least relative to
what is known about the recognition and categoriza-
tion of faces or objects (although we review some work
on the topic below). Here we aim to gain some insights
into material classification.

Another important observation about material
perception is that it is not limited to assigning a
material to a specific class. We can also make many
judgments about the perceived qualities of different
materials irrespective of their class membership. For
example, we can tell whether a material is soft or hard,
rough or smooth, glossy or matte, flexible or fragile,
etc. In some cases, qualities may be perceptual
counterparts of objective material attributes, such as
viscosity or elasticity. In other cases, the qualities may
be highly subjective, such as whether the material
appears ‘‘beautiful’’ or ‘‘comforting,’’ for example.
Nevertheless, in both cases, estimating or attributing
perceptual qualities represents a parallel type of
material perception judgment, which is somewhat
independent from assigning materials to classes. Some
qualities are clearly shared by materials from different
categories (e.g., woods and stones are both usually
perceived to be hard) while some qualities may vary
substantially within a category (e.g., stone can be
completely opaque, like chalk, or highly translucent,
like jade). Furthermore, we can subjectively compare
the surface properties (e.g., degree of glossiness) of two
materials that may belong to different perceived classes,

again suggesting that judgments of material qualities
can be independent of the material class.

At the same time, these two types of judgments
(assigning class membership and estimating material
qualities) clearly interact with one another. For
example, identifying that a material is a fabric gives us
access to all kinds of stored semantic knowledge about
fabrics, such as the fact that most fabrics are flexible,
rather than rigid. In other words, assigning class
membership can aid in the estimation of subjective
qualities. This is especially important for properties
such as density or friction, which may not easily be
estimated visually from a given sample of the material
or viewpoint. At the same time, the reciprocal
interaction is also quite likely. In other words, judging
the properties of a material probably plays a key role in
assigning the material to a given class. For example,
perceiving that a surface is soft, flexible, and fibrous
presumably helps us to work out that the material is
probably a textile even if we have never seen this
particular type of textile before.

The relationship between judgments of material
qualities and assignment of materials to classes raises a
number of interesting questions about how materials
are estimated and represented in the human mind. How
distinct are different classes from one another in terms
of their perceptual qualities? In other words, to what
extent can class assignments be predicted by appear-
ance qualities? What is the relationship between visual
estimates of material qualities and stored knowledge
about material classes? How distinct are different
material qualities from one another? Are there a small
number of basic dimensions or a large number of
different properties that can be judged independently of
one another?

To gain insight into these questions, we performed
two experiments on the relationship between material
qualities and class membership. In the first experiment,
subjects were shown images of different exemplars from
10 different material classes and had to rate the extent
to which each sample manifested nine different
appearance qualities. This allowed us to gain insight
into how different members of a given class are related

Figure 1. Examples of different materials (from left to right: marble, fabric, bark, paper). We can generally assign the materials to

distinct psychological classes and also make judgments about the perceptual qualities of individual samples.
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to one another and how appearance quality judgments
relate to class assignments. In the second experiment,
subjects were given the verbal name of a given material
class and a questionnaire sheet containing 42 different
adjectives describing material qualities. Their task was
again to rate the extent to which they believed members
of that class manifested each material quality. By
design, the two experiments are complementary. The
visual experiment includes multiple samples from each
category but fewer material qualities. By contrast, the
semantic experiment contains only class labels but
allows us to test the relationships between many more
material qualities. By comparing responses in the two
experiments, we can determine the extent to which
judgments of material qualities for each class are
consistent across visual and semantic domains.

Previous work

As mentioned above, relatively little is known about
material classification—at least compared to object
classification. A number of authors have attempted to
derive feature spaces for describing the relationships
between different textures much like color spaces
describe the relationships between different colors. For
example, Heeger and Bergen (1995) and Portilla and
Simoncelli (2000) have developed texture analysis and
synthesis algorithms that describe the statistical prop-
erties of texture patches parametrically. Although they
are not explicitly designed to provide metrics for
comparing images, the feature spaces used by these
algorithms could be used to measure the similarity
between different surfaces for classifying images of
materials or for relating them to one another.

These statistical texture models have a large number
of parameters that are designed to capture image
structure in general rather than to identify the specific
degrees of freedom relating different textures or
materials to one another. To identify the ‘‘psycholog-
ical dimensions’’ of texture, Rao and Lohse (1996)
assessed 56 textures from the Brodatz album along 12
intuitive dimensions, including contrast, roughness,
coarseness, and regularity. Subjects rated the images
based on visual inspection. Eight texture classes were
derived, which could be represented along three major
axes by analogy to the cardinal axes of color space. The
authors interpreted these axes as ‘‘repetitiveness,’’
‘‘directionality,’’ and ‘‘contrast’’ as well as coarseness
and complexity. In a follow-up study, Bhushan, Rao,
and Lohse (1997) asked subjects to categorize words
describing textures and tested whether there was a
correspondence between the ratings in the verbal and
visual domain. Results confirmed a three-dimensional
data structure with similar semantic axes for catego-
rizing texture words. Moreover, a strong correspon-

dence between texture words and texture image
dimensions was found when subjects were asked to
map them onto each other. Here, we take a similar
approach to the more general problem of assessing
material properties and classes rather than focusing
solely on texture.

Matusik, Pfister, Brand, and McMillan (2003) made
detailed measurements of the reflectance properties
(BRDFs) of over 100 physical materials and used
nonlinear dimensionality reduction techniques to
identify a low-order embedding of the materials. He
found that the BRDFs contained many statistical
redundancies, allowing him to accurately approximate
the materials using just 10 to 15 dimensions. The
authors asked subjects to rate a variety of visual
qualities (e.g., ‘‘glossiness,’’ ‘‘redness’’) for all their
samples. The resulting ratings were used to define visual
‘‘trait vectors’’ spanning the low-dimensional material
manifold, which expressed how materials are related to
one another in terms of the different traits. Based on
this, it was possible to synthesize novel BRDFs that
exaggerated or attenuated specific visual qualities (e.g.,
making a metal appear rustier). In follow-up work,
Matusik, Zwicker, and Durand (2005); Ray, Levy,
Wang, Turk, and Vallet (2009); and Ruiters, Schnabel,
and Klein (2010) applied similar techniques to textures
(rather than homogeneous BRDFs), enabling them to
synthesize smooth transitions in texture appearance
between different samples. These results strongly
suggest that the visual system can attribute continu-
ously varying perceptual qualities to different materi-
als. However, the work does not establish how qualities
are related to perceptual classes.

