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Perceptual Quality Metric with Internal Generative

Mechanism
Jinjian Wu, Weisi Lin, Senior Member, IEEE, Guangming Shi, Senior Member, IEEE, and Anmin Liu

Abstract—Objective image quality assessment (IQA) aims to
evaluate the image quality consistently with the human per-
ception. Most of the existing perceptual IQA metrics cannot
accurately represent the degradations from different types of
distortion, e.g., existing structural similarity metrics perform well
on content-dependent distortions while not as well as PSNR on
content-independent distortions. In this paper, we integrate the
merits of the existing IQA metrics with the guide of the re-
cently revealed internal generative mechanism (IGM). The IGM
indicates that the human visual system (HVS) actively predicts
sensory information and tries to avoid the residual uncertainty
for image perception and understanding. Inspired by the IGM
theory, we adopt an AR prediction algorithm to decompose an
input scene into two portions, the predicted portion with the
predicted visual content and the disorderly portion with the
residual content. Distortions on the predicted portion degrade the
primary visual information and structural similarity procedures
are employed to measure its degradation; distortions on the
disorderly portion mainly change the uncertain information and
the PNSR is employed for it. Finally, according to the noise energy
deployment on the two portions, we combine the two evaluation
results to acquire the overall quality score. Experimental results
on six publicly available databases demonstrate that the proposed
metric is comparable with the state-of-the-art quality metrics.

Index Terms—Image Quality Assessment, Human Visual Sys-
tem, Internal Generative Mechanism, Image Decomposition

I. INTRODUCTION

Since the human visual system (HVS) is the ultimate

receiver of sensory information, perceptual image quality

assessment (IQA) is useful for many image and video systems,

e.g., for information acquisition, compression, transmission

and restoration, to make them HVS oriented. The subjective

evaluation is the most reliable way for IQA; however it is

too cumbersome and expensive to be used in computational

information processing systems. Therefore, an objective visual

quality metric consistent with the subjective perception is in

demand.

The simplest IQA metrics are the mean-square-error (MSE)

and its corresponding peak signal-to-noise ratio (PSNR),

which directly compute the error on the intensity of images.

They are the natural way to define the energy of the error

Jinjian Wu and Guangming Shi are with Key Laboratory of Intelli-
gent Perception and Image Understanding of Ministry of Education of
China, School of Electronic Engineering, Xidian University. E-mail: jin-
jian.wu@mail.xidian.edu.cn; gmshi@xidian.edu.cn.

Weisi Lin (corresponding author) and Anmin Liu are with the School of
Computer Engineering, Nanyang Technological University, Nanyang 639798,
Singapore. E-mail: wslin@ntu.edu.sg; liua0002@ntu.edu.sg.

This work is partially supported by the SINGAPORE MINISTRY OF
EDUCATION Academic Research Fund (AcRF) Tier 2, Grant Number:
T208B1218, and the National Science Foundation of China (No. 61033004,
61070138, 61072104, and 61227004).

signal [1]. However, these two metrics consider nothing about

the characteristic of the original signal. As a result, they do

not always agree with the subjective quality perception, though

they are good for content-independent noise [2] (e.g., additive

noise [3]).

In order to develop an accurate IQA metric in accord

with the subjective perception, researchers turn to inves-

tigate the HVS characteristics to seek for image features

which affect quality assessment, such as brightness, con-

trast, frequency content, structure and statistical informa-

tion [4]. Many HVS oriented IQA metrics have been pro-

posed during the recent ten years, such as noise quality

measure (NQM) [5], structural similarity (SSIM) [6], visual

information fidelity (VIF) [7], the PSNR-HVS-M [8], visual

signal-to-noise ratio (VSNR) [9], and the recently proposed

most apparent distortion (MAD) [10] and feature similar-

ity (FSIM) [11].

The SSIM index is the most popular one among all of these

IQA metrics. This index is based on the assumption that the

HVS is highly adapted for extracting structural information

from the input scene [6]. In [12], [13], SSIM is improved

by using edge/gradient feature of the image since the edge

conveys important visual information for understanding. In

addition, as another high-level HVS property based and well

accepted metric, the VIF index computes the mutual informa-

tion between the reference and test images for visual informa-

tion fidelity evaluation [7]. These HVS oriented IQA metrics

promote our understanding on sensory signal processing and

perceptual quality assessment.

Different types of distortion cause different degradation.

However, these existing HVS oriented IQA metrics mainly

consider the content-dependent characteristics (e.g., structure

in SSIM metric, gradient in GSIM metric) in their evalua-

tion. As a result, these HVS oriented IQA metrics perform

well on content-dependent distortions (e.g., blur and com-

pression noise) but not well enough on content-independent

distortions (e.g., white noise and impulse noise) [3]. While

PSNR/MSE performs the opposite way. Recently, Larson and

Chandler [10] advocated that the HVS uses multiple strategies

to determine image quality. And near-threshold and clearly

visible (suprathreshold) distortions are measured separately

in their model. This model mainly considers the distinctions

of different energy levels rather than the different effects of

distortions. In [14], Li et al. introduced an ad hoc procedure

to decouple the original distortion into detail loss and additive

impairment for discriminative measurement. However, the

decomposition for distortions is not well grounded and the

performance improvement is limited (which will be further
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analyzed in Subsection IV-A).

Recent researches on brain theory and neuroscience, such

as the Bayesian brain theory [15] and the free-energy prin-

ciple [16], indicate that the brain works with an internal

generative mechanism (IGM) for visual information perception

and understanding. Within the IGM, the brain performs as

an inference system that actively predicts the visual sensation

and avoids the residual uncertainty/disorder [15], [16], [17].

