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Perceptual Video Quality Assessment (VQA) is one of the most fundamental and
challenging problems in the field of Video Engineering. Along with video
compression, it has become one of two dominant theoretical and algorithmic
technologies in television streaming and social media. Over the last 2 decades, the
volume of video traffic over the internet has grown exponentially, powered by
rapid advancements in cloud services, faster video compression technologies, and
increased access to high-speed, low-latency wireless internet connectivity. This
has given rise to issues related to delivering extraordinary volumes of picture and
video data to an increasingly sophisticated and demanding global audience.
Consequently, developing algorithms to measure the quality of pictures and
videos as perceived by humans has become increasingly critical since these
algorithms can be used to perceptually optimize trade-offs between quality
and bandwidth consumption. VQA models have evolved from algorithms
developed for generic 2D videos to specialized algorithms explicitly designed
for on-demand video streaming, user-generated content (UGC), virtual and
augmented reality (VR and AR), cloud gaming, high dynamic range (HDR), and
high frame rate (HFR) scenarios. Along theway, we also describe the advancement
in algorithm design, beginning with traditional hand-crafted feature-based
methods and finishing with current deep-learning models powering accurate
VQA algorithms. We also discuss the evolution of Subjective Video Quality
databases containing videos and human-annotated quality scores, which are
the necessary tools to create, test, compare, and benchmark VQA algorithms.
To finish, we discuss emerging trends in VQA algorithm design and general
perspectives on the evolution of Video Quality Assessment in the foreseeable
future.
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1 Introduction

Perceptual Video Quality Assessment (VQA) is a field in Video Engineering that has
attained increasing importance in the last few decades due to the proliferation of video-based
applications and services. Along with video compression, VQA has become one of two
dominant theoretical and algorithmic technologies in television streaming and social media.
Video content is ubiquitous, from streaming movies and TV shows over the internet to video
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conferencing, social media, cloud gaming, and virtual reality
applications. Increasing internet speeds, high-speed data
transmission, low-latency wireless connectivity, faster encoding
technologies, and rapid smartphone user growth have together
contributed to an exponential rise in video content generation
and consumption.

According to a report by PR-Newswire (2023), video traffic on
the internet grew by 24% in 2022 and contributed to 65% of the
internet traffic. Delivering high-quality video content and retaining
users’ interest is of prime importance. Insufficient video quality
often leads to dissatisfaction, reduced engagement, and a negative
user experience. Thus, Video Quality Assessment (VQA) is a crucial
component of video engineering pipelines, as it ensures that the
video content meets viewers’ expectations.

Video Quality Assessment aims to objectively assess the
perceived quality of videos based on human perception. The
performance of VQA algorithms is generally measured by the
correlation of their predictions with human judgments. Video
quality can be affected by many factors, such as spatial and
temporal resolution, frame rate, compression, color depth, and
contrast, and other visual impairments, such as artifacts, noise,
blur, compression, and distortion. The intricate interplay among
the subjective nature of human perception, the content in the video,
and the video distortions contribute to the unique challenges in the
Video Quality Assessment task. Thus, to understand such complex
phenomena, it is imperative to conduct human studies where
volunteers watch videos, and their judgments of video quality are
recorded in the form of opinion scores. In most cases, the feedback is
limited to opinion scores, with some subjective studies involving
physiological measures such as eye-tracking Liu and Heynderickx
(2011). Objective VQA algorithms developed using the data from
these subjective studies aim to mimic human judgments closely. In
recent years, there has been a significant advancement in the field of
Video Quality Assessment (VQA), as algorithms initially created for
general 2D videos have evolved to cater to the need of specific
applications such as virtual and augmented reality (VR and AR),
cloud gaming, high dynamic range (HDR), high frame rate (HFR),
on-demand video streaming, and user-generated content (UGC).
Creating psychometric video quality databases is crucial to develop
new and improved algorithms for these specialized applications.
This survey aims to comprehensively review classical and recent
developments in the VQA field by discussing and comparing the
salient features of various psychometric subjective video quality
databases and VQA algorithms.

1.1 Related surveys

Survey papers have proved crucial in advancing research across
various disciplines, including Image and Video Quality Assessment.
These papers serve as a valuable resource for researchers as they offer
an extensive summary of existing research and enable them to
identify research gaps and avenues for further exploration. By
providing a comprehensive overview of the existing literature and
upcoming trends, survey papers facilitate a deeper understanding of
the subject matter and help identify research objectives. This section
discusses the relevant surveys in the Image and Video Quality
Assessment domain. Early survey works include Wang and Bovik

(2009), where they provided an initial analysis of Full-Reference
(FR) image fidelity measure, with a pivot on mean square error
(MSE). Later, Wang and Bovik (2011) provided a more general
introduction to Reduced-Reference (RR) and No-Reference (NR)
image quality assessment methods. In 2011, the survey on
perceptual visual quality metrics by Lin and Kuo (2011)
discussed several key aspects, including signal decomposition,
just-noticeable distortions, visual attention, feature and artifact
detection, feature pooling, viewing conditions, computer-
generated signals, and visual attention. In 2011; Moorthy and
Bovik (2011) presented their vision for the future of VQA
research. They postulated that we could achieve better
performance by leveraging our growing understanding of the
human visual system into the development of quality assessment
algorithms; Chikkerur et al. (2011) discussed FR and RR objective
evaluation metrics by dividing them based on visual characteristics.
In 2014; Mohammadi et al. (2014) reviewed subjective and objective
image quality assessment techniques, focusing on Full-Reference
Image Quality Assessment (FR IQA) measures and two emerging
directions: high dynamic range (HDR) and 3D IQA. Another survey
by Shahid et al. (2014) discusses classical and well-known NR VQA
methods. A recent survey by Zhou et al. (2022) focuses on Quality of
experience (QoE) assessment for adaptive video streaming.

1.2 Relevance of our survey

This survey provides a comprehensive and up-to-date review of
the new domains and methods which have emerged in the past
decade. Most of the existing surveys in VQA discuss classical VQA
techniques. Classical techniques are important, but recently, there
has been a gradual shift to more deep learning-based techniques,
greatly impacting all facets of VQA. The current surveys also fail to
address progress in application-specific VQA, such as HDR, HFR,
VR/AR, Cloud Gaming, and QoE. Our survey aims to address these
shortcomings and provide a comprehensive discussion covering
these trends.

1.3 Scope and organization of the survey

Our survey highlights the salient characteristics and novelty of
various subjective quality databases and VQA algorithms. Although
we thoroughly compare and analyze these algorithms and databases,
we refrain from benchmarking them. This is because VQA is a
specialized domain with varied application-specific use cases, and
algorithms are generally developed to cater to a specific use case.
While VQA algorithms developed for generic VQA tasks are often
used to demonstrate usability in application-specific subjective
quality databases, their performance is generally inferior to
algorithms developed for specific use cases. Additionally, it is
worth noting that not all VQA algorithm results are available
publicly across all databases, further limiting the feasibility of
benchmarking. Our survey is organized as follows. Section 2
discusses the advancements in generic video quality assessment
tasks and includes the television, online video streaming, and
UGC videos use case. Section 3 introduces application-specific
VQA and is organized into further sub-sections covering HDR,
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HFR (High-Frame Rate), VR/AR, Cloud Gaming, and Quality of
Experience. Figure 1 illustrates this categorization pictorially. We
conclude in Section 4 discussing the upcoming trends in VQA
algorithm design and general perspectives on the evolution of Video
Quality Assessment in the foreseeable future.

2 Generic video quality assessment

Video Quality Assessment can be broadly classified into three
categories based on the amount of information obtained from the
original reference (pristine) video in the test video.

• Full-Reference (FR-VQA) involves comparing the entire
reference video with the test video to evaluate its quality.
This method is widely considered to be the most precise way to
assess video quality. Essentially, FR-VQA involves measuring
the signal or information fidelity of the test video with respect
to the reference video. FR-VQA is widely used in the television
and online streaming industry and in developing video
compression algorithms.

• Reduced Reference (RR-VQA) methods are used when the
entire reference video signal is unavailable. Only a subset of
information from the reference video is available for
comparison with the test video. Subsets of information may
include but are not limited to motion vectors, edge
information, texture, and color histograms. By comparing
the test video to the reference video and considering the
subset of available information, the quality of the test video
can be assessed. While RR-VQA methods require less
information about the reference video than FR-VQA, it
may not be as accurate as FR-VQA. The practical use cases
of the RR-VQA are limited as modern video quality
monitoring workflows at the source typically use FR-VQA.
In contrast, applications requiring real-time monitoring at the
client use NR-VQAmethods. Hence, we exclude this family of
algorithms from our analysis.

• No Reference Video (NR-VQA) involves assessing the quality
of the test video independent of the reference video or the
distortions applied to the reference video. As a result, it is
more complex and challenging than the FR-VQA and RR-
VQA methods. NR-VQA is relevant for practical “in-the-wild”

FIGURE 1
Organization of our Survey.
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scenarios and is widely used to assess video quality for social
media, user-generated content, and live-streaming applications
where a reference video is unavailable. NR-VQA is also crucial in
determining algorithmic performance for various real-life
applications, including Super-Resolution, Novel View
Synthesis, and Video Enhancement methods where a reference
is unavailable. NR-VQA is also essential for computational
resource and latency constraint applications like Cloud
Gaming, Live Video Streaming.

Generic Training Pipeline of VQA Algorithms: Most VQA
algorithms use a combination of spatial and temporal feature extractors,
utilizing distorted (test) videos and reference videos (only in the case of
FR-VQA). These feature extractors are designed to capture relevant
spatial and temporal information relating to video quality. Spatial
feature extractors analyze the visual content in individual frames,
focusing on attributes such as spatial attributes including colors,
textures, shapes, and object representations. Temporal feature
extractors, on the other hand, consider the changes and motion
patterns between consecutive frames, capturing motion information
and temporal dynamics. The spatial and temporal features extracted are
combined and utilized to train a regressor that maps these features to
the MOS. With the emergence of deep learning techniques and the
availability of larger VQA databases, there has been a shift towards
training many algorithms end-to-end. This leverages the power of deep
neural networks to directly learn themapping between visual inputs and
quality assessments without explicit feature extraction and regression
stages. By training the entire VQA model end-to-end, these algorithms
can learn complex representations and capture intricate relationships
between the input visual data and the corresponding MOS. The
integration of feature extraction and regression in an end-to-end
framework has demonstrated promising results, showcasing the
potential of deep learning in advancing the field of VQA.

