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Abstract

Deep neural networks (DNNs) are vulnerable to adversarial
examples where inputs with imperceptible perturbations mis-
lead DNNs to incorrect results. Recently, adversarial patch,
with noise confined to a small and localized patch, emerged
for its easy accessibility in real-world. However, existing at-
tack strategies are still far from generating visually natural
patches with strong attacking ability, since they often ignore
the perceptual sensitivity of the attacked network to the ad-
versarial patch, including both the correlations with the im-
age context and the visual attention. To address this problem,
this paper proposes a perceptual-sensitive generative adver-
sarial network (PS-GAN) that can simultaneously enhance
the visual fidelity and the attacking ability for the adversar-
ial patch. To improve the visual fidelity, we treat the patch
generation as a patch-to-patch translation via an adversar-
ial process, feeding any types of seed patch and outputting
the similar adversarial patch with high perceptual correla-
tion with the attacked image. To further enhance the attack-
ing ability, an attention mechanism coupled with adversarial
generation is introduced to predict the critical attacking ar-
eas for placing the patches, which can help producing more
realistic and aggressive patches. Extensive experiments un-
der semi-whitebox and black-box settings on two large-scale
datasets GTSRB and ImageNet demonstrate that the pro-
posed PS-GAN outperforms state-of-the-art adversarial patch
attack methods.

Introduction

Recent advances in deep neural networks (DNNs) have en-
abled researchers to achieve great success in various tasks
handling the massive image (Krizhevsky, Sutskever, and
Hinton 2012), text (Bahdanau, Cho, and Bengio 2014) and
speech (Hinton et al. 2012) data. Despite the successful
progress, deep learning models have been proved to be vul-
nerable and susceptible to adversarial examples (Szegedy et
al. 2013; Goodfellow, Shlens, and Szegedy ). On one side,
adversarial examples pose potential security threats by at-
tacking or misleading the practical deep learning applica-
tions like auto driving and face recognition system, which
may cause pecuniary loss or people death with severe im-
pairment. On the other side, adversarial examples are also
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Figure 1: Traffic signs with scrawls and patches on them in
the real world.

valuable and beneficial to the deep learning models, as they
are able to provide insights into their strengths, weaknesses,
and blind-spots (Tramèr et al. 2017; Ross and Doshivelez
2018).

The straightforward solution is to intentionally add small-
magnitude perturbations to the input instances like images,
generating the maliciously perturbed examples that can fool
DNNs to make wrong predictions. In the past years, vari-
ous typical techniques have been developed to produce ad-
versarial examples along this direction, such as gradient-
based algorithms (Goodfellow, Shlens, and Szegedy ; Ku-
rakin, Goodfellow, and Bengio 2016), optimization-based
methods (Szegedy et al. 2013; Athalye and Sutskever 2017)
and network-based techniques (Xiao et al. 2018; Poursaeed
et al. 2018). Network-based techniques have achieved sat-
isfying performance owning to their great power for gener-
ating high-quality synthetic data. Among them, the genera-
tive adversarial networks (GANs) technique is capable to ap-
proximate the true data distribution (Goodfellow et al. 2014;
Ma et al. 2018; Song et al. 2018; Pathak et al. 2016), and re-
cently has attracted great attention in producing perceptually
realistic adversarial examples with the state-of-of-the-art at-
tacking performance (Xiao et al. 2018).

Besides the well-designed perturbations, the adversarial
patch serves as an alternative way to generate adversarial
examples, which can be directly localized in the input in-
stance to the deep model (Brown et al. 2017; Karmon, Zo-
ran, and Goldberg 2018). Compared to the traditional per-
turbation based adversarial examples, the adversarial patch
enjoys the advantages of being input-independent and scene-
independent, and can be easily placed on any input data with
general attack ability. In real world, the patch scenarios often
happen where the patches can be invisible or imperceptible
to human. For example, the traffic signs with scrawls and
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patches on them are quite common on the streets of many
old cities as shown in Figure 1. The fact makes it much more
convenient to be applied to attack a deep learning system
like auto driving and face recognition, by generating adver-
sarial patches and simply sticking them on the traffic signs,
the face pictures, etc.