Thus, we adopt a Bayesian prediction model [15], [18] in

our method, and the input scene is decomposed into predicted

and disorderly portions. We suppose that distortions on the

predicted content will damage the primary visual information,

such as blur the edge and destroy the structure, which im-

pact on image understanding. Therefore, edge and structure

similarity [6], [12] are used for evaluation on this portion. On

the other hand, distortions on the disorderly portion (predicted

residual, which arouses uncomfortable sensation) is somewhat

content-independent. Therefore, we adopt the PSNR to esti-

mate the degradation on disorderly uncertainty since PSNR

is good for content-independent noise measurement [3], [1].

Finally, we combine the results on the two portions with

an adaptive nonlinear procedure to acquire the overall score.

Experimental results on six publicly available image databases

confirm that the proposed model is comparable with the state-

of-the-art IQA metrics.

The rest of this paper is organized as follows. In Section II,

we further explain the motivation of the proposed model. The

detailed implementation of the proposed perceptual quality

metric is presented in Section III. Then, in Section IV the

performance of the proposed metric is demonstrated. Finally,

we draw the conclusions in Section V.

II. MOTIVATION

In this section, we firstly give a brief introduction about

the recent brain theory on visual sensation processing, i.e.,

the internal generative mechanism (IGM) of the brain. Then,

according to the IGM theory, we analyze the individual

degradations of two representative types of distortion.

The HVS is an efficient and effective image perception

and recognition system, which helps us to understand the

outside world and design accurate visual related system [19].

Rather than literal translation of the input scene, there exists

complicated processing mechanisms in the HVS [20], [21].

Recent works on visual perception, i.e., the Bayesian brain

theory [15] and the free-energy principle [16], indicate that the

brain has an IGM for sensory data processing. In the IGM, the

brain simultaneously analyzes the encountered scene at first,

which detects the correlation among stimuli. Then, combining

with the inherent priori knowledge, the brain optimizes the

input scene by predicting the primary visual information and

avoiding the residual uncertainty/disorder [22], [17].

According to the active inference procedure in the IGM

mentioned above, we decompose an input scene into two

portions, which we call the predicted portion and the disor-

derly portion. The predicted portion derives from the active

inference of the input scene, and it possesses the primary

visual information (e.g., edge and structure) which will be

Fig. 1: Effects of different types of distortion (awgn and gblur),

the images are from the TID database [24]. Results for four

MSE levels (27, 58, 112 and 225, 25 different images are

used for each level) are demonstrated. The mean and variance

values of the MOS for the images in each level are given in

the figure with points and the corresponding bars.

transmitted into the high-level of the HVS for image under-

standing and recognition [23]. While the disorderly portion

is composed of the residual uncertainty which the HVS tries

to avoid [16]. We believe that the visual contents in the

two portions play different roles: distortions on the predicted

portion degrade the primary visual information (e.g., blur

the edge and structure), and they will directly impact on

image understanding; meanwhile, distortions on the disorderly

portion mainly change the disorder/uncertainty of the original

image, which do not disturb the inference of the primary visual

information and mainly arouse uncomfortable perception.

As is well known, each type of distortion generates different

perceptual quality degradation. It can be explained as that

different types of distortion have dissimilar distributions on

the two decomposed portions and lead to different quality

degradations. As shown in Fig. 1, the curves for the additive

white Gaussian noise (awgn) and the Gaussian blur (gblur)

noise are different, i.e., the two types of distortion result in

different quality (represent by Mean Opinion Score (MOS))

even if their error energy (represent by MSE) are the same.

When the error energy is large, the awgn distortion returns

a better quality than the gblur distortion. The reason is that

the awgn distortion has less degradation on the primary visual

information than the gblur distortion. The awgn distortion is

independent of the visual content, and the HVS can effectively

filter out most of them according to the correlations among

these self-similar contents and accurately infer the visual

information [25], [26]. On the contrary, the gblur noise mainly

degrades the visual content (i.e., blurring the edge and texture).

The missing visual content is unable to be predicted by the

IGM and the reconstructed image in the HVS is much different

from the original undistorted image. Furthermore, as shown

in Fig. 1, the quality difference between the two distortions
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(a) Reference (b) MSE=29 and MOS=5.70 (c) MSE=229 and MOS=4.06

(d) MSE=28 and MOS=5.30 (e) MSE=267 and MOS=2.52

Fig. 2: Visual comparison (with the sailing boat image [24]) the effects of awgn and gblur distortions. (a) is the reference

image, (b) and (c) are the white noise contaminated images, and (d) and (e) are the blurred images.

becomes larger when the error energy increases. Notice that

the two types of distortion have similar perceptual quality

when the error energy is small (i.e., the first points of the

two types of distortion in Fig. 1 with high quality score).

It is expected since noise will be masked by the image

itself (regardless what type of distortion it is) if the noise is

smaller than a threshold [27], [28].

An intuitive example is given in Fig. 2. The error energies

in Fig. 2(b) (MSE=29) and (d) (MSE=28) are small, and

therefore both of the contaminated images have high quality

score (the MOS (the higher the better) values of Fig. 2(b)

and (d) are 5.70 and 5.30, respectively). While under a high

level of error energy, the awgn contaminated image (Fig. 2(c)

with MSE=229 and MOS=4.06) has a much higher perceptual

quality than the gblur contaminated image (Fig. 2(e) with

MSE=267 and MOS=2.52). Note that though Fig. 2(c) is

rough, the HVS can still predict most of the visual content the

same as that in Fig. 2(a). In other words, the awgn distortion

in Fig. 2(c) mainly arouses uncomfortable sensation, and has

limited effect on image understanding. On the contrary, the

gblur distortion in Fig. 2(e) severely degrades the primary

visual information and the HVS can hardly accurately predict

the objects (such as the people in the figure). In summary,

different types of distortion generate different effects on

primary visual information and disorderly uncertainty, which

result in different degradations on quality. Furthermore, under

a same error energy level, the distortion which mainly affects

the inference of the primary visual information generates

more quality degradation than that changes the disorderly

uncertainty.

