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Currently, one of the most widely used distance measures in speech and speaker recognition is the Euclidean

distance between mel frequency cepstral coefficients (MFCC). MFCCs are based on filter bank algorithm whose

filters are equally spaced on a perceptually motivated mel frequency scale. The value of mel cepstral vector, as well

as the properties of the corresponding cepstral distance, are determined by several parameters used in mel cepstral

analysis. The aim of this work is to examine compatibility of MFCC measure with human perception for different

values of parameters in the analysis. By analysing mel filter bank parameters it is found that filter bank with 24

bands, 220 mels bandwidth and band overlap coefficient equal and higher than one gives optimal spectral distortion

(SD) distance measures. For this kind of mel filter bank, the difference between vowels can be recognised for full-

length mel cepstral SD RMS measure higher than 0.4 - 0.5 dB. Further on, we will show that usage of truncated

mel cepstral vector (12 coefficients) is justified for speech recognition, but may be arguable for speaker recognition.

We also analysed the impact of aliasing in cepstral domain on cepstral distortion measures. The results showed

high correlation of SD distances calculated from aperiodic and periodic mel cepstrum, leading to the conclusion

that the impact of aliasing is generally minor. There are rare exceptions where aliasing is present, and these were

also analysed.
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Percepcijska utemeljenost kepstranih mjera udaljenosti za primjene u obradi govora. Jedna od danas

najčešće korištenih mjera u automatskom prepoznavanju govora i govornika je mjera euklidske udaljenosti MFCC

vektora. Algoritam za izračunavanje mel frekvencijskih kepstralnih koeficijenata zasniva se na filtarskom slogu

kod kojeg su pojasi ekvidistantno raspore➒eni na percepcijski motiviranoj mel skali. Na vrijednost mel kepstralnog

vektora, a samim time i na svojstva kepstralne mjere udaljenosti glasova, utječe veći broj parametara sustava za

kepstralnu analizu. Tema ovog rada je ispitati uskla➒enost MFCC mjere sa stvarnim percepcijskim razlikama za

različite vrijednosti parametara analize. Analizom parametara mel filtarskog sloga utvrdili smo da filtar sa 24 pojasa,

širine 220 mel-a i faktorom preklapanja filtra većim ili jednakim jedan, daje optimalne SD mjere koje se najbolje

slažu s percepcijom. Za takav mel filtarski slog granica čujnosti razlike izme➒u glasova je 0.4-0.5 dB, mjereno SD

RMS razlikom potpunih mel kepstralnih vektora. Tako➒er, pokazat ćemo da je korištenje mel kepstralnog vektora

odrezanog na konačnu dužinu (12 koeficijenata) opravdano za prepoznavanje govora, ali da bi moglo biti upitno

u primjenama prepoznavanja govornika. Analizirali smo i utjecaj preklapanja spektara u kepstralnoj domeni na

mjere udaljenosti glasova. Utvr➒ena je izrazita koreliranost SD razlika izračunatih iz aperiodskog i periodičkog

mel kepstra iz čega zaključujemo da je utjecaj preklapanja spektara generalno zanemariv. Postoje rijetke iznimke

kod kojih je utjecaj preklapanja spektara prisutan, te su one posebno analizirane.

Ključne riječi: preklapanje spektara, digitalna obrada govora, MFCC, mel kepstar, SD mjera, prepoznavanje

govora

1 INTRODUCTION

Until the 1990s, the common method used to measure

the quality of speech was by conducting subjective tests

[1], [2]. Design of the objective measures that correlate

well with subjective results is of prime importance in or-

der to eliminate expensive and time consuming listening

tests. The most common objective measures used for as-

sessing the subjective quality of speech are based on per-

ceptual auditory models. These objective measures quan-

tify the perceived quality of distorted speech relative to an

undistorted reference sample. Some of the known methods

for objective evaluation of speech quality are Bark spec-

tral density (BSD) [2], perceptual speech quality measure

(PSQM), measuring normalizing blocks (MNB), percep-
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tual analysis measurement system (PAMS), and perceptual

evaluation of speech quality (PESQ) [3], [4]. These meth-

ods are not only used for evaluation of speech quality but

also for evaluation of audio quality and quality of service

(QoS) in VoIP [5]. Classical objective quality estimators

based on SNR do not, in general, provide useful estimates

of the perceived speech quality. Methods like cepstral dis-

tance and Bark spectral distortion are much better estima-

tors but these methods still lack reliability when the broad-

est class of conditions is considered. The PSQM and the

MNB estimators provide good results in many different ap-

plications [6], [7].

The objective measure is supposed to accurately rep-

resent perceptual similarity between the speech segment

and the reference model. Quality of the measure depends

on the feature vector used. Typically, some aspects of

the feature vector, representing the speech spectral en-

velope, should be emphasized and the less relevant as-

pects ignored. A good measure would emphasize sim-

ilarities in spectral peak positions and deemphasize the

higher frequency content while ignoring spectral tilt and

low-amplitude components.

Early automatic speech recognition (ASR) algorithms

used simple filter banks or discrete Fourier’s transforma-

tion (DFTs) to obtain the needed features. From the early

1970s to the mid-1980s, linear predictive coding (LPC) co-

efficients and their transformations (e.g. reflection coeffi-

cients, Line Spectral Frequencies LSFs) were widely used

in ASR as well. Since the mid-1980s, the most widely used

feature vector for ASR has been the MFCC [8]. The orig-

inal MFCC algorithm was introduced by Davis and Mer-

melstein in 1980 [9]. It combines perceptually spaced filter

bank with the discrete cosine transformation (DCT). Re-

sulting feature vector of a dozen parameters is a compact

representation of the voice segment. Based on the MFCC

feature vector, objective measures of sound distances were

developed.

Even though the mel cepstral distortion measure is one

of the most commonly used measures in digital speech

processing (ASR [10], [8], speaker recognition [11], [12]

speech reconstruction [13], [14], speech synthesis, text-to-

speech (TTS) [8]), it still represents a rough estimation of

perceptual distinction between two phonemes.