To generate adversarial patches, Brown et al. first intro-
duced the concept focusing on the security implications, and
attempted to generate universal noise “patches” that can be
physically printed and put on any images. Similarly, Kar-
mon, Zoran, and Goldberg created adversarial patches us-
ing an optimization-based approach with a modified loss
function. But different from the prior research, they concen-
trated on investigating the blind-spots of state-of-the-art im-
age classifiers, and studying the kinds of noise that can cause
misclassification. Evtimov et al. adopted the traditional per-
turbation techniques to generate the attacking noises, which
further can be mixed into the black and white stickers to at-
tack the recognition of the stop sign.

Prior studies in perception and psychophysics indicate
that the perceptual sensitivity plays a quite important role in
helping accomplish the robust visual recognition (Theeuwes
and Chen 2005). Therefore, to complete a high-quality at-
tacking, it is also important to make sure that the generated
adversarial patches can beat the perceptual sensitivity of the
attacked network. Namely, the adversarial patch should be
visually natural with strong perceptual correlations with the
image context, and meanwhile spatially localized at the per-
ceptual sensitive positions in the attacked image. Though
adversarial patch techniques own the flexibility for attack-
ing and have achieved encouraging performance in the past
years, however, most of them usually ignore the perceptual
sensitivity, and fail to generate background-harmonious, yet
aggressive patches, and thus often resulting in unstable at-
tack effects.

To address the problem, our paper proposes a novel attack
framework named perceptual-sensitive GAN (PS-GAN) to
generate adversarial patches. Different from existing stud-
ies, our PS-GAN exploits the perceptual sensitivity of the
attacked network to the adversarial patch, and enhances both
the visual fidelity and the attacking ability of the generated
adversarial patches. PS-GAN allows adversaries to gener-
ate any types of adversarial patches they prefer and spec-
ify, and employs a patch-to-patch translation process to pur-
sue the visually natural and context-correlated adversarial
patches. Moreover, to further improve the attacking ability,
PS-GAN adopts the visual attention to capture the spatially
distributed sensitivity and guide the attacking localization
of the adversarial patches for the stable attack effects. More
importantly, our PS-GAN can instantly generate adversar-
ial patches individually without access to target models any-
more at inference time (i.e., semi-whitebox attack (Xiao et
al. 2018)). To the best of our knowledge, we are the first to
devise an efficient adversarial patch technique that can gen-
erate any styles of patch based on the specified seed patch,
which enjoys both strong attacking ability and natural ap-
pearance in the real world. To evaluate the effectiveness of
the proposed method, extensive experiments are conducted
on GTSRB (Houben et al. 2008) and ImageNet (Deng et al.
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Figure 2: The framework of our PS-GAN consists of a gen-
erator G, a discriminator D and an attention model M , at-
tacking a target model F .

2009) towards different target models, under semi-whitebox
and blackbox settings in both digital world and physical
world. The experimental results show that our PS-GAN can
not only consistently outperforms state-of-the-art adversar-
ial patch attack methods, but also owns strong generalization
ability and transferability.

Perceptual-Sensitive GAN

In this section, we will first introduce the problem definition,
and then elaborate the framework, formulation and corre-
sponding network architecture of our proposed Perceptual-
Sensitive GAN (PS-GAN).

Problem Definition

Assuming X ⊆ R
n is the feature space with n the number

of features. Supposing (xi ,yi) is the ith instance in the data
with feature vector xi ∈ X and yi ∈ Y the corresponding
class label. The deep learning model tries to learn a map-
ping or classification function F : X → Y . Specifically, in
this paper we consider the visual recognition problem and
an adversarial patch δ is used to mislead the target model F
to wrong predictions. Given an original clean image x with
its original class label yreal, the new image x̃ with attack
ability is composed of the original image x, an additive ad-
versarial patch δ ∈ R

z and a location mask m ∈ {0,1}n :

x̃ = (1−m)⊙ x+m⊙ δ, (1)

where ⊙ is element-wise multiplication. To simplify, we will
use the below equation for the rest of the paper:

x̃ = x+m δ. (2)

The prediction result of x̃ by F is ypre: ypre = F (x̃). The ad-
versarial patch makes the model predict wrong label, namely
ypre 6= yreal.

