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ABSTRACT

In this paper, we present a novel algorithm for wavelet domain im-

age denoising using the soft thresholding function. The thresholds

are designed to be locally optimal with respect to the structural sim-

ilarity (SSIM) index. The SSIM Index is first expressed in terms

of wavelet transform coefficients of orthogonal wavelet transforms.

The wavelet domain representation of the SSIM Index, along with

the assumption of a Gaussian prior for the wavelet coefficients is

used to formulate the soft thresholding optimization problem. A lo-

cally optimal solution is found using a quasi-Newton approach. This

solution is applied to denoise images in the wavelet domain. The vi-

sual quality of the images denoised using the proposed algorithm is

shown to be higher compared to the MSE-optimal soft thresholding

denoising solution, as measured by the SSIM Index.

Index Terms— Image denoising.

1. INTRODUCTION

Image denoising is an important image processing problem. The lit-

erature is rich with several excellent denoising solutions such as the

sparse 3-D collaborative filtering [1], presence of signal of interest

based algorithm [2], Gaussian scale mixture (GSM) based minimum

mean squared error (MSE) solution [3], the non-local (NL) means

method [4] to name a few. A majority of denoising solutions use dis-

tortion measures that are not perceptually motivated, and more often

than not use the MSE. It has been shown however, that the MSE is

not the best metric either for quality assessment or for optimizing im-

age processing algorithms [5]. The MSE is popular because it lends

itself well to analysis, and due to a lack of competitive image qual-

ity assessment (IQA) algorithms. Recent advances in full-reference

IQA have resulted in a number of powerful new algorithms such as

the SSIM Index [6].

Based on the performance of the SSIM Index as a powerful IQA

algorithm, using it as the objective function in optimizing image pro-

cessing algorithms appears very promising. This optimization is not

straightforward, however, given the form of the SSIM Index; algo-

rithms that explicitly optimize for it are only recently being devel-

oped [7, 8]. In this paper, we propose a soft thresholding algorithm

based on the SSIM Index and apply it to image denoising. Soft

thresholding is considered not only due to its strength as a denoising

solution [9] but also its relatively simple mathematical form.

We begin with a brief overview the space domain SSIM In-

dex. The SSIM Index is then expressed in terms of wavelet coef-

ficients (of orthogonal wavelet transforms), and the soft threshold-

ing optimization problem is formulated using the wavelet domain

definition. The optimization problem is non-linear and non-convex,

thereby making it a non-trivial one. We present a locally optimal

solution to the problem and apply the same to denoise images in

the wavelet domain. The denoising results demonstrate that the pro-

posed solution gives a higher percecptual quality to the denoised im-

ages when compared to the traditional MSE-optimal solution.

2. THE SSIM INDEX

The most general form of the metric that is used to measure the struc-

tural similarity between two signal vectors x and y inRn is

SSIM(x,y) = [l(x,y)]α[c(x,y)]β [s(x,y)]γ . (1)

The term l(x,y) =
2µxµy+C1

µ2
x+µ2

y+C1
compares the mean of the signals,

c(x,y) =
2σxσy+C2

σ2
x+σ2

y+C2
compares the variance of the signals, and

s(x,y) =
σxy+C3

σxσy+C3
measures the correlation of the signals. The

quantities µx, µy are the sample means of x and y respectively,

σ2
x, σ2

y are the sample variances of x and y respectively, and σxy

is the sample cross-covariance between x and y. The constants

C1, C2, C3 are used to stabilize the metric for the case where the

means and variances become very small. The parametersα > 0, β >
0, and γ > 0, are used to adjust the relative importance of the three
components. We use the following simplified form of the SSIM In-

dex in our work (with α = β = γ = 1, and C3 = C2/2):

SSIM(x,y) =

„

2µxµy + C1

µ2
x + µ2

y + C1

« „

2σxy + C2

σ2
x + σ2

y + C2

«

. (2)

In image quality assessment, pixel values of local image patches

from the reference and distorted image constitute x and y respec-

tively. The term l(x,y) compares the luminance, c(x,y) compares
the contrast, and s(x,y) compares the structure of the local image
patches. The average of the SSIM values across the image (also

called mean SSIM or MSSIM) gives the final quality measure. The

key idea behind the SSIM Index is to recognize that natural images

are highly structured, and that the measure of structural correlation

(between the reference and the distorted image) is very important in

deciding the overall visual quality. Further, the SSIM Index mea-

sures quality locally and is able to capture local dissimilarities bet-

ter, unlike global quality measures such as MSE (and hence PSNR).

Though (2) has a form that is more complicated thanMSE, it remains

analytically tractable.