This work analyses the relation between different mel

cepstral representations of speech utterance and human

perception of phonemes’ distances. There are a number of

parameters used in mel cepstral analysis which can affect

the mel cepstral measure. First we analysed the influence

of mel filter bank parameters, such as number of channels,

bandwidth and band overlap factor, on the mel cepstral

measure. The bandwidth was varied from 120 mels to 410

mels, number of filter channels from 12 to 46 bands and

overlap factor from 2/3 to 8.

The next point in our research was to try to justify usage

of the truncated mel cepstral vector (first 12 coefficients)

instead of the full-length vector as a feature vector to cal-

culate objective measure. Measures computed from both

types of vectors were compared with subjective perceptual

results.

The third analysed aspect was the impact of aliasing in

cepstral domain on cepstral distortion measures. For that

purpose “aperiodic” and “periodic” mel cepstral vectors

were created. Aperiodic (infinite) mel cepstral vector was

computed from the continuous mel-spectrum that is a con-

tinuous function of the filter band central frequency (i.e.

infinite number of filter channels). Periodic mel cepstral

vector is obtained by spectral sampling, i.e. by periodic ex-

pansion of the aperiodic vector with the period determined

by the finite number of filter channels. Such aliasing in-

troduces ambiguity into cepstral representation of speech,

since perceptually different speech sounds might produce

identical cepstral vectors. Section 2 reviews the methods

used in this research with all steps involved. Section 3

presents the algorithm used to calculate all feature vec-

tors and corresponding objective measures. Section 4 dis-

cusses the results for all three experiments, while section 5

presents the conclusion.

2 METHODOLOGY

Fig. 1. Methodology
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2.1 Data base

Subjective testing methodology used in our work re-

quired synthetic phoneme with controlled variation of the

spectral envelope, which can only be achieved by using

vowels. Controlled variation of the shorter phoneme’s

spectral envelope would be very difficult due to fast varia-

tion and shorter stationary period of it’s spectral envelope.

For this reason and in order to perform a perceptual vali-

dation of distortion measures we have created a database

limited to a synthetic isolated Croatian vowels. For each

vowel, one reference stimulus was synthesized together

with a large number of modified stimuli. Technique that

was used for the syntesis of the reference and modified

stimuli was identical. The only difference between them

was the spectral envelope. For the reference vowel the en-

velope was estimated from the recorded speech utterance

of that particular vowel to achieve naturalness. Spectral

envelope estimation was based on the conventional LPC

analysis, giving the time-invariant all-pole model of that

particular vowel. Estimated model was then manipulated

in order to create a modified stimuli. The goal was to

create a set of modified spectral envelopes which are all

close to the threshold of just perceivable difference from

the referent one. Reference and modified envelopes were

then used to create synthetic vowels, by exciting the corre-

sponding LPC filters with identical quasi-periodic excita-

tion. Excitation was formed as a band-limited pulse train

generated according to the sinusoidal model. In order to

achieve naturalness of synthetic vowels, pitch contour of

the excitation signal was varied linearly in time from −5%
to +5% of the estimated pitch period of extracted speech

segment. Introduced pitch variations are also helpful to al-

low for different interactions between the LPC model (for-

mant structure) and the fine (pitch) spectral structure of the

synthetic vowel. Such interactions are particularly impor-

tant since they affects both objective and perceptual dif-

ferences. Slight frequency dependent phase dispersion of

sinusoidal components was also introduced to improve the

naturalness of synthesized vowels (equation (4)).

2.2 Perceptual experiment

Created database was used to setup a simple perceptual

experiment. Chosen test type was a modified version of

three-alternative forced choice test (3AFC). The subject

was presented with a sequence of three stimuli, i.e. three

synthesized vowels with short pauses in between. The sub-

ject was told that two vowels are always identical and that

he/she has to choose the different one (A, B or C). Pair of

stimuli used in each test utterance was formed from two

synthetic vowels. One was always the reference vowel

(R), while other was randomly chosen from the database

of modified vowels (M). Presentation order was random-

ized with possible sequences being MRR, RMR or RRM.

Unknown to the subject, the “all-reference” sequence RRR

was intermittently included in the test as a hidden anchor,

to check for consistency or possible bias. Modification to

the conventional 3AFC test made in our experiment was

the inclusion of one additional answer, “NONE”. Sub-

jects were instructed to use this answer only if the different

vowel couldn’t be identified by no other means except by

guessing. Such answers were counted as three trials with

one correct and two wrong answers, what corresponds to

the guessing probability. Subjects were also allowed to re-

peat the same utterance several times before making the

final guess.

2.3 Objective distance evaluation

For each vowel pair used in perceptual tests, several ob-

jective distance measures were computed. These include

the simple Spectral Distance (SD) between log-magnitude

responses of the referent and modified LPC filter and sev-

eral cepstrum based distance measures computed from

synthesized vowels for different parameter values of these

measures (e.g. number of analysis channels and their band-

width, cepstrum truncation, etc.). Synthetic nature of utter-

ances used in our setup allows for precise control of objec-

tive distances. The referent LPC model can be manipulated

in a way to obtain a pair of vowels on a certain, desired

objective distance, measured by a chosen distance metric,

i.e. MFCC SD measure. It would have been ideal to mod-

ify the MFCC vector directly and then generate the sec-

ond vowel from the modified MFCC vector. However, two

steps of the MFCC algorithm are irreversible which makes

such direct approach impossible. These are computation

of the magnitude of the complex speech spectrum which

discards the phase information and mel filtering (smooth-

ing) that nonlinearly reduces the frequency resolution of

the speech power spectrum. To circumvent this problem,

we have used a model based approach by means of the Line

Spectral Frequencies (LSF) to generate the modified syn-

thetic vowel. LSF parameters can be easily calculated from

the referent set of LPC parameters. Genetic algorithm or

manual manipulation were used to change them and cre-

ate appropriate sets of new LSF parameters for modified

vowels with desired objective distances from the referent

one. The basic idea used in our experiment is inherited

from the speech coding domain, where similar objective

and subjective measures are used to evaluate the quantiza-

tion accuracy of the speech spectral envelope. The LSF

parameters are one of the most commonly used LPC rep-

resentations in speech coding. Thus, the effect of quanti-

zation induced LSF variation on the subjective quality of

coded speech is extensively studied in the speech coding

literature. Commonly used limen for “transparent” quan-

tization for quantizer design is the average SD distance of

1dB. However, this rather simple objective metrics does
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Table 1. Vowels distinction levels

Score Symbol
Level of dis-

tinction

Correctly guessed

vowel

1. Circle Imperceptible 0% -50%

2. Square
Barely per-

ceptible
50% - 90%

3. Triangle Perceptible 90% - 100%

not correlate well with the human perception. Therefore,

more elaborate distance measures that mimic psychologi-

cal process of hearing are used in speech recognition tasks

(e.g. MFCC SD measures).