The Framework

Motivated by the fact that the deep convolutional neural
networks (CNNs) usually own strong perceptual-sensitivity
to the visual fidelity and spatial localization of the ob-
jects in the input images, in this paper we will develop a
perceptual-sensitive GAN framework that can generate ad-
versarial patches naturally correlated with the context and
visually attentional to the localization of the input images.
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In order to improve visual fidelity, a patch-to-patch trans-
lation process is introduced to allow adversaries to specify
the patch style. In this process, the specified seed patch and
attacked image are both taken as input, and the output is an
adversarial patch which is visually similar to the input patch
and meanwhile harmonious to the attacked images. Specif-
ically, we adopt the adversarial learning process, where a
generator G is motivated to create adversarial patches with
high perceptual correlation with the image to be attacked.
Namely, for the input seed patch δ and the image x to be
attacked, it can generate an adversarial patch G(δ). A dis-
criminator D promises the perceptual similarity. Intuitively,
D encourages x̃, the attacked image with the generated ad-
versarial patch, to be harmonious and indistinguishable with
the attacked image x, result in high visual fidelity and per-
ceptual correlation.

Besides, to obtain the adversarial attack ability, the target
model F is introduced in our framework. Specifically, F be-
haves as the target model to be attacked, which is responsible
for the guidance of adversarial attack ability of the generated
patch. The generated patch must be qualified to mislead F .

As to the modelling of the spatial localization sensitivity,
in our framework an attention model M is integrated into
the end-to-end patch generation. It can capture the attention
distribution of the attacked network with respect to the patch
localization, and thus help determine the critical areasM(x)
to place the patches with strong attacking ability. In the pre-
dicted areas, adversarial patch can be generated by G with
low distortion rate and high attack success rate.

Our PS-GAN equipped with both the adversarial genera-
tion and the attention prediction can generate more realistic
and aggressive patches G(δ), and guide the model to stick
the patch to the image x at the position M(x) forming the
attacked image x̃:

x̃ = x+M(x) G(δ). (3)

Figure 2 illustrates the overall architecture of our PS-GAN.

Formulation

As aforementioned, in this paper we mainly focus on the two
key aspects of perceptual-sensitivity including the visual fi-
delity and the spatial localization. Therefore, in our PS-GAN
framework there are two corresponding parts that fully ex-
ploits the perceptual-sensitivity: a patch-to-patch adversarial
translation that help produce the desired adversarial patch
with visual fidelity and perceptual correlation, and a visual
attention model that predicts the critical areas to be attacked
by the adversarial patch. The two parts are coupled together
to guarantee the strong attacking ability.

Visual Fidelity & Perceptual Correlation To improve vi-
sual fidelity, the adversarial generation process is developed
for its surprising capability of generating realistic images.
Specifically, we expect to encourage the model to generate
adversarial patches with good visual fidelity. Based on this
motivation, the adversarial generation loss can be written as:

LGAN (G,D) =Ex[logD(δ, x)]+

Ex,z[log(1−D(δ, x+M(x) G(z, δ)))],
(4)

where x, δ and z are the image to be attacked, the input patch
and the noise, respectively. Note that our our PS-GAN dif-
fers widely from the conditional GAN (cGAN) (Mirza and
Osindero 2014), even we can also treat the input patch as
the conditions. In PS-GAN the generator actually can work
without z, which could still learn a mapping. In practice, we
only provide noise in the form of dropout, applied on some
layers of our G. Besides, we simultaneously combine both
the discriminator and the target model to guide the pursuit of
good generator, which distinguished the original image and
the attacked one, rather than the conditioned input in cGAN.