Therefore, according to the above discussions, the indi-

vidual degradation from different types of distortion can be

represented by the degradations on the two decomposed por-

tions. In this paper, considering the effects of the distortions,

we adopt different measurements to separately evaluate the

primary visual information degradation and disorderly uncer-

tainty degradation for perceptual quality assessment. Detailed

implementation will be given in the next section.

III. PROPOSED IQA SCHEME

In this section, we will introduce the computational model

of the proposed IQA metric in detail. We firstly decompose

the reference (and test) image (s) into predicted and disorderly

portions with a Bayesian prediction model. Then degradations

on the two portions are evaluated respectively. Finally, we

combine the results of the two portions based on error energies

distribution to deduce the overall perceptual quality score. The

flowchart of the proposed model is shown in Fig. 3.

A. AR based Image Prediction

Image decomposition is an effective image processing

tool [29], [30], [14], which splits an image into two or more

portions for discriminately processing, e.g., to decompose an

input scene into textural and cartoon parts for just noticeable

difference estimation [28]. In this paper, inspired by the IGM

theory about the visual perceptual process, we try to decom-

pose an image into predicted and disorderly portions for qual-

ity evaluation. Since the Bayesian brain theory indicates that

the brain performs as an active inference procedure [31], [16],

we adopt a Bayesian prediction based autoregressive (AR)

model [18], [32] for image content inference.
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Fig. 3: Flowchart of the proposed model. Ir (It) is the

reference (test) image, Irp (Itp) and Ird (Itd) are the predicted

and disorderly portions of Ir (It), respectively.

The Bayesian brain theory uses Bayesian probability to

imitate the inference procedure for image perception and

understanding in the IGM [15], [16]. The key of this theory

is a probabilistic model that optimizes the input scene by

minimizing the prediction error. For example, with an in-

put scene, the Bayesian brain system tries to maximize the

conditional probability p(x/X ) between the central pixel x
and its surrounding X = {x1, x2, · · · , xN} [15] for error

minimization.

By decomposing the conditional probability p(x/X ) and

analyzing the correlation between the central pixel x and the

pixels xi in the surrounding X , it can be seen that these

xi which strongly correlated to x play dominant roles for

p(x/X ) maximization [33]. Therefore, the mutual informa-

tion (I(x;xi)) between the central pixel x and its surrounding

pixel xi is adopted as the autoregressive coefficient, and an

AR model is created to predict the value of the pixel x [32],

x′ =
∑

xi∈X

Cixi + ε, (1)

where x′ is the predicted value of pixel x, Ci = I(x;xi)∑
k
I(x;xk)

being the normalized coefficient, and ε is white noise. In

this paper, we set X as a 21 × 21 surrounding region. With

the predicted model (1), an input image (I) is decomposed

into two portions, the predicted image (Ip) and the disorderly

image (Id), as shown in Fig. 4. In the next subsections,

we will evaluate the degradations on the two decomposed

images, respectively, since distortions on the two portions have

different impacts toward the perceptual quality.

B. Uncomfortable Sensation Variation

The disorderly portion is composed of the uncertain stimuli

of the original image [16]. Distortion on this portion has

little effect on image understanding and mainly generates

uncomfortable sensation. As a natural way to define the energy

of the error signal [1], the PSNR metric presents a good

match with the HVS when the error signal is independent

of the original signal [3], and this point is also confirmed by

the experiments in [2]. Since the distortion of the disorderly

portion is independent of the original image content, the PSNR

is adopted to evaluate the quality of this portion. Therefore the

uncomfortable sensation variation is computed as follow

P (Ird , I
t
d) =

1

C1
psnr(Ird , I

t
d) =

1

C1
10 log10(

2552

MSE(Ird , I
t
d)
),

(2)

where Ird and Itd are the disorderly portions of the reference

and test images, respectively; psnr(Ird , I
t
d) is the PSNR value

between Ird and Itd, and MSE(Ird , I
t
d) is the mean squared error

between Ird and Itd (the minimal value of MSE (such as 1) is

set to avoid infinite psnr); C1 is a constant parameter which

is used to normalize the PSNR value into the range [0 1], for

this purpose, we set C1 = 10 log10 255
2.

C. Visual Information Degradation

Since the predicted portion possesses the primary visual

information and distortion on this portion impacts on image

understanding, we should adopt some high-level HVS proper-

ties to evaluate the degradation of the visual information. In

this paper, degradations on edge and structure are computed

for primary visual information fidelity evaluation.

The HVS is highly sensitive to the edge, which conveys

important visual information and is crucial for scene under-

standing [34], [12]. The degradation on the edge between the

predicted portions of the reference image (Irp ) and the test

image (Itp) is computed as their edge height similarity,

g(xp, yp) =
2Er

p(xp)E
t
p(yp) + C2

Er
p(xp)2 + Et

p(yp)
2 + C2

, (3)

where xp and yp are the corresponding pixels from the

predicted portions of the reference and test images (Irp and

Itp), respectively; g(xp, yp) is the edge similarity between xp

and yp, Er
p and Et

p are the edge height maps of Irp and Itp,

respectively, C2 is the small constant to avoid the denominator

being zero and is set as C2=(0.03×L)2 [6], and L is the gray

level of the image.

The edge height Er
p (same for Et

p) is computed as the

maximal edge response along the four directions [27],

Er
p(x) = max

k=1,...,4
Gradk(xp), (4)

Gradk = |ϕ∇k ∗ Irp |, (5)

where ∇k are four directional filters, as shown in Fig. 5,

ϕ=1/16, and symbol ∗ denotes the convolution operation.