To gain insights into material classification, Sharan,
Rosenholtz, and Adelson (2009) have developed the
MIT-Flickr material database, consisting of 100 images
from 10 different classes of materials downloaded from
the photo-sharing site Flickr. Sharan and colleagues
showed that subjects are surprisingly fast and accurate
in assigning these images to their distinct material
classes even with short presentation times. When
presented for 40 ms, subjects correctly classified 83% of
the images in a two-alternative forced-choice paradigm.
This shows that material recognition can be achieved
reasonably fast, and it has been suggested that a set of
low-level and mid-level features can be used to
characterize natural images of different material
classes. Liu et al. (2010) developed an algorithm to
classify material classes from natural images. The
algorithm achieves 44.6% correct classification on the
MIT-Flickr material database. Although not as good
as humans, this performance is impressive given the
wide variety of appearances present in the 10 material
classes. In other words, the database is much less
homogeneous than conventional texture databases.
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Here, we also use a subset of the MIT-Flickr
database, but instead of asking subjects to assign the
images to classes, we asked them to rate subjective
material qualities. We then infer class structure from
the ratings to assess how the two types of tasks
(classification and perceptual quality ratings) are
related to one another. Thus, whereas previous work
has investigated either classification or quality ratings,
here we try to understand the connection between the
two.

Experiment 1: Visual judgments of
perceptual qualities

Methods

Overview

Subjects viewed photos of different materials and
rated the materials for various perceptual qualities
(e.g., glossiness, hardness, fragility).

Stimuli

Stimuli consisted of 512 · 384 JPEG photos,
selected from the MIT-Flickr Materials Database
(Sharan et al., 2009). Thirteen exemplars were selected
from each of the 10 material categories in the database
(fabric, foliage, glass, leather, metal, paper, plastic,
stone, water, and wood), making a total of 130 items.

The order of the images was scrambled, and they
were then compiled into a single PDF, one image per
page. The PDF was presented to the subjects using the
Apple Mac application ‘‘Preview,’’ in slideshow mode
with the ‘‘Actual Size’’ option (as opposed to ‘‘Full
Screen’’) to reduce the visibility of JPEG artifacts. The
images were presented using an Acer PD528 DLP
beamer, projecting onto a white wall in the classroom.
The sRGB profile was used but slightly adjusted to
increase brightness. The shutters of the windows were
lowered to improve contrast although the overall light
level was still typical of a classroom or office (i.e., not a
darkened room). To confirm that image intensity was
homogeneous, we measured the luminance of a
uniform white image at the four corners and center of
the projection screen. The values ranged from 69.2 to
73.1 cd/m2 with a mean of 71.76 and a variance of 2.46
cd/m2 (i.e., 3.4% of the mean).

Subjects

Nine master’s students from the University of
Giessen (eight female, one male) performed the
experiment as part of a seminar course on color and

material perception. All participants reported normal
or corrected-to-normal visual acuity.

Procedure

All subjects sat together in a single room and viewed
the images simultaneously on the projector screen.
They entered their responses on laptops running
Microsoft Excel. The experiment was organized into
nine blocks of 130 trials. In each block of trials, a
different perceptual quality was assessed, and in each
trial within a block, subjects rated that quality for a
single image. An alternative approach would have been
to provide ratings for several perceptual qualities for
each trial, but this has the disadvantage of constant
task switching and would have made pacing the
presentation of images more difficult.

The 130 images were shown in the same order in
each block. In each trial, the subjects’ task was to assess
the image for the perceptual quality of the current
block and enter a rating from one to six into the
spreadsheet to record their response. Having assigned a
value for a given perceptual quality to all 130 images,
the subjects took a short break, and then the next block
(i.e., next perceptual quality) was started.

Before each block, the perceptual quality to be
judged in the forthcoming block was defined, and the
polarity of the six-point scale (i.e., what low and high
values correspond to) was explained. The subjects were
encouraged to ask questions to clarify their under-
standing of the material property to be rated and the
rating scale. Importantly, the subjects were not
informed that the materials were grouped into distinct
classes; they were simply told that they would see 130
images of various different materials. The following
nine qualities were assessed with the following defini-
tions:

� Glossiness: How glossy or shiny does the material
appear to you? Low values indicate a matte, dull
appearance; high values indicate a shiny, reflective
appearance.

� Transparency: To what extent does the material
appear to transmit light? Low values indicate an
opaque appearance; high values indicate the material
allows a lot of light to pass through it.

� Colorfulness: How colorful does the material appear
to you? Low values indicate a grayish, monochrome
appearance; high values indicate a colorful appear-
ance, which could be either a strong single color or
several colors.

� Roughness: If you were to reach out and touch the
material, how rough would it feel? Low values
indicate that the surface would feel smooth; high
values indicate that it would feel rough.

� Hardness: If you were to reach out and touch the
material, how hard or soft would it feel? How much

Journal of Vision (2013) 13(8):9, 1–20 Fleming, Wiebel, & Gegenfurtner 4



force would be required to change the shape of the
material? Low values indicate that the surface would
feel soft; high values indicate that it would feel hard.

� Coldness: To what extent would you expect the
surface to feel cold to the touch? Low values indicate
that the material would typically feel warm or body
temperature; high values indicate that the material
would feel cold to the touch.

� Fragility: How fragile or easy to break is the
material? High values indicate that a small amount of
force would be required to break, tear, or crumble
the material; low values indicate that the material is
highly resistant and could not easily be broken.

� Naturalness: How natural does the material appear
to be? To what extent is the material in its most
natural, common state? Low values indicate that the
material appears unnatural; high values indicate that
it appears natural.

� Prettiness: How pretty or visually attractive is the
material to you? Low values indicate the material is
ugly or unattractive; high values indicate that it is
attractive or beautiful to the eye.

Within each block, the experimenter manually
progressed through the images in relatively rapid
succession (about 2 s per image). From time to time,
when a student made a mistake or could not keep up,
he or she shouted out, and we backtracked a few
images as necessary, allowing the subject to correct the
errors. Other than that, there was no communication

whatsoever between participants: They were explicitly
instructed not to confer during the experiment, and the
experimenter monitored this. The other subjects did not
adjust their ratings to the images that were seen again.