At the same time, a patch loss is further appended to cap-
ture and enhance the high perceptual correlation of the gen-
erated patch with the context of the input image. Meanwhile,
the loss is also responsible for constraining the distortion of
the generated patch from the seed patch. Intuitively, we ex-
pect the generated patch to share the similar visual percep-
tion with the image to be attacked, which means that they
have common correlated perceptual meanings, and the gen-
erate patch in this case usually should be visually harmo-
nious with the image context in both pixel-wise and per-
ceptual levels. Therefore, we introduce the following loss
to guide the learning of the adversarial networks for patch
generation:

Lpatch(δ) = Eδ||G(δ)− δ||2. (5)

Attention Sensitivity & Attacking Ability Since our goal
is to generate adversarial patches with strong attacking abil-
ity, it is required to introduce an adversarial attacking loss.
The loss obligates the generator G to produce the patches
and the attention model M predicts the localization, which
together can mislead the target model further.

Specifically, on one side, we should push the prediction
label ypre of the adversarial x̃, a clean input x appended with
the adversarial patch G(δ), away from its original prediction
label yreal. Therefore, the loss can be defined as follows:

Ladv(G,F ) = Ex,δ[logPF (x̃)]. (6)

On the other hand, the attacking performance highly relies
on the visual attention sensitivity of the attacked networks,
which tries to explain which part of the image contributes
more to the model decisions (Zeiler and Fergus 2014;
Cao et al. 2015). Therefore, adversarial patches placed in
these areas will have more sensitive effect on the model per-
formance. In our PS-GAN framework, we borrow the vi-
sual attention technique to predict the critical attacking area.
Specifically, to obtain the class-discriminative localization
map, Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al. 2016) helps compute the gradient of
yc (score for class c) with respect to feature mapsA of a con-

volutional layer, i.e., ∂yc

∂Ak
ij

. These gradients flow back to ob-

tain the importance weights αc
k after being global-average-

pooled. This weight αc
k captures the “importance” of feature

map k for a target class c, forming an attention mask for
placing the adversarial patch.

Finally, the adversarial attacking loss combined with the
above visual fidelity and perceptual correlation losses leads
to our final patch generation formulation:

min
G

max
D

LGAN + λLpatch + γLadv, (7)
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where λ > 0 and γ > 0 balance the contribution of each
part. With the guidance of the attention model, optimiz-
ing the above problem drives our PS-GAN model to find
the near-optimal generator, which can produce adversarial
patches with strong attacking ability and perceptual sensi-
tivity of the attacked networks.

Network Architecture

Next, we briefly introduce the network architectures in our
PS-GAN framework.

Generator Following the generator and discriminator ar-
chitectures adopted in (Isola et al. 2017; Johnson, Alahi,
and Li 2016) for image translation and perceptual infor-
mation capturing, we employ the U-Net architecture in our
generator, which allows low-level information to shortcut
across the network, leading to better results. Let Ck denote
a Convolution-LayerNorm-LeakyReLU layer with k filters.
All convolutions are (4×4) spatial filters applied with stride
2. The encoder-decoder architecture consists of:

Encoder: C16-C32-C64-C128
Decoder: C64-C32-C16-C3

Discriminator Our discriminator architecture is:
C64-C128-C256-C512

The last layer of discriminator network is fed into a lin-
ear layer to generate a 1-dimensional output, followed by a
Sigmoid function.

Target Model Our target model F could be any given
deep networks with the last two layers accessible (e.g., Soft-
max layer and the layer before it). These two layers are used
as a part of Ladv . To perform adversarial attack, the loss
Ladv encourages x̃ to be misclassified by F .

Attention Model As our basic visual attention method,
Grad-CAM can achieve surprising performance. We use a
pre-trained VGG16 on ImageNet dataset to obtain the atten-
tion region of images. We firstly compute the gradient of the
last fully connected layer with respect to the output feature
maps of the fourth convolutional layer conv4. Specifically,
to obtain the class-discriminative localization map, gradient
of yc (score for class c) with respect to feature maps Ak

∈ R
u×v of conv4 is calculated. Then these gradients are

used to compute the weight of each feature map. They flow
back to obtain the importance weights αc

k after being global-
average-pooled:

αc
k =

1

u× v

u
∑

i=1

v
∑

j=1

∂yc

∂Ak
ij

. (8)

After that, the attention map of input image is calcu-
lated and acquired by these feature maps. Specifically, this
weight αc

k represents a partial linearization of the deep net-
work downstream from A, and captures the “importance” of
feature map k for a target class c. Our Attention map is a
weighted combination of feature maps, but followed by a
ReLU:

Lc
Grad−CAM = ReLU

(

∑

k

αc
kA

k

)

. (9)

Algorithm 1 Perceptual-Sensitive Generative Adversarial
Network (PS-GAN).