However, some image regions (e.g., the feather of the

parrots in Fig. 4) has no apparent edge but still represents
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(a) (b) (c)

Fig. 4: Image decomposition with the Bayesian prediction based AR model. (a) is the original image, (b) is the predicted

portion, and (c) is the disorderly portion (the pixel values have been scaled to [0 255] for a clear view in print).
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Fig. 5: Edge filters for four directions.

specific structural character. In addition, the HVS is highly

adapted for extracting structural information from a scene

for recognition. Therefore, besides edge similarity, we need

another primary visual information degradation measurement

to evaluate the fidelity on image structure. Here, we adopt

the structural similarity [6] to evaluate the degradation on

structural information

s(xp, yp) =
2σxpyp

+ C3

σ2
xp

+ σ2
yp

+ C3
, (6)

where s(xp, yp) is the structural similarity between

patches (B(xp) and B(yp)) centered at xp and yp; σxpyp
is

the covariance of the two patches; σ2
xp

(σ2
yp

) is the variance

of patch B(xp) (B(yp)); we set the patch size as 11 × 11,

and the constant C3 = C2

2 (the same as in [6]).

Combining the edge and structure similarities, we deduce

the degradation on primary visual information as

v(xp, yp) = g(xp, yp) s(xp, yp). (7)

D. The Overall Perceptual Quality

Distortions on the two portions codetermine the quality

of the contaminated image. The distortion on the disorderly

portion degrades image quality by disturbing our attention

and arousing uncomfortable sensation. On the other hand,

the distortion on the predicted portion changes the original

visual content and affects image understanding. Therefore, we

combine the evaluation of the two portions, (2) and (7), to

acquire the perceptual quality score

Q = PαV β , (8)

where V is the pooling value of the predicted portion (mean

value of all v(xp, yp)); the parameters α and β are used to

adjust the relative importance of the two portions.

The weights of the two evaluation parts, P and V , are

closely related to the noise energy level on the two decom-

posed portions. The more noise energy that one decomposed

portion possesses, the more important role it will play. For

example, if most of the noise is in the disorderly portion,

the noise mainly arouses uncomfortable sensation and the

uncomfortable sensation variation is dominant in the quality

assessment. Thus a big value of α is required in (8) to highlight

the evaluation result of the disorderly portion (P ). On the

contrary, when the noise is mainly in the predicted portion,

the quality degradation is primarily caused by the change of

the primary visual information. A big value of β is needed

to highlight the evaluation result of the predicted portion (V ).

According to the analysis above, we compute the importance

parameter based on the noise energies of the two portions, and

we set

α =
MSEd

MSEd + MSEp

, (9)

where MSEd is the energy of noise between the disorderly

portions of the reference image (Ird ) and the test image (Itd);

MSEp is the energy of noise between the two predicted

images (Irp and Itp), and α ∈ [0 1]. Meanwhile, as same as (9),

we set β = MSEp/(MSEd + MSEp) = 1− α.

Moreover, considering the viewing conditions [35] (i.e.,

the viewing distance and the display resolution), multiscale

evaluation is adopted to deduce the overall quality score,

S0 =
5
∏

i=1

Q
ρi

i (10)

where Qi is the perceptual quality score on the ith level

based on (8), the parameter ρ defines the relative impor-

tance of different scales, and its value is set as ρ =
[0.0448, 0.2856, 0.3001, 0.2363, 0.1333] [35], which is ob-

tained through psychophysical experiment.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed perceptual

IQA metric is firstly demonstrated. And then, we analyze the

performance of the proposed metric on individual type of

distortion. Finally, the proposed metric is compared with the

latest and/or well accepted metrics on six publicly available
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databases. The proposed IQA metric operates on gray image

only, the color input is converted to gray image.

To evaluate the performance of the IQA metrics on a

common space, a five-parameter mapping function [36] is

firstly adopted to nonlinearly regress the computational quality

score (S0),

Sr = β1

(

1

2
−

1

1 + exp(β2(S0 − β3))

)

+ β4 S0 + β5, (11)

where {β1, β2, β3, β4, β5} are the parameters to be fitted.

Then, the computational scores (Sr) are compared with

the ground truth values (MOS or differential MOS (DMOS))

based on five performance criteria, which are Spearman rank-

order correlation coefficient (SRCC), Kendall rank-order cor-

relation coefficient (KRCC), Pearson linear correlation coef-

ficient (PLCC), root mean squared error (RMSE), and outlier

ratio (OR). The first two criteria can measure prediction mono-

tonicity and the other three are used to evaluate prediction

accuracy [36]. A better IQA metric has higher SRCC, KRCC,

and PLCC, while lower RMSE and OR values. More details

about the five criteria can be found in [37] and [14].

A. Analysis on The Proposed IQA Metric

The proposed perceptual IQA metric is based on the sen-

sory information processing mechanism in the HVS, which

separately evaluates the degradation on the primary visual

information and the perceptual uncomfortable variation. We

make a comparison with two well accepted IQA metrics,

the MSSIM [6] and the VIF [7], to demonstrate the effec-

tiveness of the proposed metric. In Fig. 6, (a) is the white

noise contaminated image and (d) is the JPEG transmission

error contaminated image. The reference image is shown in

Fig. 4(a).

Fig. 6(a) has a better perceptual quality than Fig. 6(d) (the

MOS value of (a) is higher than that of (d)), though the error

energies of the two images are similar. That is because the

two types of distortions play different roles in the HVS. As

stated in Section II, the HVS highly tolerates the white noise,

and can effectively filter out this type of noise with the help

of the IGM. As a result, the white noise in Fig. 6(a) mainly

arouses uncomfortable sense and has little effect on image

understanding. While the JPEG transmission error degrades

some high-level properties of the image content, i.e., damaging

the structure of the left parrot and blurring the edge between

the left parrot and the background, which impacts on the image

recognition and understanding.

Since most of the existing HVS oriented IQA metrics indis-

criminately treat distortions on the image and directly evaluate

the visual information degradation, they cannot effectively dis-

criminate the effect of noise on uncomfortable sense or content

understanding. As a result, these HVS oriented IQA metrics do

not work well enough on the two distorted images. For exam-

ple, as shown in Fig. 6, according to the MSSIM and VIF met-

rics, image (a) (with MSSIM=0.9048 and VIF=0.4649) has

worse quality than (d) (with MSSIM=0.9390, VIF=0.5326),

which contradicts the subjective quality assessment result.

