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Perceptual Video Hashing for Content Identification

and Authentication
Fouad Khelifi, Member, IEEE, and Ahmed Bouridane, Senior Member, IEEE

Abstract—Perceptual hashing has been broadly used in the
literature to identify similar contents for video copy detection. It
has also been adopted to detect malicious manipulations for video
authentication. However, targeting both applications with a single
system using the same hash would be highly desirable as this saves
the storage space and reduces the computational complexity.
This paper proposes a perceptual video hashing system for
content identification and authentication. The objective is to
design a hash extraction technique that can withstand signal
processing operations on one hand and detect malicious attacks
on the other hand. The proposed system relies on a new signal
calibration technique for extracting the hash using the discrete
cosine transform (DCT) and the discrete sine transform (DST).
This consists of determining the number of samples, called the
normalizing shift, that is required for shifting a digital signal
so that the shifted version matches a certain pattern according
to DCT/DST coefficients. The rationale for the calibration idea
is that the normalizing shift resists signal processing operations
while it exhibits sensitivity to local tampering (i.e., replacing a
small portion of the signal with a different one). While the same
hash serves both applications, two different similarity measures
have been proposed for video identification and authentication,
respectively. Through intensive experiments with various types
of video distortions and manipulations, the proposed system has
been shown to outperform related state-of-the art video hashing
techniques in terms of identification and authentication with the
advantageous ability to locate tampered regions.

Index Terms—Video hashing, Robustness, Identification, Au-
thentication, Forgery detection.

I. INTRODUCTION

THE field of perceptual image and video hashing (also

referred to as fingerprinting) has witnessed an impressive

growth over the last decade. This is mainly attributed to

the increasing amount of visual data being easily conveyed,

broadcast or browsed via digital devices. Perceptual hashing

has emerged as an effective way to verify the authenticity

of digital data [1][2] and this keeps attracting developers

with interest in monitoring multimedia websites and detecting

copied or pirated videos over the internet [3]. In addition

to security related applications, perceptual hashing also finds

applications in image registration and retrieval [4][5]. This

paper is concerned with perceptual video hashing where the

design requires that two completely different videos provide

uncorrelated hashes while two visually similar videos give

highly correlated hashes. It is meant here by two visually

similar videos that one video is derived from another via

commonly used video processing operations including low
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pass filtering, lossy compression, noise addition, contrast in-

creasing/decreasing, minor geometric alterations and temporal

distortions. It is however worth noting that in the case of video

authentication, which is also considered in this paper, the hash

should be sensitive to forgery and malicious manipulations [6].

In the literature, there has been a growing body of re-

search on robust video hashing. Oostveen et al. have used

the spatiotemporal Haar filters on block means to extract

the hash for video identification [7]. The same authors have

proposed a video fingerprinting technique which extracts the

hash from differential luminance block means in both the

spatial and temporal directions [8]. In [9], an image hashing

technique based on radial projections has been proposed.

It has then been extended to video data where the hash

is extracted from key-frames. Coskun et al. have proposed

two 3-D transform-based video hashing techniques [10]. The

authors have investigated the randomness and robustness of

the proposed techniques through experimental analysis and

have shown that 3-D DCT-based video hashing is more robust

when compared to video hashing based on the 3-D random

bases transform. However, this comes at the expense of lower

security. In [11], a robust video fingerprinting scheme has been

proposed for video identification. The fingerprint is extracted

from each frame by using the centroid of gradient orientations

computed from non-overlapping blocks. An improved version

of the technique using the orientation of luminance centroids

has been proposed in [12]. Key frames have also been used

in [13] to extract robust features for duplicate and similar

video copy detection. Speeded up robust feature points have

been adopted in [14] and [15] for video fingerprinting. In

another related work [16], the Hessian-Affine region detector

and the SIFT descriptor have been used to extract robust

features from the key frames of the video. In [17], the problem

of detecting a query video segment in a database under

different spatio-temporal variations is formulated as a partial

matching problem in a probabilistic model. In [18], a feature

selection algorithm called Symmetric Pairwise Boosting (SPB)

has been proposed for robust fingerprinting. It mainly selects

appropriate filters and quantifiers from a class of candidate

filters and quantifiers in such a way that perceptually similar

pairs of video clips are correctly classified. Xu et al. have

proposed a video copy detection scheme where the selected

low and middle frequency DCT-coefficients of each key-frame

are used as a signature [19]. More recently, Esmaeili et al. have

formed temporally informative representative images from

the video sequence, referred to as TIRIs, in order to extract

a binary fingerprint from the features that can be obtained

in the DCT domain of the overlapping blocks of the TIRI

frames [20]. In [21], an idea for generating weights for a given
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hash based on visual saliency has been proposed for efficient

matching. Li and Monga have used multi-linear subspace

projections with a reduced rank factorization to extract the

fingerprint as a summarized version of the video [22]. In a

more recent paper, the authors have proposed to use structural

graphical models to encode the temporal evolution of the video

content [23]. The real-valued hash is then projected onto a

randomly generated space whose components are drawn i.i.d.
from a normal N(0, 1) distribution. Finally, a 1-bit adaptive

quantizer [24] has been adopted to obtain the final hash in

the binary form. The technique has been shown to outperform

recent hashing systems when the bit budget of the fingerprint

is low. In [25] the authors have presented a solution to the

problem of temporal de-synchronization which occurs when

the positions of deleted and/or inserted frames in a video are

unknown. In [26], sparse coding is adopted to represent non-

overlapping blocks in each frame of the normalized video

where the matching pursuit decomposition method is used

to extract edge and texture features. However, because of

the large features size, the authors applied the SVD in two

stages to reduce the feature space dimensionality and obtain

the fingerprint. In [27], each set of frames, determined by a

central key frame, is clustered into two categories depending

on their temporal relationships with the central key frame.

The grouped surrounding frames are then used to generate a

binary code describing the temporal context of the key frame.

In [28], the authors substituted the orientation gradient in the

Weber Local Descriptor (WLD) by a local textural descriptor,

namely Binarized Statistical Image Features (BSIF) to create a

histogram-based fingerprint of the video. The technique, which

was referred to as Weber Binarized Statistical Image Features

(WBSIF), has been shown to outperform other textural features

such as WLD, the Local Binary Patterns (LBP), and the

Local Phase Quantization (LPQ). More recently, the authors

in [29] presented a framework in which the video is viewed

as a high-order tensor consisting of different features. Then,

a comprehensive feature that results from fusing the video

features is constructed via the Tucker model to form the video

fingerprint.

Since the common approach for digital content authentica-

tion consists of watermarking a signature at one end and an-

alyzing the retrieved signature at the other end, little research

has been devoted to video authentication with perceptual hash-

ing. The aforementioned systems are particulary suitable for

content-based video identification and video copy detection.

In fact, the design of such systems is inspired by the idea

of representing the input video by a short data string which

makes it difficult to detect small object insertions/removals

because such video distortions cause the same effect on the

hash as other tolerated changes do (i.e., compression, noise,

filtering, etc.). This has motivated researchers to develop

hashing-based video authentication systems with the primary

aim to detect and locate malicious attacks. For example,

the video fingerprinting system proposed in [30] is meant

to authenticate MPEG-4 surveillance videos. Su et al. have

proposed in [6] a video authentication scheme sensitive to

malicious visual changes and robust to H.264 video compres-

sion. To generate the authentication code, the authors adopted

a vector quantization method to encode textured blocks and

a scalar quantization method to encode uniform blocks for

each frame. In [31], a combination of robust fingerprinting and

cryptographic hashing has been adopted. The proposed video

authentication system has been shown to withstand transcoding

and transrating operations. However, the evaluation of the

system’s performance on maliciously manipulated videos was

not considered. More recently, Kroputaponchai and Suvon-

vorn [32] proposed an authentication scheme based on a two-

dimensional (2D) version of the Histogram of Gradient (HOG)

by further considering the temporal dimension as an extension

of the conventional HOG. This was, however, tested on a few

videos only.

To the best of our knowledge, there has not been any

established research conducted on perceptual video hashing

to target both the applications of content identification and

authentication with a single system. We acknowledge a re-

lated work on still images using feature points [33] where

the system has been shown to deliver better authentication

results when compared to transform-based hashing techniques

(DWT and DCT). The identification results, however, have

been outperformed by other techniques, including the wavelet-

based hashing technique, as demonstrated in [34] on attacked

images. Furthermore, the system assumes that the tampered

regions provide a mismatch of several extracted feature points.

