
Perceptually Guided Simplification of Lit, Textured Meshes

Nathaniel Williams * David Luebke † Jonathan D. Cohen ‡ Michael Kelley † Brenden Schubert †

ABSTRACT

We present a new algorithm for best-effort simplification of
polygonal meshes based on principles of visual perception.
Building on previous work, we use a simple model of low-level
human vision to estimate the perceptibility of local simplification
operations in a view-dependent Multi-Triangulation structure. Our
algorithm improves on prior perceptual simplification approaches
by accounting for textured models and dynamic lighting effects.
We also model more accurately the scale of visual changes
resulting from simplification, using parametric texture deviation
to bound the size (represented as spatial frequency) of features
destroyed, created, or altered by simplifying the mesh. The
resulting algorithm displays many desirable properties: it is view-
dependent, sensitive to silhouettes, sensitive to underlying texture
content, and sensitive to illumination (for example, preserving
detail near highlight and shadow boundaries, while aggressively
simplifying washed-out regions). Using a unified perceptual
model to evaluate these effects automatically accounts for their
relative importance and balances between them, overcoming the
need for ad hoc or hand-tuned heuristics.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Geometric algorithms,
languages, and systems

Keywords: Level of detail, perceptually motivated rendering,
mesh simplification

1 INTRODUCTION

Interactive graphics has come to rely on level of detail or LOD
techniques. These techniques simplify the geometric
representation of a scene to reduce its rendering cost, while
attempting to preserve visual fidelity. A great deal of excellent
research has studied how to simplify polygonal meshes, but the
question of how to evaluate visual fidelity to guide that
simplification has received less attention. Mesh simplification has
been guided primarily by geometric metrics. Usually, however,
the important question is not geometric but perceptual: does the
simplification look like the original?

Of course, researchers in LOD have long recognized the
importance of perceptual issues, but have tended to address those
issues in an ad hoc fashion. For example, silhouettes are known to
play a key role in object recognition and detection, and therefore
even the earliest mesh simplification algorithms included
heuristics to preserve detail in high curvature regions, which are
more likely to project onto the silhouette; see for example the
[Rossignac and Borrel 1993] vertex-clustering approach, or the
decimation algorithm of [Schroeder et al. 1992]. View-dependent
simplification research has also emphasized silhouette
preservation; for example, [Luebke and Erikson 1997] enforce a
tighter screen-space error threshold for silhouette regions than
interior regions. Similarly, the presence and movement of
specular highlights across a surface are known to provide
important clues to its shape, so [Xia and Varshney 1996] and
[Klein and Schilling 1999] describe view-dependent
simplification schemes that preserve detail where such highlights
are likely to appear. Many researchers have used heuristics and
user-specified weights to balance the importance of geometric
fidelity during simplification against preservation of appearance-
related attributes, such as color, normals, and texture coordinates
[Garland and Heckbert 1998, Erikson and Manocha 1999, Hoppe
1999]. At a higher level, [Funkhouser and Sequin 1993] describe
a predictive system for choosing LODs to maintain visual quality
at constant frame rates; their system accounts for many perceptual
factors. Again, the system is fundamentally heuristic, with user-
tunable parameters to control the relative importance of various
perceptually-motivated factors.

We describe a polygonal simplification algorithm grounded
directly in principles of visual perception. Briefly, we estimate the
contrast that would be induced by local simplification operations
(Figure 1), and the maximum spatial frequency of the resulting
distortion, and predict the perceptibility of the operations based on
a simple model of low-level vision called the contrast sensitivity
function or CSF. Though the CSF does not provide a complete
perceptual model, the resulting system achieves many effects
desirable in a simplification algorithm, such as preservation of
silhouette boundaries and shading- or illumination-sensitive
simplification. More importantly, these effects proceed naturally
from the perceptual model. This addresses the question of how,
without heuristics or user input, to trade off such factors as
silhouette preservation with distortion of a model’s underlying
color or texture coordinates. Note that we do not claim to achieve
such effects for free; for example, we maintain normal cones to
determine which regions occupy the visual silhouette. But the
importance of that silhouette status—the decision of when to
simplify a silhouette region rather than an interior region—derives
from the perceptual model.