2.1 General VQA datasets

One of the most reliable ways to evaluate video quality is by
conducting subjective studies involving human subjects. Typically a
group of subjects watch the videos and provide quality ratings based on
a standardized scale. These ratings are then compiled across all human
subjects to create a comprehensive database of subjective scores
corresponding to each video in the database. However, developing a
subjective video quality database can be costly and time-consuming.
This process involves several steps, such as recruiting subjects, designing
a user-friendly software interface to display the videos and capture the
human responses, selecting appropriate video content, and conducting
the study in a controlled laboratory or on a crowdsourcing platform
such as AmazonMechanical Turk. Despite these challenges, developing
subjective video quality databases is essential for several reasons. Firstly,
they provide ground truth data for VQA algorithms, allowing video
quality engineers and researchers to compare the performance of
various objective quality assessment methods against a reference
standard of scores obtained from the group of human subjects.
Furthermore, developing VQA models that can predict the
subjective quality of videos aids in automating the video quality
assessment process, thus saving time and cost. Apart from VQA,
subjective video quality databases are used to benchmark video

compression codecs. Overall, subjective video quality databases play
a crucial role inVQAand are essential for comparing and evaluating the
performance of objective quality assessment algorithms.
Calculation ofMeanOpinion Score (MOS): The Subjective studies are
conducted using human subjects, following which scores from all
participants are aggregated to compute the Mean Opinion Score. In
the past, themost commonly usedmethod for computing theMOSwas
the one outlined in ITU-R BT.500-13 (ITU-R, 2012). The process
involved calculating Z-scores and then subjecting them to rejection
based on inconsistencies identified by scrutinizing the scores received
from each human participant. However, an improved method for
computing MOS has been proposed in the latest ITU-T BT P.910
(ITU-T, 2022) recommendation. This newer method proposes
obtaining subjective quality scores from raw measurements that may
be affected by noisy measurements. It involves using maximum
likelihood estimation to simultaneously estimate the subjective
quality of impaired videos, human participants’ consistency and bias,
and video content’s ambiguity. We refer the reader to Li and Bampis
(2017) for more details. Subjective video quality is typically represented
using MOS, a reliable indicator of perceived quality. In the absence of
reference undistorted videos, MOS is essential for developing and
evaluating No-Reference (NR) Video Quality Assessment (VQA)
algorithms. On the other hand, Difference MOS (DMOS) is
commonly used in developing and evaluating Full-Reference (FR)
VQA algorithms as it reduces content dependence. For a given
distorted video, DMOS is determined by subtracting its own MOS
value from the MOS of the original, undistorted version of the video.
Categories of Video Quality Databases: Depending on the video
contents and the types of distortions present, subjective video quality
databases can be divided into two broad categories.

• Type 1: Synthetically Distorted Databases: These are created
by applying known types and levels of distortions to high-
quality pristine source videos. Distortions may include
introducing compression artifacts, noise, blurring, judder,
aliasing, and other transmission relation distortions. The
advantage of synthetic distortions is that they provide
control over the type and level of distortion and can be
adjusted to match specific research objectives, allowing
researchers to evaluate the performance of video quality
assessment algorithms under controlled conditions and to
study the impact of different distortions on video quality.
As high-quality pristine videos are available, these databases
can be used to develop both FR-VQA and NR-VQA
algorithms.

• Type 2: Authentically Distorted Databases: These databases
are created aggregating real-world “in-the-wild” videos that
have been degraded using unknown distortions and for which
the corresponding high-quality versions are unavailable.
These videos may contain distortions introduced during
recording, transmission, or storage. The advantage of
authentic distortion databases is that they provide a more
realistic evaluation of video quality assessment algorithms.
The distortions are similar to those encountered in real-world
video applications. As the reference pristine video is
unavailable corresponding to each “in-the-wild” video,
these databases can be used to develop only NR-VQA
algorithms.

Frontiers in Signal Processing frontiersin.org04

Saha et al. 10.3389/frsip.2023.1193523

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1193523


Each database type has advantages and limitations and is used
for a specific purpose in VQA research. Table 1 lists the popular
subjective video quality datasets along with their salient features like
the number of videos, source characteristics, distortion types,
number of ratings per video, and display devices used during the
human study for each dataset.

Initial efforts aimed at developing subjective VQA databases
include LIVE-VQA Seshadrinathan et al. (2010), EPFL-PoliMI De
Simone et al. (2009), and VQEG-HDTV VQE (2010). These
databases typically contain a very small number of pristine, high-
quality videos, which are then synthetically degraded using video
compression and simulated transmission channel distortions to

generate degraded versions for the human study. As videos in
these datasets contain synthetically introduced distortions, they
belong to the category of the Type 1 databases, as described
above. The LIVE-VQA database comprises 150 videos from
10 pristine video sequences created using four different
distortions: MPEG-2 and H.264 video compression and
simulated transmission errors over IP and Wireless networks.
EPFL-PoliMI VQA database was developed to investigate the
effects of transmission channel distortions on video quality. It
consists of 156 video streams, encoded with H.264/AVC and
corrupted by simulating the packet loss due to transmission over
an error-prone network. The Video Quality Experts Group

TABLE 1 Summary of popular generic VQA databases.

Database # Videos # Pristine
source

sequences

Source (type 1)/
Video (type 2)
characteristics

# Ratings
per video

Public Distortions Duration Display
device

LIVE-VQA
(Type 1)

150 10 768 × 432/25-50fps 38 Yes H.264, MPEG-2
Simulated

transmission errors

8.68–10 s 1,024 × 768 CRT
Monitor

EPFL-PoliMI
(Type 1)

156 12 CIF-4CIF/30fps 23 Yes H.264/AVC
Simulated

transmission errors

10 s 30″, WQXGA,
LED Monitor,

19″, SXGA, LED
Monitor

VQEG HDTV
(Type 1)

675 45 1080p/25-30fps 24 Yes H.264, MPEG-2
Simulated

transmission errors

10 s 24.1″, UXGA,
LED Monitor

MCL-JCV (Type 1) 1,560 30 1080p/Varying fps 50 Yes H264/AVC 5 s 65-inch, 4K TV

CVD-2014
(Type 2)

234 UGC Content 480p-720p/Varying fps 30 Yes Authentic distortions 10–25 s 28″ 4K LED
Monitor

LIVE-Qualcomm
Mobile In-Capture

(Type 2)

208 UGC Content 1080p/30fps 39 Yes Authentic distortions 15 s 24″, 1080p, LED
Monitor

KoNViD-1k
(Type 2)

1,200 UGC Content 540p/Varying fps 50 Yes Authentic distortions 8 s Online Study

KoNViD-150 k
(Type 2)

153,841 UGC Content 540p/Varying fps 5/89 Yes Authentic distortions 5 s Online Study

LIVE-VQC
(Type 2)

585 UGC Content 240p-1080p/Varying fps 240 Yes Authentic distortions 10 s Online Study

YouTube-UGC
(Type 2)

1,500 UGC Content 360p-4K/15–60 100 Yes Authentic distortions 20 s Online Study

LIVE-FB LSVQ
(Type 2)

39,000 UGC Content Varying Resolution/
Varying fps

35 Yes Authentic distortions 5–12 s Online Study

Waterloo IVC 4K
(Type 1)

1,200 20 540p,1080p,4K/24-30fps 30 Yes HEVC, H.264/AVC,
VP9, AV1, AVS2

10 s 28″, 4K, LED
Monitor

LIVE-APV
Livestream
(Type 1)

315 45 1080p-4K/25-30fps 38 Yes H264, Aliasing,
Judder, Flicker,
Frame drops,
Interlacing

5–7 s 65″, 4K, LED
Monitor

LIVE-SJTU A/
V-QA (Type 1)

336 14 1080p/24-30fps 35 Yes HEVC,
Compression,

Scaling AAC (Audio)

8 s 23.8″, 1080p,
LED Monitor

LIVE Wild
Compressed (Type

1 + 2)

275 55 (Sampled from
LIVE-VQC)

360p-1080p/25–30 fps 40 Yes Authentic
Distortions 2nd
Stage: Scaling and

H.264

10 s 23.8″, 1080p,
LED Monitor
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developed VQEG-HDTV (VQEG), a set of 5 databases specifically
designed for HD videos. The database has a total of 675, including
the 45 source videos, and they are encoded with MPEG-2 and
H.264 video compression standards at various bitrate. Transmission
errors were also included. Error types include packet errors (IP and
Transport Stream) such as packet loss, packet delay variation, jitter,
overflow and underflow, bit errors, and over-the-air transmission
errors.

MCL-JCV (Wang et al., 2016), is another Type 1 database
designed to explore “Just Noticeable Differences” (JNDs) in
visual distortion perception. The dataset comprises 30 pristine
video sequences encoded using H.264/AVC with quantization
parameters (QP) ranging from integer values of 1–51. A unique
aspect of the MCL-JCV database as compared to other databases is
that as opposed to subjectively rating the quality of a particular
video, participants were presented with two video sequences, which
were distorted versions (at different QP values) of the same pristine
video sequence, and were asked to determine if they could be
distinguished. With 1,560 subjectively quality-rated videos, MCL-
JCV introduced a considerably larger database than the existing
LIVE-VQA, EPFL-PoliMI, and VQEG-HDTV databases in 2016.

In CVD 2014 (Nuutinen et al., 2016), the first subjective quality
database in the Type 2 category was introduced. It contains a total of
234 videos that are captured using 78 cameras. The motivation for
developing the database was to study the distortions induced during
video acquisition using various cameras. However, it is worth noting
that the database has limited scene diversity, as it only included five
unique ones. LIVE-Qualcomm Mobile In-Capture Database
(Ghadiyaram et al., 2018) was introduced to alleviate this issue. It
comprises 208 1080p videos captured using eight mobile cameras
across 50 scenes.

The subjective databases we have discussed above have been
developed by conducting in-lab human studies. However, these
studies have limitations, including a limited number of subjects
and ratings per video. We will next discuss the popular Type
2 databases developed using online studies that address this issue.
These databases KoNViD-1k (Hosu et al., 2017), KoNVID-150 k
(Götz-Hahn et al., 2021), LIVE-VQC (Sinno and Bovik, 2019),
YouTube-UGC (Wang et al., 2019), and LIVE-FB LSVQ (Ying
et al., 2020) provide an opportunity to gather data from a more
extensive and diverse pool of participants, which can help increase
the study’s reliability and generalizability. KoNViD-1k consists of a
total of 1,200 videos, sampled from YFCC100m (Thomee et al.,
2016). Later, an extended version of the database, KoNViD-150 k,
was introduced. Most videos in KoNViD-150 k are evaluated much
more coarsely than in KoNViD-1k, with only 5 evaluations per
video. LIVE-VQC is another closely related database. It contains
585 videos captured from 101 devices by 80 users covering various
resolutions, layouts, and frame rates. In 2019, Google introduced the
YouTube-UGC database, which contains diverse user-generated
content (UGC) videos. The database comprises videos sampled
from 1.5 million YouTube videos from various categories,
including animations, cover songs, news clips, sports, and more.
Moreover, the dataset is representative of millions of videos
uploaded to YouTube, making it a valuable resource for VQA.
LIVE-FB LSVQ is another significant Type-2 database that follows a
methodology similar to the KoNViD database by sampling videos
from the YFCC-100m database. However, LIVE-FB LSVQ also

samples videos from the Internet Archive to create a more
authentic representation of real-world conditions. Moreover, the
uniqueness of the LIVE-FB LSVQ database is its inclusion of
subjective ratings not only for the entire videos but also for the
117 k space-time localized patches sampled from the 39,000 videos
in the database.