Results

Response distribution

Figure 2a shows the overall distribution of ratings
pooled across all subjects and all trials, i.e., the total
number of times subjects used each of the six different
values on the rating scale. There are two notable
aspects of the distribution. First, the histogram appears
to be bimodal with subjects favoring extreme values
(one and six) over intermediate values. Put another
way, there does not appear to be a pronounced
regression to the mean in the use of the scale. The fact
that subjects were willing to assign extreme values
suggests that they had strong, categorical impressions
of the perceptual qualities and could determine with
some confidence whether or not a material exhibited
the quality of interest in each block. This suggests that
overall, the various perceptual qualities that subjects
rated could be interpreted in a meaningful way and that
they could meaningfully be applied to materials.

The second observation is that the distribution is
markedly asymmetrical with more ones than sixes. In
other words, materials tended to exhibit extremely low

Figure 2. Histograms of rating values. (a) Overall distribution of rating values across all subjects, material classes, and qualities. (b)

Distribution of rating values for each quality.
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values of the qualities more often than high values.
Some caution is required in interpreting the meaning of
this observation. The polarity of the scales is in some
sense arbitrary. For example, subjects were asked to
rate ‘‘glossiness’’ with high values assigned to glossy
materials and low values assigned to matte materials.
However, we could just as easily have asked subjects to
rate the reciprocal quality (i.e., ‘‘matteness’’), in which
the glossiness scale is simply inverted. If all scales were
inverted, the asymmetry would be reversed. By
inverting only some of the scales, it would be possible
to largely remove the asymmetry. Thus, this asymmetry
probably does not indicate something profound about
the distribution of materials within the nine-dimen-
sional (9-D) quality space. An alternative explanation
of the asymmetry would be a response bias; namely, for
some reason, the subjects preferred to give extreme low
values irrespective of the perceptual quality. However,
inspection of the score distributions separated for each
perceptual quality (Figure 2b) suggests this is not the
case. Most of the individual distributions are skewed
and unimodal, but the direction of skew varies from
quality to quality. For example, ‘‘roughness’’ is
dominated by low values (i.e., most materials were
smooth) while ‘‘hardness’’ is dominated by high values.
Other qualities (e.g., ‘‘transparency’’ and ‘‘natural-
ness’’) are bimodal, indicating that materials tended to
exhibit either high or low values but rarely intermediate
ones. Thus, a constant response bias cannot account
for the asymmetry.

Consistency across subjects

It is interesting to ask to what extent subjects are
consistent in their judgments of material qualities. It
could be that each subject interpreted the meaning of
each perceptual quality differently or that there is a
highly subjective aspect to some of the qualities (e.g.,
‘‘prettiness’’), such that a given image could appear to
have a high value to one subject but a low value to
another. This would lead to a high degree of
inconsistency between the different subjects. By con-
trast, if the subjects agreed on the values assigned to
each material, it suggests that the perceptual qualities
are in some sense objective and meaningful. To test
this, we estimated the correlations between subjects’
responses across all images and perceptual qualities.

Figure 3 plots the correlation matrix comparing each
subject’s ratings to all the other subjects. Low
correlations are plotted as dark grays (r ¼ 0 would be
black), higher correlations as lighter grays (r¼ 1 would
be white). As can be seen, all subjects are substantially
positively correlated with one another: All correlations
are significantly above zero with r scores ranging from
0.4870 to 0.7070. The mean and standard deviation of
all the pair-wise r scores are 0.5974 and 0.0669,
respectively. This suggests that subjects were substan-
tially consistent with one another in their assignment of
perceptual quality ratings to the 130 different materials
in the experiment.

We can also separate the correlations between
subjects for each perceptual quality to measure the
extent to which the different perceptual qualities
elicited similar ratings from the subjects. We find that

Figure 3. Intersubject correlations. Gray level indicates the

correlation coefficient as specified by the color bar. Correlation

coefficient values are stated in each cell. Dots indicate that the

correlation in the corresponding cell is statistically significantly

different from zero at the p , 0.001 level. Note that all

correlations are significant and positive.

Figure 4. Mean correlations between subjects for each

perceptual quality. Error bars indicate standard errors of the r

scores.
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some qualities, notably ‘‘transparency’’ and ‘‘hard-
ness,’’ are highly consistent across subjects. Other
qualities (e.g., ‘‘naturalness’’) are largely consistent but
with one or two subjects that differ from the others.
Finally, some qualities (e.g., ‘‘prettiness,’’ ‘‘fragility’’)
are much less consistent across subjects. These differ-
ences are summarized in Figure 4, which plots the mean
of the r scores in each correlation matrix for each
perceptual quality. Error bars indicate standard errors
of the r scores.

Ratings for each material class

Subjects were not informed that the 130 different
images consisted of 10 distinct material classes. It is
interesting to ask to what extent the different material
classes nevertheless exhibited distinctive patterns of

responses across qualities. Intuitively, we might expect
materials within a class to share certain qualities that
distinguish them from other material classes. For
example, objects made out of glass tend to be quite
glossy, highly transparent, variable in colorfulness,
generally rather smooth, very hard, cold to the touch,
fragile, artificial (as opposed to natural), and with
varying values of prettiness (one’s predilection for cut
glass, or lack thereof, notwithstanding). By contrast,
water, which is also glossy and transparent, probably
differs from glass in terms of ‘‘hardness’’ and ‘‘natu-
ralness.’’ Thus, the ratings of different qualities could
form a distinctive feature ‘‘signature’’ for each class of
materials.

Figure 5 shows the mean ratings of each quality for
each material class, averaged over the nine subjects and
13 different exemplars within each class. Error bars

Figure 5. Mean quality scores for each material class. Error bars represent standard errors of the mean. Different material classes

have distinctly different feature signatures.
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indicate standard errors. As expected, different classes

of materials tend to have distinctive signatures of

different qualities. For example, water is high in

‘‘glossiness’’ and ‘‘transparency’’ but very low in

‘‘roughness’’ and ‘‘hardness’’ whereas stone is roughly

the opposite for these qualities. Other materials also

have broadly intuitive signatures.

It is interesting to note at this stage that there seem

to be some important correlations between different

classes, suggesting a smaller number of underlying

degrees of variation along which the different classes

may be clustered. For example, stone, wood, and, to

some extent, metal have somewhat similar signatures.

We return to these correlations below.

We can also plot the same data grouped by the
perceptual qualities as shown in Figure 6. Here, each
bar indicates the average ratings for a different material
class, and error bars again indicate standard errors.

The results are again broadly intuitive. For example,
for the perceptual quality ‘‘transparency,’’ most mate-
rial classes (fabric, foliage, leather, metal, paper,
plastic, stone, and wood) receive low scores whereas
glass and water materials receive high average ratings.
The overall variance is relatively large.