The proposed IQA metric discriminately treats the two types

of distortion based on their effects and accurately evaluates

image quality degradation. The proposed model decomposes

the test images into two portions with a Bayesian prediction

procedure, as shown in Fig. 6 for further processing. Almost

all of the white noise in Fig. 6(a) is decomposed into the dis-

orderly portion (c) (MSEd=96), and a little into the predicted

portion (b) (MSEp=8). As has been discussed in Section II, the

noise in the disorderly portion mainly arouses uncomfortable

sensation and distortion on the predicted portion directly

degrades the primary visual information of the original image.

Therefore, the decompositions on the white noise is highly in

accord with the perception of the HVS. Moreover, most of

the JPEG transmission error in Fig. 6(d) is decomposed into

the predicted portion (e) (MSEp=77) (though some structural

information is mis-decomposed into the disorderly portion

caused by the limitation of the AR model). The proposed

IQA metric separately evaluate the degradations on the two

decomposed portions to calculate the quality score. As a

result, Fig. 6(a) (with proposed=0.9442) has a higher quality

score than (d) (with proposed=0.9236), which agrees with

the subjective quality assessment results.

Furthermore, we compare the proposed metric against the

ADM metric [14] which also tries to discriminately treat

distortions. As shown in Fig. 7, (a) is white noise contaminated

image and (b) is JPEG2000 transmission error contaminated

image. The white noise in Fig. 7(a) mainly makes the image

coarse-grained and changes the structures to some extent (i.e.,

the structures of the tree and the roof), while has little effect

on the edge information. However, the JPEG2000 transmission

error severely degrades the original structures and edges, e.g.,

the artificial masking locates at the top left tree and house of

the image. Though the two distorted images with similar error

energy (Fig. 7(a) with MSE=220 and (b) with MSE=233),

Fig. 7(a) (MOS=4.16) has a better perceptual quality than

(b) (MOS=3.31).

The ADM metric tries to decompose distortion into detail

loss and additive impairment with the help of the original

image. As shown in Fig. 7(c), most of the white noise is

filtered out and only a little of the distortion is decomposed

into the restored image. At the meanwhile, with the help of

the original image, most of the JPEG2000 transmission error

is also filtered out and some degraded visual contents (such

as the structures of the tree and the roof located at the top

left corner) have been recovered, as shown in Fig 7(d). As

a result, the two restored images (i.e., Fig 7(c) and (d))

are highly similar, which means the detailed loss under the

two types of distortion is similar. And therefore, according

to the ADM metric, both of the two types of distortions

have small effect on the visual content. This contradicts the

subjective perception (as analyzed in the last paragraph). As

a result, the ADM metric inaccurately evaluates the qualities

of the two images (Fig. 7(a) with ADM=0.5416 and (b) with

ADM=0.5519).

In this experiment, the proposed metric can also accurately

evaluate the two distorted images. As shown in Fig 7, a

little white noise is decomposed into the predicted portion

(d) (MSEp=49), and this means the white noise has limited

effect on the primary visual information. When it comes

to the JPEG2000 transmission error distortion, most of the
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Original Image Predicted Portion Disorderly Portion

(a) (b) (c)

(d) (e) (f)

Fig. 6: Demonstration for the effectiveness of the proposed model. The reference image is shown in Fig. 4(a). The first column

is the original images, the middle and last columns are the corresponding predicted and disorderly portions (the pixel values

of the two disorderly images have been scaled to [0, 255] for a clear view in print), respectively. Fig. 4(a) is the distorted

image contaminated by white noise (MSE=115, MOS=4.77, MSSIM=0.9048, VIF=0.4649, and Proposed=0.9442). (d) is

the distorted image contaminated by JPEG transmission error (MSE=123, MOS=3.72, MSSIM=0.9390, VIF=0.5326, and

Proposed=0.9236). The white noise mainly increases the degree of uncomfortable sense (the MSEd of (c) is 96), and almost

has no effect on the primary visual information (the MSEp of (b) is 8). While the JPEG transmission error (damaging the

structure of the feather and blurring the edge of the parrots) obviously changes the primary visual information (the MSEp of

(e) is 77). Therefore, under the similar energy of noise, (a) has a better quality (higher MOS) value than (d).

TABLE I: DEMONSTRATION EACH COMPONENT OF THE
PROPOSED METHOD ON FOUR REPRESENTATIVE DISTOR-
TIONS

P V α

awgn 0.8930 0.8323 0.9394

impulse noise 0.8488 0.7183 0.8557

jpg2k-comp 0.9569 0.9763 0.5368

blur 0.9447 0.9649 0.4365

noise which changes the image structure has been decom-

posed into the predicted portion (f) (MSEp=104). Moreover,

the evaluation results of the proposed metric indicates that

Fig. 7(a) (Proposed=0.9269) has a better perceptual quality

than (b) (Proposed=0.9106). Therefore, the proposed metric

is consistent with the HVS.

B. Performance on Individual Distortion Type

In this experiment we analyze the performance of the

proposed IQA metric on different types of distortion. Four

typical distortion types, including additive Gaussian white

noise, impulse noise, JPEG2000 compression, and Gaussian

blur, from the TID [24] database (each distortion is with four

TABLE II: THE α VALUE OF EACH NOISE LEVEL ON FOUR
REPRESENTATIVE DISTORTIONS

L1 L2 L3 L4

noise mean std mean std mean std mean std

awgn 0.9885 0.0333 0.9551 0.0389 0.9231 0.0457 0.8911 0.0518

impulse noise 0.9099 0.0313 0.8805 0.0332 0.8444 0.0364 0.7882 0.0430

jpg2k-comp 0.7550 0.0868 0.6303 0.0901 0.4639 0.1322 0.2979 0.1254

gblur 0.5510 0.1431 0.4779 0.1359 0.3984 0.1304 0.3186 0.1155

error energy levels) is chosen to demonstrate the performances

of the two evaluators, the uncomfortable sensation variation P
in (2) and the primary visual information degradation V in (7).