However, if the tampering process consists of just replacing a

smooth image region with another1, the feature-point detector

may not find any points and therefore such manipulations

cannot be detected. Our objective here is to design a hashing

system that can withstand signal processing operations and

small geometric distortions on one hand, and detect and

locate malicious attacks on the other hand. Here, by malicious

attacks it is meant manipulations that aim to alter the semantic

content of the video via object insertion and/or removal. The

authentication process should however tolerate transcoding

operations such as lossy compression (transrating) and frame

resolution change (transsizing).

This paper develops a robust video hashing system for

content identification and authentication. We propose a new

hash extraction technique based on a signal calibration idea

using the discrete cosine transform (DCT) and the discrete sine

transform (DST). The idea consists of determining the number

of samples, called the normalizing shift, that is required for

shifting a digital signal so that the shifted version matches a

certain pattern according to DCT/DST coefficients. The reason

behind the calibration idea is that the normalizing shift does

not vary significantly under signal processing operations such

as filtering, compression and noise addition while it exhibits

sensitivity to local tampering (i.e., replacing a small portion

of the signal with a different one). The contributions of this

work can be summarized as follows. (i) Unlike the traditional

approach where hashing systems are designed to target a

specific application, our system serves in both video content

identification and authentication by using the same hash. (ii)

A new shift-based signal calibration technique upon which

1The feature point-based technique extracts the 64 most robust features
representing corners and edges.
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the hash extraction stage is based. As will be illustrated, the

proposed hash exhibits robustness against signal processing

attacks on one hand and sensitivity to malicious manipula-

tions on the other hand. These two aspects make the system

suitable for video content identification and authentication. It

is worth noting here that the proposed calibration idea can

also be used in other applications such as image registration

and signal alignment. (iii) A new similarity measure for the

proposed hash-based video content identification. This enables

the system to overcome the issue of synchronization caused by

temporal distortions. (iv) A new segment-based video authenti-

cation measure. This exploits the temporal redundancy of ma-

licious manipulations and enables the system to differentiate

transcoded videos from forged ones. (v) The proposed video

hashing system has been shown to outperform recent state-

of-the-art techniques specifically designed for video content

identification. On the other hand, the superiority of the sys-

tem over related work in authenticating videos and detecting

forgeries has been demonstrated.

The rest of the paper is structured as follows. In sec-

tion II, the problem of video identification and authentication

is described. Section III describes the proposed video hash-

ing scheme. Section IV discusses a matching methodology

adopted for identification and authentication. Section V pro-

vides an experimental evaluation of the system in comparison

with recent and related techniques. Section VI summarizes and

concludes the paper.

II. PROBLEM FORMULATION

Let Υi and Υj be two digital videos, respectively. Denote

by Ω the hash function that maps the video Υi to a hash

hi, i.e., hi = Ω(Υi). For content-based video identification,

the following requirements are normally considered in the

literature.

(i) ∀ Υi,Υj ; if Υi ≀Υj then D(hi, hj) ≥ Tid

(ii) ∀ Υi,Υj ; if Υi ≈ Υj then D(hi, hj) < Tid

where ≀ stands for visually different. On one hand, the first

requirement suggests that the distance D between two hashes

corresponding to any two completely different videos Υi and

Υj should be larger than a certain identification threshold Tid.

This basically ensures the capability of differentiating between

two videos that are distinct visually. On the other hand, (ii)

ensures that two visually similar videos produce close hashes

hi and hj where the identification distance is less than Tid.

For video authentication, let us denote by Υ̃i a transcoded

version of Υi whereas Ῡi represents its forged version. It is

meant here by video forgery the process of locally inserting

or removing an object from frames as well as the substitu-

tion of a number of frames in the video by different ones.

Hashing-based authentication systems consider the following

requirements.

(iii) ∀ Υi ; D(hi, h̄i) ≥ Tauth

(iv) ∀ Υi ; D(hi, h̃i) < Tauth

In (iii), the distance between two hashes corresponding to

a video Υi and its forged version Ῡi should be larger than

a certain authentication threshold Tauth. This guarantees the

detection of forgeries and malicious manipulations. As for (iv),

it ensures the robustness of the system against transcoding

operations. It is worth mentioning here that both (ii) and

(iv) are in favor of the robustness property. Practically, most

existing hashing-based video identification schemes meet (i)

and (ii) to some extent whereas hashing-based authentication

schemes meet (iii) and (iv). The main challenge, however, re-

sides in meeting all the requirements simultaneously because,

visually speaking, forged videos look similar to the original

ones and this conflicts with (ii). To overcome this issue, our

work relies on two main and complementary contributions.

The first contribution consists of a new hash function that is

robust against signal processing operations on one hand and

sensitive to malicious attacks on the other hand. In the second

contribution, the identification distance is made different from

the authentication distance to take into account the difference

between the concept of dissimilarity in identification and

that in authentication. The proposed requirements become as

follows.

(i) ∀ Υi,Υj ; if Υi ≀Υj then Did(hi, hj) ≥ Tid

(ii) ∀ Υi,Υj ; if Υi ≈ Υj then Did(hi, hj) < Tid

(iii) ∀ Υi ; Dauth(hi, h̄i) ≥ Tauth

(iv) ∀ Υi ; Dauth(hi, h̃i) < Tauth

where Did and Dauth represent the identification and au-

thentication distances, respectively. Finally, it is worth noting

that learning-based hashing, which has been widely used in

image retrieval and object tracking applications [35][36][37],

differs from the hashing considered here in terms of design

requirements and objectives.

III. PROPOSED VIDEO HASHING SCHEME

The proposed system for generating a video hash is com-

posed of three main stages as illustrated by Fig 1. First,

the input video is pre-processed to reduce the effect of

temporal distortions and color changes. The differences of

luminance block means are then computed to describe the

video information in each direction. Finally, a new shift-based

signal calibration technique is used to obtain the final hash.

Note that two similarity measures are introduced for content

identification and authentication.
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Fig. 1. Proposed Video hashing scheme for content identification and
authentication. (a) Hash generation. (b) Identification. (c) Authentication.
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A. Pre-processing

To eliminate sensitivity to color manipulations, the lumi-

nance component is extracted from the input video. One of

the straightforward pre-processing techniques to reduce the

effect of temporal distortions consists of re-sampling the video

at a small frame rate [10][12][20]. In the proposed system,

the video is re-sampled at 5 frames per second. However,

if the video undergoes significant temporal translations, this

might not be sufficient and, hence, a new similarity measure

is presented later.

B. Feature extraction

In order to extract robust features, the idea of extracting

Differential Luminance Block Means (DLBM) in the spatial

domain is borrowed from [8]. However, our technique differs

from [8] in that DLBM are also extracted in vertical and

temporal directions. The use of these features is justified by

their efficiency in representing textured areas including edges

and contours at low computational cost. Indeed, the derivation

of DLBM can be thought of as a process of calculating the

gradient of a down-scaled version of the original image. It is

worth noting that this paper is concerned with the perceptual

hashing of short clips (clips of a few seconds long) and hence

the hashing of long videos can just be an extension of this work

with a further consideration of optimized similarity search

techniques in high dimensional databases. As this is beyond

the scope of this paper, the reader can be acquainted with more

details by referring to [8][20][38].

First, a three-dimensional (3-D) array is formed by com-

puting the mean of non-overlapping blocks in each frame.

The size of the blocks is set so that each frame is split into

M ×N blocks. Denote by A(i, j, k) the obtained array with

0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, and 0 ≤ k ≤ K − 1 where

K is the number of frames in the pre-processed video. Next,

three (3-D) arrays of the same size are derived from A by

calculating the differences in the horizontal (H), vertical (V)

and temporal (T) directions, respectively as

H(i, j, k) =

{

A(i, j + 1, k)−A(i, j, k) if j < N − 1
A(i, 0, k)−A(i, j, k) if j = N − 1 .

(1)

V (i, j, k) =

{

A(i+ 1, j, k)−A(i, j, k) if i < M − 1
A(0, j, k)−A(i, j, k) if i = M − 1 .