2.4 Analysis of perceptual experiments

Our main goal was to compare the results of the per-

ceptual experiment to the commonly used objective dis-

tance measures and to fine tune the parameters of MFCC

based measure to achieve the best compliance with percep-

tual results. Ideally, such comparison should be performed

by estimating the psychometric function that models the

probability of correct identification of modified vowel as a

function of a chosen objective distance that measures the

perturbation level introduced into the spectral envelope of

a modified vowel. Due to the “many-to-one” nature of all

objective measures, infinite number of different envelope

perturbations give identical objective distances, although

the perceptual responses might be quite different. There-

fore, the perceptual compliance of the chosen objective

measure can be found as a correlation between the objec-

tive distance and measured perceptual response. For the

good objective measure the perceptual results (i.e. mea-

sured probability of correct guesses) must lie close to a

smooth sigmoid curve, that models the ideal psychomet-

ric response. In order to obtain sufficient reliability of per-

ceptual identification probability many trials are necessary,

with large number of test subject. In our limited experi-

ment, we couldn’t afford such exhaustive perceptual test-

ing. Therefore, perceptual responses of vowel distinction

were classified into only three classes, based on 30 trails

per each modified vowel. These classes are: Impercepti-

ble, Barely Perceptible and Perceptible with corresponding

probabilities given in table 1.

2.5 Comparison to the objective measures

We were particularly interested in identifying and study-

ing modified vowels with strong disagreement between

different objective measures, i.e. when one measure claims

that the modification must be perceivable, while according

to the other, the distance to the referent vowel is supposed

to be small. Perceptual tests for such ambiguous vowels

give the true answer. Special attention was given to such

unusual modifications in order to investigate a type of per-

ceptually relevant modifications that might get unnoticed

in the commonly used distance measures.

Results of our experiments are mostly presented as two-

dimensional graphs in order to make pairwise comparisons

of different objective measures. Perceptual responses for

individual modified vowels are shown as data point in these

plots, with three symbols corresponding to the three de-

scribed classes (table 1). Position of each point is given by

the values of two chosen objective measures. Grouping of

data points belonging to the same perceptual class along

one or the other axis clearly demonstrates the perceptual

compliance of a chosen measure.

2.6 Parametric representation for synthetic vowels

Database of synthetic vowels was created from the two

characteristic male Croatian vowels “A” and “U”. These

are similar to English vowels in sun and soon. Speech was

sampled with 16 kHz sampling frequency and 16 bits am-

plitude resolution. We have applied basic band-pass fil-

tering to the signal to remove DC component and high-

frequency regions affected by aliasing. In order to find

parametric representation of the vowel, we have used con-

ventional LPC analysis [10] performed on a central seg-

ment of the recorded vowel. In early ASR algorithms the

LPC coefficients αi directly served as ASR feature vec-

tors [15]. LPC parameters capture characteristics of the vo-

cal tract and accurately describe the envelope of the speech

power spectrum. In our experiment the LPC prediction or-

der was set to P=28 in order to obtain a precise spectral

model of the wide-band speech signal (300 Hz-7.5 kHz).

The optimal predictor was determined using the covari-

ance method [10] and was additionally checked for stabil-

ity and minimum formant bandwidth. Obtained LPC pre-

dictor coefficients αi are not suitable for direct filter modi-

fication. They represent coefficients of the Direct-form IIR

filter implementation and exhibit very complicated spectral

sensitivity behaviour. A small change of a single coeffi-

cient typically changes the whole transfer function and can

even result in an unstable filter. Therefore, the LPC model

was transformed to the equivalent representation based on

the Line Spectral Pairs (LSP) or Line Spectral Frequen-

cies (LSF) that were first introduced by Itakura [16] and

are broadly used in speech coding. The LSP coefficients

are also effective features to discriminate between speak-

ers and can be used in speaker recognition applications for

person identification and verification [17]. The LSF pa-

rameters can be found from the LPC parameters αj as the

complex roots Zj = eiωj of two polynomials:

Q(z) = 1−(α1−αp)z
−1−· · ·−(αp−α1)z

−p−z−(p+1)

(1)
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P (z) = 1−(α1+αp)z
−1−· · ·−(αp+α1)z

−p+z−(p+1)

(2)

In order to ensure stability of the LPC filter, roots of P (z)
and Q(z) must have the following properties: all roots are

distinct and lie on the unit circle and the roots of P (z) are

interlaced with those of Q(z). Therefore, if LSF parame-

ters of the stable LPC filter are sorted in ascending order,

then odd frequencies correspond to one of the polynomials,

while even frequencies correspond to the other:

0 < ω1 < ω2 < · · · < ωp−1 < ωp < π (3)

While the values of the individual LPC parameters do not

tell us much about spectral envelope and formants, LSF

parameters clearly characterize the central frequency and

bandwidth of a given formant. Change of a given LSF

produces a change in the LPC power spectrum only in

the neighbourhood of that particular LSF. The property

of localized spectral sensitivity of LSF parameters makes

them an excellent choice for spectral envelope manipula-

tion. Additionally, stability of the modified filter can be

easily ensured by simply sorting the LSFs after modifica-

tion.

2.7 Vowel modification with genetic algortihm

By modifying LSF parameters of the referent vowel, we

can generate new vowel with desired MFCC feature vector.