As the demand for 4K video streaming and the emergence of
newer compression standards such as HEVC, VVC (Bross et al.,
2021) continues, there was a growing need for subjective quality
databases containing videos with these characteristics. Thus,
Waterloo IVC 4K (Li Z. et al., 2019) and LIVE-APV (Shang
et al., 2022b) were introduced. Both these databases belong to the
Type 1 category, as distorted videos in the database are generated
using synthetic distortions. Waterloo IVC 4K database was
developed to compare the performance of modern video
encoders on 4K videos, which require higher data rates. Twenty
reference video sequences are encoded with H.264/AVC, VP9, AV1,
AVS2, and HEVC at four distortion levels and three spatial
resolutions. LIVE-APV Livestream Video Quality Assessment
Database was built to investigate the aggravated effects of
common distortions such as H.264 compression, aliasing, judder,
flicker, frame drops, and interlacing on high-motion live-streamed
videos 1080p and 4K videos.

Unlike other subjective VQA databases, the LIVE-SJTU Audio
and Video Quality Assessment (A/V-QA) Database (Min et al.,
2020) is unique as it includes both video and audio components. The
accompanying subjective study recognizes that videos are typically
presented with audio in real-life situations. Distortions in visual or
auditory signals can impact the overall quality of experience (QoE),
discussed in Section 3.5 of this review. The database comprises
336 audio-video sequences generated by applying synthetic audio
and video compression to 14 pristine sources. The final database we
discuss is the LIVEWild Compressed (Yu et al., 2021) database. The
main focus of this study is to analyze the quality of videos that
undergo two stages of distortions. The first stage involves authentic
distortion, commonly seen in user-generated content videos. The
second stage involves synthetic compression using H.264 codec.
This study is relevant for use cases where a “Video-in-the-Wild” is
further compressed using controlled streaming settings. To evaluate
the impact of these two stages of distortions, and the study creates
four versions of each UGC video, i.e., “Video-in-the-Wild”, each
with varying degrees of H.264 compression applied. In the following
two sub-sections, we discuss the popular FR-VQA, and NR-VQA
algorithms developed using the databases discussed in this section.

2.2 Full-reference objective video quality
assessment

FR-VQA algorithms are designed to assess the fidelity between
the distorted and the reference frames in the videos. The peak-
signal-to-noise ratio (PSNR) has been widely used to measure image
fidelity. However, it has been proven to correlate poorly with human
visual distortion perception (Wang and Bovik, 2009). One of the
earliest attempts to create an image fidelity metric that was
motivated by human perception was made through the
development of the Structural Similarity Index Measure (SSIM)
(Wang et al., 2004). Over the last 2 decades, SSIM has been widely
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used to predict the perceived quality of digital television, cinematic
pictures, and other kinds of digital images and videos. SSIM has been
extended for videos by utilizing an average pooling strategy across all
the frames in a video. Seshadrinathan and Bovik (2011)
demonstrated that the perceptual video quality could also be
measured using the hysteresis effect of Human Visual System
(HVS) by extending IQA methods. Motion-compensated SSIM
(MC-SSIM) was proposed by Moorthy and Bovik (2010a)
inspired by video compression and proposes to compute video
quality by evaluating structural retention between motion-
compensated regions. MOVIE (Seshadrinathan and Bovik, 2009)
is a spatio-temporally localizedmulti-scale framework for evaluating
dynamic video fidelity where space, time, and space-time distortions
are considered. ST-MAD (Vu et al., 2011) is an extension based
upon the most apparent distortion (MAD) model (Larson and
Chandler, 2010) and incorporates visual perception of motion
artifacts. The Optical Flow-based VQA model (Manasa and
Channappayya, 2016)is based on the hypothesis that distortions
affect local flow statistics, and the extent of deviation from the
original flow statistics is directly proportional to the amount of
distortion present. AFViQ (You et al., 2013) exploits visual
perceptual mechanisms in VQA by proposing an advanced foveal
imaging model to generate a perceived video representation.

Similar to SSIM, VIF (Sheikh et al., 2005) is another important
FR-IQAmodel that has been suitably adapted and used in many FR-
VQA models. VIF employs a Gaussian Scale Mixture (GSM) to
model the statistical properties of bandpass wavelet coefficients,
along with a local Gaussian channel to model distortions. The
principles underlying VIF have been applied in the development
of many reduced-reference quality models, including ST-RRED
(Soundararajan and Bovik, 2013) and SpEED-QA (Bampis et al.,
2017a). It is important to note that the reduced reference models ST-
RRED and SpEED-QA models can also be used in FR-VQA use
cases. The most popular and widely used FR-VQA method is the
VideoMulti-Method Assessment Fusion (VMAF) (Li Z. et al., 2016),
developed by Netflix and academic collaborators. The fundamental
principle of VMAF is to combine “weaker” quality models, referred
to as “atoms,” to create a higher-performing quality model.
Essentially, VMAF functions as an ensemble model composed of
several “weaker” quality models. The specific atoms utilized by
VMAF include DLM (Li et al., 2011), VIF calculated on a
Gaussian pyramid at four different scales, and a temporal
difference feature designed to capture motion. Further extensions
to VMAF were proposed in the form of Spatio Temporal VMAF
(ST-VMAF), and Ensemble VMAF (E-VMAF) in Bampis et al.
(2018a). VMAF models are known to have high computational
requirements due to the need for calculating a diverse set of atom
features. FUNQUE proposed in Venkataramanan et al. (2022)
addresses this issue. FUNQUE aims to simplify the process by
unifying the atom quality features through an HVS-aware
decomposition. This decomposition produces a 10%
improvement in correlation against subjective scores compared to
VMAF while also reducing the computational cost by a factor of 8.

Recently, there has been a notable trend toward leveraging deep
learning features to predict video quality. For instance, DeepVQA
(Kim et al., 2018) applies a CNN-based feature extractor to quantify
spatiotemporal visual perception, then aggregates the frame-wise
quality scores over time. C3DVQA (Xu et al., 2020) employs 3D

convolutional layers to address temporal aliasing issues that could
arise from frame-wise score aggregation. In Zhang et al. (2021a), the
authors suggest a method that involves integrating DenseNet with
spatial pyramid pooling and RankNet. This approach enables the
extraction of high-level distortion representation and global spatial
information from samples while also allowing the characterization
of temporal correlation among frames. Vision Transformer (Khan
et al., 2022), which has demonstrated effectiveness in various vision
tasks, has also been adapted for use in VQA. Li et al. (2021)
combines CNN-based feature extraction with a Transformer-
based encoder to enhance video quality prediction. In the next
sub-section, we discuss NR-VQA methods.

2.3 No reference objective video quality
assessment

Early works in NR-VQA utilized well-known No Reference
Image Quality Assessment (NR-IQA) approaches such as NIQE
(Mittal et al., 2012c), and BRISQUE (Mittal et al., 2012). These
methods were extended by pooling them temporally to produce a
single video quality rating. A comparative study of various temporal
pooling strategies can be found in Tu et al. (2020). Although
effective, these methods have limitations since they fail to fully
leverage temporal information, an essential factor in accurately
predicting video quality. Consequently, there arose a need for
developing models designed explicitly for VQA. V-CORNIA (Xu
et al., 2014) predicts video quality based on frame-level unsupervised
feature learning and hysteresis temporal pooling. Video BLIINDS
(Saad et al., 2014) combines natural video statistics (NVS)-based
spatial-temporal features, spatial naturalness, and motion-related
features to train a support vector regressor (SVR) model for NR-
VQA. The VIIDEO model (Mittal et al., 2015) incorporates models
of intrinsic statistical patterns found in natural videos, which are
further utilized to quantify the disturbances caused by distortions.
TLVQM (Korhonen, 2019) is a widely used NR-VQA model that
evaluates the quality of consumer videos, usually affected by capture
artifacts, such as sensor noise, motion blur, and camera shakiness. It
employs a two-level approach where low complexity features are
computed for every frame, while high complexity features are
computed for only certain selected frames in the video. Similar to
VMAF in FR-VQA, VIDEVAL (Tu et al., 2021a) is an NR-VQA
model developed to evaluate the quality of UGC videos by
combining subsets of statistical features extracted from various
existing NR-IQA and NR-VQA models. It employs an SVR
model that utilizes selected features to regress from the feature
space to the final MOS scores. Chip-QA (Ebenezer et al., 2021) uses
space-time slices to capture motion in localized regions of videos
and applies the parametric model of natural video statistics to
measure distortions. It can quantify distortions in a video by
measuring deviations from the natural video statistics. The model
performs better than existing feature learning methods while
maintaining a low computational cost.

Deep learning-based feature learning approaches have greatly
improved the performance of NR-VQA. To take advantage of pre-
trained CNN architectures, VSFA (Li D. et al., 2019), and RIRNet
(Chen et al., 2020) have utilized them to extract features from the
video frames. Then, they modeled the temporal sequence of frames
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using GRU/RNN to aggregate the features into a video quality score,
resulting in significant benefits for NR-VQA. Although models pre-
trained for classification tasks can be beneficial, they often neglect
low-level visual features crucial for the VQA task. This limitation is
demonstrated in DeepSIM (Gao et al., 2017) and MC360IQA (Sun
et al., 2019), where the authors highlight the importance of low-level
visual and semantic features for image and video quality assessment.
On the other hand, traditional methods (Saad et al., 2014) tend to
extract low-level vision quality-aware features without considering
the video content. To address these issues, RAPIQUE (Tu et al.,
2021b) proposes a novel approach that combines quality-aware
scene statistics features with content-aware deep convolutional
features, leveraging the power of pre-trained deep networks for
content understanding. This approach results in superior
performance to traditional natural scene statistics (NSS) feature-
based models, showcasing the potential to incorporate low-level
visual features and deep learning-based approaches for VQA.