(2)

T (i, j, k) =

{

A(i, j, k + 1)−A(i, j, k) if k < K − 1
A(i, j, 0)−A(i, j, k) if k = K − 1 .

(3)

C. Hash extraction

Once the horizontal, vertical and temporal features are

computed as described in the previous section, a new signal

calibration technique is used to extract the hash. We first

propose a shift invariant signal normalization method upon

which the calibration idea is based.

1) DCT/DST-based Signal Normalization: Denote by x(n)
with n = 0, 1, · · · , L − 1 a signal obtained by traversing

one of the previous 3-D arrays in one direction (as will be

explained in subsection III-C2). Let us first define the family

of transforms which will be used in this work. The DCT of

x(n) is given by

XC(m) =
L−1
∑

n=0

x(n) cos

(

πm(n+ 1
2 )

L

)

; (4)

m,n = 0, 1, · · · , L− 1.

The DST of x(n) is expressed as

XS(m) =

L−1
∑

n=0

x(n) sin

(

π(m+ 1)(n+ 1
2 )

L

)

; (5)

m,n = 0, 1, · · · , L− 1.

We first propose a normalization technique which provides

the same sequence even if the input sequence has undergone

a circular translation. Consider the sequence of samples

x0 = {x(0), x(1), · · · , x(L− 1)} , (6)

and its shifted version by one sample

x1 = {x(1), x(2), · · · , x(L− 1), x(0)} . (7)

It can be shown that [39]

XC
1 (m) = cos

(πm

L

)

XC
0 (m)

+ sin
(πm

L

)

XS
0 (m− 1)

+x(0) cos
(πm

2L

)

((−1)m − 1) , (8)

and

XS
1 (m− 1) = − sin

(πm

L

)

XC
0 (m)

+ cos
(πm

L

)

XS
0 (m− 1)

+x(0) sin
(πm

2L

)

(1− (−1)m) . (9)

In this work, only even values of m (m = 2, 4, 6, · · · , 2p) are

considered2. It follows

XC
1 (m) = cos

(πm

L

)

XC
0 (m)

+ sin
(πm

L

)

XS
0 (m− 1) , (10)

and

XS
1 (m− 1) = − sin

(πm

L

)

XC
0 (m)

+ cos
(πm

L

)

XS
0 (m− 1) . (11)

Hence, the DCT and DST coefficients of a shifted sequence

by one sample can be expressed as a function of the DCT

and DST coefficients of the original sequence. Let w = πm
L

.

For i = 0, 1, · · · , L − 1, we obtain the following recursive

equations

XC
i+1(m) = cos (w)XC

i (m) + sin (w)XS
i (m− 1) (12)

and

XS
i+1(m−1) = − sin (w)XC

i (m)+cos (w)XS
i (m−1) (13)

2Note that odd values of m cannot lead to the findings of this work.
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Observe that
(

X
C
0 (m)

)2

+
(

X
S
0 (m− 1)

)2

=
(

X
C
1 (m)

)2

+
(

X
S
1 (m− 1)

)2

· · · =
(

X
C
L−1(m)

)2

+
(

X
S
L−1(m− 1)

)2

. (14)

This describes the shift invariance property of the magnitude
of the Discrete Fourier Transform (DFT). In view of (12) and
(13), it can be shown that the DCT and DST coefficients
of a shifted sequence by i samples can be expressed using
the DCT and DST coefficients of the original sequence (see
Appendix A) as

X
C
i (m) =

√

(XC
0 (m))

2
+ (XS

0 (m− 1))
2

× cos

(

w i− arctan

(

XS
0 (m− 1)

XC
0 (m)

))

, (15)

and

X
S
i (m− 1) =

√

(XC
0 (m))

2
+ (XS

0 (m− 1))
2

× cos

(

w i− arctan

(

−
XC

0 (m)

XS
0 (m− 1)

))

=

√

(XC
0 (m))

2
+ (XS

0 (m− 1))
2

× cos

(

w i− arctan

(

XS
0 (m− 1)

XC
0 (m)

)

+
π

2

)

.

(16)

That is, the DCT and DST coefficients of repetitively shifted

versions of x0 follow a cosine function with the same mag-

nitude. From (15) and (16), one can deduce that the DCT

and DST coefficients of a shifted sequence reappear at a

shifting rate equal to 2L
m

. For m = 2, there is only one period

of the cosine function against the variable i in [0, L − 1]
which means that the pair of coefficients (XC

i (2), XS
i (1))

occurs only once in [0, L − 1]. In the rest of the paper,

m is set to 2. The proposed normalization idea consists of

determining an amount of samples by which the signal can

be shifted to provide the same DCT/DST coefficients. To

elaborate more, the problem is described as follows. There

are L possible sequences shifted from each other by one

sample where each sequence corresponds to a unique pair

of coefficients (XC
i (2), XS

i (1)). Given a pair of coefficients

(XC
i∗(2), X

S
i∗(1)), the problem can simply be thought of as

finding the corresponding sequence which is referred to as the

normalized one. In view of (15), this can be obtained by using

a reference angle α in [0, 2π[ so that the normalizing shift i∗

can be found as
(

w i∗ − arctan

(

XS
0 (m− 1)

XC
0 (m)

))

= α . (17)

With m = 2, it follows

2π

L
i∗ = arctan

(

XS
0 (1)

XC
0 (2)

)

+ α . (18)

Finally,

i∗ =









L arctan
(

XS
0
(1)

XC
0
(2)

)

+ Lα

2π







 mod L . (19)

It is worth noting that arctan
(

XS
0
(1)

XC
0
(2)

)

takes its value in [0, 2π[

depending on the sign of XS
0 (1) and XC

0 (2). This makes

the normalized sequence unique with a single normalizing

shift in [0, L− 1]. Also, observe that the normalizing shift i∗

requires only the calculation of one DCT coefficient XC
0 (2)

and one DST coefficient XS
0 (1). Once the normalizing shift

is obtained, the new sequence is nothing but a shifted version

of the input sequence by i∗

xi∗ = {x(i∗), x(i∗ + 1), · · · , x(L− 1), x(0), · · · , x(i∗ − 1)} .
(20)

Regardless of the input sequence, the normalized sequence

corresponds to the unique pair of coefficients

XC
i∗(2) =

√

(

XC
0 (2)

)2
+
(

XS
0 (1)

)2
cos(α) , (21)

and

XS
i∗(1) =

√

(

XC
0 (2)

)2
+
(

XS
0 (1)

)2
cos(α+

π

2
) . (22)

The algorithm of shift invariant normalization can be summa-

rized as follows

(i) Input original sequence (see (6)).

(ii) Set α in [0, 2π[ .

(iii) Calculate XC
0 (2) and XS

0 (1) using (4) and (5).

(iv) Determine the normalizing shift i∗ using (19).

(v) Output normalized sequence using (20).

Fig. 2 illustrates an example of signal normalization with

α = π
3 . Fig. 2(a) shows an original signal. In Fig. 2(b), the
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Fig. 2. (a) Original. (b) Shifted. (c) Normalized signal from (a) and (b).

original signal has undergone a circular shift distortion; both

of these signals yield the same normalized sequence as shown

in Fig. 2(c).

2) Signal calibration: Given a pre-defined value of α,

signal calibration in this work consists of determining the

normalizing shift for a digital signal. This represents the

number of samples by which the signal can be shifted so

that the shifted version follows a certain pattern by satisfy-

ing (17). Recall from (1), (2) and (3) that three 3-D arrays are

constructed by DLBM in the horizontal, vertical and temporal

directions. Next, each array is used to create a 2-D matrix of

normalizing shifts by calibrating individual signals obtained in

each corresponding direction. That is, the horizonal array is

traversed horizontally, the vertical array is traversed vertically

and the temporal array is traversed temporally (see Fig. 3).

This is motivated by the fact that the information in each

3-D array captures the video content in the direction that

DLBM are computed. The aim of the signal calibration idea

is threefold. First, reducing the size of the feature vector

since one feature only will be extracted from each DLBM

signal. Second, increasing the robustness of the features when

compared to complete DLBM signals as will be illustrated
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Fig. 3. Calibration of 3-D arrays. (a) Horizontal calibration. (b) Vertical calibration. (c) Temporal calibration.

later in experiments. Third, creating a hash that is sensitive

to video tampering. The obtained 2-D arrays are denoted by

H2D, V2D, and T2D, respectively as

H2D(i, k) =













L arctan

(

DST{Hi,k}(1)

DCT{Hi,k}(2)

)

+Nα

2π













mod N .