Correlations between qualities

As we have seen, different qualities have different
distributions across the material classes, suggesting that

Figure 6. Mean ratings for each perceptual quality (same data as in Figure 5 but regrouped by perceptual quality). Error bars

represent standard errors of the mean.
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these qualities provide a means to distinguish between
types of material. However, to what extent are these
different perceptual qualities truly independent from
one another, and to what extent are they correlated? A
priori, we might expect some qualities to correlate with
one another. For example, ‘‘glossiness’’ and ‘‘trans-
parency’’ are likely to be somewhat correlated because
the physics of dielectrics means that materials that are
highly transparent are usually also specular. By
contrast, ‘‘colorfulness’’ and ‘‘naturalness’’ are pre-
sumably independent properties as both natural and
artificial materials can be strongly or weakly colored.
The correlation matrix relating the perceptual qualities
to one another is shown in Figure 7.

The correlation coefficients range from �0.4877 to
0.4720, meaning that although most of the qualities are
significantly correlated with one another the correla-
tions are nevertheless small in magnitude. The most
strongly positively correlated qualities are ‘‘glossiness’’
and ‘‘transparency’’ (r¼ 0.4720), followed by ‘‘cold-
ness’’ and ‘‘hardness’’ (r ¼ 0.4648). Both of these
correlations make intuitive sense from a physical point
of view. Materials that are hard, like metal, glass, and
stone, are often also good conductors of heat, causing
them to feel cold to the touch. By contrast, soft
materials, like fabrics and paper, tend to trap air in
their fibers, making them good insulators.

The most strongly negatively correlated qualities are
‘‘roughness’’ and ‘‘glossiness’’ (r ¼�0.4877) and
‘‘roughness’’ and ‘‘transparency’’ (r¼�0.4221). Again,
this makes intuitive sense because roughening a surface
strongly affects the way it scatters light. Rough surfaces
tend to be either almost completely diffuse (Oren &
Nayar, 1994) or have very broad specular lobes
(Torrance & Sparrow, 1967; Ward, 1992). This leads to
extremely blurry, low-contrast highlights and, in the
case of transparent surfaces, a frosted, translucent
appearance. By contrast, smooth surfaces, like polished
metal or glass, tend to make sharp, clearly visible
highlights and refracted features.

Overall, however, it is important to note that the
qualities are generally only weakly correlated with one
another. Half of the correlation coefficients have an
unsigned magnitude of less than 0.16, and about 80%
have an unsigned magnitude less than 0.35. This
indicates that while correlations do occur, broadly, the
perceptual qualities are weakly correlated with one
another, and subjects can treat them as distinct and
independent attributes of materials. The correlations
that are found seem to relate to true underlying
correlations between the physical and functional
properties of different materials rather than a psycho-
logical confounding of the different qualities in the
subjects’ minds.

Correlations between material classes

We have just considered correlations between differ-
ent perceptual qualities and found that subjects can rate
materials along the nine different qualities as if they were
distinct dimensions. To what extent is the same true of
different material classes? Are different material classes
highly distinct, or do some classes correlate with one
another? As we have already seen from the pattern of
average ratings shown in Figure 5, some material classes
(e.g., wood and stone) do tend to correlate relatively well
with one another across the nine perceptual qualities we
tested, whereas others (e.g., metal and fabric) appear to
be quite independent. In Figure 8, we assess this in more
detail by plotting the correlation matrix relating each
material class to each other.

The correlation coefficients range from�0.3408 to
0.5815, indicating that the correlations between different
material classes are generally relatively modest. The
most strongly positively correlated material classes are
stone and wood (r¼ 0.5815), followed by metal and
leather (r¼ 0.4141). The correlation between stone and
wood is fairly unsurprising: Of the material classes
considered here, these are probably subjectively the most
similar, both being naturally hard, often rough, brown-
ish in color, and grained. Although, in everyday life, we
would rarely confuse wood with stone, intuitively it
seems that when compared with other classes (e.g.,

Figure 7. Correlation matrix relating the nine different

perceptual qualities to one another. Colors indicate correlation

coefficients as specified by the color bar. Pinks indicate positive

correlation; blues indicate negative correlation. Correlation

coefficient values are stated in each cell. Dots indicate that the

correlation in the corresponding cell is statistically significantly

different from zero at the p , 0.01 level.
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fabric, water, or glass), wood and stone are rather
similar to one another. The correlation between metal
and leather is somewhat more surprising: When asked
verbally which classes are most similar to one another,
none of the subjects reported these classes. At the same
time, it is also important to note that correlation does

not capture the absolute similarity in ratings between
two classes of material; it simply measures the tendency
for different perceptual qualities to increase or decrease
in union. Paired sample t tests between the ratings for
each perceptual quality for leather and metal materials
reveals that the two classes were significantly different
for six of the nine perceptual qualities: ‘‘glossiness’’ (t¼
�3.3698; p , 10�3), ‘‘transparency’’ (t¼�3.3360; p ,
10�3), ‘‘hardness’’ (t¼�20.1050; p , 10�39), ‘‘coldness’’
(t¼�11.8454; p , 10�21), ‘‘fragility’’ (t¼ 4.1446; p ,
10�4), and ‘‘naturalness’’ (t¼ 4.9169; p , 10�6). Thus,
correlations alone do not capture the true perceived
similarities between different material classes. To eval-
uate this, we must consider the distribution of the
samples in the 9-D feature space defined by the different
perceptual qualities.

Clustering of material classes in the space of perceptual
qualities

To aid visualizing how the images are distributed in
the feature space of perceptual qualities, we performed
principal component analysis (PCA) on the mean
ratings across subjects. The factor loadings of the first
two principal components (PCs, see Figure 9a) indicate
that PC1 is strongly positively loaded by ‘‘glossiness’’
and ‘‘transparency’’ and negatively by ‘‘roughness’’
whereas PC2 contrasts positive loading on ‘‘natural-
ness’’ against stronger negative loadings on ‘‘hardness’’
and ‘‘coldness.’’ Although it makes intuitive sense that
glossiness and transparency may tend to be correlated
and that glossy, transparent things tend to be smooth
rather than rough, the factor loadings do not lead to a
clear and decisive interpretation of the underlying
psychological dimensions. In other words, the factor
loadings probably depend heavily on the specific

Figure 8. Correlation matrix relating the 10 different material

classes to one another. Colors indicate correlation coefficients

as specified by the color bar (note scale is not the same as in

Figure 7). Pinks indicate positive correlation; blues indicate

negative correlation. Correlation coefficient values are stated in

each cell. Dots indicate that the correlation in the correspond-

ing cell is statistically significantly different from zero at the p ,

0.01 level.