The evaluation results (SRCC values) are listed in Table I.

Since the white noise and the impulse noise mainly arouse

uncomfortable perception, most of the noise is decomposed

into the disorderly portion (with a big α value) and the

evaluation result of P is better than that of V . Therefore,

the big α value can effectively highlight P for overall quality

evaluation on the two distortion types. However, the JPEG2000

compression and blur noise will directly degrade the primary

visual information (e.g., change image structure and edge),

especially when the error energy is large. And V performs

better than P in these two types of distortions. Furthermore,
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Comparison between the ADM metric and the proposed metric. From top to bottom rows, they are the original distorted

images, the restored images (possess the primary visual information) of the ADM metric, and the predicted portions of the

proposed model, respectively. (a) is the distorted image contaminated by white noise (MSE=220, MOS=4.16, ADM=0.5416,

and Proposed=0.9269). (b) is the distorted image contaminated by JPEG2000 transmission error (MSE=233, MOS=3.31,

ADM=0.5519, and Proposed=0.9106). Since the ADM metric cannot effectively decompose distortions which degrade

the primary visual information, its evaluation results contradict the subjective perception. The proposed metric accurately

decomposes distortions, thus it returns quality scores which is consistent to the HVS.
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the energy deployments (i.e., α value) of the four distortions

on the two decomposed portion under four error energy levels

are listed in Table II. With the increase of the error energy,

more noise will be decomposed into the predicted portion and

the α value also increases. It means more degradation on the

primary visual information will be generated with the increase

of the error energy, which further confirms the analysis of the

effect of error energy on image quality in Section II.

To further demonstrate the effectiveness of the proposed

metric on individual distortion type, we make comparison with

five latest IQA metrics (FSIM [11], ADM [14], GSIM [12],

MAD [10], and IW-SSIM [37]) and another five well accepted

IQA metrics (VIF [7], MSSIM [6], VSNR [9], NQM [5],

and PSNR). Only the SRCC criterion is used since the other

criteria lead to similar conclusions. The experimental results

are listed in Table III, where the two best IQA metrics have

been highlighted in boldface.

From Table III we can see that on the TID database, the

proposed metric performs the best on the quantization noise,

the blur noise, and the two compression noise. Besides, the

proposed metric has similar performance with PSNR and

outperforms all the other metrics on the two additive noise, the

spatial correlated noise and high frequency noise. Furthermore,

the proposed metric has similar performance with the best

one on impulse noise, denoising noise and the JPEG 2000

transmission error. In summary, on the 13 typical distortion

types (the first 13 distortion types of the TID database), the

propose metric performs the best on 8 types, close to the best

on the remained 5 types. In addition, the proposed metric

performs the best on three out of six distortion types on the

CSIQ database, and similar with the best results on the remain

distortion types. Therefore, the proposed perceptual based IQA

metric is highly consistent with the human perception and is

comparable with the best IQA metrics.

C. Overall Performance Comparison

In order to make a comprehensive analysis on the proposed

metric, we verify the proposed IQA metric on the overall

distortions of the six publicly available databases, TID [24],

CSIQ [38], LIVE [39], IVC [40], MICT [41], and A57 [42].

Fig. 8 shows the scatter plots of the evaluation results of the

proposed metric on the six databases, which demonstrates the

consistence between the proposed metric and the subjective

evaluation. Furthermore, we make a comparison with ten IQA

metrics. The values of SRCC, KRCC, PLCC, RMAE, and OR

are listed in Table IV, where the two best IQA metrics have

been highlighted in boldface. Since the standard deviations

between the subjects have not been released, the OR is not

calculated on the TID, IVC, and A57 databases.

From Table IV, we can see that the proposed IQA metric is

the most consistent metric over different databases: it performs

the best on the TID, almost the same to the best on the CSIQ

and LIVE databases, and only slightly worse than the best

on IVC, MICT, and A57 databases. Note that the numbers of

the test images (listed in the first column of Table IV) and

the distortion types of TID, CSIQ, and LIVE databases are

much larger than those of IVC, MICT, and A57, the evaluation

results on the first three databases are more convincing than the

last three [11]. Therefore, we give the weighted mean (based

on the size of these databases) values of SRCC, KRCC and

PLCC (weighted mean values of RMSE are not calculated

since the ranges of RMSE values are not the same on the six

databases) in Table IV.

Furthermore, the statistical significance of the proposed met-

ric is evaluated by using F-test which computes the prediction

residuals between the IQA metric outputs (after nonlinear

mapping) and the subjective scores. Let F denotes the ratio

between two residual variances, and Fcritical (determined by

the number of residuals and the confidence level) be the

judgement threshold. If F > Fcritical, then the difference of

prediction accuracy between the two metrics is significant. The

statistical significances between the proposed metric and the

other metrics in comparison are list in Table V, where the

symbol ”1”, ”0”, or ”-1” means that the proposed metric is

statistically (with 95% confidence) better, indistinguishable, or

worse than the corresponding metric, respectively. As shown in

Table V, the proposed metric performs very well on the three

large databases (i.e., TID, CSIQ, and LIVE), especially for

the TID database (on which the preposed metric significantly

outperforms all other metrics). While the proposed metric

performs indistinguishable or worse on the other three small

databases, especially for the MICT database. With further anal-

ysis we have found that the our AR model performs not very

well for the JPEG noise, and cannot accurately decompose

the distorted image into two portions. The evaluation results

of the F-test is much similar with that of the criterion listed

in Table IV. In summary, the proposed metric performs state-

of-the-art on the three bigger publicly available databases and

is highly consistent with the human perception.