(23)

V2D(j, k) =













L arctan

(

DST{Vj,k}(1)

DCT{Vj,k}(2)

)

+Mα

2π













mod M .

(24)

T2D(i, j) =











L arctan
(

DST{Ti,j}
(1)

DCT{Ti,j}
(2)

)

+Kα

2π










mod K .

(25)

where Hi,k = {H(i, 0, k), · · · , H(i,N − 1, k)},

Vj,k = {V (0, j, k), · · · , V (M − 1, j, k)}, and

Ti,j = {T (i, j, 0), · · · , T (i, j,K − 1)} while DCT{ϑ}(·) and

DST{ϑ}(·) represent the DCT and DST of ϑ, respectively.

The concatenation of these arrays constitute the final hash.

Let x(n) be one of the aforementioned DLBM signals

(supposedly of length L) in {Hi,k, Vj,k, Ti,j} and x
′

(n) be

its distorted version. That is

x
′

(n) = x(n) + d(n) . (26)

In view of (19), the linearity of the DCT suggests that the

normalizing shift for x′(n) becomes

i
′∗ =









L arctan
(

DSTx(1)+DSTd(1)
DCTx(2)+DCTd(2)

)

+ Lα

2π







 mod L .

(27)

Note that a significant change in DSTd(1) and/or DCTd(2)
plays a key role in the change of the normalizing shift. To

illustrate the rationale for using the normalizing shift as a

feature being robust against transcoding operations on one

hand and sensitive to tampering on the other hand, Fig. 4

shows a signal and its altered versions with the respective

normalizing shift denoted by i∗ and displayed accordingly

for each sequence with α = π
3 . As can be seen, the nor-

malizing shift does not get affected by the addition of the

white Gaussian noise considered in the example whereas the

replacement of a portion of the signal with a different pattern

leads to a clear change in the normalizing shift although the

Signal-to-Noise Ratio (SNR) is larger. This can be justified
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Fig. 4. Normalizing shift. (a) noise addition with SNR=20.77 dB. (b)
Tampering with the signal by replacing a small portion with another pattern
SNR=22.20 dB.

by the following analysis. According to (27), if the distortion

is rich in frequency (i.e., a noise-like pattern), its energy

is normally spread over the full range of frequencies. On

the other hand, if the distortion is of low frequency content

(e.g., due to content replacement), its energy is mostly packed

in a few low-frequency DCT/DST coefficients. As a result,

the low-frequency DCT/DST coefficients of the noise, in

particular DSTd(1) and DCTd(2), tend to be smaller in

magnitude when compared to those of a distortion caused

by malicious manipulations. For the sake of demonstration,

DLBM signals have also been analyzed on a test video that

has undergone tampering as well as transcoding operations

as depicted in Fig. 5. Fig. 6 shows the magnitude of the

DCT/DST coefficients of a DLBM signal (corresponding to

Vj,k with (j, k) = (1, 1)) as well as those of distortions due

to tampering and transcoding. As can be seen, both the DLBM

signal and the distortion due to tampering are of low frequency

content whereas transcoding distortions are rich in frequency

since the corresponding DCT and DST coefficients are spread

over the full range of frequencies. This makes DSTd(1) and

DCTd(2) in (27) more significant in the case of content

tampering when compared to the transcoding operations (i.e.,

compression and resizing). Consequently, the normalizing shift

undergoes a smaller change under transcoding than that caused

by malicious manipulation.

It is worth mentioning that for m > 2, the normalizing

shift becomes less robust since it would depend on a higher

frequency content of DLBM. Furthermore, for each DLBM

signal, there would be at least two normalizing shifts cor-

responding to the same reference angle α in the full signal

length. Hence, to ensure that a unique normalizing shift can

be obtained, only a fraction of the signal length should be

used. As a result, the discriminative power of the hash would

be significantly reduced.
Finally, in view of (23), (24), and (25), note that the
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(a) (b) (c) (d)

Fig. 5. Original video and its distorted versions. (a) Original video with 480×854, 30 fps. (b) Forged. (c) Compressed by MPEG-4 at 128 kbps. (d) Resized
to 240× 320, 30 fps.
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Fig. 6. DCT/DST coefficients of the original DLBM signal and transcoding
distortions. (a) Original signal. (b) Forgery distortion. (c) Distortion due to
compression. (d) Distortion due to resizing.

properties of the hash do not depend on the value of the
reference angle α as long as it is used as a constant parameter
in the system. The proposed video hashing process is a low
computational complexity algorithm and can be summarized
as follows.

Input: Video.
Output: Hash.
Parameters:Reference angle α, the number of vertical splits M ,

and the number of horizontal splits N .
1. Re-sample the video at 5 fps. K is the number of frames

in the re-sampled video.
2. Extract 3D DLBM arrays in three directions using (1), (2),

and (3), respectively.
3. Compute the normalizing shift for each signal in all 3D

directional DLBM arrays using (23), (24), and (25). This
gives three 2D normalizing shift arrays.

4. Concatenate the normalizing shift arrays to form the final
hash. This results in a hash length of M N+M K+N K.

The computational complexity can be analyzed in three steps.

For a color video with η pixels, the color to grey-level

conversion requires 3 multiplications and 2 additions per pixel

whereas the re-sampling involves a few multiplications and

additions per pixel depending on the length of the low pass

filter used. As a result, the pre-processing stage requires O(η).
The computation of DLBM in each of the three directions can

be performed in O(η + η
MNK

). Finally, the hash extraction

stage has a complexity of O(MNK).

IV. HASH MATCHING

At the matching stage, the hash is assumed to be in the

form of three 2-D arrays prior to concatenation; i.e., h =
{H2D, V2D, T2D}. This can be easily obtained by just revers-

ing the process of concatenation. Recall that the values in each

matrix are bounded since they represent the normalizing shifts.

That is, 0 ≤ H2D(i, j) ≤ N − 1, 0 ≤ V2D(i, j) ≤ M − 1, and

0 ≤ T2D(i, j) ≤ K − 1. Two similarity measures are defined:

identification measure and authentication measure.

A. Identification Measure

For content identification purposes, the similarity measure
must be as small as possible if two videos Υ1 and Υ2 are
derived from each other. Denote by {H1

2D, V 1
2D, T 1

2D} and
{H2

2D, V 2
2D, T 2

2D} their corresponding hashes, respectively.
Because the normalizing shifts are determined in a forward
direction only, one should consider the case where a change
in the video slips the normalizing shift to the beginning of
the sequence as it exceeds the boundary. Hence, we define a
distance D as

D =

M−1
∑

i=0

K−1
∑

j=0

min{|H1
2D(i, j)−H2

2D(i, j)|,

|H1
2D(i, j)−H2

2D(i, j)−N |, |H1
2D(i, j)−H2

2D(i, j) +N |}

+

N−1
∑

i=0

K−1
∑

j=0

min{|V 1
2D(i, j)− V 2

2D(i, j)|,

|V 1
2D(i, j)− V 2

2D(i, j)−M |, |V 1
2D(i, j)− V 2

2D(i, j) +M |}

+

M−1
∑

i=0

N−1
∑

j=0

min{|T 1
2D(i, j)− T 2

2D(i, j)|,

|T 1
2D(i, j)− T 2

2D(i, j)−K|, |T 1
2D(i, j)− T 2

2D(i, j) +K|}(28)

It is expected that the use of blocks to compute DLBM

makes the normalizing shifts robust to small rotations and

spatial translations. However, in view of (28), the hash remains

sensitive to temporal translations. Indeed, a shift of Υ1 in

the temporal direction will produce a video Υ2 with a hash

corresponding to horizontally translated versions of H1
2D and

V 1
2D in addition to an increase/decrease of the values in T 1

2D by

the same amount of translation. To overcome this limitation,

a full search among the possible shifted versions of H2
2D and

V 2
2D with the corresponding increase/decrease of T 2

2D would

accurately determine the shift that minimizes D. However, this

is computationally expensive as it requires K computations of

D for each video comparison. To address this issue, we use

only two rows from each of the horizontal and vertical arrays

(H1
2D, V 1

2D, H2
2D, V 2

2D) to estimate a shift q∗ ∈ [0,K − 1]
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that minimizes the difference as follows.

q∗ = argmin
q

{dH1

2D
,H2

2D
(q) + dV 1

2D
,V 2

2D
(q)} , (29)

where

dH1

2D
,H2

2D
(q) =

K−1
∑

j=0

∣

∣H1
2D(⌊M/2⌋ , j)−H2

2D(⌊M/2⌋ , (j − q) mod K)
∣

∣

+

K−1
∑

j=0

∣

∣H1
2D(⌊M/2⌋+ 1, j)−H2

2D(⌊M/2⌋+ 1, (j − q) mod K)
∣

∣ ,

(30)

and

dV 1

2D
,V 2

2D
(q) =

K−1
∑

j=0

∣

∣V 1
2D(⌊N/2⌋ , j)− V 2

2D(⌊N/2⌋ , (j − q) mod K)
∣

∣

+

K−1
∑

j=0

∣

∣V 1
2D(⌊N/2⌋+ 1, j)− V 2

2D(⌊N/2⌋+ 1, (j − q) mod K)
∣

∣ .