Figure 9. Results of PCA on the mean ratings across subjects. (a) Factor loadings for the first two PCs. (b) Variances of the PCs (i.e.,

eigenvalues of the covariance matrix).
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stimulus set used rather than revealing cardinal axes of
the mental representation of materials.

In Figure 9b, we plot the eigenvalues of the PCs.
Interestingly, there is a large drop of almost a factor of
two between PC2 and PC3, and the first two PCs
together account for 62% of the variance. The first five
PCs account for 93% of the variance. This means that
we can get an approximate impression of the overall
distribution using just the first few PCs. In Figure 10,
we plot ratings for each image projected onto the first
two PCs and color code each image by its true class
membership. As we have just argued, we suggest that
the specific orientation of the distribution of images in
the PCA space is not the most important aspect of the
distribution. Instead, what is notable is the extent to
which the samples are clustered and the proximity
relationships between the different classes.

It is important to note that the visually apparent
distances are not a perfect representation of the true
distances in the space as the residual 38% of the
variance in the distribution falls along the other seven
dimensions. Nevertheless, it is striking how clearly the
different samples are distributed within the space.
Recall that the participants were not informed that the
different samples belonged to 10 distinct material
classes. Despite this, we see that the samples within
each class are generally closely clustered in the space
and distinct from the other clusters. The previously
noted correlation between stone and wood shows up as
a close proximity of the two classes. Water clearly

stands out as perceptually distant from the other
classes.

For comparison, we also plot the output of a k-
means clustering algorithm (MATLAB function
kmeans with 10 replications and the initial conditions
specified by a preclustering), which was set to identify
10 clusters based on the spatial distribution of the
samples in the full 9-D PCA space (Figure 11). We have
color coded the samples based on the proximity of the
cluster means to the cluster centers derived from the
true class labels.

One way to evaluate the extent to which the
participants’ ratings of different material samples are
naturally clustered is to compare the clusters returned
by the k-means algorithm to the ground truth labels.
We find that 90.13% of the samples have the same
cluster members in common in the rating data as in the
k-means analysis. In other words, only about 1 in 10 of
the samples’ cluster memberships cannot be fully
accounted for by simple proximity relations in the 9-D
perceptual feature space. This suggests that the
different material classes are easily separated into
distinct clusters based on the nine perceptual qualities
considered here.

Together, these findings suggest that there is a close
coupling between visually inferred perceptual qualities
of materials and the visual categories to which the
materials belong. In the following experiment, we test
the extent to which the same is also true for semantic
knowledge of materials accessed through verbal class
labels. In comparison to the visual experiment, we
asked subjects to rate a larger number of material
qualities.

Figure 10. Distribution of the samples in the first two PCs.

Circles represent projected positions of individual samples (13

images per class); lines join each sample to the projected mean

location of each cluster. Color coding is based on true class

membership, which was not told to the participants.

Figure 11. Clustering of the samples using a k-means clustering

algorithm. Color coding is based on the nearest true cluster

center (from Figure 10).
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Experiment 2: Semantic ratings of
material classes

Methods

Subjects

Sixty-five second-year psychology students from the
University of Giessen took part in the survey. They
received course credit for their participation. An
additional 22 questionnaires were discarded due to
missing values.

Material and procedure

Students were seated in a classroom of the university.
A short written instruction was given prior to the
questionnaire, stating that they would be given a list of
adjectives describing various different appearance or
surface qualities of materials. Subjects were told to rate
six different material classes according to these
adjectives on a six-value scale. The procedure was
demonstrated with an example.

The questionnaire consisted of six stages, presented
on separate sheets, each addressing one of the following
material classes: wood, stone, metal, glass, plastic, and
fabric. For each material, the same list of 42 adjectives
was presented. Each adjective represented the opposite
of one of the other adjectives (e.g., ‘‘warm’’ and
‘‘cold’’). The order of the adjectives was randomized
between the materials. A six-value scale was used to
rate the extent to which each adjective applied to the
given material. The lower end was labeled ‘‘trifft zu’’
(agree), and the upper end was labeled ‘‘trifft nicht zu’’
(disagree). Subjects were asked to rate each material
according to the 42 adjectives on the six-value scale in
the order that was given.

Adjectives were collected based on extensive litera-
ture review (Picard, Dacremont, Valentin, & Giboreau,
2003; Rao & Lohse, 1996; Tamura, Mori, & Yama-
waki, 1978) and on a small pretest. In the pretest, six
subjects were asked to imagine a certain material and to
write down all adjectives that came to mind regarding
this material. Every subject completed this task for all
six materials used in the questionnaire. Subjects were
given as much time as they needed. Based on this, we
selected a wide range of adjectives that can be used to
describe materials visually as well as haptically (see
Table 1).

Results

Response distribution

Figure 12 shows the overall distribution of responses
across subjects and trials of Experiment 2. As in
Experiment 1, the data pattern does not suggest a
regression to the mean, implying again that the subjects
could assign values clearly and decisively. Interestingly,
they more often assigned high values (‘‘disagree’’) than
low values (‘‘agree’’). Given that we tested a large
number of possible qualities, this is not entirely
surprising as some qualities might be hard to imagine
or only weakly relevant for the semantic representa-
tions of materials. The asymmetry of the rating
distribution occurred despite the fact that adjectives
were selected as opposing pairs. If all qualities were
relevant to all materials, this would predict that a high
rating for a given adjective should be matched by an
equally low rating for its opposing counterpart. The
subjects’ willingness to disagree with both adjectives in
a pair presumably reflects the fact that they considered
those adjectives to be inapplicable to the given material.

1. Rough

2. Smooth

3. Transparent

4. Opaque

5. Bendable

6. Rigid

7. Granular

8. Homogeneous

9. Caliginous

10. Clear

11. Simple

12. Complex

13. High-contrast

14. Low-contrast

15. Fine

16. Coarse

17. Warm

18. Cold

19. Chromatic

20. Achromatic

21. Matte

22. Glossy

23. Undirected

24. Directed

25. Irregular

26. Regular

27. Sharp-edged

28. Stubby

29. Hard

30. Soft

31. Elastic

32. Firm

33. Flexible

34. Inflexible

35. Oriented

36. Unoriented

37. Circular

38. Line-like

39. Multicolored

40. Uni-colored

41. Systematic

42. Random

Table 1. List of material properties used in the questionnaire.
Adjectives were originally presented in German—here trans-
lated into English.