If only a local spectral modification is required, e.g. one

formant change, then LSF parameters defining that partic-

ular formant can be tuned manually. If we want to generate

vowel which is on a certain distance (measured by SD mel

cepstral measure) from the reference vowel, then simple

Genetic algorithm (GA) can be applied. Genetic algorithm

uses natural evolution mechanisms to generate optimum or

close to optimum result.

In our experiment, we have used GA to obtain desired

MFCC feature vectors by modifying the referent LSF pa-

rameters. A set of LSF parameters represents a string

which is processed by GA. Starting population consists of

ten strings. Next generation of strings is usually obtained

through sequence of reproduction, crossover and mutation

but crossover was not used in our research. Reproduction

is responsible for survival of the fittest and removing of the

poorest. The ‘goodness’ of a particular string is evaluated

by the closeness to the desired MFCC feature vector. Three

fittest strings are reproduced to the next generation with-

out changes and the rest of strings are removed. The seven

new strings of the next generation are generated by mu-

tating the three fittest strings of a current generation. The

algorithm is stopped when the set of LSF parameters with

required feature vector is found (or at least, close enough).

If desired set of parameters is not found, the algorithm is

stopped after a fixed number of iterations.

2.8 Vowel synthesis

From these two sets of LPC parameters, the referent one

and the one obtained by GA modification of referent pa-

rameters, two vowels are generated. The duration of the

synthesized vowels is fixed at 300 ms. The common signal

used to excite two all-pole LPC filters is defined as follows:

u(n) =
K
∑

k=0

1

K + 1
cos(ω0kn(1 + ∆f −

2∆fn

N − 1
) + φk)

0 ≤ n ≤ N − 1
(4)

ω0 = 2π/pp is the fundamental frequency, while pp is the

corresponding referent pitch period expressed in samples.

Random frequency weighted phase dispersion is added to

each of the harmonics, φk = (π/2) · rand · (k/K) where

rand is a random number −1 ≤ rand ≤ 1 defining the

initial phase of the kth harmonic. Fundamental frequency

is changed linearly throughout the duration of the vowel as:

ω0 · (1+∆f − 2 ·∆f ·n/(N − 1)). The parameter ∆f =
0.05 is chosen such that fundamental frequency deviation

at vowel boundaries is ω = ω0 ± 5%. After synthesis

a short fade-in and fade-out intervals are imposed on the

vowels, to avoid any audible clicks at the beginning or at

the end that could be used by the listeners as unwanted

perceptual cues to discern between the two vowels.

2.9 Results analysis, clustering and visualizations

Results of the described perceptual experiment were

used as a reference data set for objective distance mea-

sures. Objective measures depend on the analysis param-

eters and feature vector choice. The aim of our investiga-

tion was pairwise comparison of different objective mea-

sures relative to the subjective results. Therefore, the dis-

tance between each referent and modified vowel pair used

in subjective evaluation, was computed using two selected

objective measures and the results were plotted in the plane

formed by these two objective measures. For a good objec-

tive measure, the data points of the three subjective score

classes (Table 1) must be clearly grouped along one (or

both) axes in this plane. In order to easily identify such

groupings the K Nearest Neighbours (KNN– 3) classifica-

tion [18] was used to divide the distance plane in a way that

preferably only samples from one class are in each sepa-

rated region. Our aim was to classify the areas in these

plots where pairs of vowels are distinguishable or indistin-

guishable through listening tests. Every vowel pair used

in the perceptual experiment represents one sample of the

KNN training set. Information about classes (perceptual

test scores) and x-y coordinates (two different SD mea-

sures) of the training set members are available and used

for training. The KNN– 3 classifier classifies the new sam-

ple into the majority class of the three nearest neighbours
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from the training set, measured by Euclidean distance. In

the case that all three nearest neighbours are from differ-

ent classes, the class of the nearest neighbour will be as-

signed to the new sample. Finally, the borders of identified

clusters are superimposed onto the distance graph to facili-

tate visual inspection of the sample grouping. Shape of the

border between individual classes tells us about the quality

of certain objective measure. Straight horizontal or verti-

cal borders show that particular objective measure is fully

compatible with subjective measure.

3 EXTRACTION OF THE FEATURE VECTORS

AND OBJECTIVES MEASURES

The two vowels: referent and modified have different

spectral envelopes that are modelled with corresponding

LPC filters. The simplest distance measure between the

two vowels is the conventional SD distance that is often

used for evaluation of the speech coding performance, re-

lated to the quantization of the LPC filter parameters. It is

equal to the simple RMS value of the log-magnitude dif-

ference between frequency responses of the two LPC filters

above the linear frequency axis.

SDLPC =

√

√

√

√

1

K − 1

K−1
∑

k=1

(20(log
10

|H1(k)|−log
10

|H2(k)|))2

(5)

Where H(k) is a sampled magnitude response of the all-

pole LPC filter that models the speech spectral envelope.

Since the LPC parameters are held constant for the whole

duration of vowels, the distance between the referent and

modified vowel is described with a single SD value. Re-

maining mel-cepstral based objective measures investi-

gated in this paper are derived from the actual waveforms

of synthetic vowels, by means of short time analysis as it is

usually done in typical applications. Therefore, a sequence

of distance values is obtained, one for each analysis frame,

that are averaged across frames resulting with the average

distance:

SDcepstrum =
1

M

M
∑

m=1

SDcepstrum (6)

where M is the number of analysis frames within one

vowel. Averaging helps to reduce for possible uncertain-

ties due to interaction of the spectral envelope and excita-

tion signal.

3.1 MFCC analysis algorithm

Although the MFCC analysis and corresponding dis-

tance measures are well known in the ASR literature [10]

Fig. 2. Algorithm

in this section we will revisit the main expression and in-

troduce crucial parameters that affect compliance of such

objective measures with perceptual results.

For cepstral based objective measures, the analysis of

synthetic vowels is performed on frames. Signals are sam-
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pled at fs = 16 kHz and then analysed by using a 30 ms

Hamming time window and 10 ms frame period.

sp(n) = whamming(n) · sorig(p · P + n)

0 ≤ n ≤ N − 1
(7)

Extracted signal segment sp(n) for pth analysis frame

is found by multiplying the sampled vowel signal

sorig(n) (reference or modified), with a Hamming win-

dow whamming of length N , where P is the frame period

expressed in samples (10 ms ·fs). The first stage of the

MFCC analysis is computation of the spectrum S(l) for

each frame sp(n) of the signal by using N-point FFT.