Recent NR-VQA works using deep networks include Patch-VQ
(Ying et al., 2021), FAST-VQA (Wu et al., 2022a), HVS-5M (Zhang
et al., 2022), DOVER (Wu et al., 2022b). Patch-VQ introduced a
novel approach for VQA by creating a large-scale UGC video
database with subjective ratings for full videos and
spatiotemporal crops of the videos. The framework involves
extracting patches along space, time, and space-time, followed by
feature extraction using 2D and 3D CNNs. These extracted features
are then pooled to obtain a quality score for the video. HVS-5M
proposes a novel NR framework for video quality assessment by
dividing the learning task into multiple modules. The framework
utilizes ConvNext (Li X. et al., 2016) to extract spatial features, while
the SlowFast Network (Feichtenhofer et al., 2019) is used to obtain
dynamic temporal features. The extracted features are then pooled
to obtain a quality score for the video by training a low-complex
regressor. FAST-VQA (Wu et al., 2022a) significantly reduced the
computation cost and improved performance by designing a
quality-preserving video sampling scheme. FAST-VQA proposes
Grid Mini-patch Sampling (GMS), which considers local quality by
taking patches at raw resolution and captures global quality using
Attention which helps build contextual relations between the
sampled patches. DOVER aims to disentangle different aspects of
the video during training to help the deep networks focus on
different aspects of the video. They propose two separate Quality
Evaluators: Aesthetic Quality Evaluator (AQE), which utilizes spatial
down-sampling (Keys, 1981) and temporal sparse frame sampling
(Wang et al., 2018) to learn semantic and contextual information,
and a Technical Quality Evaluator (TQE), which uses sampled raw
resolution patches to form fragments similar to what was introduced
in FAST-VQA. These quality estimates are then fused together to
output a final quality score. Next, we discuss the evaluation metrics
used in benchmarking NR-VQA and FR-VQA algorithms.
Evaluation Metrics: The performance of objective FR-VQA/NR-
VQA algorithms is evaluated using the following metrics:
Spearman’s Rank Order Correlation Coefficient (SROCC),
Kendall Rank Correlation Coefficient (KRCC), Pearson’s Linear
Correlation Coefficient (PLCC), and Root Mean Square Error
(RMSE). The metrics SROCC and KRCC measure the
monotonicity of the objective model prediction (DMOS for FR-
VQA/MOS for NR-VQA) concerning human scores, while the
metrics PLCC and RMSE measure prediction accuracy. For

PLCC and RMSE measures, the predicted quality scores were
passed through a logistic non-linearity function as shown in
Seshadrinathan et al. (2010) to further linearize the objective
predictions and to place them on the same scale as MOS/DMOS:

f x( ) � β2 +
β1 − β2

1 + exp −x + β3/ β4
∣∣∣∣

∣∣∣∣( )

3 Application specific video quality
assessment

Video quality assessment has evolved over the years to become
increasingly specific. With technological advancements, researchers
focus on developing methods catering to specific video types. In the
following subsections, we discuss emerging topics in VQA,
providing an in-depth overview of associated databases and
algorithms specific to the application.

3.1 High dynamic range (HDR) videos

HDR adoption has risen recently, especially in video streaming
services like Amazon Prime, Netflix, and YouTube. It is the standard
for UHD Blu-rays and is supported by major TV manufacturers
such as LG, Samsung, and Panasonic. HDR has become essential to
live broadcast and film production workflows, with increasing
adoption as an industry standard. HDR videos represent a
significant technological advancement, offering a more realistic
and immersive viewing experience. HDR techniques expand the
range of luminance, color representation, and display, creating more
realistic and immersive visual experiences. With HDR, the captured
image contains a wider range of brightness and color, resulting in
increased detail in both bright and dark areas of the image. This
wider range of luminance values and expanded color gamut is
achieved through different nonlinear transfer functions like HLG
and PQ (ITU, 2018), designed to replace the legacy gamma Electro-
Optical Transfer Function (EOTF) defined in BT. 1886 (ITU, 2011).
Furthermore, modern HDR videos use the Rec. BT. 2020 (ITU,
2015) color primaries cover 75.8% of the CIE 1931 color space, much
larger than the Rec. 709/sRGB color gamut, which covers 35.6% of
the CIE 1931 color space. However, the new techniques also present
several unique challenges due to the distinct features of HDR videos.

One of the primary challenges in VQA for HDR videos is the
expanded luminance range compared to Standard Dynamic Range
(SDR) videos, with peak brightness levels reaching 10,000 nits. This
expanded luminance range allows for brighter highlights and deeper
shadows, resulting in a more realistic and immersive viewing
experience. However, evaluating this expanded luminance range
requires specialized VQA models and subjective assessments.
Another challenge is the increased bit-depth utilized in HDR.
Most existing VQA models are designed to operate on 8-bit
luminance and color data, making it difficult to evaluate the
quality of HDR videos utilizing 10 or 12-bit data. This increase
in bit-depth allows for a more precise representation of HDR’s
expanded luminance and color ranges but poses a significant
challenge for VQA. Additionally, utilizing non-linear EOTFs in
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HDR can greatly alter the visibility and severity of compression
distortions. The relationship between the intensity of the light as the
physical magnitude measured on display and how bright it appears
to a human observer has long been known to be non-linear
(Cornsweet and Pinsker, 1965). The perceived brightness heavily
depends on both the image stimulus and the viewing environment,
including the image background, peak luminance, and the display’s
dynamic range (Billock and Tsou, 2011; Bertalmío, 2020). As a
result, the same magnitude of contrast may appear vastly different
under different circumstances, making it difficult to predict the
perception of distortions. Finally, a significant challenge in VQA for
HDR videos is the scarcity of high-quality subjective VQA databases.
As HDR standards such as HDR10, HDR10+, and Dolby Vision are
relatively recent, publicly available HDR content is limited, and few
subjective VQA databases are dedicated to HDR. This database
scarcity makes it difficult to accurately evaluate the quality of HDR
videos and to develop and test new VQA models. Furthermore,
several existing databases have limited utility as they have been
rendered obsolete by recent HDR standards, while a few are
unavailable publicly.

3.1.1 HDR databases
The earliest work in HDR subjective VQA was VPQM-

MPEGHDR (Rerabek et al., 2015), which included a subjective
study of five source HDR videos, each distorted by four
compression levels, to compare objective HDR VQA algorithms.
The videos were tone-mapped to 8 bits before displaying to the
human subjects. The HDR-VQM Video dataset (Narwaria et al.,
2015b) contains 10 HDR video sequences that were compressed at
eight different bitrate using a backward-compatible compression
method. The videos were tone mapped to an 8-bit SDR version and
compressed before being displayed. When the videos were
decompressed, they were inverse tone mapped to HDR. DML-
HDR (Azimi et al., 2018) used 30 videos displayed on a non-
standard HDR device supporting the older BT. 709 gamut. The
dataset comprises indoor and outdoor video sequences with
different brightness, motion levels, and representative distortions.
Pan et al. (2018) conducted a study of the effects of compression on
HDR quality using six source videos encoded using PQ and HLG,
and BT.2020 color space, but used the AVS2 compression, which has
seen little industry adoption. Waterloo UHD-HDR-WCG (Athar
et al., 2019) conducted a subjective study of HDR10 content. This
study includes 14 HDR10 source contents using H.264 andHEVC to
generate 140 distorted videos. Recent works in HDR subjective VQA
include LIVE-HDR (Shang et al., 2022a) and HDR Sports (Shang
et al., 2023) databases. The LIVE-HDR database comprises
310 HDR10 videos with various compression and scaling
distortions. The videos are displayed on an HDR TV under two
different ambient light conditions. The study concluded that the
ambient condition tested in the study has an insignificant effect on
the perception of video quality. It is worth noting that the LIVE
HDR Database is the only publicly available HDR VQA database
that complies with contemporary HDR standards. The HDR Sports
study conducted a subjective quality study with 42 source content to
benchmark the performance of leading FR VQA models on
common streaming problems, including compression, scaling,
and quality crossovers among resolutions and frame rates. The
study also attempted to reveal the effect of various encoding

parameters, such as encoding mode and adaptive quantization.
The salient features of the above-mentioned databases can be
found in Table 2.

3.1.2 HDR VQA algorithms
The research on predicting the quality of High Dynamic Range

(HDR) videos is still in its early stages, with few approaches
proposed in the literature. HDR-VDP Mantiuk et al. (2005) is
one of the earliest works in HDR objective VQA, which
considers the non-linear response to light of high-contrast
content and the full range of luminances. An improved version,
HDR-VDP-2 (Mantiuk et al., 2011), uses a model based on contrast
sensitivity measurements to account for all luminance conditions.
Subsequent developments of HDR-VDP-2 include implementing
improved pooling methods (HDR-VDP2.2 (Narwaria et al., 2015a;
2014)). Another approach to predicting the quality of HDR videos,
proposed in Aydın et al. (2008), involves using a non-linear
transformation to extend traditional Standard Dynamic Range
(SDR) quality metrics to the HDR domain. This approach aims
to make traditional SDR quality metrics more applicable to HDR
videos by considering the expanded luminance range of HDR. In
addition, some researchers have focused on the chromatic aspects of
HDR video quality, such as color fidelity (Abebe et al., 2015), HDR
Uniform Color Spaces (Rousselot et al., 2019), and color difference
models (Choudhury et al., 2021). HDR-VQM (Narwaria et al.,
2015b) utilizes spatiotemporal analysis to simulate human
perception. The HDRMAX model (Ebenezer et al., 2023) uses a
set of features designed by applying nonlinear transforms to enhance
the estimation of the distortions in the brightest and darkest regions
in the frames, which are often difficult to measure using traditional
SDR-based metrics. These features improve the performance of
state-of-the-art VQA models on HDR 10-bit videos.

To conclude, the research on HDRVQA is still in its early stages.
Few approaches have been proposed in the literature. However, the
scarcity of high-quality subjective VQA databases for HDR is a
challenge that needs to be addressed to improve the accuracy and
reliability of VQA models for HDR videos.

3.2 High frame rate (HFR) videos

In recent years, the integration of High Dynamic Range (HDR),
4K resolution, and High Frame Rate (HFR) videos has greatly
improved the viewing experience for users. While the standard
frame rate for movies is 24 fps and progressive television formats
are typically 30 fps, HFR videos are displayed at 50 fps or more,
effectively reducing temporal distortions such as motion blur and
stutter. With improved communication technologies and the advent
of powerful GPUs, consumers can now stream, share, and view
content in high-resolution HFR format. It is crucial to develop VQA
algorithms for HFR videos to enhance the storage and streaming
efficiency of these videos, which will ultimately result in an improved
user viewing experience.

3.2.1 High frame rate video quality databases
The BVI-HFR (Mackin et al., 2019) database is one of the

earliest HFR VQA databases. It comprises 22 source sequences
and their corresponding temporally down-sampled version
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created by frame averaging, which can cause motion blur but
eliminates the strobing artifacts due to frame dropping. Frame-
averaged videos require fewer bits than frame-dropped videos
since averaging results in a loss of edge sharpness, thus reducing
high-frequency components. A mini-study by the authors found
that frame-averaged videos were preferred over frame-dropped
videos at very low frame rates. In an attempt to capture the effects
of multiple distortions on video quality, the AVT-VQDB-UHD-1
(Rao et al., 2019) database was released. The authors conducted
multiple tests, where Test #4 was specifically designed to
understand the impact of frame rate on subjective video
quality. Results from the study concluded that popular FR
VQA models such as VMAF, performed poorly on videos with
very low frame rates. Another work in the HFR VQA domain is
LIVE YT-HFR (Madhusudana et al., 2020b), which includes
16 source videos with a native frame rate of 120 fps and
temporally downsampled versions created by frame dropping
to 24, 30, 60, 82, and 98 fps. The videos were distorted using the
CRF (Constant Rate Factor) parameter in the VP9 encoder. The
study found that the perceived visual quality of a video is
significantly impacted by its frame rate and that the preferred
frame rate is dependent on the content of the video. Participants
showed a strong preference for higher frame rates in videos with
excessive motion, and the authors observed that the effect of
frame rate on subjective quality decreases beyond 60 fps. The
ETRI LIVE STSVQ (Lee et al., 2021) database is a recent addition
to the HFR VQA landscape, containing 437 videos that have

undergone spatial and temporal downsampling and
compression. Unlike the LIVE YT-HFR videos, the
downsampled videos in this database were interpolated to
match the frame rate of the original video before being
displayed. The study reveals that reducing the bitrate budget
and applying spatial and temporal downsampling can lead to
better quality scores by minimizing compression artifacts by
reducing the amount of data that needs to be compressed.
However, the optimal balance between spatial and temporal
downsampling depends on the content. For videos with fast
and large movements, temporal downsampling can reduce
quality at lower bitrate, so spatial downsampling alone may be
more effective in limited bitrate budgets. Conversely, for videos
with minimal or no motion but plenty of spatial detail, temporal
downsampling is preferable at low bitrate compared to spatial
downsampling. The salient features of the above-mentioned
databases can be found in Table 3.