(31)

Then, the proposed identification distance becomes

Did=

M−1
∑

i=0

K−1
∑

j=0

min{|H1
2D(i, j)−H2

2D(i, j − q∗)|,

|H1
2D(i, j)−H2

2D(i, j − q∗)−N |,

|H1
2D(i, j)−H2

2D(i, j − q∗) +N |}

+

N−1
∑

i=0

K−1
∑

j=0

min{|V 1
2D(i, j)− V 2

2D(i, j − q∗)|,

|V 1
2D(i, j)− V 2

2D(i, j − q∗)−M |,

|V 1
2D(i, j)− V 2

2D(i, j − q∗) +M |}

+

M−1
∑

i=0

N−1
∑

j=0

min{|T 1
2D(i, j)− T 2

2D(i, j)− q∗ +K|,

|T 1
2D(i, j)− T 2

2D(i, j)− q∗|,

|T 1
2D(i, j)− T 2

2D(i, j)− q∗ + 2K|} . (32)

In practice, two videos are said to be similar if Did does

not exceed a certain threshold Tid. Otherwise, the videos are

considered dissimilar. Tid can be found empirically by using

the Neyman-Pearson criterion such that the false negative

probability is minimized, subject to a fixed false positive

probability [40].

B. Authentication Measure

In content-based video authentication, the similarity mea-
sure should produce a sufficiently large distance when the
video undergoes forgery operations such as object insertion
or removal. On the other hand, the distance is expected to be
insignificant under common video transcoding operations in-
cluding transsizing and transrating. Let us define two matrices
Dh and Dv characterizing the spatial difference between two
videos Υ1 and Υ2 as

Dh(i, k)=|H1
2D(i, k)−H

2
2D(i, k)| ;

i ∈ {0, · · · ,M − 1}, k ∈ {0, · · · ,K − 1} . (33)

and

Dv(j, k)=|V 1
2D(j, k)− V

2
2D(j, k)| ;

j ∈ {0, · · · , N − 1}, k ∈ {0, · · · ,K − 1} . (34)

If a video is maliciously manipulated, the corresponding
horizontal and vertical DLBM get affected in tampered regions
causing a change in horizontal and vertical normalizing shifts

(i.e., hash values) accordingly. Thus, both Dh and Dv are
likely to be different from zero at the location of tampered
regions. Let Φ be an array of size (M ×N ×K) and defined
as

Φ(i, j, k) =

{

1 if Dh(i, k) > 0
∧

Dv(j, k) > 0
0 Otherwise .

(35)

This can detect changes in individual frames k = 0, · · · ,K−1
but false detections could also occur under transcoding op-
erations. To overcome this issue, we propose a segment-
based forgery detection measure exploiting the redundancy of
distortions caused by object insertion and/or removal across
the temporal dimension. Note that it is unlikely that the
transcoding process creates such a uniform distortion, i.e., a
distortion with similar effect and location through successive
frames. Fig. 7 shows samples of the normalizing shifts ex-
tracted in the horizontal and vertical directions at the same
spatial location over time from a video at a resolution of
480 × 640 and its MPEG-4 compressed version at 256 kbps.
Observe that the variations of the normalizing shift over time
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Fig. 7. Temporal variation of the spatial hash values under MPEG-4
compression. (a) Horizontal normalizing shifts. (b) Vertical normalizing shifts.

are normally discontinued. On the other hand, the proposed
idea relies on the fact that, in digital forgery, tampered
regions should be visually observable in a video for a certain
period of time to change or influence the viewers’ perception.
Changing the viewer’s perception is actually the key objective
of the malicious attacker and, hence, inserted or removed
objects are not expected to move extremely fast unnoticeably.
Therefore, it is reasonable to assume, in forged videos, that the
malicious content is naturally observable as any other content
but its detection requires some kind of decision making in an
automated way. Each hash is therefore divided into Q short
segments in which the forgery detection is performed. Denote
by Φ′

q (q = 1, · · · , Q) the proposed segment-based forgery

detection measure corresponding to the qth segment as follows

Φ′

q(i, j) =

{

1 if
∑(q×s)−1

k=(q−1)×s
Φ(i, j, k) = s

0 Otherwise .
(36)

where s is the length of the segment. Eq. (36) serves as a

measure to detect tampered regions in a video. In fact, without

loss of generality, let us assume that the original video size

is (M ′ × N ′ × K ′) where M ′, N ′, and K ′ are multiples of

M , N , and K, respectively 3. Each value in Φ′
q corresponds

to a cube of M ′

M
× N ′

N
× K′ s

K
pixels in the video because of

the down-sampling process and the use of blocks to calculate

H2D and V2D. Obviously, the size of the cube represents the

precision of the system in locating tampered regions4. Finally,

3This is because of the downsampling process described in subsection III-B.
If M ′ and N ′ are not multiples of M and N respectively, the video frames
can be resized accordingly.

4It is worth noting here that the precision in locating tampered regions is
different from the authentication performance.
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the proposed segment-based authentication distance is given

by

Dauth(q) =
M−1
∑

i=0

N−1
∑

j=0

Φ′
q(i, j) . (37)

A threshold Tauth can be used to decide whether a video

segment is authentic, given the hash of the original video. This

can also be determined empirically via the Neyman-Pearson

criterion [40]. Now, because the videos are first resampled at

5 fps, the forged moving content should be detected except if

the distance between the initial and current position, recorded

in a short period of time equal to s/5, is larger than a certain

threshold. If s = 5, the time frame would correspond to one

second. Given the fact that the tampering takes place in a

reasonably large spatial region to attract the viewer’s attention,

such a motion speed could be considered high and unlikely

to occur. For the sake of illustration, Fig. 8 shows a moving

object (in red) in its initial position on left side and its next

position on the right side within a time frame t = s/5. Because

Fig. 8. Minimum distance traversed by an inserted/removed object in s/5
seconds so that tampering could not be detected by the system.

the calculation of DLBM involves two consecutive blocks in

each direction, the tampering can be missed by the system

only if distance between all the tampered blocks in the current

frame (colored in green) and those in the next one (colored in

blue) after t is more than the block size.

V. EXPERIMENTAL RESULTS

The performance of the proposed hashing technique has

been assessed by conducting a number of experiments on a

dataset of 200 various MPEG-2 color video clips with two

different frame rates 25 and 30 fps and seven frame resolutions

as depicted in Table I. Note that the dataset includes 170
Standard Definition (SD) videos and 30 High Definition (HD)

videos. These videos have been collected from academic and

public websites that cover the practically used video types

(i.e., format, resolution, frame rate, etc.). This consists of the

Open video Project [41], ReefVid [42], Youtube, and 30 HD

videos from the Videvo website [43]. Each video clip is 10
seconds long. The shift-invariant normalization algorithm has

been used with α = π
20 . The values of M and N have been

empirically set to 32 for a good trade off between identification

and authentication. With this setting, the hash for a 10 seconds

long video consists of (32+32)× 5× 10+ (32× 32) = 4224
integer values. Note that the horizontal and vertical shifts can

be encoded with only 5 bits each while the temporal shifts can

be encoded with 6 bits.

TABLE I
THE SET OF VIDEOS USED IN EXPERIMENTS.