S(l) =

N−1
∑

n=0

sp(n) · e
−2πinl/N 0 ≤ l ≤ N − 1 (8)

The Magnitude Spectrum is binned by K + 1 triangular

filters whose central frequencies are equally spaced on the

mel frequency scale. Since S(l) is the signal spectrum

above the linear frequency domain, the mel filter bank

spectrum must also be converted to the linear [Hz] domain

to perform the actual binning.

SM (k) = 10 · log10

N/2
∑

i=1

(|S(l)| ·M(k, l))2

0 ≤ k ≤ K

(9)

SM (−k) = SM (k) 1 ≤ k ≤ K (10)

M(k, l) is spectrum of the k-th mel filter mapped to the

linear frequency domain and evaluated at the frequency of

the lth DFT bin. Taking the IFFT of the log mel spectrum

SM (k), −K ≤ k ≤ K gives the final MFCC vector.

cM (n) =
1

2K + 1

K
∑

k=−K

SM (k) · e2πink/(2K+1)

0 ≤ n ≤ K

(11)

Log mel spectrum is a real and symmetric sequence that

allows us to use the DCT instead of IFFT for calculation

of the MFCC. The resulting MFCC vector is real and sym-

metric, thus having only K+1 unique samples. Frequency

response of the analysis filter bank is chosen to mimic

the process of human perception of speech, related to the

frequency selective processing of audio signals performed

along the basilar membrane in the cochlea of the inner

ear. This filter bank is parameterized with the number of

channels (K+1) and their respective bandwidth, expressed

in mels. Increasing the number of channels improves the

frequency selectivity of the analysis. Ideally, the central

frequency of a triangular analysis filter can be treated as

a continuous variable and the resulting cepstrum can be

computed using the inverse discrete time Fourier trans-

form (IDTFT instead of IDFT), giving an infinite symmet-

ric aperiodic cepstrum sequence:

CRealMel(n) =
1

2π

∫ ∝

−∝

SLogMel(ω) · e
iωndω (12)

Filter bank with a finite number of channels actually sam-

ples the continuous mel-spectrum of the signal, what in-

troduces aliasing in the cepstral domain. Therefore, the se-

quence cM (n) represents a periodic extension of the aperi-

odic sequence CRealMel(m) with the period of 2K+1. De-

scribed aliasing introduces ambiguity into signal represen-

tation since several different continuous mel-spectrums are

mapped to the same periodic sequence cM (n). Aliasing

primarily affects the cepstral samples on indices k close to

K, but for certain “peaky” mel-spectra aliasing can also

change the low-time cepstral samples that are used in ob-

jective distance measures.

In our research we have compared four different types

of mel-cepstral based objective measures depending on the

feature vector used for calculation. We have used either the

aperiodic or periodic mel cepstral vectors, both in two dif-

ferent lengths, the full-length and truncated to the first 12

coefficients (what is a typical choice for real-word applica-

tions). The periodic mel cepstral vector is calculated by us-

ing the mel filter bank with an overlap coefficient 1 (Figure

3, red channels), such that edges of triangular channels ex-

actly coincide with the centres of neighbouring channels.

Since the aperiodic cepstral sequence indeed has an infinite

length, it was approximated with a mel filter bank having

an overlap coefficient of 8 (Figure 3, red and blue chan-

nels). In this way, the continuous mel-spectrum was sam-

pled on an 8-times denser grid, but using the filters with

identical mel-bandwidth as for the unit-overlap case. The

resulting "approximately aperiodic" cepstral vector has a

full length of 8K+1 samples (k = 0, ... 8K), thus reducing

the effect of time-aliasing.

Two configurations of the mel filter bank are denoted

with M1 or M8. As a measure of distance between the two

vowels for one particular frame, we used RMS difference

of the Log spectra above the mel-frequency scale.

SDM1 =

√

√

√

√

1

2K + 1

K
∑

k=−K

(SM1ref(k)− SM1mod(k))
2

(13)
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Fig. 3. Mel filter bank configurations

SDM8 =

√

√

√

√

1

2K + 1

K
∑

k=−K

(SM8ref(k)− SM8mod(k))
2

(14)

Where SM1ref and SM8ref are log spectrums of the ref-

erence signal and SM1mod and SM8mod are log spectrums

of the modified signal. According to Parseval equation:

K
∑

k=−K

|cM (k)|2 =
1

2K + 1

K
∑

k=−K

|SM (k)|2 (15)

the MFCC based SD measure can be efficiently calcu-

lated from the cepstral coefficients. Coefficient cM (0) rep-

resents the average signal log-level that is related to the

signal energy and because of that it is usually discarded

from the distance measure. Finally, SDcM1 and SDcM8

distances can be rewritten using mel cepstral coefficients.

SDcM1 =

√

√

√

√

K
∑

k=−K,k 6=0

(cM1ref(k)− cM1mod(k))
2
=

=

√

√

√

√2 ·
K
∑

k=1

(cM1ref(k)− cM1mod(k))
2

(16)

SDcM8 =

√

√

√

√2 ·

K
∑

k=1

(cM8ref(k)− cM8mod(k))
2 (17)

For many practical speech and speaker recognition tasks,

cepstral coefficients sequences cM (k) are truncated to a

length Kfix that is shorter then the actual number of filter

bank channels K. It is assumed that most of the perceptu-

ally relevant information is retained in the first Kfix coeffi-

cients. A very common choice for this length is Kfix = 12.

The corresponding distances SDc12 between two such cep-

stral vectors can be found by truncating the sum in equation

(16) and (17) to the first Kfix coefficients.

SDc12M1 =

√

√

√

√2 ·

12
∑

k=1

(cM1ref(k)− cM1mod(k))
2 (18)

SDc12M8 =

√

√

√

√2 ·

12
∑

k=1

(cM8ref(k)− cM8mod(k))
2 (19)

Note that distance SDc12 between two truncated cepstral

vectors is always smaller or equal to the distance SDc of

corresponding cepstrum sequences of the full length K.