Figure 12. Distribution of rating values for Experiment 2.
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Despite this, overall, this result is broadly consistent
with the findings of Experiment 1.

Consistency across subjects

It is interesting to ask how consistent subjects were in
rating the 42 different qualities for each material class.

Unlike in Experiment 1—in which subjects saw
identical images when making their ratings—in Exper-

iment 2, each subject’s concept or mental image of the
material was determined entirely independently, pre-
sumably based on his or her previous experiences.

Furthermore, subjects were asked to rate many more

qualities than in Experiment 1, which means there are

potentially more degrees of freedom along which the

subjects could differ from one another. With this in

mind, it seems reasonable to expect lower intersubject

correlations than in Experiment 1. We summarize mean

intersubject correlations for each material class in

Figure 13.

Somewhat surprisingly, we find that the average

degree of consistency across subjects was not dramat-

ically lower than in Experiment 1. Mean intersubject

correlations were higher than r¼ 0.3 for all material

classes except for plastic. This suggests that subjects

seem to have consistent mental representations of the

six material classes we tested. The fact that plastic

seems to yield systematically lower correlations is

probably due to the fact that plastic is an artificial

material, which can occur in a very diverse variety of

forms (e.g., polythene shopping bags vs. polystyrene

packing materials). While stone is typically hard and

glass is mostly transparent, such general rules often do

not hold for plastic, and this likely affects the variance

across subjects. In particular, if each subject based his

or her response on a mental image of a particular type

of plastic, it makes sense that the underlying variance in

the appearance of the material would be inherited in

the subject’s ratings.

Figure 13. Mean intersubject correlation coefficients for the six

material types. Error bars indicate standard errors of the mean.

Figure 14. Correlations between properties averaged over the six materials.
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Correlations between qualities (adjectives)

As in Experiment 1, it is unclear to what extent the
adjectives used to describe different material properties
are truly independent of one another. Given that in
Experiment 2 subjects rated many more properties, it is
not unreasonable to expect some redundancies between
the adjectives. To test this, we averaged material
property ratings across all six materials and conducted a
correlation analysis over the mean values. In Figure 14,
we plot the correlation matrix between adjectives
(numerical values are provided in the Supplementary
material). In this figure, the n¼ 42 adjectives are
organized in complementary pairs, so the kth entry is
semantically opposed to the ([nþ 1] – k)th entry. For
example, the first and last adjectives are ‘‘coarse’’ and
‘‘fine,’’ and the second and second-from-last are ‘‘rough’’
and ‘‘smooth,’’ respectively. Thus, the diagonal emerging
from the bottom left-hand corner contrasts opposing
adjectives. As expected, these generally tend to be
weakly or negatively correlated with each other as
indicated by the predominance of lilac and cyan colors
along this diagonal.

To summarize the overall distribution of interprop-
erty correlations, we plot the histogram of correlation
coefficients in Figure 15. Correlations ranged between r

¼�0.79 and r¼ 0.86 with a mean of 0.044 and variance
of 0.029. As can be clearly seen, a large proportion of
the adjectives seem to be only weakly correlated with
one another (with 50% of the mass with an r score
between �0.087 and þ0.183). This suggests that many
of the properties examined here could be judged more
or less independently of each other, indicating that
subjects can make nuanced distinctions between
different attributes of materials. At the same time, a
smaller number of adjective pairs were relatively
strongly correlated, especially the adjectives describing
hardness, softness, and malleability.

Correlations between material classes

In addition to correlations between different mate-
rial properties, it is also interesting to ask to what
extent the semantic ratings of different materials are
correlated with one another. Figure 16 show the
correlation matrix relating the ratings for the different
materials to one another.

Overall, correlations ranged between r¼�0.21 and r
¼ 0.41. The highest correlations were found between
glass and metal, r¼ 0.41; wood and stone, r¼ 0.38; and
stone and metal, r¼ 0.35, and essentially no correlation

Figure 15. Histogram of the correlation coefficients between material properties.
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at all was found between stone and plastic, r ¼ 0.005.
As before, these are broadly intuitive findings, which
are quite similar to those obtained in Experiment 1, in
which subjects rated single, unlabeled sample images.
The similarities in the correlation structure between the
two experiments suggest that semantic representations
of entire classes of material are derived from—or at
least substantially related to—sensory ratings attribut-
ed to individual members of the class. Alternatively, it
could be that when asked to rate a class of materials
based on a verbal label, subjects bring to mind (perhaps
through mental imagery) one or a few representative
samples and use these to assign their ratings. Either
way, the consistency suggests that verbal and visual
tasks access similar stored knowledge about material
qualities.

Clustering of materials in the space of perceptual
qualities

Given the relatively weak correlations between
adjectives but the moderately large correlations be-
tween material classes, it is interesting to ask whether
the ratings from Experiment 2 can be used to cluster
material classes in a low-dimensional feature space. In
order to assess this, we again conducted a PCA over all
materials and subjects. Unlike in Experiment 1, in
which multiple exemplars were presented for each class,
in Experiment 2, each class was represented by only a
single label. However, we have ratings from many more
subjects, so we can consider how the ratings from
different subjects are clustered for each material class.

In Figure 17, we plot the eigenvalues for the PCs. As
before, there is a large drop in eigenvalues within the

first few PCs and a clear ‘‘knee’’ at the third PC. More

than 50% of the variance was represented by the first

seven PCs. This again suggests that we can visualize the

clustering of the different subjects’ ratings of each

material class in a low-dimensional subspace derived

from the 42-dimensional ratings space.

In Figure 18, we plot the distribution of ratings for

each class in the space defined by the first two principal

components. Each point indicates the ratings for a

Figure 16. Correlation coefficients between materials.

Figure 17. Eigenvalues for the first 10 and last two PCs from

Experiment 2. Eigenvalues descend smoothly between PCs 10

and 41 and are therefore omitted from the plot to save space.

Figure 18. Distribution of ratings of each material class in the 2-

D PCA space. Each point represents ratings for a given material

class from a single observer. Note that the different observers

are broadly consistent in the ratings they assign, leading to a

clear clustering of the points belonging to each class.
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single observer for a single material class as indicated
by the color of the point. The data appear very clearly
clustered in this space with dots of the same color
appearing close to one another in distinct clouds.
Although the clusters overlap to some extent (especially
glass, metal, and plastic), they nevertheless appear
clearly localized within the space. Thus, in most cases,
the subjects’ material property ratings lead to quite
similar representations of these materials.