3. EXPRESSING SSIM INDEX IN WAVELET DOMAIN

To express the space domain SSIM Index in terms of wavelet co-

efficients, the space domain means, variances, and cross-covariance

terms must be expressed in terms of the wavelet coefficients. Of the

several classes of wavelet transforms [10], only orthogonal wavelets

are energy preserving. This property allows for the space domain
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variance and covariance terms to be expressed in terms of the wavelet

coefficients in a straightforward manner. The analysis in this paper

considers only orthogonal wavelet basis and holds good for any or-

thogonal wavelet basis.

3.1. Mean Calculation

The calculation of the mean from the wavelet coefficients depends on

the image size N × N and the number of levels of decomposition.

The approximation subband (low-low (LL) subband) of the resulting

wavelet subband contains all the information required to calculate

the mean of the space domain signal. A known scaling factor k is
applied to the mean of the LL subband to find the mean. Let x

denote an image patch of size N × N and X denote the L level

wavelet transform of the patch (also of size N × N ).

µx = kLµX,LL, (3)

where k is the scaling factor, and µX,LL is the mean of LL subband

of X. For e.g., if three levels of decomposition were applied to an

8 × 8 patch, µx = (k)3X(0, 0) (since µX,LL = X(0, 0)).

3.2. Variance and Covariance Calculation

The calculation of variance and covariance makes use of the property

that orthogonal wavelet bases obey the Parseval’s theorem. Let x, y,

represent image patches of sizeN ×N andX,Y be their respective

orthogonal transforms. From Parseval’s theorem, it follows that

σ2
x =

1

N2

N−1
X

i=0

N−1
X

j=0

X2
i,j − (kLµX,LL)2, (4)

σxy =
1

N2

N−1
X

i=0

N−1
X

j=0

Xi,jYi,j − (kLµY,LL)(kLµY,LL). (5)

Replacing the space domain mean, variance, and covariance terms

in (2) with the expressions in (3), (4), (5) gives

SSIM(x,y) =

„

2(kLµX,LL)(kLµY,LL) + C1

(kLµX,LL)2 + (kLµY,LL)2 + C1

«

0

B

B

B

B

B

@

2 1

N2

N−1
X

i=0

N−1
X

j=0

Xi,jYi,j − (k2LµY,LLµY,LL) + C2

1

N2

N−1
X

i=0

N−1
X

j=0

X2
i,j + Y 2

i,j − k2L(µ2
X,LL + µ2

Y,LL) + C2

1

C

C

C

C

C

A

.

(6)

4. SSIM-BASED SOFT THRESHOLDING

The soft thresholding operator in (7) with threshold λ is applied to
the wavelet coefficients of the noisy image (denoted by y). The
thresholded wavelet coefficients are inverted to get the space domain

denoised image. The approximation subband is not thresholded.

g(y) = sgn(y)(|y| − λ)+. (7)

The wavelet domain representation of the SSIM Index in (6)

allows for the formulation of the SSIM-optimal soft thresholding

problem. In this paper, it is assumed that one threshold per sub-

band is used. The optimization problem comprises the design of the

thresholds so that the SSIM Index between the reference and the soft

thresholded output is maximized.

4.1. Problem Formulation

Let x be the reference image patch of size N × N , n be zero mean
Gaussian noise, and y = x + n be the noisy observation of x. Let

X,Y represent an L level orthogonal wavelet transform of x,y
respectively (all of size N × N ). An L level orthogonal trans-

form consists of 3L subbands, and hence 3L thresholds. Let Λ =
[λ1, λ2, . . . , λ3L] denote the vector of thresholds applied to each of

the subbands. Let X̂ (a function of Y, Λ) be the soft thresholded
output, and let x̂ be the space domain version of X̂.

It is assumed that the noise variance is known at the receiver.

Since only the observation y is known, a direct evaluation of the

SSIM Index between x and x̂ is not possible. The following obser-

vations combined with the assumption that wavelet coefficients are

Gaussian distributed are used to evaluate the SSIM Index between

the reference and soft thresholded image patches.

Since the noise is zero mean, the mean of the reference and the

thresholded estimate are identical (since the approximation subband

is not thresholded). This makes the mean term in the SSIM Index

equal to identity.