Number of videos Type Resolution and frame rate

4 SD 288× 360, 25 fps
17 SD 288× 384, 25 fps
12 SD 288× 512, 25 fps
87 SD 480× 640, 25 fps
50 SD 480× 854, 30 fps
19 HD 1080× 1920, 30 fps
9 HD 1080× 1920, 25 fps
2 HD 720× 1280, 25 fps

A. Hash analysis

As discussed earlier, hash values consist of the normal-

izing shifts that are obtained in different directions of the

DLBM features. Ideally, these hash values should be equally

distributed over the full range of possible integers, i.e., cor-

responding to maximum information capacity in the hash, to

ensure the discriminative capability of the system [44]. This

is because the presence of hash values with higher probability

than others would increase the likelihood that two hashes of vi-

sually distinct videos match by chance. In our first experiment,

we have analyzed the distribution of the normalizing shifts

in each of the directions on the aforementioned set videos.

Note that the horizontal, vertical and temporal normalizing

shifts take values in {0, 1, · · · ,M−1}, {0, 1, · · · , N−1} and

{0, 1, · · · ,K − 1}, respectively. Fig. 9 shows the histogram

of actual data in each of the directions, respectively. It can
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Fig. 9. Distribution of the video hash values. (a) Horizontal hash extraction.
(b) Vertical hash extraction. (c) Temporal hash extraction.

be seen that the extracted hashes follow a uniform distribu-

tion. This gives us a good indication of the rich and well

balanced information contained within the extracted hashes for

representing digital videos. Recall from (32) that the proposed

identification distance is composed of three parts where each

captures information in one direction, i.e., horizontal, vertical

and temporal. Although the variables used for the hash and

distances are integers, one can use a theoretical analysis on

continuous data given the large number of features and video

samples in our experiments. If the compared hashes in (32)

correspond to two videos that are completely independent

and visually distinct, the terms |H1
2D(i, j)−H2

2D(i, j − q∗)|,
|H1

2D(i, j)−H2
2D(i, j−q∗)−N |, and |H1

2D(i, j)−H2
2D(i, j−

q∗)+N | follow a triangular distribution in {0, 1, · · · , N −1},

{1, 2, · · · , 2N−1}, and {1, 2, · · · , 2N−1}, respectively. This

is because they represent the absolute value of two independent

and uniformly distributed variables. However, the use of the

min function involving an adjustment with ±N will approxi-

mately produce a normally distributed variable in an interval

reduced to half of the original size, i.e., {0, 1, · · · , N/2}.

Consequently, under the assumption that the normalizing shifts
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are uncorrelated and according to the central limit theorem, the

horizontal part can be viewed as a sum of M×K independent

identically distributed variables and, hence, it follows a normal

distribution with mean M × K × N/4. Likewise, both the

vertical and temporal part follow a normal distribution with

mean N × K × M/4 and M × N × K/4, respectively.

Finally, one can deduce that the identification distance, which

is the sum of these three normal variables, follows a normal

distribution centered at µDid
that is given as

µDid
=

3MNK

4
(38)

Given 200 distinct videos, 19900 identification distances have

been computed using (32). The distribution of the distance

is illustrated by Fig. 10. As can be seen, the actual distance
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Fig. 10. Distribution of the proposed identification distance computed on
visually distinct videos.

follows a normal distribution. Given the setting of M = 32,

N = 32, and K = 50, the theoretical statistical mean is 3.84×
104 whereas the empirical mean is found to be 3.59×104. This

validates our theoretical analysis of the identification distance.

B. Identification performance

In this set of experiments, the ability of the proposed

system to identify videos of similar content is assessed. It is

also important to measure the system’s ability to differentiate

between the videos of different content. To this end, we have

adopted ROC curves which display the True Positive Rate

TPR (i.e., correct detection of similar video contents) against

the False Positive Rate FPR (i.e., false detection of similar

video contents). Ideally, these measures should correspond to

TPR = 1 and FPR = 0. To illustrate our contributions

in relation to video content identification, the following tests

have been conducted. (i) The entire DLBM features are used

as a fingerprint without the hash extraction stage5 to assess

the gain of the proposed hash extraction technique (i.e., the

signal calibration technique). (ii) The proposed hashing system

is also assessed using the Euclidean Distance (EC) as a

similarity measure to evaluate the gain offered by the proposed

identification distance Did (see (32)). This is denoted by

’Proposed/EC’. Note that theoretically speaking, Did differs

from EC in the sense that it addresses two adversary effects

on the hash when the video undergoes content-preserving

changes. First, Did takes into account the case where a change

in video content slips the normalizing shift to the beginning

5Note that DLBM as described in our paper cannot be used as a fingerprint
in practice because they are too large in size (153600 real valued features
for a 10 seconds video) and involve high computational complexity at the
matching stage.

of the sequence as it exceeds the boundary. Second, it com-

pensates the hash changes that may be caused by temporal

translations of the video. (iii) Recent state-of-the-art video

hashing systems have also been applied on the same test videos

for the purpose of comparison. Four well known techniques

have been adopted in our comparative study: Centroid of

Gradient Orientations (CGO) hashing [11], Temporally Infor-

mative Representative Images (TIRI) hashing [20], Weber Bi-

narized Statistical Image Features (WBSIF) hashing [28], and

Structural Graphical Models (SGM) based hashing [23]. We

have used our own implementation of [11], [28], and [20] and

the authors’ implementation of [23] which has been available

in [45]. The same parameters setting of the aforementioned

systems has been adopted here as suggested by their authors.

A number of content-preserving attacks have been considered

in order to compute TPR in the ROC curves. As depicted in

Table II, the attacks consist of spatial, geometric, and temporal

distortions. It is worth mentioning that these attacks have

been applied on the grey scale version of the videos because

the hashing systems are expected to withstand color changes.

Fig. 11 illustrates visual distortions caused by some spatial

TABLE II
DIFFERENT ATTACKS USED TO ASSESS THE IDENTIFICATION

PERFORMANCE.

Type Attack Parameters

Brightness increase adding 80% of the frame mean
Brightness decrease subtracting 80% of the frame mean

Spatial Contrast increase [60, 180] to [0, 255]
Contrast decrease [0, 255] to [60, 180]

AWGN σ = 56, µ = 0
Median filter (11× 11)

MPEG-4 compression SD videos: 128 kbps
HD videos: 500 kbps

Cropping and resizing 90% and 85%
Geometric Rotation 2 and 5 degrees

Shifting [5, 5] and [10, 10] pixels.

Frame dropping 50%.
Frame insertion 50% via interpolation.

Temporal Shifting Temporal Shift: 10% and 20% .
Shifting in time Circular shift: 20%

+ Content replacement + Replacement of shifted content.

and geometric attacks on a test video frame. The robustness

results of the proposed hashing system and the aforementioned

techniques are shown in Fig. 12-14. The results are in perfect

agreement with those reported in [23] in the sense that CGO

is significantly outperformed by the TIRI and SGM hashing

techniques. It can be seen that CGO cannot withstand the

applied attacks. Note that these attacks are more significant

than the ones reported in [11]. This suggests that CGO can

only be used when the videos undergo minor distortions. Like-

wise, WBSIF fails to provide good performance because most

attacks affect the differential excitation or the BSIF code which

are both used to extract the final hash. The results also show

that the proposed technique and TIRI perform equally well

under spatial signal processing attacks whereas SGM exhibits

a slightly lower performance (see Fig. 12). It has been reported

that the strength of SGM lies in its ability to identify the video

content when the bit budget of the hash is low [23]. However,

with sufficiently large fingerprints, TIRI seems to perform

slightly better than SGM according to our experimental results.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Visual changes caused by different attacks (a) Original video. (b) brightness increase. (c) brightness decrease. (d) contrast increase. (e) contrast
decrease. (f) additive white Gaussian noise with σ = 56. (g) median filter (11 × 11). (h) cropping 85% of the central part and resizing. (i) rotation by 5
degrees. (j) Shifting by [10, 10].
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Fig. 12. Robustness results under spatial signal processing attacks. (a) Brightness increase. (b) Brightness decrease. (c) Contrast increase. (d) Contrast
decrease. (e) Additive White Gaussian noise. (f) 11× 11 Median filtering. (g) MPEG-4 compression.
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Fig. 13. Robustness results under geometric distortions. (a) Frame cropping by 90% and resizing. (b) Frame cropping by 85% and resizing. (c) Rotation by
2 degrees. (d) Rotation by 5 degrees. (e) Shifting [5, 5]. (f) Shifting [10, 10].
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Note that SGM uses a dimensionality reduction technique to

obtain an approximate of video segments in the spatial domain

prior to the feature extraction which is conducted in the pixel

domain too (a technique similar to K-means clustering). This

explains the lower performance under spatial signal processing

operations when compared to TIRI and our hashing system.