1: Input: training image set Ximage = {xi|i = 1, ..., n},
and training patch set δpatch = {δi|i = 1, ..., n}

2: Output: non-linear parameters set WD and WG.
3: for the number of training epochs do
4: for k steps do
5: sample minibatch ofm images ψx = {x1, ..., xm};
6: sample minibatch of m patches ψδ = {δ1, ..., δm};
7: generate minibatch of m adversarial patches ψG

δ =
{G(δ1), ..., G(δm)};

8: obtain attention map M (ψx) by Grad-CAM;
9: construct minibatch of m2 adversarial images

ψx̃ = {xi +M(xi) δj |i, j = 1, ...,m};
10: optimize WD to maxD LGAN with G fixed.
11: end for
12: sample minibatch of m images ψx = {x1, ..., xm}.
13: sample minibatch of m patches ψδ = {δ1, ..., δm}.
14: obtain attention map M (ψx) by Grad-CAM.
15: optimize WG to minG LGAN + λ Lpatch + γ Ladv

with D fixed.
16: end for

As a result, the output attention map can highlight impor-
tant regions of the image which correspond to any decision
of interest. Thus, critical areas are provided where modifi-
cations in these areas are more sensitive to final predictions
achieving strong attacking ability.

Training Process

The entire training process is detailed in Algorithm 1. It is
mainly a recurrent and iterative training process of G and
D. In each iteration, we train D for k times while once for
G. Attention map for each image in each minibatch is ac-
quired by Grad-CAM to guide areas to place patch. Standard
gradient-based optimization methods can be used to learn
WD and WG. We use Adam and SGD for G and D in our
experiments, respectively.

Experiments

In this section, we will evaluate our proposed algorithm PS-
GAN in the classification attacking task. Firstly, we compare
our method with the state-of-the-art adversarial patch meth-
ods: GoogleAp (Brown et al. 2017) and LaVAN (Karmon,
Zoran, and Goldberg 2018) on GTSRB (Houben et al. 2008)
and ImageNet (Deng et al. 2009) from three aspects: attack-
ing success rate, visual fidelity and time consumption. Sec-
ondly, we investigate the performance of our PS-GAN under
semi-whitebox and blackbox settings on GTSRB, which will
demonstrate the excellent transferability and generalization
ability of PS-GAN. At last, the attacking experiment in the
physical world will be conducted to prove the practicability
of PS-GAN in the real world.

Datasets and Models German Traffic Sign Recognition
Benchmark (GTSRB) is a large multi-category classifica-
tion benchmark for traffic sign classification. There are more
than 40 classes and 50,000 images in the dataset. In order
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(a) (b) (c) (d) (e) (f)

Figure 3: The attacking performance when using different
training epochs. (a) The classification accuracy with respect
to the training epochs; (c)-(f) present the generated adver-
sarial patches with increasing patch distortion, where (b)
corresponds to the original input patch without any distor-
tion, and the classification accuracy decreases, i.e., 85.6%,
12.5%, 10.9%, 7.8% and 1.5%, respectively.

to keep high perceptual correlation between the patches and
the attacked images, we choose QuickDraw (J. Jongejan and
Fox-Gieg. 2016) as the corresponding patch dataset. Quick-
Draw is a collection of 50 million drawings and scrawls
across 345 categories. As people like to draw scrawls on
public facilities in the real world, it will be natural for hu-
man being if we generate scrawl-like adversarial patches
and stick them on the traffic signs. Here, we use 20 classes
(SpeedLimit, NoPass, Stop, etc.) in GTSRB and 20 classes
(Aircraft Carrier, Backpack, Basket, etc.) in QuickDraw. We
also test our PS-GAN on the natural images and choose
the samples from ImageNet dataset. Specifically, we choose
“monkey”, “dining-table”, “dog” and “cat” as the attacked
image classes, and the corresponding patch classes are “ap-
ple”, “orange” and “baseball”, for their high perceptual cor-
relation. Each image and patch is normalized to [−1, 1] and
scaled to 128 × 128 × 3 and 16 × 16 × 3, respectively. As
we can see, the size of patch only accounts for 1.5% of the
size of image.