4 EXPERIMENTS, RESULTS, DISCUSSION

4.1 Quality of the objective measure

In our first experiment we compared five different ob-

jective measures with subjective perceptual judgement. As

we mentioned before, objective measures that were used

are: SD distances computed from LPC parameters (equa-

tion (5)) and mel-cepstral based distances computed from

four different mel cepstral vectors (equations (16) - (19)).

Figures 4 to 7 show relation between LPC based mea-

sure (on the y-axis) and each one of the four mel cepstral

based measures. Type of the symbols corresponds to the

results of the subjective test (table 1). Gray-scale shaded

regions represent perceptually different areas according to

the KNN-3 classification.

As we can see, none of the objective measures predicts

the subjective perceptual space ideally. We can not draw

a clear border between perceptually audible and inaudible

areas for any of the objective measures. But quite notably,

the MFCC SD measure based on the full length cepstral

vector with mel filter bandwidth of 220 mels would be the

best choice that is shown in the central plot in the figures

4 and 5, with nice grouping of perceptual results along the

x-axis. However, there are three small outlier groups of

samples which are ‘spoiling’ the ideal separation of per-

ceptually segregated areas. Next, we will analyze these

groups of samples in detail (marked with 1, 2 and 3 in Fig-

ure 8).

The first outlier group represents perceptually clearly

distinguishable vowel pairs with very small value of the

AUTOMATIKA 52(2011) 2, 132–146 139



Perceptual Significance of Cepstral Distortion Measures in Digital Speech Processing A. Vasilijević, D. Petrinović

Fig. 4. Perceptual test graph, relation between LPC based measure SDLPC and full lenght periodic mel cepstral based

measure SDcM1

Fig. 5. Perceptual test graph, relation between LPC based measure SDLPC and full lenght aperiodic mel cepstral based

measure SDcM8

Fig. 8. Groups of samples ‘spoiling’ ideal classification

mel-cepstral distance measure. By analysing these sam-

ples in detail we noticed that the modified vowel in each

of the pairs had a very sharp and narrow third or fourth

formant (with bandwidth of less then 60 Hz). Such vow-

els sound unnatural, metallic, and therefore the difference

can be easily noticed by the listener. The difference is also

captured in the LPC based distance shown on the y-axis

(of cca. 0.8 dB). However, since the mel filter channels are

quite sparse and wide at frequencies corresponding to the

third and fourth formant (F3 = 2.5 kHz and F4 = 3.5 kHz)

the sharp change of the spectral envelope is overseen by

mel-cepstral measure [6]. The actual formant bandwidths

of speech sounds are typically of the order of 30 Hz to

70 Hz for formants below 2 kHz but increase for formants

above 2 kHz due to various losses in the vocal tract. Higher

formants have a typical bandwidth of around 250 Hz [19].

Because of that we can consider such modified vowels ‘un-

natural’ and discard them from analysis, since after all the

MFCC based measures are supposed to discriminate only

between the natural speech sounds.

The second outlier group (Figure 8) represents pairs of

vowels that are very close except in their first formant.
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Fig. 6. Perceptual test graph, relation between LPC based measure SDLPC and truncated periodic mel cepstral measure

SDc12M1

Fig. 7. Perceptual test graph, relation between LPC based measure SDLPC and truncated aperiodic mel cepstral based

measure SDc12M8

Even though both objective measures between vowels give

a very small distance (pairs are within inaudible area) per-

ceptual difference is not completely inaudible. We can

conclude that human auditory system is more sensitive to

the first formant change than to any other formant, mea-

sured by the same objective measure [20]. Pairs of vow-

els from the third outlier group (Figure 8) have very large

LPC based SD difference but rather small value of the mel-

cepstral based measure. The reason for such discrepancy

is that spectrums of these vowels are different on frequen-

cies higher then 3.5 kHz especially in the valleys between

higher formants. Since mel filter bands are sparse on these

frequencies, spectral differences are poorly measured by

mel cepstral measures. Such changes would be captured

by MFCC measures better if we decrease the mel filter

bandwidth (Figures 4 to 7). Even though SD LPC mea-

sure is very high for these vowel pairs, vowels are either

indistinguishable or almost indistinguishable through lis-

tening. Consequently, we can conclude that human audi-

tory system is much more sensitive to the changes at the

lower frequencies, which clearly justifies the usage of the

mel frequency scale.

Fig. 9. Graph without ‘unnatural’ vowels
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Fig. 10. Truncated versus full-length MFCC

Figure 9 compares the quality of the SD measures, cep-

stral versus LPC, without the ‘unnatural’ vowels of the

first outlier group. There are three areas, two perceptually

different areas "imperceptible" and "perceptible" and one

undetermined area where samples of different classes are

mixed. Our next goal was to determine the threshold of the

cepstral based measure that separates these areas. The cri-

teria we used to draw vertical borders between these areas

is 95% purity of the area, meaning that 95% of the samples

inside that area must belong to the same class. Such thresh-

old analysis was performed for MFCC filter banks with

fixed ovelap of 1 and bandwidth varying from 120 to 410

mels. Column 2 in table 2 gives the border (threshold) of

the imperceptible area while column 3 represent the border

of the perceptible area. Quality of the distance measure is

estimated according to the width of the undetermined area

or another word by the distance between perceptually dif-

ferent areas. Measure is considered better if undetermined

area is as narrow as possible.

As we can see from table 2, filter banks with bandwidth

from 180 to 240 mels give good objective cepstral mea-

sure with narrow undetermined regions. The best among

them is the objective measure based on the full length cep-

stral vector calculated for the mel filter bandwidth of 220

mels. It gives accurate prediction of the perceptual dis-

tance between stationary vowel sounds (see figure 9 and

table 2). Average spectral distortion of 0.4 - 0.5 dB repre-

sents a border between perceptually distinguishable areas.

However, no clear border exist along the y-axis, showing

that LPC based SD distance measured along the linear fre-

quency scale is indeed a poor match to the human percep-

tion.