As expected, DLBM show robustness against attacks that tend

to maintain the low frequency content of the videos such as

the brightness change and low-pass filtering. The robustness of

the proposed system against spatial signal processing attacks

is mainly attributed to the efficiency of DLBM.

Our system performs reasonably well under small geometric

distortions such as rotation by 2 degrees, cropping by 90%
and spatial shifting (Fig. 13). This is partly attributed to the

use of block-based features at the feature extraction stage.

However, the performance deteriorates as the strength of such

attacks increases because of synchronization-related changes

in DLBM. Observe, however, that the hash extraction stage

brings significant improvements over DLBM when the pro-

posed identification distance is used. The justification for this

is twofold. First, the distortion caused by geometric attacks

corresponds to a noise-like pattern of DLBM changes, i.e., rich

in frequency whereas the difference between two dissimilar

videos represents a signal of low frequency content character-

izing the DLBM changes (see for instance sub-section III-C2

on resizing). This makes the hash more sensitive to video

content dissimilarity than small geometric distortions. Second,

the proposed identification distance deals with the problem

of synchronization efficiently as can be supported by the

lower performance of the system when the Euclidean distance

was used. This confirms the suitability of the identification

distance for this particular application. The reason that TIRI

exhibits good efficiency under geometric distortions is partly

due to the fact that the DCT-based features are extracted from

overlapping blocks which have been shown to offer more

robustness than non overlapping blocks in [34]. It can be seen

from Fig. 14 that the proposed hashing system outperforms

its competitors under temporal distortions. This is mainly

attributed to the efficient description of the video content by

the normalizing shifts as well as the identification distance

which takes into account any possible translations. In presence

of temporal distortions, the competing techniques suffer from a

synchronization problem. It is, however, worth mentioning that

SGM surpasses TIRI and CGO because it encodes the tempo-

ral information of the video efficiently using the normalized

cuts graph partitioning technique. The overall ROC curve for

all the aforementioned attacks is plotted in Fig. 14(f). As can

be seen, the proposed system outperforms all the competing

techniques for a TPR higher than 0.94. Beyond this range,

the system’s performance drops rapidly due to the effect of

geometric distortions on the overall performance. Note also

that SGM performs slightly better than TIRI according to the

overall results. Finally, the Equal Error Rate (EER) which

corresponds to the point where FPR is equal to the False

Negative Rate FPR= 1−TPR is depicted in Table III.

TABLE III
EER (%) FOR DIFFERENT SYSTEMS.

CGO SGM WBSIF TIRI DLBM Proposed/EC Proposed/Did

14.65 1.86 11.91 2.17 7.35 6.53 0.82

C. Authentication performance

In this subsection, the system’s performance is evaluated

in terms of authentication. A reliable authentication sys-

tem should detect video forgeries on one hand and tolerate

transcoding on the other hand. To this end, widely used

transcoding operations have been conducted on the test videos

as depicted in Table IV. In this experiment, 250 forged

TABLE IV
TRANSCODING OPERATIONS USED TO ASSESS THE AUTHENTICATION

PERFORMANCE.

Transcoding Description Parameter
operation

SD videos: 128 kbps
HD videos: 500 kbps

Transrating MPEG-4 compression SD videos: 256 kbps
HD videos: 1000 kbps
SD videos: 500 kbps

HD videos: 1500 kbps
Frame dropping 20%

Transsizing Resizing by MPEG-4 240× 320

videos have been created from the original ones. These forg-

eries include object insertion/removal and video embedding

(See Fig. 15). Although the tampered regions vary in size from

a video to another, it is worth mentioning that the tampering

process affects no more than 8% of the original videos. The

tampering was conducted using the ’Adobe After Effects’

software. In the first part of experiments, the hashing system

has been used with the proposed authentication distance Dauth

on video segments of different lengths (s = 2 · · · , 6). Here,

ROC curves display the correct forgery detection rate (TPR),

computed on forged videos, against the false forgery detection

rate (FPR) which is measured on transcoded videos. The

results are shown in Fig. 16. Note that the performance of the

system increases with the number of frames in the segment,

s ∈ {2, 3, · · · , 6}, up to s = 5, i.e., the longer the video seg-

ment, the better the detection. This clearly shows the advantage

of grouping individual frames by the proposed segment-based

authentication measure to exploit the redundancy of malicious

manipulations across the temporal dimension. For s = 6,

however, the performance drops slightly suggesting that the

tampered regions in some videos change position in a time

shorter than 6 frames of the re-sampled video. In the rest of

the paper, s = 5 is adopted.

Next, we include three video hashing techniques that have

been used in authentication, namely SVD-based hashing [6],

3D DCT hashing [10], and 2D HOG hashing [32]. Similar

to the previous identification experiments, the system has

also been used with the Euclidean distance to illustrate the

efficiency of the proposed authentication distance Dauth. The

SVD-based hashing technique down-samples each video frame

by calculating the average values of 4× 4 blocks. Then, sub-

blocks of size 4 × 4 are factorized with the Singular Value
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Fig. 14. Robustness results under temporal attacks and overall performance. (a) Temporal shifting by 10%. (b) Temporal shifting by 20%. (c) Frame
drop with 50%. (d) Frame insertion with 50%. (e) Temporal shifting by 20% and video content replacement (20%). (f) Overall performance with all the
aforementioned attacks.

Fig. 15. Samples of tampered test videos. First row: Original videos. Second row: Forged videos.
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Fig. 16. Authentication performance. (a) Compression: SD videos at 128 kbps and HD videos at 500 kbps. (b) Compression: SD videos at 256 kbps and
HD videos at 1000 kbps. (c) Compression: SD videos at 500 kbps and HD videos at 1500 kbps. (d) Transsizing.

Decomposition (SVD) where the first eigenvalue is used to

classify uniform and non-uniform blocks. Uniform blocks are

represented by Scalar Quantization (SQ) indices while Vector

Quantization (VQ) is used to encode the first left-singular

and right-singular vectors of non-uniform blocks [6]6. The

3D DCT hashing technique applies a Gaussian filter in all

directions (i.e., temporal and spatial directions) followed by a

6The codebook size has been set to 256 as this was shown to yield the
best performance in [6].

downsampling process and thresholding based on the median

value to get a compact binary hash [10]. Finally, the 2D HOG

hashing system resizes the video frames to 320 × 240 and

selects a DCT coefficient from each 8×8 block to form a new

smaller 3D array. Then, three directional gradient filters are

applied to create three gradient arrays from which the authors

calculate a magnitude and two angles at each sample location.

These magnitude and angle arrays will then serve to extract

the 2D HOG as a hash [32].

These techniques have been implemented in this work and
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Fig. 17. Performance comparison. (a) Compression: SD videos at 128 kbps and HD videos at 500 kbps. (b) Compression: SD videos at 256 kbps and HD
videos at 1000 kbps. (c) Compression: SD videos at 500 kbps and HD videos at 1500 kbps. (d) Transsizing. (e) Frame drop at a rate of 20%.