As before, it is interesting to ask whether the first few
PCs have meaningful interpretations. To do this, we
looked at the properties with the highest factor
loadings on the two PCs. For the first PC, the highest
positive factor loadings were found for the properties
hard, unflexible, firm, rigid, and cold. By contrast, the
highest negative factor loadings were found for the
properties flexible, elastic, soft, bendable, colored, and
warm (values ranged between �0.296 and 0.298). This
interpretation makes broadly intuitive sense given the
alignment of the materials within the space with stone,
metal, and glass at one end of the continuum and fabric
at the other. The second dimension is best reflected by
the properties transparent, clear, regular, systematic,
and achromatic on one end, and the other end can be
described based on the adjectives irregular, rough,
random, coarse, and opaque. Here, values ranged
between �0.282 and 0.339. Again, the ordering of the
materials along this dimension is broadly intuitive.
Stone and wood naturally appear rather rough and
coarse, show irregularities, and are opaque. By
contrast, glass is usually highly transparent, regular,
and not rough. The other three materials tend to be

spread over the midrange: Fabric, for instance, can be
very smooth, like a piece of silk, but also rough and
coarse, like some forms of wool. Thus, broadly
speaking, the factor loadings match our intuitive
understanding of the properties of the tested classes.
However, as in Experiment 1, we should be cautious
about interpreting these dimensions as ‘‘cardinal axes’’
of the psychological space of materials. Rather, they
more likely reflect the commonalities of the specific
samples (or class labels) we tested.

As before, we can apply k-means clustering to assess
the extent to which the ratings from different subjects
are clustered. K-means clustering derives clusters solely
on the proximity of different ratings in the 42-
dimensional space. Thus, by comparing the true
clusters to those extracted by k-means, we can measure
the extent to which members of a given class are
clumped together in the space. Figure 19 shows the
results of the clustering algorithm with colors assigned
based on the nearest true cluster labels. As can be seen,
the k-means algorithm returns clusters that are rather
similar to the ground truth. As before, we measured the
degree of similarity between the true clusters and those
returned by k-means based on the percentage of
samples that have the same comembership. We find
that 94.19% of the samples share the same set of other
samples as class members.

Comparison of clustering between Experiments 1 and 2

Having clustered the data from both Experiments 1
and 2, it is interesting to ask to what extent the two
distributions are consistent with one another. In
Experiment 1, subjects rated material based on visual
samples without explicit knowledge that the samples
belonged to a limited set of classes whereas in
Experiment 2 subjects were asked to describe classes as
a whole, based solely on verbal labels. If there is a tight
coupling between perceptual qualities and conceptual
classes of materials, we might expect a similar
embedding of the ratings in the feature space. In other
words, we would expect the constellation of cluster
centers to have roughly the same spatial configuration
in the two spaces. To test this, we used Procrustes
analysis to find the best linear transformation of the
cluster configuration from Experiment 2 to match the
data from Experiment 1. If the cluster configurations
are similar, we expect relatively small transformations
and a good fit. By contrast, if the configurations are
very different, no transformation would provide a good
fit. In Figure 20, we plot the PCA data from
Experiment 2 mapped into the 2-D PCA space from
Experiment 1. Specifically, for each of the six classes
that were common to both experiments, we computed
the mean position (i.e., cluster centers) of the data from
all samples and subjects in the space defined by the first

Figure 19. K-means clustering of the data from Experiment 2.

Colors are assigned based on the nearest cluster centers from

Figure 18.
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nine PCs from each dataset. We then applied Procustes
analysis to map the cluster centers from Experiment 2
into the PCA space from Experiment 1.

Visually, the correspondence between the two
configurations in the 2-D space is quite apparent
although it is important to note that residual error
along the other seven dimensions are not visualized.
The residual standardized error for the fit in 9-D is
0.1217. For comparison, we generated random points
uniformly distributed within the same range of
distances in 9-D and measured the residual error from
fitting these points to the cluster centers from
Experiment 1. We repeated this procedure 1,000 times
and found that the mean error was 0.3835 with a
standard deviation of 0.0927. In Figure 21, we plot how
the residual error for the true fits changes as a function
of the number of dimensions considered. Because the
distributions are expressed in PCA space, as expected,
adding dimensions yields diminishing returns in terms
of fit accuracy. Together, these findings suggest that, on
average, visual and semantic representations of the
distribution of material classes in the space of material
properties are quite similar.

General discussion

We have shown that when presented with photo-
graphs of materials, subjects are able to make reliable,
systematic judgments of the nine perceptual qualities
that we tested. Furthermore, the different material
classes are relatively well clustered within the 9-D space
defined by the quality ratings, such that if one were
given the ratings of the nine different qualities, one

could with quite high accuracy determine to which of
the 10 material classes the image belonged. Similarly,
for semantic ratings of material classes based on verbal
class labels, subjects are quite consistent in their
assignment of different material qualities to the six
tested classes. As with the visual stimuli, the ratings are
well clustered in the 42-dimensional feature space,
again implying it would be possible to estimate the class
given only the ratings assigned to a material. Moreover,
we found that the relative spatial locations of the
different classes were highly similar in the two
experiments. Together, this suggests a strong coupling
between the visual estimation of material qualities and
the mental representation of different material classes,
at least for the classes and features we tested.

It is important to note that we cannot infer the
causal directionality of the coupling between qualities
and classes. In all likelihood, this relationship is
bidirectional. In some cases, the visually inferred
material qualities (e.g., glossiness, waviness, strong
color, smoothness, etc.) help us to identify the class of a
material (e.g., silk) based on its similarity to other
members of the class. At the same time, in other cases,
identifying that a material belongs to a certain class
provides information about the material properties
based on stored semantic knowledge (e.g., knowing
that silk often feels cool to the touch, which cannot be
seen directly). However, our findings do suggest that
the two tasks—estimating material properties and
assigning materials to mental classes—are intimately
related.

Figure 21. Blue line: residual error after fitting the cluster

centers from Experiment 2 to those of Experiment 1 using

Procrustes analysis as a function of the number of dimensions

considered. Red line and region: mean residual error 61

standard deviation for fitting random points distributed within

the 9-D space to the data from Experiment 1. The mean and

standard deviation were estimated from applying the fitting

1,000 times.