In our experiments, we will attack the following models:
VGG16, ResNet-34, VY (Yadav 2016) and some variants of
them.

Implementation Details In our experiments, we use Ten-
sorflow and Keras for the implementation and test them on
a NVIDIA Tesla K80 GPU cluster. We train PS-GAN for
250 epochs with a batch size of 64, with the learning rate of
0.0002, decreased by 10% every 900 steps. As for the hyper-
parameters in loss function, we set λ range from 0.002 to
0.005 and γ to 1.0 and δ to 0.0001, respectively. For the at-
tention model, we retrained two pre-trained VGG16 models
on GTSRB and ImageNet respectively.

Comparative Experiments

Firstly, we compare the attacking performance of our
method with GoogleAp and LaVAN on GTSRB and Ima-
geNet.

Attacking Ability Figure 3(a) shows the attacking ability
of different methods when trained with different epochs. We
can see that all the methods converge at about 200 epochs.

Table 1: Classification accuracy of examples with adversar-
ial patches attacking the target model V Y . The lower accu-
racy indicates better attacking performance.

Dataset PS-GAN PS-GAN∗ GoogleAp LaVAN

GTSRB 12.5% 1.5% 4.7% 3.1%

ImageNet 25.0% 4.7% 6.3% 4.7%

Subsequently, we report the classification accuracy of all
methods with 200 epochs training.

Table 1 shows the classification accuracy of examples
with adversarial patches generated by each method. Since
GoogleAp and LaVAN do not control the noise distortion
of the patch, to make fair comparison we derive two differ-
ent versions of our PS-GAN, namely PS-GAN is our origi-
nal model with strong constraint of patch distortion and PS-
GAN∗ is the one with weak constraint as GoogleAp and La-
VAN. From the table we can see that both of the two PS-
GAN versions can generate adversarial patches with satis-
fying attacking success rate. Note that the weak distortion
constraint makes PS-GAN∗, GoogleAp and LaVAN perform
well, and our PS-GAN∗ get the best performance. However,
these methods ignore the visual fidelity and perceptual cor-
relations with the attacked images, and thus produce unnatu-
ral patches that are offensively conspicuous to human being.
Instead, our PS-GAN can alleviate this problem by limiting
the patch distortion. Figure 3(b)-(f) show the variation when
using different levels of distortion, where we can also con-
clude that the large distortion helps obtain strong attacking
ability but at the cost of obvious visual fidelity loss.

Besides the classification accuracy, Figure 3(a) also de-
picts the attacking stability of the generated adversarial
patches. With a number of training epochs, the attacking per-
formance of our PS-GAN becomes stable and keeps the best
among all methods. However, even with the same number
of training epochs, the performance of both GoogleAp and
LaVAN still vibrates sharply. The main reason might be that
the adversarial patches produced by GoogleAp and LaVAN
owns good attacking ability for train set images stemming
from the sufficiently large perturbations, which generalize
poorly for the unseen images in the testing set. Contrarily,
our PS-GAN is able to learn the distribution of adversarial
patches for both training and testing data. Besides, PS-GAN
equipped with the attention prediction can gradually local-
ize the most perceptually sensitive area to attack. This can
be easily observed from the sharp and consistent accuracy
decrease as we run more epochs at the training stage.

Visual Fidelity & Perceptual Correlation It is impor-
tant to make the adversarial patches keep the natural and
friendly appearance when performing the attack in the real
world. Figure 4 shows the adversarial patches generated by
different methods, and we can see that GoogleAp and La-
VAN output very unnatural and inharmonious patches with
the attacked images. Besides, some patches are even gen-
erated outsides the reasonable areas, e.g., the traffic sign. It
means that the patches generated by the existing state-of-
the-art solutions like GoogleAp and LaVAN can be easily
noticed in practice, which subsequently limits their attack-
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(a) GoogleAp

(b) LaVAN

(c) PS-GAN

Figure 4: Adversarial patches generated by GoogleAp, La-
VAN and PS-GAN on GTSRB and ImageNet in the semi-
whitebox setting. All the attacked images are misclassified.