3.2.2 High frame rate VQA algorithms
FR VQA algorithms such as VMAF and SSIM are typically

designed to compare videos with the same frame rate. Thus in the
HFR VQA scenario, they are only applicable in assessing video quality
after the SFR video has been temporally upsampled to match the HFR
source video. However, these models often exhibit inconsistencies when
compared to human subjective opinions as shown in (Madhusudana
et al., 2020a). Thus, it is crucial to develop and employ algorithms that
consider quality variations arising from changes in frame rate.

TABLE 2 Summary of popular HDR VQA Databases. All databases are Type-1 as described in Section 2.1.

Database # Videos # Pristine
source

sequences

Source
characteristics

# Ratings
per
video

Public Distortions Duration Display device

VPQM-
MPEGHDR

20 5 944 × 1080/24-60fps 24 No HEVC, Tone
Mapped to 8 bit for

display

15–40s 47″ SIM2 HDR
LCD TV

HDR-VQM 90 10 1920 × 1,080/25fps 25 No H.264/AVC, Tone
Mapped to 8 bit for
Compression Inverse
Tone Mapped for

display

N/A 47″ SIM2 Solar HDR
LCD TV

DML-HDR 30 5 2048 × 1,080/30fps 18 Yes HEVC, AWGN, Low
Pass Filter, Salt-

Pepper Noise, Mean
Intensity Shift

10 s 40”” full HD LCD
Prototype HDR

Monitor

Pan et al.
(2018)

144 6 4K/50fps OETF: HLG
and PQ, Color Gamut:

BT.2020

22 No AVS2 10 s Sony 30″ OLED 4K
HDR TV, Sony 75″

LCD 4K HDR TV, LG
65″ OLED 4K HDR TV

Waterloo
UHD-

HDR-WCG

140 14 4K/24–60 fps OETF: PQ
Color Gamut: BT.2020

51 No H.264 and HEVC 10 s 31″ 4K HDR
ReferenceMonitor

LIVE HDR 310 31 4K/50-60fps OETF: PQ,
Color Gamut: BT.2020

33 Yes HEVC and Scaling 7–10 s 65″ QLED 4K UHD
HDR TV

HDR Sports 1,002 42 1080p-4K/50fps OETF:
Gamma and PQ, Color
Gamut: BT.709 and

BT.2020

30 No HEVC, Temporal
Sampling

6–9 s Samsung 55″ 4K HDR
TV, LG 55″ 4K

HDR TV
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Both Full-Reference and No Reference VQA algorithms are
employed for evaluating videos with different frame rates.
STGREED (Madhusudana et al., 2020a), and VSTR (Lee et al.,
2020) are the top-performing FR VQA algorithms. STGREED,
derived from the principles of natural video statistics, models the
statistics of the temporal bandpass video coefficients as GGDs
(Generalized Gaussian Distributions). The entropies of these
coefficients are computed for both the distorted and source
videos and then compared. It was observed that the entropy
remains relatively constant for the same frame rate but varies
across frame rates. An entropy bias term was introduced to
remove the effect of frame rate bias when comparing videos with
the same frame rate. Meanwhile, VSTR models the statistics of the
most-Gaussian frame difference and then computes the entropic
difference between the distorted and source sequence to quantify
quality, where the most-Gaussian frame difference is the one with a
minimum KL distance from a Normal Distribution. The authors
establish that the statistics of pristine videos are highly Gaussian
along directions of motion while unpredictable along other
directions and for distorted videos.

Although FR-VQA algorithms perform well, there is a need for
reliable NR-VQA algorithms to evaluate the quality of distorted
videos without their pristine version. Framerate Aware Video
Evaluator w/o Reference (FAVER) (Zheng et al., 2022) is an NR-
VQAmethod developed for the HFR use-case, where the statistics of
temporal and spatial bandpass videos are modeled as GGDs, and the
generated features are used for quality analysis.

STGREED achieves state-of-the-art correlation scores against
human judgments on LIVE YT HFR and ETRI LIVE STSVQ, with
VSTR as a close competitor. Although FAVER achieves the highest
performance, among other NR methods, on the LIVE YT HFR
database with a correlation of 0.6 against human judgments, it is still
a relatively low value. It highlights the challenges in HFR NR VQA.
As HFR videos are adopted more by consumers, it is crucial to utilize
perceptual analysis for optimal streaming and storage decisions. NR
VQAmodels are especially vital for User Generated Content (UGC).
The development of such models will allow the faster adoption of
HFR videos.

3.3 Cloud gaming videos

Cloud gaming is another popular streaming video application
where monitoring the video feed is essential to ensure a high-quality
gaming experience. Cloud gaming services have grown in popularity
within the digital gaming industry over the last decade. Several
major technology companies have aggressively invested in cloud
gaming infrastructure, including Meta Platforms, Google, Apple,
Sony, NVIDIA, and Microsoft. With cloud gaming, users can play a
wide range of games on their devices connected to the internet by
viewing gameplay scenes as videos, while the compute-intensive
game scene rendering process is performed on powerful cloud
servers. Client devices like laptops, smartphones, and tablets
capture users’ interactions and transmit them to cloud servers. A
simplified block diagram of an exemplar Cloud gaming setup is
shown in Figure 2. This section discusses the recent advancements
made toward accurately predicting Cloud Gaming Video Quality.

To begin, we discuss the challenges of assessing Video Quality
for Cloud Gaming videos and why algorithms specifically designed
for Cloud Gaming are necessary. The convenience of playing
complex video games on a resource-constrained mobile device
presents significant challenges due to engineering limitations in
the Cloud Gaming video streaming pipeline. Video rendered on
powerful Cloud Gaming servers is typical of very high quality
requiring high bandwidth for streaming to the client’s devices.
Like other streaming platforms, a Cloud Gaming provider resizes
and compresses the rendered gaming videos to ensure that videos
can be transmitted over limited available bandwidth to multiple
Cloud Gaming clients, resulting in reduced video quality. Another
critical factor affecting gameplay in cloud gaming is network latency.
As the video and control input data must be transmitted over the
internet, high network latency can reduce the gameplay experience
of the clients. Other factors affecting video quality include
resolution, frame rate, and the display capabilities of the device
playing the video. Additionally, complex games and a large number
of players can also negatively impact video quality. It is also
pertinent to note that generic VQA algorithms trained on natural
scene databases have suboptimal performance when used to

TABLE 3 Summary of popular HFR VQA databases. All databases are Type-1 as described in Section 2.1.

Database #Videos #Pristine
source

sequences

Source
characteristics

#Ratings
per video

Public Distortions Duration Display
device

BVI HFR 88 22 4K/120fps 51 Yes Temporal Downscaling:
Frame Averaging

10 s 27″ LCD
monitor,

Refresh rate:
120 hz

AVT-VQDB-
UHD-1 Test4

120 8 4K/60fps 24 Yes Temporal Downscaling,
H.264, Scaling

8–10 s N/A

LIVE YT HFR 480 16 4K/120fps 42 Yes Temporal Downscaling:
Frame Dropping,
VP9 Compression

10 s 27″ LCD
Monitor,

Refresh rate:
120 hz

ETRI LIVE
STSVQ

437 15 4K/120fps 10 bit 34 Yes Temporal Downscaling:
Frame Dropping, HEVC,

Scaling

4.5–7 s 27″ LCD
Monitor,

Refresh rate:
120 hz
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estimate video quality in Cloud Gaming videos. This is due to the
fact that rendered scenes of Cloud Gaming videos have very different
underlying statistical properties from natural scenes. Cloud gaming
also requires low latency and high frame rate in order to provide a
smooth and responsive gaming experience. These requirements may
not be adequately captured by traditional VQA algorithms. Thus, in
order to provide seamless gameplay for Cloud Gaming clients and to
reduce streaming costs for Cloud Gaming providers, the
development of algorithms that accurately estimate Cloud
Gaming video quality is crucial. The rest of this sub-section
discusses subjective Video Quality databases developed for Cloud
Gaming and the VQA algorithms used to accurately calculate Video
Quality for Cloud Gaming.

3.3.1 Cloud gaming video quality databases
As part of the early works, two relatively small databases were

developed. GamingVideoSET was introduced in Barman et al.
(2018), while the work by Barman et al. (2019) resulted in the
Kingston University Gaming Video Dataset (KUGVD). These
databases, however, were severely limited in terms of the number
of videos with subjective quality ratings and the variety of content. In
both databases, 15 resolution-bitrate distortion pairs were created
from each of the six source sequences, resulting in a total of only
90 human-annotated videos. The lack of abundant annotated data
made the development of reliable Cloud Gaming-specific VQA
algorithms difficult. A more comprehensive Cloud Gaming Video
Dataset (CGVDS) database was developed by Zadtootaghaj et al.
(2020b) to close this gap. With over 360 gaming videos collected

from 15 source sequences, the CGVDS included subjective quality
ratings, significantly increasing the number and variety of Cloud
Gaming videos that could be used to develop reliable algorithms for
VQA that were specific to Cloud Gaming use-cases. The three
databases GamingVideoSET, KUGVD, and CGVDS involved
rendering pristine gaming videos at 1080p resolution in the
Cloud Gaming servers and applying predetermined synthetic
distortions to generate lower-quality videos that were used in the
subjective studies. Human subjects watched the gaming videos on
monitors/TVs and provided quality ratings. The recent rise of
Mobile Cloud Gaming in the past few years and the increasing
number of Cloud Games in portrait mode necessitated the
development of a video quality database focused on requirements
of Mobile Cloud Gaming like including portrait videos in addition to
landscape videos, 720p resolution pristine videos and the human
ratings obtained with videos watched on small screen sized devices.
Such a database would be necessary to develop accurate VQA
algorithms focused on Mobile Cloud Gaming scenarios. In order
to bridge the gap, the LIVE-Meta Mobile Cloud Gaming (LIVE-
Meta MCG) database was introduced by Saha et al. (2023a). Using
20 pairs of resolution-bitrate distortions, 600 videos were obtained
from 30 source sequences of resolution 720p. A Google Pixel 5 was
used as the display device to display the videos, making it the only
Cloud Gaming subjective video quality study conducted on a mobile
device. Another notable resource on Cloud Gaming is the Tencent
Gaming Video (TGV) dataset presented in Wen et al. (2021),
however, the database is not publicly available. We summarize
the characteristics of all the Cloud Gaming databases in Table 4.