Figure 20. Comparison of cluster centers from Experiments 1

and 2 plotted in the PCA space from Experiment 1. Filled disks:

cluster centers for each class from Experiment 1. Open circles:

corresponding cluster centers from Experiment 2 transformed

via Procrustes analysis into the PCA space from Experiment 1.

Squares: cluster centers for classes from Experiment 1 that

were not tested in Experiment 2.
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Another important caveat is that we should be wary
of interpreting the outcome of the PCA as revealing
‘‘primary’’ or ‘‘cardinal’’ dimensions of the space of
materials. Although there may exist a mental ‘‘material
space’’ (akin to the color spaces), there are grounds for
questioning whether it has a fixed set of perceptual
dimensions or even whether all materials can be
embedded together in a single, monolithic space. In
color space, the number of dimensions is based on the
transduction mechanisms at the very front end of the
vision, and the color space transformations that
determine the cardinal axis of color spaces are based on
very systematic recombinations of this information. By
contrast, there are probably very many factors that
contribute to a perceived material property, such as
‘‘fragility’’ or ‘‘prettiness,’’ some of which may even be
highly subjective. This makes defining cardinal dimen-
sions slippery. Furthermore, while we can relatively
easily comprehend similarities and differences between
somewhat similar materials and classes (e.g., which is
more similar to oak wood: ash or ebony?), it becomes
very difficult to make judgments of the similarity
between very different materials (e.g., which is more
similar to bread: chrome or jade?). This suggests that
there may be no single common metric for the
‘‘material space’’ or that large distances are difficult to
estimate. Moreover, it seems plausible that the set of
features that subjects use to compare materials may
vary depending on what samples are to be compared.
For example, when comparing a set of very similar
materials (e.g., comparing one shampoo to several
other shampoos), we may attend closely to subtle
differences in appearance that are unimportant when
comparing samples that are more different from one
another (e.g., comparing shampoo to toothpaste and
shaving foam). If the relative weights of different
features change—and may be recombined—on the fly,
depending on the particular tasks and comparisons to
be performed, it seems somewhat doubtful whether
materials can be embedded in a fixed ‘‘material space’’
with strict cardinal axes.

A third important limitation of the present study is
that it provides little insight into the image features
underlying the perception of different material qualities
or classes. Despite their small number, the samples
within each class are highly diverse in appearance,
making it difficult to identify image features that are
common to the samples. While some perceptual
qualities (e.g., colorfulness) clearly correlate with
relatively easily measured image properties (e.g.,
average color saturation), it seems intuitively less likely
that we could identify simple low-level and mid-level
image features that consistently predict higher-level—
and sometimes more subjective—attributes, such as
‘‘prettiness,’’ at least based on the small number of
samples we consider here. An informal analysis of the

principal components reveals negligible correlations
with various statistics derived from color histograms
and wavelet marginal distributions. Presumably, com-
binations of larger numbers of more sophisticated
image measurements may prove more fruitful, but the
problem of predicting subjective ratings from arbitrary
photographs of materials remains extremely challeng-
ing.

Previous work (Sharan et al., 2009) has shown that
subjects are surprisingly good at classifying materials
given brief presentations and perform far better than
current computational methods (Liu et al., 2010),
which achieve about 45% correct performance with just
10 predefined material classes. Our findings extend
these observations by demonstrating a strong connec-
tion between material qualities and categorization. The
k-means clustering algorithm clustered over 90% of the
samples the same way as humans did (i.e., the same
mutual class membership) based on the human quality
ratings alone. Along with the fact that we obtain
similar proximity relations in the semantic task for
which no images were presented, this suggests that the
features humans use to represent mental classes of
materials are not just constellations of low-level and
mid-level image features but also of more abstract
physical and functional attributes, such as ‘‘fragility,’’
‘‘flexibility,’’ and ‘‘naturalness.’’ Explaining how the
brain is able to estimate (or recognize) such attributes
from an image is clearly one of the most important
outstanding challenges in the science of material
perception.

One possibility is that the visual system estimates
parameters of mental models of materials. In other
words, given the image data, the visual system
estimates material properties by ‘‘fitting parameters’’ of
a statistical or physical model to the image data. In this
scheme, the mental representation of materials would
be like a ‘‘generative model,’’ which describes or
predicts the possible states or appearances of materials,
somewhat akin to the internal models that are thought
to underlie motor programs (e.g., Kawato, 1999). This
would constitute a ‘‘deep’’ representation of material
properties, allowing observers to, for example, imagine
likely variations of a given material.

Another possibility is that the visual system does not
fit parameters of a generative model but instead
recognizes telltale combinations of lower-level features
that are diagnostic of the material properties. This
heuristic approach could work in two ways. For
example, it could enable direct access to stored mental
representations of specific materials, facilitating the
recovery of stored knowledge about material properties
in much the same way as rapid scene recognition does
not require fitting a parametric representation of a
scene to the image but enables the recovery of
knowledge specific to the recognized scene class, such
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as that offices tend to contain desks (Oliva & Torralba,
2007). Alternatively, the material properties themselves
might be ‘‘recognized’’ through combinations of lower-
level features. Such approaches have been suggested for
the representation of glossiness (Marlow, Kim, &
Anderson, 2012; see also Fleming, 2012), viscosity
(Fleming & Paulun, 2012), and other material proper-
ties. It remains to be seen the extent to which these two
broad approaches to estimating material properties—
mental models and diagnostic heuristics—can be
unified.

Conclusion

Together, our results suggest that subjects are both
quite good—and quite consistent—at assigning mate-
rial qualities to different materials both visually and
semantically. We can use ratings of different material
properties to identify which class the materials be-
longed to even when the subjects were not explicitly
informed about the classes. Furthermore, we find that
the similarity of relationships between different classes
are intuitively captured by their proximity to one
another in the feature space defined by the subjects’
ratings of different material qualities. This suggests that
perceptual qualities and material classes are closely
related. This is further supported by the fact that we
find similar distributions of material classes in the
visual and semantic domains, which suggests that
perceptual and cognitive representations of material
classes are intimately related. Thus, the visual estima-
tion of material qualities and the separation of different
material samples into distinct mental classes are two
distinct but closely connected tasks.

Keywords: materials, surface perception, object rec-
ognition, clustering, image classification, texture per-
ception

Supplementary material

Please see Supplemental Data. The supplementary
information contains the complete list of all values
presented in Figure 14 of the main text.
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