Figure 5: Adversarial patches generated by PS-GAN with
input patch class it has never seen at train time. The left table
is experiment configurations, while the figures on the right
are two test results.

ing ability. On the contrast, the generated patches by PS-
GAN look more like the commonly appeared scrawls well
placed on the traffic signs. This is because our model tries
to modify the patches using the confined and high perceptu-
ally correlated noise, so that the perturbations added to the
images are inapparent to human beings but deadly to deep
learning models leading to misclassification.

Time Consumption We also investigate the time con-
sumption for generating adversarial patches by each method.
GoogleAp and LaVAN respectively spend 61.2s and 65.4s
on producing one patch on GTSRB datasets, and similarly
72.3s and 81.5s on ImageNet. PS-GAN only takes 0.106s
and 0.111s per patch for GTSRB and ImageNet, which
means that PS-GAN enjoys both the fast computation and
the ease for use in practice.

Table 2: Semi-whitebox attacking performance.
GTSRB ImageNet

Accuracy without patches 89.5% 87.6%

Accuracy with seed patches 85.6% 67.6%

Accuracy with adversarial patches 12.5% 25.0%

Semi-whitebox and Blackbox Attack

We apply different structures for the target model F in this
experiment. The target models include many different deep
models with different activation functions and training data.

Semi-whitebox Setting Firstly, we generate adversarial
patches to perform semi-whitebox attack against V Y and
V GG16 on GTSRB and ImageNet respectively. As ob-
served in Table 2, PS-GAN has the ability to generate adver-
sarial patches to attack all the listed target models with high
attack success rate. Compared with images placed with seed
patches (SP), those with the generated adversarial patches
(AP) largely decline the classification performance of the
target networks.

Generalization Ability We also test the generalization
ability of our proposed model on GTSRB. After we have the
well trained model, at the inference time we feed the model
with the images and patches of unseen classes in the training
set, and Figure 5 illustrates some representative results. As
we can see, even though the traffic sign and the patches in the
training and testing sets are from different classes, our PS-
GAN is still be able to preserve the strong attacking ability,
which means our model also enjoys the good generalization
ability in practice.

Transferability & Blackbox Attack Now we evaluate the
transferability in the blackbox attacking settings. Table 3
shows the classification accuracy of PS-GAN, when trans-
ferring attacks between different classification models. In
this case, we use 640 random testing inputs. We first gen-
erate adversarial patches for a source attacked model, and
then apply the patches to attack all other target models. The
target models include a number of deep models with differ-
ent activation functions like lrelu and tanh: V Y , V GG16,
V Ylrelu, V GG16tanh, V Y , V GG16 and ResNet. As for
V Y and V GG16, we train them using the training data dis-
joint with those of V Y and V GG16. Note that the diagonal
results correspond to the white-box or semi-whitebox attack-
ing settings, and the others are results of the blackbox attack.

The transferability performance is listed in Table 3, from
which we can get the following conclusions:

• Adversarial patches generated by PS-GAN have very en-
couraging transferability among different target models,
which means our PS-GAN can perform quite well in
black-box setting.

• Attacking ability is highly correlated with the capacity of
the learning model generating the adversarial patches. For
example, adversarial patches generated by V GG16 show
good attacking performance on V Y , because V GG16
usually owns much more complicated network structure
and thus better capability than V Y in practice.
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Table 3: Classification accuracy of adversarial examples transferred between different models on GTSRB.
Target Models

V Y V GG16 V Ylrelu V GG16tanh V Y V GG16 ResNet

S
o

u
rc

e
M

o
d

el
s V Y 12.5% 25.0% 37.5% 12.5% 15.6% 31.3% 37.5%

V GG16 1.6% 31.3% 15.6% 37.5% 1.6% 31.3% 34.4%
V Ylrelu 4.7% 25.0% 7.8% 23.4% 12.5% 29.7% 26.6%

V GG16tanh 3.1% 25.0% 32.8% 34.4% 7.8% 25.0% 25.0%

V Y 9.4% 25.7% 14.1% 25.0% 14.1% 28.1% 37.5%

V GG16 3.1% 37.5% 9.4% 34.4% 7.8% 31.4% 21.9%
ResNet 3.1% 15.6% 4.7% 21.9% 9.4% 26.6% 34.4%

(a) Attention map (b) Distortion heat map

Figure 6: The consistence between the visual attention map
and distortion heat map.