Fig. 18. Detection of tampered regions. First column: original videos. Second column: forged videos. Last column: detected tampering.

applied on the same test videos. It is worth mentioning that

the 3D DCT hashing technique was mainly designed for

video identification but its results were not reported earlier

because it has already been outperformed by TIRI according

to [20]. Unlike the proposed and other competing authenti-

cation techniques, the SVD-based hashing technique suffers

from a synchronization problem when the video undergoes

transsizing operations because it operates on individual frames

using a fixed block size. For the sake of comparison, however,

the transsized videos are resized back to their original size

before applying the SVD-based authentication technique. It

is also worth noting that the distortion caused by MPEG-4

compression is more significant than the one reported in [6]

since our test videos are larger in size. The results are shown

in Fig. 17. It can be seen that the proposed hashing system

outperforms its competitors significantly. The 3D DCT hashing

system completely fails to detect forged videos because its

main design relies on a 3D transform which tends to summa-

rize the video in a compact hash. As a result, tampered regions

that affect a small portion of the video do not cause significant

changes in the extracted hash. The other competing techniques

appear unable to tolerate video distortions caused by low bit-

rate compression while detecting video forgeries. Indeed, for

the SVD-based hashing technique, low bit-rate compression

seems to cause significant distortions in textured/edged blocks

affecting the corresponding left-singular and right-singular

vectors of the SVD and this leads to incorrect codeword

representations in the codebook. As expected, the 2D-HOG

technique produces a poor performance when transsizing was

used. This can be explained by the sensitivity of the gradient

orientation to resizing. Finally, one can clearly see that the

proposed authentication distance fits well in the overall system

when compared to the Euclidean distance. The results validate

our claim on the sensitivity of the proposed hash to mali-

cious manipulations on one hand and its robustness against

transcoding operations on the other hand. Fig. 18 illustrates the

detection of tampered regions in forged videos. The detected

regions take the form of rectangular blocks because of the

block-based locating process as described by (35). Finally, we

have conducted similar experiments using another video cod-
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ing standard, i.e., H264. This is to verify whether the format

change affects the performance of the aforementioned systems.

We show below the results of H.264 compression at the rate

of 500 kbps for SD videos and 1500 kbps for HD videos as

compared to the results of MPEG-4 compression at the same

rate. Fig. 19 illustrates the corresponding performance.
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Fig. 19. Authentication performance under MPEG-4 and H.246 compression
at the same bit-rate, respectively. (a) MPEG-4. (b) H.264.

Interestingly, the same observation can be made regarding

the performance of the systems with a slight enhancement of

accuracy due to the better video compression with H.264 when

compared to MPEG-4.

D. Complexity analysis

In the proposed hashing scheme, most of the computational

cost is caused by the pre-processing stage, i.e., the re-sampling

process. The computational complexity of the aforementioned

competing techniques is evaluated here for the sake of compar-

ison. The average run time on a 10 second test video with the

frame size of 480×854 and frame rate of 30 fps is measured.

All the source codes were implemented in MATLAB and run

on a platform of an Intel Core Duo i7− 4770 CPU 3.40GHz

with 16 GB of memory. Note that Matlab is a high level

programming language and the reported results could be sig-

nificantly improved using a low level programming language

such as C or C++. We used the authors’ implementation of

SGM [45] whereas our own implementation is used for other

techniques. The results in milliseconds (ms) are depicted in

Table V. The computational cost of the proposed hashing

TABLE V
RUN TIME IN MILLISECONDS (ms) OF THE HASHING AND MATCHING

STAGES WITH DIFFERENT TECHNIQUES.

Technique Hashing Matching stage
stage Identification Authentication

CGO 1153 0.0033 −−
SGM 1441 0.0024 −−

WBSIF 911 0.0027 −−
TIRI 887 0.0056 −−

Proposed 774 0.0261 2.375
3D DCT 5633 −− 0.0023

2D HOG 4720 −− 0.1195
SVD-based 73950 −− 18.16

system is low when compared to its competitors but the

identification stage requires a considerably higher cost than

that of other techniques. This is because the measure has been

adjusted with some extra calculations to take into account

the changes that might occur on the hash due to temporal

video operations. It is, however, worth mentioning that some

parallelism can explored to run the directional distances of

(32) (i.e., vertical, horizontal and temporal) simultaneously.

As for the authentication measure, the run time for our

technique is reasonably fast since this is a verification problem

involving only a one-to-one matching to reach the decision on

authenticity.

VI. CONCLUSION

A perceptual video hashing system has been presented in

this paper. The system exhibits an interesting feature in that

it can serve in both the applications of video content identifi-

cation and authentication using the same hash. Compared to

the traditional approach, i.e., using a separate system for each

application, this concept brings the advantage of reducing the

computational complexity and saving the storage space. The

key idea relies on a new shift-based signal calibration tech-

nique using DCT and DST coefficients. Through theoretical

and experimental analysis, this technique has been shown to

offer efficient hash information which can withstand signal

processing operations such as noise and low pass filtering

on one hand and detect malicious manipulations on the other

hand. The system has been experimentally assessed in the two

applications and its superiority over state-of-the-art techniques

has been demonstrated.

APPENDIX A

PROOF OF (15) AND (16)

Let x0 be a discrete time signal and x1 be its shifted

version as described by (6) and (7), respectively. The common

z-transform of x0 is given by

ZT (x0) =
L−1
∑

n=0

x(n)z−n , (39)

where z is a complex number. It can be shown that

ZT (x1) = z × ZT (x0)− x(0)
(

z − z−(L−1)
)

. (40)

Now, recall that (12) and (13) can be expressed in a matrix

form. That is, for each value of m we have

Yi+1 = A Yi , (41)

where Yi is given by

Yi =

[

XC
i (m)

XS
i (m− 1)

]

, (42)

and A is described as

A =

[

cos(w) sin(w)
− sin(w)cos(w)

]

, (43)

where w = πm
L

. The goal is to mathematically express Yi as a

discrete time function of variable i. In view of (40) and (41),

the z-transform gives

(z I −A) ZT (Y ) = I
(

z − z−(L−1)
)

Y0 , (44)

where I is the identity matrix of size 2× 2. It follows

ZT (Y ) = (z I −A)−1 I
(

z − z−(L−1)
)

Y0 . (45)
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We obtain

ZT (Y )=

(

z−cos(w)
1−2 cos(w)z+z2

sin(w)
1−2 cos(w)z+z2

− sin(w)
1−2 cos(w)z+z2

z−cos(w)
1−2 cos(w)z+z2

)

×

(

z − z−(L−1)
)

Y0 . (46)

By applying the inverse z-transform on both terms of (46) and

by considering 0 ≤ i ≤ L− 1, Yi can be derived as

Yi =

[

XC
0 (m) cos(w i) +XS

0 (m− 1) sin(w i)
−XC

0 (m) sin(w i) +XS
0 (m− 1) cos(w i)

]

. (47)

Finally, (47) can be written as follows

Yi =









√

(

XC
0 (m)

)2
+

(

XS
0 (m− 1)

)2
cos

(

w i− arctan

(

XS
0
(m−1)

XC
0

(m)

))

√

(

XC
0 (m)

)2
+

(

XS
0 (m− 1)

)2
cos

(

w i− arctan

(

−
XC

0
(m)

XS
0
(m−1)

))









(48)

APPENDIX B

DETERMINATION OF THE IDENTIFICATION AND

AUTHENTICATION THRESHOLDS

Given a random variable Did, the problem can be formu-

lated as a binary decision.

Did ≥ Tid ⇒ H0

< Tid ⇒ H1 ,

where H0 represents the hypothesis that the compared videos

are visually distinct whereas H1 is the hypothesis of visually

similar videos. As seen in subsection V-A, the identification

distance can be modeled by a normal distribution when the

videos are visually distinct. To obtain the threshold, the

Neyman-Pearson criterion is used in such a way that the

missed similarity detection probability is minimized, subject

to a fixed false alarm probability [40][46]

PFA=Prob(Did < Tid|H0) ,

=

∫ Tid

−∞

fDid
(t|H0)dt , (49)

where fDid
(t|H0) is the pdf of Did. Since Did follows a

normal distribution under H0, it follows

Tid =
√

2σ2
Did

erfc−1(2− 2PFA) + µDid
, (50)

where efrc is the complementary error function. σDid
and

µDid
are the statistical mean and standard deviation of the

identification distance, respectively. Likewise, one can deduce

the authentication threshold Tauth. Assume that H0 is the

hypothesis of genuine videos whereas H1 is the hypothesis

of forged videos. Hence, the decision is

Dauth ≤ Tauth ⇒ H0

> Tauth ⇒ H1 .

In this case, the false alarm probability can be represented as

PFA=Prob(Dauth > Tauth|H0) ,

=

∫ ∞

Tauth

fDauth
(t|H0)dt , (51)

where fDauth
(t|H0) is the pdf of Dauth under hypothesis

H0. Under the assumption that fDauth
(t|H0) follows a normal

distribution, we obtain

Tauth =
√

2σ2
Dauth

erfc−1(2PFA) + µDauth
, (52)

where σDauth
and µDauth

can be computed from the empirical

distance between the original videos and their transcoded

versions.
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