Since the noise is additive, the source variance can be estimated

to be the difference between the variance of the observation σ2
y and

the noise variance σ2
n as

σ2
x ≈ σ2

y − σ2
n

=
1

N2

N−1
X

i=0

N−1
X

j=0

Y 2
i,j − (kLµY,LL)2 − σ2

n.
(8)

The expression for the SSIM Index is rewritten as

SSIM(x, x̂) =
0

B

B

B

B

B

@

2 1

N2

N−1
X

i=0

N−1
X

j=0

Xi,jX̂i,j − (kLµY,LL)2 + C2

1

N2

N−1
X

i=0

N−1
X

j=0

Y 2
i,j + X̂2

i,j − 2(kLµY,LL)2 − σ2
n + C2

1

C

C

C

C

C

A

.
(9)

To evaluate the above expression, the summation is split across the

approximation subband and the rest of the subbands as

SSIM(x, x̂) =
N(X, X̂)

D(Y, X̂)
, (10)

whereN(X, X̂) = 2 1

N2 (
P

i,j∈LL Xi,jX̂i,j+
P

i,j /∈LL Xi,jX̂i,j)−
(kLµY,LL)2+C2, D(Y, X̂) = 1

N2

P

i,j Y 2
i,j+

1

N2 (
P

i,j∈LL X̂2
i,j+

P

i,j /∈LL X̂2
i,j)−2(kLµY,LL)2−σ2

n +C2. Thresholding is not ap-

plied to the approximation band, which means X̂LL = YLL. Due to

the additive nature of the noise, the first term in the above summation

can be approximated by

1

N2

X

i,j∈LL

Xi,jX̂i,j ≈ N2
LL

N2
(σ2

Y,LL − σ2
n + µ2

Y,LL), (11)

where N2
LL is the number of wavelet coefficients in the approxima-

tion band, σ2
Y,LL, µY,LL are the variance and mean of the approxi-

mation band of the noisy observation y. SimilarlyD(Y, X̂) can be
simplified as,

1

N2

X

i,j∈LL

X̂2
i,j ≈ N2

LL

N2
(σ2

Y,LL + µ2
Y,LL), (12)
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where the same notation as above is used. Substituting these into the

SSIM expression in (6),

SSIM(x, x̂) =
N1(X, X̂)

D1(Y, X̂)
, (13)

where N1(X, X̂) = 2 1

N2 (N2
LL(σ2

Y,LL − σ2
n + µ2

Y,LL)+
P

i,j /∈LL Xi,jX̂i,j) − (kLµY,LL)2 + C2, D1(Y, X̂) =
1

N2

P

i,j Y 2
i,j + 1

N2 (N2
LL(σ2

Y,LL + µ2
Y,LL) +

P

i,j /∈LL X̂2
i,j) −

2(kLµY,LL)2 − σ2
n + C2. The X̂ values from the remaining sub-

bands are a function of the thresholds Λ. Further, the above ex-
pression cannot be simplified any further based on the information

available to the denoiser. To estimate the remaining terms in the

summation in (13), a Gaussian model for the source statistics of the

wavelet coefficients is assumed. It is also known that these sub-

bands have zero mean. With this assumption, the empirical values

for the correlation and variance in (13) are replaced by their statisti-

cal equivalents.

In the following, expressions for the correlation between the ref-

erence and the thresholded estimate, and the variance of the thresh-

olded estimate are derived under the Gaussian assumption for the

source. From (7), the first and second order statistics of X̂ are

µX̂ = E[X̂] = E[g(Y )] = 0, (14)

σ2

X̂ = f(σY , λ) = E[(X̂ − µX̂)2] = E[(g(Y ))2]

= (σ2
y + λ2)

»

1 − erf
»

λ√
2σy

––

−
r

2

π
σyλ exp

»

−λ2

2σ2
y

–

,
(15)

where erf(x) = 2√
π

R x

t=0
e−t2dt is the error function. The deriva-

tion is omitted for brevity.

To calculate the covariance term, the MSE result from (10) in

[11] is used. Also, since the source and the noise are assumed to

have zero mean, the covariance and correlation terms are identical.

The covariance between the source and the estimate is

σXX̂ = h(σX , σY , λ) = σ2
X + σ2

X̂ − MSE(X, X̂)

= σ2
X

»

1 − erf
»

λ√
2σY

––

.
(16)

Using (11), (12), (15), (16), the optimization problem becomes

Λ∗ = argmaxΛ∈R3L

+
SSIM(x, x̂)

= argmaxΛ∈R3L

+

Ng(x, x̂)

Dg(x, x̂)
,

(17)

where Ng(X, X̂) = 2 1

N2 (N2
LL(σ2

Y,LL − σ2
n + µ2

Y,LL)+
3L

X

i=1

Nih(σXi
, σYi

, λi)) − (kLµY,LL)2 + C2, Dg(Y, X̂) =

1

N2

P

i,j Y 2
i,j + 1

N2 (N2
LL(σ2

Y,LL +µ2
Y,LL)+

3L
X

i=1

Nif(σYi
, λi))−

2(kLµY,LL)2 + C2. The functions h(), f() are from (16), (15)

respectively, Ni is the number of wavelet coefficients in subband

i. The source subband variance σ2
Xi
is estimated using the relation

σ2
Xi

≈ σ2
Yi

− σ2
n.