Table 2. Separation of the perceptualy different areas

Bandwidth

[mel]

Imperceptible

[dB]

Perceptible

[dB]

Undetermined

area [dB]

120 0.45 0.66 0.21

140 0.44 0.56 0.12

160 0.41 0.5 0.09

180 0.39 0.43 0.04

200 0.38 0.42 0.04

220 0.375 0.41 0.035

240 0.36 0.4 0.4

270 0.315 0.38 0.065

300 0.3 0.37 0.7

330 0.265 0.41 0.145

370 0.24 0.4 0.16

400 0.22 0.39 0.17

410 0.22 0.39 0.17

4.2 Truncated versus full-length MFCC

In digital speech analysis algorithms the most com-

monly used feature vector is the truncated mel cepstral vec-

tor MFCC. In our analysis, we used the typical truncation

to the first 12 components without the coefficient c0 which

corresponds to the signal energy.

The second experiment investigates how such trunca-

tion affects the compliance of the objective measure with

the perceptual difference between vowels. The experiment

shows (figure 10) that correlation between the full length

and truncated vectors depends on the number of filter chan-

nels. If K = 12, correlation is ideal since no information is

discarded by truncation. However, for K = 24 or K = 46
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Fig. 12. Aperiodic versus periodic MFCC

Fig. 11. Samples with small value of truncated MFCC

based SD measure

correlation becomes much weaker. This experiment also

shows that objective measure based on the full length vec-

tor predicts the subjective distance measure more effec-

tively. Obviously, grouping of perceptually equal classes

is much better along the x axis, then it is along the y-axis

that corresponds to the truncated cepstral vector. Correla-

tion between these two measures is also calculated using

the Pearson product-moment correlation coefficient [21]

(equation (20)):

r =

N

N
∑

i=1

XiYi −

(

N
∑

i=1

Xi

)

·

(

N
∑

i=1

Yi

)

√

√

√

√(N

N
∑

i=1

X2
i − (

N
∑

i=1

Xi)2)·(N

N
∑

i=1

Y 2
i − (

N
∑

i=1

Yi)2)

(20)

Where N is number of samples, Xi is x coordinate of the

ith sample and Yi is y coordinate of the ith sample.

Again, we will analyse some extreme samples, cir-

cled in figure 11 that have large disagreement between

the objective measures. For these vowel pairs, the mel-

cepstral measure based on the truncated vector fails to de-

tect pairs that are clearly distinguishable through listen-

ing. We found out that in these cases vowels spectrums are

identical in their first two formants but different in the 3rd

and especially in the 4th formant. It suggests that distance

measure based on the truncated mel cepstral vector can be

successfully used in speech recognition applications. For

ASR the information about the first two formants is the

most important since it conveys most of the speech infor-

mation. However, usage of such simplified measure in

speaker recognition application would not be fully justi-

fied, since it is exactly the higher formant regions that are

relevant for differentiating between speakers.

4.3 Aliasing

The third experiment analyses the influence of alias-

ing in cepstral domain on the mel-cepstral based objective

measure caused by sampling of the continuous mel spec-

trum due to a finite number of analysis channels.

For that purpose we compared objective measures based

on aperiodic and periodic mel cepstral vectors. Ideally

AUTOMATIKA 52(2011) 2, 132–146 143



Perceptual Significance of Cepstral Distortion Measures in Digital Speech Processing A. Vasilijević, D. Petrinović

the aperiodic mel cepstral vector is obtained by using mel

filter bank with infinite number of channels and thus the

mel-spectrum becomes a continuous function of the filter

central band frequency (12). Periodic mel cepstral vec-

tor (regular MFCC) is obtained by using a finite number

of channels, or equivalently by periodic extension of the

aperiodic sequence with the period of 2K+1 (11). In our

experiment the aperiodic mel cepstral vector was not actu-

ally infinite, but approximated using a mel filter bank with

8-times overlap of neighbouring channels (figure 3). Thus

the resulting vector is 8 times longer then the periodic mel

cepstral vector.

From figure 12 it is visible that correlation coefficient

is quite close to 1 regardless of the filter parameters val-

ues. That suggests that for truncated mel-cesptral distances

the effect of aliasing is relatively insignificant. The results

also demonstrate that aliasing is reduced with increasing

the number of analysis channels.

For K = 46 the truncated cepstral distance derived from

the periodic cepstrum is almost identical to the one derived

from the aperiodic one. Such behaviour is in accordance

with intuition, since with rapidly decaying cepstrum and

with the long period of periodic extension (2K+1), the cep-

strum samples around the origin that are used in the trun-

cated vector are hardly affected by aliasing. Interestingly,

although correlation coefficient is very close to 1, even for

K = 12 or K = 24, there are always certain samples with

significantly different values of objective measures based

on periodic or aperiodic mel-cepstral vector. Such samples

are the most interesting for detailed aliasing analysis. It

was found that the sample with significant aliasing influ-

ence on objective measures for one set of filter parameters

does not exhibit the same influence for even slightly mod-

ified set of parameters. We have analysed the influence

of the filter bandwidth and filter overlap coefficient on the

aliasing.

In our first experiment the number of filter channels was

fixed to 24. Two filters overlap coefficients were used:

1 (periodic cepstrum) and 8 (aperiodic cepstrum). Band-

width of 220 mels ensures exact coverage of the whole

spectrum using 24 filters. In order to check the influence of

channel bandwidth on aliasing, the bandwidth was varied

slightly, in the range from 210 to 230 mels. Of course, with

the narrower bandwidth (210 mel), the last channel is po-

sitioned cca. 5% below the nominal centre mel frequency,

while for the wider case (230 mel) it goes 5% beyond the

Nyquist frequency. Described procedure contracts or ex-

pands the frequency response of the analysis filter bank,

thus slightly realigning the filters’ centre frequencies rela-

tive to the formant structure of the vowel. As it is shown

in figure 13, even such small change affects both objective

measures SDc12M1 and SDc12M8.The distance from diag-

onal correlation line determines the aliasing impact. The

Fig. 13. SD measures for different mel filter bandwidths

difference between the two measures can be attributed to

the aliasing, while variations of individual measure to the

bandwidth change can be attributed to the modified sam-

pling grid of the signal spectrum.