V. CONCLUSION

In this paper, we introduce a novel IQA metric by integrat-

ing the best existing IQA metrics. SSIM and GSIM perform

well on content-dependent distortions but not well enough

on content-independent distortions. However PSNR/MSE per-

forms the opposite way. Therefore, we try to integrate the

merits of these metrics by decomposing the input scene into

predicted and disorderly portions, and distortions on these two

portions are discriminatively treated. The decomposition is

inspired by the recent IGM theory which indicates that the

HVS works with an internal inference system for sensory in-

formation perception and understanding, i.e., the IGM actively

predicts the sensory information and tries to avoid the residual

uncertainty/disorder. Since the predicted portion holds the pri-

mary visual information and the disorderly portion consists of

uncertainty, the distortions on the two portions cause different

aspects of quality degradations. Distortions on the predicted

portion affect the understanding of the visual content, and that

on disorderly portion mainly arouse uncomfortable sensation.

Considering the different properties of the two decomposed

portions, we separately evaluate their quality degradations.

Firstly, a Bayesian prediction model is adopted to decompose

the reference and test images into predicted and disorderly por-

tions, respectively. Then we evaluate the content degradation
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TABLE III: SRCC VALUES OF IQA METRICS FOR EACH DISTORTION TYPE

Proposed FSIM ADM GSIM MAD IWSSIM VIF MSSIM VSNR NQM PSNR

awgn 0.9069 0.8566 0.8630 0.8577 0.8388 0.8028 0.8799 0.8094 0.7728 0.7679 0.9114
awgn-color 0.8947 0.8527 0.8390 0.8091 0.8258 0.8015 0.8785 0.8064 0.7793 0.7490 0.9068

spatial corr-noise 0.9152 0.8483 0.8980 0.8907 0.8678 0.7909 0.8703 0.8195 0.7665 0.7720 0.9229
masked noise 0.7968 0.8021 0.7360 0.7409 0.7336 0.8068 0.8698 0.8155 0.7295 0.7067 0.8487

high-fre-noise 0.9223 0.9093 0.8970 0.8936 0.8864 0.8732 0.9075 0.8685 0.8811 0.9015 0.9323

impulse noise 0.8160 0.7452 0.5120 0.7229 0.6499 0.6579 0.8331 0.6868 0.6471 0.7616 0.9177
TID quantization noise 0.8788 0.8564 0.8500 0.8752 0.8160 0.8182 0.7956 0.8537 0.8270 0.8209 0.8699

gblur 0.9682 0.9472 0.9140 0.9589 0.9197 0.9580 0.9546 0.9607 0.9330 0.8846 0.8682
denoising 0.9704 0.9603 0.9450 0.9724 0.9434 0.9463 0.9189 0.9571 0.9286 0.9450 0.9381
jpg-comp 0.9484 0.9279 0.9410 0.9392 0.9275 0.9181 0.9170 0.9348 0.9174 0.9075 0.9011

jpg2k-comp 0.9845 0.9773 0.9720 0.9759 0.9707 0.9749 0.9713 0.9736 0.9515 0.9532 0.8300
jpg-trans-error 0.8635 0.8708 0.8510 0.8835 0.8661 0.8560 0.8582 0.8736 0.8056 0.7373 0.7665

jpg2k-trans-error 0.8893 0.8544 0.8400 0.8925 0.8394 0.8313 0.8510 0.8525 0.7909 0.7262 0.7765
pattern-noise 0.7295 0.7491 0.8380 0.7372 0.8287 0.7719 0.7608 0.7336 0.5716 0.6800 0.5931

block-distortion 0.7902 0.8492 0.1610 0.8862 0.7970 0.7889 0.8320 0.7617 0.1926 0.2348 0.5852
mean shift 0.4887 0.6720 0.5890 0.7170 0.5161 0.6757 0.5132 0.7374 0.3715 0.5245 0.6974

contrast 0.6411 0.6481 0.4920 0.6737 0.2723 0.6273 0.8190 0.6400 0.4239 0.6191 0.6126

awgn 0.9638 0.9262 0.9583 0.9440 0.9600 0.9380 0.9571 0.9471 0.9241 0.9384 0.9363
jpg-comp 0.9663 0.9654 0.9660 0.9632 0.9660 0.9662 0.9705 0.9622 0.9036 0.9527 0.8882

CSIQ jpg2k-comp 0.9774 0.9685 0.9748 0.9648 0.9770 0.9683 0.9672 0.9691 0.9480 0.9631 0.9363
1/f noise 0.9427 0.9234 0.9488 0.9387 0.9540 0.9059 0.9509 0.9330 0.9084 0.9119 0.9338

blur 0.9724 0.9729 0.9726 0.9589 0.9660 0.9782 0.9747 0.9720 0.9446 0.9584 0.9289
contrast 0.9546 0.9420 0.9508 0.9508 0.9170 0.9539 0.9361 0.9521 0.8700 0.9479 0.8622

jpg2k-comp 0.9675 0.9717 0.9711 0.9587 0.9380 0.9751 0.9654 0.9683 0.9614 0.9100 0.9551
jpg-comp 0.9810 0.9834 0.9790 0.9098 0.9490 0.9645 0.9793 0.9842 0.9764 0.9440 0.9657

LIVE awgn 0.9874 0.9652 0.9820 0.9774 0.9710 0.9667 0.9731 0.9845 0.9694 0.9377 0.9785
blur 0.9538 0.9708 0.9650 0.9517 0.8990 0.9719 0.9584 0.9722 0.9517 0.9649 0.9413

jpg2k-trans-error 0.9194 0.9499 0.9519 0.9399 0.8830 0.9442 0.9321 0.9652 0.9556 0.9644 0.9027

(a) TID (b) CSIQ (c) LIVE

(d) IVC (e) MICT (f) A57

Fig. 8: Scatter plots of subject scores vs. the proposed metric scores for the six databases.
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TABLE IV: PERFORMANCE COMPARISON OF IQA METRICS ON 6 BENCHMARK DATABASES