4.2. Solution

The objective function is nonlinear in the design parameters Λ, and
returns a scalar value for the vector input. The only constraint on

the solution is that Λ be non-negative. Of the several solutions avail-
able to solve such nonlinear optimization problems [12], the quasi-

Newton method provides a good tradeoff between complexity and

performance. Specifically, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm [12] is used to find the local optimum. An im-

plementation of this algorithm from Matlab’s optimization toolbox

(called fminunc) is used in the solution. There is currently no

guarantee, however, whether the solution found is global.

5. RESULTS

The computed (locally optimal) solution is now applied to denoise

images that have been distorted with additive white Gaussian noise.

The steps involved in the implementation of the denoising algorithm

are outlined below. It is assumed that the noise variance is known at

the receiver.

• Divide noisy image into non-overlapping blocks of size 32×32
• Apply L level orthogonal wavelet transform to each block

• For each wavelet transformed block, compute the statistics of
the subbands using the simplifications in Section 4.1, (15),

(16)

• Solve the optimization problem in (17) using the BFGS algo-
rithm to find a locally optimal Λ∗. The algorithm is initial-

ized using the MSE-optimal soft thresholding solution from

Chang et al. [11]

• Soft threshold the noisy wavelet coefficients using Λ∗

• Apply inverse wavelet transform on a block by block basis,
for all the blocks in the image

The performance of this locally SSIM-optimal algorithm is com-

pared to the MSE-optimal solution by Chang et al. [11]. The Chang

et al., soft thresholding solution has been shown to be a very pow-

erful denoising method. Their solution has been shown to be nearly

MSE-optimal for several popularly used models for wavelet coef-

ficients including Gaussian, Laplacian, and Generalized Gaussian

sources. Further, their solution is space varying and adapts based on

the local subband statistics.

The denoising results are presented in Fig. 1. A comparison of

Figs. 1(c) and 1(d) reveals the differences between the MSE-optimal

and the proposed SSIM-based algorithm. First, the MSE and SSIM

values of the images denoised using the algorithms in question are

consistent – MSE-optimal solution has lower MSE and SSIM In-

dex, and vice-versa for the SSIM-based solution (even though the

proposed algorithm is locally SSIM-optimal). More importantly,

the perceptual quality of the SSIM-based solution is higher than the

MSE-optimal solution. This claim is made based on the following

observations: better overall contrast, retention of more image detail

especially in the whiskers and hair region, and finally a higher SSIM

value. Similar improvement (subtle but important) was seen in sev-

eral other test images from the ‘Austin and Vicinity’ database [13].

These results are summarized in Table 1.

6. CONCLUSIONS AND FUTUREWORK

In this paper, we presented a novel algorithm for SSIM-based soft

thresholding and applied it to denoise images in the wavelet domain.
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Image σn L Noisy MSE-optimal SSIM-based

MSE SSIM MSE SSIM MSE SSIM

Img0039 40 3 1600 0.4016 512 0.5154 586 0.5350

Img0073 30 3 901 0.5545 386 0.6293 408 0.6551

Mandrill 50 3 2492 0.2766 509 0.4835 577 0.4954

Img0043 40 3 1593 0.4458 557 0.5733 600 0.5815

Table 1. Denoising results for a set of images from the ‘Austin and Vicinity’ database.

(a) Original (b) Distorted

(c) MSE-optimal (d) SSIM-based

Fig. 1. 1(a) Reference image Mandrill. 1(b) Noisy image with

σn = 50, MSE = 2492.49, SSIM Index = 0.2766. 1(c) Image de-

noised with the MSE-optimal algorithm, MSE = 509.16, SSIM In-

dex = 0.4835. 1(d) Image denoised with the SSIM-based algorithm,

MSE = 577.54, SSIM Index = 0.4954.

The SSIM Index is first expressed in terms of wavelet transform co-

efficients, following by the formulation of the optimization problem.

A locally optimal solution is found using a quasi-Newton approach.

The performance of the proposed denoising solution is shown to be

better than the MSE-optimal soft thresholding solution in terms of

visual quality (as confirmed by higher SSIM Index values).

The proposed solution is a first step towards SSIM-optimal soft

thresholding. There are several improvements that can be made to

the proposed solution. A globally optimal solution, though involved,

should give better denoising results. The Gaussian model for wavelet

statistics can be replaced with more accurate models such as general-

ized Gaussian or Gaussian scale mixture (GSM). On the implemen-

tation side, non-overlapping blocks can be replaced with overlapping

image blocks to reduce blocking artifacts. We are working on incor-

porating all these improvements into the proposed solution.
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