FIGURE 2
Example of a simplified cloud gaming system. The video frames of video games are rendered on service providers’ cloud servers and sent over the
Internet to end users’ devices. Players’ interactions are sent back to the cloud server over the same network.
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3.3.2 Cloud gaming VQA algorithms
Cloud Gaming scenarios make it much more practical to

measure Gaming Video Quality at the client without reference
video. Therefore, No-Reference Video Quality Assessment
algorithms are preferred over Full-Reference Video Quality
algorithms for estimating video quality for Cloud Gaming
workflows. Several generic No-Reference VQA algorithms trained
on Cloud Gaming databases have been used. A few of these
algorithms are BRISQUE, VIDEVAL, RAPIQUE, and VSFA.
However, due to the distinct requirements of Cloud Gaming that
distinguish it from generic video streaming, generic NR-VQA
algorithms perform poorly when benchmarked on Cloud Gaming
databases. Consequently, new NR-VQA algorithms focused on
Cloud Gaming videos have been developed to improve the
performance on cloud gaming databases. These algorithms are
specially designed considering the Cloud Gaming requirements,
resulting in enhanced performance. In Zadtootaghaj et al. (2018),
the authors introduce NR-GVQM that trains an SVR model to
evaluate the quality of gaming content videos by extracting nine
frame-level features, using VMAF (Li Z. et al., 2016) scores as proxy
ground-truth labels. The nine frame-level features include
perceptually motivated and objective features. The perceptually
motivated features include BRISQUE, NIQE, and BIQI (Moorthy
and Bovik, 2010b), while spatial and temporal information,
blockiness, blurriness, noise, and contrast constitute objective
features. A closely related work to NR-GVQM is presented in
“nofu” (Göring et al., 2019). It uses only the 360p center crop of
each frame to speed up the computation of twelve frame-based
features, followed by temporal pooling. More recent NR-VQA
Cloud Gaming shows that deep learning-based models can boost
performance for Cloud Gaming VQA task. These include NDNet-
Gaming (Utke et al., 2020), DEMI (Zadtootaghaj et al., 2020a), and
GAMIVAL (Chen et al., 2023). NDNet-Gaming and DEMI employ
a complex Densenet-121 (Huang et al., 2016) deep learning
backbone. NDNet-Gaming pre-trains the Densenet-121 with
ground truth labels obtained from VMAF scores, then fine-tunes
it withMOS scores due to the limited availability of subjective scores.
The final step involves computing video quality predictions using a
temporal pooling algorithm. The CNN architecture used in DEMI

architecture is similar to that of NDNet-Gaming, but specifically
addresses artifacts that include blockiness, blur, and jerkiness.
GAMIVAL combines modified spatial and temporal natural
scene statistic models and the pre-trained Densenet-121
backbone used in NDNet-Gaming, to predict gaming video
quality. GAMIVAL’s superior performance on LIVE-Meta MCG
shows the benefit of using a dual path approach by deploying
distortion-sensitive natural scene features on one side and
content-aware deep features on the other.

3.4 Virtual reality

A rapidly growing technology, Virtual Reality (VR) allows
users to interact in an immersive environment in a digital world.
To ensure a satisfactory user experience, VR content must be
evaluated rigorously as the market expands. Virtual Reality (VR)
aims to create a sense of “presence,” i.e., of being physically present
in a virtual environment. Omnidirectional/VR videos are
particularly well-suited for VR use cases. A VR video’s wide
field of view (FOV) allows viewers to view the scene from all
directions in an immersive first-person perspective. Unlike regular
videos viewed on flat screens, VR videos require a headset with a
gyroscopic sensor to adjust the video to the viewer’s head
movements. In addition to factors such as resolution and
compression level, VR VQA models must consider the larger
FOV and viewing angle. When viewing VR content, the
viewer’s eyes are much closer to the headset screen than the
typical viewing distance in the case of regular videos, causing a
significant reduction in the number of pixels per angle. Spherical
distortions can also occur when large FOV videos are projected
onto planar surfaces to make it easier to encode and transmit. VR
videos are modified differently to minimize transmission
bandwidth and storage requirements, as shown in Figure 3.
Foveated compression is one such method that exploits the fact
that the human eye is more sensitive to detail in the center of the
visual field (the fovea) than detail at the periphery by reducing the
resolution of the regions non-central relative to the viewing
direction. This achieves the reduction of the size of the video

TABLE 4 Summary of popular Cloud Gaming databases. All databases are Type-1 as described in Section 2.1.

Database #
Videos

# Pristine
source

sequences

Source
characteristics

# Ratings
per video

Public Distortions Duration
(sec)

Display
device

GamingVideoSET 90 6 1080p/30fps 25 Yes H.264 Compression and
Scaling

30 24″ Monitor

KUGVD 90 6 1080p/30fps 17 Yes H.264 Compression and
Scaling

30 55″ Monitor

CGVDS 360 +
anchor
stimuli

15 1080p/30-60fps Unavailable Yes H.264 NVENC
Compression and Scaling

30 24″ Monitor

TGV 1,293 150 1080p/30fps Unavailable No H.264, H.265, Tencent
codec Compression and

Scaling

5 Unknown
Mobile
Device

LIVE-Meta Mobile
Cloud Gaming

600 30 720p/30fps 24 Yes H.264 NVENC
Compression and Scaling

20 Google
Pixel 5
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while maintaining similar overall video quality. Another notable
method is the viewport-based transmission. By dissecting the
overall available FOV into smaller viewports, only the content
within the viewport along the viewing direction is streamed in high
quality. In contrast, lower quality is used elsewhere to reduce
network bandwidth consumption. Quality refinement occurs after
the user moves their focus to a new viewport. These factors

complicate VR video quality assessment (VR VQA) and render
the generic VQA algorithms ineffective for VR VQA.

3.4.1 VR video quality databases
Over the past few years, several subjectively rated VR videos

have been released covering a plurality of distortions as listed in
Table 5. The datasets cover various distortions like compression

FIGURE 3
Broad categories of VR Videos.

TABLE 5 Summary of popular VR-VQA databases. All databases are Type-1 as described in Section 2.1.

Database #Videos #Pristine
source

sequences

Source
characteristics

#Ratings
per video

Public Distortions Duration Display
device

VR-VQA48 48 12 4,096 × 2048, 25 fps 40 Yes 3 HEVC compression QPs.
Also contains head tracking

data

12 s HTC Vive

Zhang et al.
(2018b)

50 10 8K/4K, 30/60 fps 30 Yes 5 HEVC compression QPs 10 s HTC Vive

IVQAD2017 160 10 4,096 × 2048, 30 fps 13 Yes 3 resolutions, 3 frame rates
and 3 bitrate

15 s HTC Vive

VRQ-TJU 377 13 2560 × 2560, 30 fps 30 Yes 4 JPEG2000 bit rates,
4 H264 QPs, stereo

compression. Symmetric and
asymmetric

17 s HTC Vive

Zhang et al.
(2017)

384 16 4,096 × 2048, 30 fps 23 Yes 2 Noise levels, Gaussian blur,
Box blur, H264 encoding

(6 levels)

10 s HTC Vive

VQA-ODV 540 60 4K–8K, 24–30 fps ~22 Yes 3 map projections, 3 H265 QP
levels, contains head and eye

tracking data

10–23 s HTC Vive

VOD-VQA 774 18 4K, 30 fps ~20 Yes 4 viewport resolutions, 3 frame
rates,

4 H264 compression QPs

10 s HTC Vive

Xie et al. (2020) 1,608 30 3,840 × 2048, 30 fps ~68 Yes 5 H264 QP levels, 3 viewport
resolutions 10 viewport
refinement durations

10 s HTC Vive

LIVE-FBT-
FCVR 2D

180 10 7680 × 3840, 30 fps 36 Yes 3-region radially foveated
samples built using random
selection from 4 radii and

5 VP9 QPs

10 s HTC Vive

LIVE-FBT-
FCVR 3D

180 10 5376 × 5376,
30 fps, 3D

34 Yes 3-region radially foveated
samples built using random
selection from 4 radii and

5 VP9 QPs

10 s HTC Vive
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artifacts, foveation, viewport, projection, blur, and noise. VR-
VQA48 dataset (Xu et al., 2019) has been the most popular
dataset for benchmarking over the past few years. It contains VR
videos distorted with HEVC compression with 3 QP levels. Zhang Y.
et al. (2018) provides another dataset of VR videos with five quality
levels of HEVC compression. Duan et al. (2017) provides the
Immersive Video Quality Assessment Database 2017 (IVQAD
2017) with VR videos compressed with different resolutions, bit
rates, and frame rates. VRQ-TJU dataset (Yang et al., 2018) provides
videos by compressing stereo pairs of VR videos in both symmetric
and asymmetric manner with a combination of four bit-rates and
two compression algorithms. In addition to distorting VR videos
with compression algorithms, Zhang et al. (2017) developed a VQA
database by adding noise, Gaussian, and box blurs at various levels.
VQA-Omnidirectional Video (VQA-ODV) database (Li et al., 2018)
contains head and eye tracking data of subjects that were recorded as
they evaluated videos consisting of compression and projection
distortions. For viewport-dependent streamed videos, Viewpoint-
based Omni-Directional Video Quality Assessment (VOD-VQA)
(Meng and Ma, 2022) was introduced. It comprises videos with
varying combinations of viewport resolutions, compression QPs,
and refinement time. Xie et al. (2020) provide over 1,600 subjectively
rated samples for the same use case. Foveation distortions are
covered in the LIVE-Facebook Technologies-Foveated/
Compressed VR (LIVE-FBT-FCVR) database (Jin et al., 2021a),
which contains 2D and 3D videos. We summarize the VR VQA
databases in Table 5.