1.1 Motivation: a pragmatic approach

The primary goal of prior perceptual LOD approaches has been
imperceptible simplification: create or select a level of detail
visually indistinguishable from the original model. We argue that
this approach is flawed. First, most interactive systems forced to
use LOD to maintain frame rate must compromise ideal visual
quality to do so. Put another way, if you can’t afford to render the

* University of North Carolina at Chapel Hill
† University of Virginia
‡ Johns Hopkins University
 than@cs.unc.edu, luebke@cs.virginia.edu, cohen@cs.jhu.edu

original model, you probably can’t afford to render an
indistinguishable approximation. Second, the users of an
application in which simplification must not be perceptible are
unlikely to trust even a simplification algorithm that claims
imperceptibility. A scientist, for example, might prefer to suffer
slow frame rates rather than to trust that important features of a
visualization are not being simplified away. Finally, and most
importantly, at this time it does not appear feasible to evaluate a
sophisticated model of visual perception fast enough to be used in
interactive rendering.

In particular, the CSF models used by researchers to date (see
Section 2.1) provide a reasonable first approximation to low-level
perceptibility, but fail to take into account many important
perceptual factors. Variations between individual users,
adaptation to environmental lighting conditions, temporal
sensitivity to flicker or sudden onset (as of a “pop” between
LODs), chromatic versus achromatic contrast sensitivity, and
facilitation/suppression via visual masking are all effects not
modeled by the simple CSF. Some state-of-the-art models for
accelerating offline rendering incorporate many of these effects
[Ramasubramanian et al. 1999, Myszkowski et al. 2001], but
require orders of magnitude longer than the few milliseconds
available in interactive rendering. To guarantee imperceptible
rendering under these conditions currently appears out of reach,
and to achieve it in practice requires making conservative

decisions that prevent much simplification; for example, [Luebke
and Hallen 2001] report that models in their system could be
simplified two to three times further without introducing
perceptible artifacts. Therefore, we take a pragmatic approach that
focuses on perceptually-guided best-effort reduction to a triangle
budget.

1.2 Contributions

To briefly summarize the contributions of this paper:

• We extend the perceptual simplification framework of [Luebke
and Hallen 2001] to textured models. The result: a more
applicable algorithm capable of texture-content-sensitive
simplification.

• We also use parametric texture deviation to measure distortion
more accurately than the Luebke-Hallen approach. The result is
better simplification for a given polygon count.

• We introduce techniques to incorporate the effect of dynamic
lighting calculations. We can account for both specular and
diffuse effects, under both Gouraud-shaded vertex lighting and
per-pixel normal-map lighting. The result is better
simplification of lit models.

• We evaluate our results against prior work both visually and
with a sophisticated image metric.

Figure 1: Contrast calculation and simplification effects on a textured and lit torus. The model is shown (a) at full resolution
with 57,660 triangles and (b) simplified by 50%. The close-up (c) illustrates preservation of silhouettes and extra simplification
in low-contrast areas, such as washed-out specular highlights and deeply shadowed regions. Image (d) shows the contrast due
only to dynamic lighting; (e) shows the contrast due solely to the spotted texture; (f) shows the combined contrast used to
generate the simplifications shown in (b) and (c).

(a) (b) (c)

(f) (e)(d)

Our work builds on research efforts by several groups. Our
algorithm relates most closely to the approach of Luebke and
Hallen, but applies to a much broader class of models because we
account for textures and dynamic lighting. They also emphasize
imperceptible simplification, while we focus on the pragmatic
approach of perceptually-guided best-effort rendering to a budget.
We also incorporate work by [Cohen et al. 1998] on bounding
parametric texture deviation, as well as the Multi-Triangulation
(MT) data structure by [DeFloriani et al. 1997, DeFloriani et al.
1998]. We discuss this and other related research in the following
sections.