DB Criteria Proposed FSIM ADM GSIM MAD IWSSIM VIF MSSIM VSNR NQM PSNR

SRCC 0.8902 0.8805 0.8617 0.8554 0.8340 0.8559 0.7496 0.8528 0.7046 0.6243 0.5245
TID KRCC 0.7104 0.6946 0.6842 0.6651 0.6445 0.6636 0.5863 0.6543 0.5340 0.4608 0.3696

(1700) PLCC 0.8858 0.8738 0.8690 0.8462 0.8306 0.8579 0.8090 0.8425 0.6820 0.6135 0.5309
RMSE 0.6228 0.6525 0.6620 0.7151 0.7474 0.6895 0.7888 0.7299 0.9815 1.0598 1.1372

SRCC 0.9401 0.9242 0.9334 0.9126 0.9467 0.9213 0.9193 0.9138 0.8106 0.7402 0.8057
CSIQ KRCC 0.7872 0.7567 0.7716 0.7403 0.7970 0.7529 0.7534 0.7397 0.6247 0.5638 0.6080
(866) PLCC 0.9280 0.9120 0.9280 0.8979 0.9502 0.9144 0.9277 0.8998 0.8002 0.7433 0.8001

RMSE 0.0978 0.1077 0.0980 0.1156 0.0818 0.1063 0.0980 0.1145 0.1575 0.1756 0.1575
OR 0.2217 0.2252 0.2180 0.2298 0.1801 0.2460 0.2263 0.2448 0.3110 0.3730 0.3430

SRCC 0.9580 0.9634 0.9542 0.9554 0.9669 0.9567 0.9631 0.9445 0.9274 0.9086 0.8755
LIVE KRCC 0.8319 0.8337 0.8228 0.8131 0.8421 0.8175 0.8270 0.7922 0.7616 0.7413 0.6864
(799) PLCC 0.9578 0.9597 0.9360 0.9437 0.9674 0.9522 0.9598 0.9430 0.9231 0.9122 0.8721

RMSE 7.9248 7.6780 9.6270 9.0376 6.9235 8.3470 7.6734 9.0956 10.5060 11.1930 13.3680
OR 0.3954 0.3933 0.5390 0.4069 0.4146 0.5310 0.5456 0.6187 0.5990 0.6380 0.6826

SRCC 0.9027 0.9262 0.9030 0.9294 0.9146 0.9125 0.8966 0.8847 0.7983 0.8347 0.6885
IVC KRCC 0.7288 0.7564 0.7255 0.7626 0.7406 0.7339 0.7165 0.7012 0.6036 0.6342 0.5220
(185) PLCC 0.9129 0.9376 0.9130 0.9399 0.9210 0.9231 0.9028 0.8934 0.8032 0.8498 0.7199

RMSE 0.4973 0.4236 0.4960 0.4160 0.4747 0.4686 0.5239 0.5474 0.7258 0.6421 0.8456

SRCC 0.8910 0.9059 0.9370 0.9233 0.9362 0.9202 0.9086 0.8864 0.8614 0.8911 0.6130
MICT KRCC 0.7093 0.7302 0.7903 0.7541 0.7823 0.7537 0.7029 0.6413 0.6762 0.7129 0.4447
(168) PLCC 0.8990 0.9252 0.9420 0.9287 0.9405 0.9248 0.9144 0.8935 0.8710 0.8955 0.6426

RMSE 0.5780 0.5248 0.4210 0.4640 0.4251 0.4761 0.5066 0.5621 0.6147 0.5569 0.9588
OR 0.0774 0.0476 0.0710 0.0357 0.0714 0.0408 0.0536 0.0833 0.0950 0.0655 0.2202

SRCC 0.8859 0.9181 0.8725 0.9002 – 0.8709 0.6223 0.8394 – 0.7981 0.6189
A57 KRCC 0.7191 0.7639 0.6912 0.7205 – 0.6842 0.4589 0.6478 – 0.5932 0.4309
(54) PLCC 0.9188 0.9078 0.8803 0.8976 – 0.9034 0.6158 0.8504 – 0.8020 0.6587

RMSE 0.0970 0.0933 0.1166 0.1084 – 0.1050 0.1936 0.1293 – 0.1468 0.1849

SRCC 0.9165 0.9121 0.9011 0.8960 0.8974 0.8963 0.8369 0.8874 0.7889 0.7321 0.6759
Weighted KRCC 0.7546 0.7445 0.7370 0.7218 0.7335 0.7218 0.6777 0.7054 0.6139 0.5609 0.5017

Mean PLCC 0.9156 0.9059 0.9003 0.8865 0.8973 0.8967 0.8652 0.8802 0.7759 0.7296 0.6805

TABLE V: Performance Comparison with F-test (Statistical Significance). The symbol ”1”, ”0”, or ”-1” means that the proposed metric is
statistically (with 95% confidence) better, indistinguishable, or worse than the corresponding metric.

FSIM ADM GSIM MAD IWSSIM VIF MSSIM VSNR NQM PSNR

TID 1 1 1 1 1 1 1 1 1 1

CSIQ 1 0 1 -1 1 0 1 1 1 1

LIVE 0 1 0 1 1 1 1 1 1 1

IVC -1 0 -1 0 0 0 0 1 1 1

MICT -1 -1 -1 0 -1 -1 0 0 0 1

A57 0 0 0 – 0 1 1 – 1 1

on their predicted portions with the measurement based on

edge and structure similarities, and uncomfortable sensation

variation between the disorderly portions of the reference and

test images with the PSNR measurement. Finally, according

to the noise energy level, we combine the results of the two

portions to acquire the overall quality score. Experiments on

individual distortion types demonstrate the effectiveness of the

proposed metric. Moreover, results on six publicly available

databases further confirm that the proposed metric performs

consistently with the state-of-the-art IQA metrics.
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