3.4.2 Full-reference virtual reality video quality
assessment (FR VR VQA)

The FR VR VQA algorithms range from simple modifications to
the popular single image IQA metrics to deep neural network based
metrics. The earliest FR VR VQA developed was Spherical PSNR
(S-PSNR) (Yu et al., 2015). For computing S-PSNR, the panoramic
ground truth, and distorted images are projected onto two unit
spheres. The spheres are uniformly sampled, and the mean square
error of signal values at those points is used for computing the
S-PSNR. CPP-PSNR (Zakharchenko et al., 2016) proposed to first
convert the images to Craster’s Parabolic Projection (CPP) format
before comparing the usual PSNR. Weighted-to-spherically-uniform
PSNR (WS-PSNR) (Sun et al., 2017) uses squared differences of signal
values that are weighted according to the corresponding mapped
spherical area in observation space. Similar to WS-PSNR, spherical
modification to the SSIM metric, S-SSIM, is proposed in Chen et al.
(2018). Xu et al. (2019) proposed to incorporate the user’s probable
viewing direction and estimates the empirical distribution of viewing
angle from subjective experiments andweigh each pixel accordingly to
obtain non-content-based perceptual PSNR (NCP-PSNR). Further,
the metric is improved to develop content-based perceptual PSNR
(CP-PSNR), for which they estimate the viewing direction based on
the content of the panoramic images. The viewing direction is
estimated using a random forest model trained using image
saliency heat maps. The same framework can be extended to
develop CP-SSIM. Croci et al. (2020) proposed a framework to
modify all available standard VQA metrics and adapt them to VR
VQA use cases by including attention information. They propose
decomposing the sphere into Voronoi patches of equal areas and
averaging the VQA metric across each patch.

The methods mentioned to this point fail to account for
temporal distortions as they all are modifications of single image
quality estimation metrics. M2OVQA (Chai and Shao, 2022) is a
statistical FR VR VQA metric that proposes a novel approach to
combine features in the spatial domain for image content (SDIC),
frequency domain for image content (FDIC), and frequency domain
for video content (FDVC). The SDIC features include contrast
invariant phase congruent structures, features extracted using
filters inspired by the human visual system, and color-sensitive
similarity features. The FDIC feature is computed by measuring the
similarity between the power spectral density of the distorted and
the reference frame. Similarly, the FDVC feature is the similarity of
power spectral densities of frame differences of distorted and
original videos. SDIC, FDIC, and FDVC metrics are combined
for each viewport to get a consolidated quality score. Lastly, the
quality scores for each viewport are summed with normalized
weights proportional to their saliency to obtain the unified
quality metric.

Next, we discuss a few deep learning-based models for FR VR
VQA. Li et al. (2018) proposed a deep learning-based FR VR VQA
method that leverages head and eye movement data captured along
with the VQA-ODV dataset. The difference between the reference
and distorted videos is fed as the input to the network along with the
distorted frame. The distorted and error frames are sampled into n
patches using the head motion heatmap as a probability distribution.
Each patch is processed through a deep learning network trained on
the VQA-ODV dataset that estimates the quality of the patch to
obtain ‘n’ local quality scores. Next, the scores are combined by
weighting them to the normalized eye motion heatmaps. V-CNN (Li
C. et al., 2019) is another popular FR VR VQA model that first
determines the likeliness of viewports based on the frame’s contents
and uses it to weigh and sum the quality of each viewport. The
viewport prediction network takes in the current frame and the
current frame difference. It employs spherical convolutions to
output a spherical heatmap of the importance of viewports,
followed by the shortlisting of the most important viewports. A
softening filter follows this and is applied to merge the proposed
viewports that are too close to each other. The selected viewports are
used for the quality estimation step. Each viewport of the distorted
frame and its difference from the reference viewport are fed to a deep
neural network of stacked dense blocks to estimate the local quality
score. The overall VQA score is computed by averaging the local
scores according to viewport importance weights. 3D-360 VQA
(Guo et al., 2022) is another deep learning-based method that
consists of a deep neural network containing 3D convolutions to
better capture the temporal structure of the video. They propose a
viewport projection method to reduce the spherical distortion when
the spherical frame is projected on a 2D viewport. The deep neural
network inputs the distorted and reference frames and outputs the
local quality score. The local scores of each patch are averaged to
output the overall quality score of the VR video.

3.4.3 No reference virtual reality video quality
assessment (NR VR VQA)

Compared to FR VR VQA methods, NR VR VQA methods are
limited. The method proposed by Zhang et al. (2021b) involves
computing frame-level features in the spherical domain before
pooling them temporally to obtain video-level features. The
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frame-level features include sharpness, blockiness, blurriness, and
spatial and temporal information. Each feature is pooled temporally
by calculating the root mean squares. Polynomial kernels with four
bases are used to fit the features to the quality scores using multiple
kernel learning (MKL) regression.

In Wu et al. (2019), a deep learning-based NR VR VQAmethod
is proposed that leverages 3D convolutions. The network takes ten
consecutive 128 × 128 RGB patches as input and is trained on data
collected by the authors. The dataset contains seven panoramic
videos distorted with 20 variations, including two projections, two
compression algorithms, and 5 bitrate. The scores of different
patches are averaged in a positionally dependent manner to
obtain the final quality score of the panoramic video. Another
3D convolution-based deep learning method is proposed by Yang
et al. (2018) that operates on stereo pairs of the panoramic video.
The difference between the two stereo image patches of sizes 32 ×
32 from 10 consecutive frames is fed as input to the network. This
method allows for estimating quality when the distortions of the pair
of images are not the same. The scores of the patches are then
averaged positionally to obtain the cumulative score for the VR
video. Yang et al. (2021) proposed another deep learning network
based on 3D spherical convolutions (Cohen et al., 2018) for NR VR
VQA. The input to the network is three stereo difference frames
(sampled at an interval of frames) resized to 1280 × 1280 pixels. This
network employs spherical convolutional kernels to directly operate
in the spherical domain and an attention-based non-local block to
better capture long-ranged non-local structures in the video.

3.4.4 Foveated VR VQA
The assessment of foveated content requires sophisticated tools

and is more complicated than that of typical VR videos. The VR
VQA methods mentioned earlier work well for content with
consistent resolution and detail. However, they do not account
for the reduced perception of content in peripheral vision due to
the cone sensors’ exponential decline. Thus, it is essential to
determine how the strength and gradient of the applied foveation
affect the perceived quality of foveated content to develop accurate
quality assessment models. There exist only a few FR-IQA models
for foveated images like Foveated Wavelet Quality Index (FWQI)
(Wang et al., 2001), foveated PSNR (FPSNR) and foveated weighted
SNR (FWSNR) (Lee et al., 2002), Foveation-based Content Adaptive
SSIM (FA-SSIM) (Rimac-Drlje et al., 2011). Foveated Entropic
Differencing (FED) (Jin et al., 2021c) is a recently developed FR
foveated VQA algorithm which employs the natural scene statistics
of bandpass responses by applying differences of local entropies
weighted by a foveation-based error sensitivity function.

Spatially Varying BRISQUE (SV-BRISQUE) (Jin et al., 2021b), is
an NR foveated VQA tool that proposes a spatially-varying version
of natural scene statistics (NSS) (Mittal et al., 2012) and natural
video statistic (NVS) features for estimating the video quality. These
parameters are assumed to be stationary over concentric regions and
computed for “K” concentric regions. Finally, the extracted features
are used for training a support vector regressor (SVR) to map to the
MOS scores. Foveated Video Quality Assessment (FOVQA) (Jin
et al., 2022) improves the SV-BRISQUE algorithm by considering
the gradient of the quality fall-off in the radial direction by building
upon the space-varying NSS and NVS features to provide a more
accurate model for NR foveated VQA. After obtaining space-variant

NSS and NVS feature maps as in Jin et al. (2021b), each parameter
map is weighted and aggregated using a set of “K” toroidal Gaussian
functions with different eccentricities and variance to obtain a set of
radial basis features. In addition, based on mean ranked opinion
scores, it was observed that sudden spatial increases in compression
could be quite noticeable, especially on moving content. In order to
measure this, a model that has been trained separately is utilized to
analyze the input video and generate a QP map that estimates the
compression level in each specific region. The fall-off gradient is
then calculated by applying Gaussian derivatives that have been
smoothed radially to the QP map. The gradient map is obtained by
convolving the predicted QPmap with the Gaussian derivatives. The
gradient maps are combined using toroidal Gaussian, similar to the
process of processing NSS feature maps, to create radial basis
derivative features. These features, along with radial basis NSS
and NVS features, are used to train an SVR to predict video
quality. FOVQA surpasses all traditional VQA algorithms and
SV-BRISQUE for NR-foveated VR VQA.

3.4.5 VQA for viewport adaptive streaming
Quality assessment of videos streamed in a viewport adaptive

manner has to account for the changes in quantization parameter
(QP) and spatial resolution (SR) to the refinement duration (RD)
when switching from an arbitrary Low Quality (LQ) scale to an
arbitrary High Quality (HQ) one. To this end, a couple of specialized
VQA models have been developed. Meng and Ma (2022) formulate
an analytical model to connect the perceptual quality of a
compressed viewport video with the triplet of variables
mentioned above. The QP, SR, and RD variables are estimated
using linearly weighted content features. VOD-VQA dataset is
created and used for developing this model. Xie et al. (2020) also
construct a dataset of subjective quality scores on VR videos by
modifying the QP, SR, and RD parameters and using it to build an
analytical model for perceptual quality. The video quality is modeled
as a product of separable exponential functions that measure the QP
and SR-induced perceptual impacts in terms of the RD and a
perceptual index measuring the subjective quality of the
corresponding viewport video after refinement.

3.5 Quality of experience (QoE)

Content creators and distributors have traditionally focused on
video quality, but Quality of Experience (QoE) has emerged as a key
performance indicator as users’ experience transcends technical
parameters. Initially, the focus was on improving technical
aspects of video quality, such as resolution, frame rate, and
compression. With the shift from traditional broadcasting to
online streaming buffering, latency, startup delay, playback
stalling events, and playback continuity challenges emerged as
equally significant factors. In response, content creators and
distributors began paying more attention to the quality of
experience, user interface design, and user engagement. Machine
learning and artificial intelligence algorithms are increasingly used
to improve QoE and make it more personalized. Today, QoE is a
crucial metric for content creators, service providers, and
advertisers. By ensuring a high QoE, they can increase
engagement, reduce churn, and ultimately increase revenues.
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Dynamic adaptive streaming over HTTP (DASH) provides a
technology that adapts to the viewer’s bandwidth and processing
capabilities, allowing the video to be streamed efficiently without
requiring the viewer to adjust the video quality manually. In this
work, we limit our focus to VQA databases and algorithms tailored
to analyze common challenges in video streaming, such as buffering,
latency, startup delay, playback stalling events, and playback
continuity. We do not study other effects encompassing QoE like
immersion, as discussed in Perkis et al. (2020).

3.5.1 QoE databases
Similar to traditional VQA, subjective QoE databases serve as

the benchmarks for objective QoE assessment models. A summary
of the popular QoE databases can be found in Table 6. The early QoE

databases are all of Type 1 (as discussed in 2.1), comprising
synthetically QoE distorted videos from a handful of pristine
videos. The LIVE Mobile VQA database (Moorthy et al., 2012)
comprises 200 distorted videos manually created from 10 HD
original videos with distortion types including compression,
packet-loss, and temporal dynamics, like compression rates and
frame-freezes. A small database of 18 distorted videos was proposed
in a study by Chen et al. (2014), which created 15 quality-varying
videos of relatively long duration by varying encoding bitrate. The
LIVE Mobile Stall Video Database-I (Ghadiyaram et al., 2014) and
LIVE Mobile Stall Video Database-II (Ghadiyaram et al., 2019) are
two with simulated patterns of stalling events in length, position, and
frequency of occurrence. WaterlooSQoE-I (Duanmu et al., 2017b) is
another QoE video database containing 200 video sequences

TABLE 6 Summary of popular QoE databases. All databases are Type-1 as described in Section 2.1.