2 RELATED WORK

2.1 Perceptually guided rendering

Perceptually guided rendering is hardly a new field; many
researchers have investigated algorithms to accelerate rendering
by avoiding computation for which the result will be
imperceptible. Examples include [Bolin and Meyer 1998],
[Myszkowski et al. 2001], and [Ramasubramanian et al. 1999].
Unlike our work, which targets interactive rendering, most
previous perceptually based rendering approaches have examined
offline realistic rendering approaches such as ray and path tracing.
These frameworks typically require seconds or minutes to create
an image, and can therefore employ sophisticated perceptual
models such as that described by [Ferwerda et al. 1997]. State-of-
the-art perceptual models account for much of the known
behavior of the low-level visual system, but are simply too costly
for real time rendering. For example, Ramasubramanian et al.
report times of several seconds to evaluate a 512x512 image. Such
models are clearly out of reach for interactive rendering, which
measures frame time in milliseconds.

[Reddy 1997] describes an early attempt to guide LOD
selection entirely by a principled perceptual model. Reddy
analyzed the frequency content of objects and their LODs in
several images rendered from multiple viewpoints. If a high-
resolution and a low-resolution LOD differed only at frequencies
beyond the modeled visual acuity, or greatest perceptible spatial
frequency, the system used the low-resolution LOD. Later, Reddy
[2001] presented an updated version of this approach for terrains.
In similar work, [Scoggins et al. 2000] analyzed the frequency
content by transforming a prerendered reference image to
frequency space and modulating the resulting spectrum by a
perceptually modeled transfer function, then using mean-squared
error to choose an appropriate LOD. Both approaches rely on
images from just a few viewpoints, which introduces the
possibility of sampling error, and both use a small set of discrete
LODs, which prevents adaptive simplification (for example to
preserve silhouettes).

[Lindstrom and Turk 2000] describe an image-driven
approach for guiding the simplification process itself. They
render, from multiple viewpoints, each model that would result
from many possible simplification operations, and evaluate the
cost of each operation by differencing the rendered images from
images of the original model. Again, sampling from limited
viewpoints and using static LODs have disadvantages for
perceptually based simplification, but Lindstrom and Turk’s
approach has the important benefit that simplification is
ultimately guided not by geometric error, nor by some
combination of geometric and shading attribute error, but by an
estimation of what the effect the simplification will have on the
final rendering. This approach is therefore close in spirit to our
work, which strives to drive simplification directly by a model of
its perceptual effect.

Some simplification algorithms, though not guided by a
perceptual model, attempt to preserve the appearance of an object
directly by using enough polygons to prevent simplification

artifacts larger than half a pixel. [Cohen et al. 1998] track the
parametric surface distortion to derive a screen-space bound on
the movement of color (represented by a texture map) and lighting
(represented by a normal map) across the surface. Similar work by
[Schilling and Klein 1998], and later work by the same authors
[Klein and Schilling 1999], also deserves mention. In the former,
they account for texture distortion using a surface mapping
technique similar to that of Cohen et al; in the latter, they account
separately for lighting artifacts in vertex-lit models using cones
that bound the normals and halfway vectors. Our work improves
on these approaches by providing best-effort simplification to a
budget, and by using a perceptual model to regulate geometric,
texture, and lighting effects in a single framework. This opens up
opportunities to simplify more aggressively, for example in the
washed-out region of a specular highlight (see Figure 1).

Our approach most closely follows the work of [Luebke and
Hallen 2001], who also guide view-dependent simplification with
a model of the CSF. The key idea behind the Luebke-Hallen
approach is to evaluate local simplification operations according
to the worst-case contrast and worst-case spatial frequency of
features they could induce in the image. This provides a
principled way to reason about the perceptibility of the resulting
simplification. We extend these concepts to a more general and
practical framework for simplification of meshes.

2.2 Texture deviation

An appropriate geometric way to measure the error of texture
mapped surfaces is to bound the texture deviation [Cohen et al.
1998, Lee et al. 2000, Sander et al. 2001]. The texture deviation is
a 3D distance in object space between pairs of corresponding
points. The correspondence is established in parameter space.
Thus it tells us how far any point on the original surface—for
example the point corresponding to a particular texel—may move
in 3D when we replace the surface with the simplified version.

One way to use this texture deviation metric in a view-
dependent level of detail system is to project it to screen space.
We find or approximate the closest point to the eye point of the
bounding sphere of some node. Using this distance from the eye
to the bounding sphere, we compute the length of the texture
deviation vector in screen space. This measures the number of
pixels of deviation for the model and bounds the shift of texels in
screen-space as a result of simplification.