In our second experiment we have analysed the relation

between objective measures calculated for different over-

lap factors of the neighbouring analysis channels. Mel fil-

ter bandwidth was fixed to 220 mels while number of filter

channels was varied, according to chosen overlap factor, to

keep the spectrum fully covered with the span of the anal-

ysis bank. We have chosen 17 vowel pairs with significant

aliasing impact. Correlation between aperiodic cepstral

vector (overlap coefficient 8) and periodic vector (over-

lap coefficient from 2/3 to 4) is calculated using (20). As

we can see (table III), the influence of aliasing decreases

rapidly as filter overlap coefficient increases. With overlap

factor of two, the difference between aperiodic and peri-

odic distance measures become almost negligible, even for

critical vowel pairs.

Table 3. Overlap - Correlation

Overlap

cofficient
8 4 2 1 2/3

Corelation

coefficient
1 0,9997 0,9991 0,7238 0,6098

5 CONCLUSIONS

Perceptual significance of the mel cepstral measures

was evaluated by comparing spectral distance of the LPC

models with several objective distance measures derived

from the mel cepstral coefficients. The measure used was

SD RMS distortion measure. Feature vectors were derived
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from either periodic or aperiodic mel-cepstrum either as

full length vectors or truncated to the first 12 coefficients.

Vectors were calculated for different values of the mel filter

bank parameters, i.e. number of channels and bandwidth

/ overlap factor. The first experiment examined compati-

bility of the MFCC based distance measures with human

perception for different values of analysis parameters. By

varying mel-filter bank parameters we found that bank with

24 channels, with bandwidth of 220 mels (i.e. with overlap

factor equal or higher than one) gives MFCC feature vec-

tors which are very good perceptually compliant represen-

tation of stationary vowels. For this kind of analysis, per-

ceptual difference between vowels can be recognised if the

full-length mel cepstral SD RMS distance is higher than

0.4 - 0.5 dB. There are certain exceptions to this compli-

ance which were analysed in detail. Modified vowels with

sharp and narrow 3rd or 4th formant are easily perceptually

distinguishable from the original vowels, but mel cepstral

distance does not capture this difference. Such vowels can

be deemed unnatural and were discarded from the analysis.

However, small difference between vowels’ first formants

and/or significant spectral differences of the higher fre-

quencies regions were also clearly audible in subjective lis-

tening test, but were poorly measured by the MFCC based

measures. In the first case, the reason may be very high

sensitive of the human auditory system for low frequency

modifications, around the frequency of the first formant.

In the second case, mel-cepstral objective measure fails

to measure rather significant spectral differences in higher

frequencies regions due to a fact that mel filterbank chan-

nels are sparse and wide in that frequencies range when

mapped to the linear frequency domain.

The second experiment examined the relation between

full length and truncated MFCC measures and their com-

pliance to the subjective measurements. The experiment

showed that measure based on full-length vector always

gives better compliance. By analysing cases in which trun-

cated feature vector fails to measure difference between

vowels we found that truncated vector models the first two

formants adequately, but not the 3rd and the 4th formant.

That suggests that truncated MFCC vector would be a suf-

ficiently good choice for speech recognition applications

but its usage may be arguable for speaker recognition ap-

plications.

The third experiment analysed the impact of aliasing in

cepstral domain on the truncated cepstral based distance

measures. The results showed high correlation of SD dis-

tances calculated from aperiodic and periodic mel cep-

strum, leading to conclusion that the impact of aliasing is

generally minor especially if the number of analysis chan-

nels is high (e.g. K=46). There are rare exceptions when

aliasing was indeed observed and which were used to ex-

amine the relation between mel filter bank parameters and

aliasing in detail. It is found that changes in the filter over-

lap factor (as long it is one or higher) do not affect level of

aliasing significantly. However, variation of the filter band-

width directly affects the level of aliasing. Aliasing def-

initely introduces ambiguity into differentiation of speech

sounds, but there is still a disputable question whether sim-

ilar ambiguity also exists for the human perception as well.

If this is really the case, then aliasing is perfectly accept-

able, as long as it closely mimics the process related to hu-

man perception of speech sounds. Detailed investigation

of this problem is the topic of the ongoing research.
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[12] N. Brummer, L. Burget, J. Cernocky, O. Glembek, F. Grezl,

M. Karafiat, D. van Leeuwen, P. Matejka, P. Schwarz, and

A. Strasheim, “Fusion of heterogeneous speaker recogni-

tion systems in the stbu submission for the nist speaker

recognition evaluation 2006,” in IEEE Trans., Audio,

Speech and Language Processing, 2007.

[13] D. Chazan, R. Hoory, G. Cohen, and M. Zibulski, “Speech

reconstruction from mel frequency cepstral coefficients and

pitch frequencyl,” in Proceeding ICASSP, 2000.

[14] B. Milner and X. Shao, “Speech reconstruction from mel-

frequency cepstral coefficients using a source-filter model,”

in In ICSLP-2002, pp. 2421–2424, 2002.

[15] L. Rabiner and R. Schafer, Digital processing of speech sig-

nals. Englewood Cliffs, New Jersey: Prentice-Hall Inc.,

1978.

[16] F. Itakura, “Line spectrum representation of linear predic-

tive coefficients of speech signals,” in J. Acoust. Soc. Amer.,

vol. 57, p. S35, 1975.

[17] J. C. Jr, “Speaker recognition: a tutorial,” in Proceeding of

the IEEE, vol. 85, pp. 1437–1462, 1997.

[18] T. Cover and P. Hart, “Nearest neighbor pattern classifica-

tion,” in IEEE Trans. Information, 1967.

[19] G. Fant, “Vocal tract wall effects, losses, and resonance

bandwidths,” in STL-QPSR, no. 2–3, pp. 28–58, 1975.

[20] G. Peterson and H. Barney, “Control methods used in a

study of the vowels,” in J.Acoust.Soc.Am., vol. 24, pp. 175–

184, 1952.

[21] W. Yang, Enhanced modified bark spectral distorsion (EM-

BSD): an objective speech quality measure based on au-

dible distortion and cognition model. PhD thesis, Temple

University, 1999.
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