Database #Videos #Pristine
source

sequences

Source
characteristics

#Ratings
per video

Public Distortions Duration Display device

LIVE Mobile
VQA Database

200 10 2K/30fps, 60fps 27 Yes Compression rate,
packet-loss, frame-

freezes,
H.264 Compression

15 s Smartphone (960 ×
540), Tablet
(1,280 × 800)

HTTP-based
Video Streaming

Database

15 3 720p/30fps 25 Yes Bitrate,
H.264 Compression

300 s 58 inch HDTV

LIVE Mobile
Stall Video
Database-I

180 24 720p, 360p 27 Yes Frequency and length of
stalls, length of initial

delays,
H.264 Compression

29–134 s Apple iPhone 5

LIVE Mobile
Stall Video
Database-II

174 24 720p, 360p/30fps 27 Yes Start-up delay length,
stall lengths, stall
positions, and the
number of stalls,

H.264 Compression

29–134 s Laptop-size monitor

WaterlooSQoE-I 200 20 1080p/24-30fps 25 Yes Initial buffering, stalling
and compression rate,
H.264 Compression

10 s LCD monitor (2,560 ×
1,600)

LIVE-NFLX-I 112 14 1080p/24,
25 and 30f

19 Yes Compression rate,
rebuffering events,
H.264 Compression

About 60 s 5.1 inch Samsung S5

WaterlooSQoE-
II

168, 588 12 1080p/30fps 35 Yes Compression rate,
spatial resolution, frame
rate, H.264 Compression

4 s, 8 s LCD monitor (1920 ×
1,080)

WaterlooSQoE-
III

450 20 1080p/24-30fps 34 Yes initial buffering, stalling,
bitrate switching

(13 network traces and
6 ABR algorithms),
H.264 Compression

13 s LCD monitor (1920 ×
1,080)

LIVE-NFLX-II 420 15 1080p/30fps More than 22 Yes initial buffering, stalling,
bitrate switching

(7 network traces and
4 ABR algorithms),
H.264 Compression

25 s 24 inch LCD monitor
(1920 × 1,080)

WaterlooSQoE-
IV

1,350 5 4K/24 and 30 fps 33 for Phone,
32 for HDTV,

32 for
UHDTV

Yes initial buffering, stalling,
bitrate switching

(9 network traces and
5 ABR algorithms),
H.264 and HEVC
Compression

30 s Phone (5.8 inch Apple
iPhone XS Max),

HDTV (24 inch View
SonicVA2452SM),

UHDTV (55 inch Sony
XBR55 × 800H)
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focusing on the combined effect of the network artifacts, like
compression, startup delay, and stalling events occurring at the
beginning or the middle point of the video sequence, while
WaterlooSQoE-II (Duanmu et al., 2017a) contains 588 videos
with varying levels of compression, spatial resolution, and frame
rates. LIVE-NFLX-I (Bampis et al., 2017b) comprises 112 distorted
videos generated using H.264 encoder with eight payout patterns,
including different compression rates and rebuffering events.

Next, we discuss Type-2 databases that contain realistic QoE
distortions and include real-world network traces to record actual
network changes. WaterlooSQoE-III (Duanmu et al., 2018) studies
QoE of streaming videos transmitted with six different adaptive
bitrate streaming algorithms: BBA (Huang et al., 2014), AIMD (Liu
et al., 2011), ELASTIC (De Cicco et al., 2013), QDASH (Mok et al.,
2012), and FESTIVE (Jiang et al., 2014) with 13 bandwidth profiles.
LIVE-NFLX-II (Bampis et al., 2021) consists of 420 adaptive
streaming videos focusing on low bandwidth conditions with
actual network measurements and a pragmatic client buffer
simulator. WaterlooSQoE-IV (Duanmu et al., 2020) contains
1,350 streaming videos generated from various source video
material, video codecs, network setups, adaptive bitrate (ABR)
algorithms, and viewing screens. These subjective quality
databases can be used to develop objective QoE algorithms for
adaptive video streaming, enabling researchers to develop objective
methods more closely aligned with human visual perception.

3.5.2 QoE evaluation algorithms
A common QoE evaluation model is a hybrid model that

combines QoS-driven user QoE evaluation and FR-VQA-based
signal fidelity measurements to quantify human visual
perception. Some common representative VQA models used for
QoE evaluation are SSIM, MS-SSIM (Wang et al., 2003), ST-RRED,
and VMAF. The other part of a typical QOE evaluation model is the
QoE assessment model. Streaming Quality Index (SQI) (Duanmu
et al., 2017b) combines video presentation quality, which applies FR-
IQA algorithms like SSIM, MS-SSIM, and rebuffering information.
Each stalling event divides the streaming session into three parts,
including the time interval before, during, and after the stall. The
QoE loss during the stalling event and the decline of memory
retention after the stall event is approximated with an
exponential decay function and Hermann Ebbinghaus forgetting
curves. The instantaneous QoE drop due to stall events is computed
by aggregating the QoE drop caused by each stall event.

QoE assessment algorithm proposed in Singh et al. (2012)
involves using a random Neural Network to estimate QoE scores
based on inputs of QP value and rebuffering-related features. Video
assessment of temporal artifacts and stalls (Video ATLAS) (Bampis
and Bovik, 2017) is a machine learning framework that combines
several QoE-related features, including objective quality features,
rebuffering-aware features, and memory-driven features, to make
QoE predictions. Unlike Video ATLAS, which can only provide
overall QoE scores, Bampis et al. (2018b) suggested a range of
recurrent dynamic neural networks that carry out continuous-time
QoE prediction. It incorporated VQA scores, playback status, and
memory data to predict QoE scores. A time-series forecasting
ensemble aggregating two or more continuous QoE forecasts
were used to provide more reliable prediction performance. Deep
learning models have demonstrated excellent performance in recent

years in comprehending the growth of human sensory cortex
processing. D-DASH (Gadaleta et al., 2017) is a framework that
integrated deep learning and reinforcement learning methods to
improve the quality of dynamic adaptive streaming over HTTP
(DASH). DeepQoE (Zhang H. et al., 2018), an end-to-end QoE
prediction framework, uses features obtained from a deep neural
network trained on classification or regression tasks. In Tao et al.
(2019), a data-driven strategy was proposed to predict QoE scores by
developing a novel deep neural network (DNN) approach that
analyzes the correlation between mobile video transmission
network parameters and subjective QoE scores. In Huang et al.
(2022), a model-assisted deep learning technique was employed to
predict channel route loss, which was then used to predict video
streaming MOS. Yan et al. (2019) conducted a comparative analysis
of multiple ABR algorithms on the QoE using data from the
deployed live TV streaming website Puffer 1. In addition, an
enhanced ABR algorithm was proposed, trained using the
collected data, that helped achieve superior video quality while
minimizing time spent on video stalls during streaming.

4 Conclusion and future work

Video Quality Assessment is a highly challenging and significant
issue within the realm of Video Engineering and has garnered
significant attention. Recent advances in deep learning and
learning theory, as well as the emergence of newer video
technologies such as High Dynamic Range and High Frame Rate
videos, the growth of Cloud Gaming and VR/AR applications, and
the advent of hardware-accelerated video compression tools, have
significantly impacted the evolution of VQA. This paper provides a
comprehensive survey of the development of VQA over the last
2 decades, tracing its journey from the introduction of perceptual
image quality assessment metrics such as SSIM and VIF in
2003–04 to the modern-day VQA algorithms using deep
learning, which has expanded beyond traditional videos to
encompass contemporary video applications. In conclusion, this
survey culminates in discussing the most recent and upcoming
trends in VQA and our perspective on how the VQA domain
will evolve in the next decade.
Deep Learning models have already achieved remarkable progress
in most sub-domains in VQA, surpassing traditional methods. The
superior performance of Deep Learning models may be attributed to
their ability to automatically learn high-level representations from
raw data, thereby minimizing the need for manual feature
engineering. As the field of VQA continues to make strides in
deep learning, it is anticipated that the growth of VQA databases will
expand in quantity and scale. These more extensive databases will
provide a richer and more comprehensive data source for training,
testing, and benchmarking deep learning models, enabling them to
attain greater accuracy and reliability. We also foresee considerable
work involving neural network architecture design innovations
using CNNs and Transformers similar to the recent work
MUSIQ (Ke et al., 2021) that are specifically suited for IQA/
VQA tasks.
Vision Sciencemodels have continued to dominate VQA (Mantiuk
et al., 2021) even with the deep learning revolution. We hypothesize
that vision science-based models will continue to play a crucial role
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in further advancing VQA by providing a more comprehensive
understanding of the perceptual processes involved in human visual
perception. By leveraging insights from vision science through a
better understanding of human visual systems, researchers can
develop models that more accurately simulate human visual
processing and attention mechanisms, which will further improve
the VQA system’s accuracy and reliability. Vision Science models
offer another significant advantage of being inherently explainable,
as they are developed based on the workings of the human visual
system. This makes them particularly valuable in developing robust
VQA systems, as they avoid the uncertainties associated with deep
learning-based black box models. By providing clear explanations
for how VQA models arrive at their decisions, Vision Science
models can enhance the interpretability and trustworthiness of
VQA systems, making them more useful in industrial
deployment applications.
Representation Learning has emerged as another promising area
for advancing VQA, as it addresses the current limitations of labeled
data in IQA/VQA. The success of Unsupervised feature learning for
high-level vision tasks has propelled the development of
representation learning for IQA/VQA (Madhusudana et al.,
2022a; b; Saha et al., 2023b). We anticipate that the trend
towards developing representation learning frameworks from the
perspective of low-level vision tasks such as VQA will continue to
gain momentum. This approach has the potential to significantly
improve the accuracy and reliability of VQA systems and may lead
to breakthroughs in Video Engineering.
Emerging Domains such as HDR, HFR, Cloud Gaming, and VR/
AR are expected to grow steadily, closely following the increasing
wireless internet speeds enabled by the introduction of 5G and 6G
technologies. As these technologies become more widely adopted by
consumers, newer and innovative applications of VQA will emerge,
creating more exciting opportunities for future VQA research and
development.
Generative AI has revolutionized machine learning research recently.
The success of Generative AI can be attributed to evolving deep learning

techniques and the availability of large-scale datasets. These advances
have enabled researchers to create previously impossible, realistic, and
detailed images and videos. As a result, generative AI has opened up
new avenues of research and innovation across various fields, including
VQA. As more Generative AI models gradually progress from research
into industrial workflows, technical quality control of the generated
images and videos will be crucial. We hypothesize that current VQA
algorithms will not be able to predict the technical quality of images and
videos obtained from Generative AI workflows, potentially opening up
the scope for VQA research focused on these directions.
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