As we will see in Section 3, the 3D texture deviation may also
be used in combination with a node’s texture contrast to bound the
spatial frequency of its most perceptible feature and compute its
imperceptibility distance.

2.3 The Multi-Triangulation

In this section we briefly describe the MT data structure
introduced by [DeFloriani et al. 1997]. The MT is a hierarchical
model in the form of a directed acyclic graph, represented by a set
of nodes connected by a set of arcs. The topmost root node of the
graph is called the source, and the bottommost node is the drain.
Figure 2 illustrates a small example.

Each node of the MT represents a small change to the mesh: a
refinement operation if we are traversing downward, or a
simplification operation if we are traversing upward. We create
these nodes from the drain to the root during an offline bottom-up
simplification process. Each arc represents one or more mesh
triangles. The triangles removed from the model by a
simplification operation are stored with the child arcs of the
operation’s node, and the coarser replacement triangles are
associated with its parent arcs. Thus applying the local
simplification operation encoded by the end node of an arc A (the
node beneath A) will create the triangles encoded in the arc, and
applying the simplification encoded by its start node (above A)
removes the triangles.

The arcs of the MT represent the dependencies of one mesh
operation on another. So, for example, if we wish to perform the
refinement indicated by a node, we must first perform the
refinements indicated by all of the node’s parents. Performing the
node’s operation amounts to replacing the primitives of a node’s
parent arcs with those of its child arcs, or vice versa.

To extract a connected, consistent representation of the
surface, we generate a cut of the graph. A cut is a set of arcs that
partitions the nodes of the MT, leaving the source node above the
cut, and the drain node below it. In addition, if the cut contains arc
A, then it must not contain any ancestor or descendent of A. The
triangles of such a cut represent our input surface at some
resolution. The cut representing the coarsest level of detail crosses
all the child arcs of the source node, whereas the cut representing
the finest level of detail crosses all the parent arcs of the drain.
We discuss how to generate cuts representing a particular triangle
budget in Section 5.1.

For our application, the MT has two major advantages over
other well-known simplification hierarchies. In the MT, all
triangles in all possible simplifications are explicitly represented,
allowing us to precompute accurate object-space error bounds,
texture contrasts, and normal cones. In hierarchies, such as the
vertex-merging trees of [Hoppe 1997] and [Luebke and Erikson
1997], the exact extent and shape of triangles in the neighborhood
of a particular simplification (vertex merge) operation depends on
whether nearby vertices have been simplified. A secondary
benefit of the MT is rendering efficiency: because the triangles
associated with each arc are known in advance, we can easily
optimize arc geometry for the graphics hardware using triangle
strips and vertex arrays.

3 PERCEPTUAL MODEL

Our underlying perceptual model is the contrast sensitivity
function (CSF), which predicts the low-level perceptibility of
simple visual stimuli called contrast gratings (Figure 3). A
contrast grating is sinusoidal luminance pattern; its contrast is a
function of its peak luminance values Lmin and Lmax. Contrast
grating studies use Michaelson contrast, defined as (Lmax – Lmin) /
(Lmax + Lmin), and spatial frequency, defined as the number of
cycles per degree (cpd) of visual arc. The threshold contrast at a
given spatial frequency is the minimum perceivable contrast for a
grating of that frequency, and contrast sensitivity is defined as the

reciprocal of threshold contrast. The CSF plots contrast sensitivity
against spatial frequency, and so describes the range of
perceptible contrast gratings. We adapt the approximation by
[Rushmeier et al. 1995] of the Daly CSF model [Daly 1993]:

ff
eef

f
fC

3.03.0

2.0

5.1
06.0142.11

008.0
)(+

+= −

−

,

where C represents contrast sensitivity and f represents spatial
frequency in cycles per degree. In practice, we represent this
computationally expensive empirical formula with a lookup table.