Visual Attention

In this section, we analyze the attention prediction results by
conducting a distortion heatmap experiment. First we can
adopt the relatively complicated deep model V GG16, and
get the attention map based on the layer conv4 from a pre-
trained V GG16, which is shown in Figure 6(a). To check
whether it is the most sensitive area for placing adversarial
patches, we try to experimentally find the area by repeatedly
training the attacking model with a number (i.e., 64) of fixed
patch localization positions. For each training, we change
the constraint of the distortion and force the attack success
rate to reach a threshold value of 50%. Based on the batch
of experiments, finally we can get a distortion heat map in-
dicating the probability of the successful attack in Figure
6(b), where the dark zones indicate less distortion and thus
the sensitive places for classification. From the figure, it is
easy to observe that the attention map and the most sensitive
attacking areas are perfectly matched.

Attention Area v.s. Attack Area According to the atten-
tion map experiment, we can conclude that the more atten-
tive area we attack the less distortion is needed and the bet-
ter effect is. If we attack the area of image that the model
really cares for classification, we only need a very small dis-
tortion. Different from existing studies, we appreciate the
significance of attack areas and result in stable attack ef-
fects. This conclusion is very valuable and has some rela-
tions with the gradient-based method (Goodfellow, Shlens,
and Szegedy ). In that type of algorithms, adversarial ex-
amples are generated in a gradient-guided way. The noises
are added intentionally at pixels where the gradient is more
critical to change the final prediction label. Both of gradient-
based and our method pay attention to the critical place of
images to attack in order to get good attack success rate and
low perturbations.

(a) −15
◦, 1m (b) 0

◦, 1m (c) 15
◦, 3m (d) 0

◦, 3m

Figure 7: Traffic signs with adversarial patches on them. The
photos are taken in the campus of Beihang University with
different distances and angles using camera. Traffic signs
are respectively classified as “No Entry”, “Slippery Road”,
“Speed Limit 60” and “Over-weighted Vehicles Prohibited”.

Physical World Attack

In this section, a physical world attack experiment is con-
ducted to validate the practical effectiveness. We first take 64
pictures of a real-world traffic sign “Speed Limit 20” in the
street, with varying angles {0◦, 15◦, 30◦,−15◦,−30◦} and
distances {1m, 3m, 5m}. The accuracy of the target classifi-
cation model on these images is 86.7%. Then, the PS-GAN
model is further trained to generate four different patches
based on input patches from “Aircraft Carrier”. After print-
ing these patches by a Fuji Xerox DocuPrint CM318z, we
place them on the real-world traffic sign “Speed Limit 20”
and take pictures with the combination of different distances
and angles as before using a Huawei P20 camera. Figure 7
shows the different examples and the classification results,
where the adversarial patches generated by PS-GAN possess
strong attacking ability, decreasing the classification accu-
racy from 86.7% to 17.2% on average.

Conclusion

In this paper, we proposed a perceptual sensitive GAN (PS-
GAN) for generating adversarial patches. By exploiting the
perceptual sensitivity of the attacked network, PS-GAN can
guarantee that the generated adversarial patch enjoys a natu-
ral appearance, i.e., the high visual fidelity and perceptual
correlation with the context of image to be attacked. Be-
sides, it couples the attention mechanism in the adversarial
generation process, and promises the strong attacking abil-
ity for the generated adversarial patches. The extensive ex-
perimental results, under semi-whitebox and blackbox set-
tings in both digital and physical world, demonstrate that
PS-GAN owns strong generalization ability and transferabil-
ity, and achieves state-of-the-art performance.
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