3.1 Applying the model

We follow Luebke and Hallen’s approach of equating local
simplification operations to a worst-case grating. More precisely,
we consider the scale of features of the original surface that the
simplification could eliminate. The key observation underlying
their approach, which we only summarize below, is that the
threshold perceptibility of those features can be conservatively
equated to the perceptibility of a grating at the lowest frequency
and maximum contrast possibly induced by that change.

3.2 Spatial frequency

Given that peak contrast sensitivity occurs around 2-4 cycles per
degree, and most local simplification operations on a complex
model will only affect much higher frequencies, we can assume
that contrast at lower spatial frequencies is more perceptible than
at higher frequencies.1 Because the minimum frequency
component of an image feature that spans n degrees of visual arc
is one cycle per 2n degrees, the maximum wavelength needed to
represent a region of the image is twice the maximum spatial
extent of that region. Consequently, we can reduce finding the
worst-case frequency induced by a simplification operation to
finding the screen-space extent of the affected feature. One of our
contributions is an improved method for estimating this extent by
using texture deviation.

1 We ensure that this assumption holds by clamping our worst-case

frequency to be no lower than the point of peak sensitivity (Figure 3).

Visible

Invisible

Figure 3. A contrast sensitivity function predicts the
threshold perceptibility of a stimulus given its size and
contrast. The horizontal dashed line indicates how we
clamp the CSF for low spatial frequencies below the
maximally sensitive peak. The four contrast gratings
illustrate particular combinations of contrast and spatial
frequency from the plot. Figure courtesy of Martin Reddy,
Pixar Animation Studios.

Figure 2: A small Multi-Triangulation containing 24
original triangles. The letters indicate the source (S) and
drain (D) nodes. The cut contains 12 triangles.

∆∆∆∆∆
∆∆∆∆∆

∆∆∆∆∆∆∆
∆∆∆∆∆∆∆

∆∆
∆∆ ∆∆∆ ∆∆∆

∆∆ ∆∆∆∆∆
∆∆∆∆

∆∆
∆∆∆∆

∆∆∆
∆∆ ∆∆∆

∆∆∆

∆

∆

∆
∆∆∆ ∆∆∆

∆∆
∆

∆∆

∆
 ∆

D

S

cut

∆

∆∆

Our approach is motivated by the ability of texture mapping
to hide simplification artifacts. This is partially due to a perceptual
effect called visual masking, in which frequency content in certain
channels suppresses the perceptibility of other frequencies in that
channel [Ferwerda et al. 1997]. We do not account for visual
masking, leaving that as an important and interesting area for
future work. But texture mapping is inherently more robust to
simplification of the underlying surface than Gouraud shading for
another reason: it decouples the surface color from the exact
position and number of vertices. Luebke and Hallen permit only
prelit Gouraud-shaded models, and bound the spatial extent of a
mesh simplification operation with a bounding sphere that
contains all triangles involved in the operation. By using a
texture-mapped model, we can achieve a better bound on the size
of features affected by a local simplification operation. A texture
deviation of ε can create or destroy features on the surface no
larger than 2ε. The texture deviation induced by a simplification is
usually much smaller than the bounding sphere of the
simplification neighborhood, leading to a much tighter bound on
the screen-space region affected.

3.3 Contrast

Given a worst-case spatial frequency for a simplification
operation, determined by the maximum size of any affected
features in the image, the next task is to find the maximum
contrast of those features. The contrast of a feature is defined by
its intrinsic luminance versus the luminance of the surrounding
background. We estimate these using the range of luminance
covered by the patch of surface affected by simplification.
Because our simplification operation is a single edge collapse, this
patch is relatively small. This leads to some of the most
interesting contributions of our algorithm. By accounting for the
intrinsic contrast of the texture map, we achieve texture-content
sensitive simplification. Incorporating the lighting model into our
contrast computation extends our approach to dynamically lit
models and enables illumination sensitive simplification. We
describe these contrast calculations further in Section 4.

The silhouette status of the surface patch being simplified also
affects the maximum resulting contrast. If the patch, or local
neighborhood of the simplification, lies on the silhouette, we must
account for more than the luminance of nearby points on the
surface: a small change may distort the surface and could in
principle cover or uncover the brightest or darkest spot in the
scene. Because we cannot easily know how much contrast this
could cause, we conservatively assign maximal contrast to
simplifications we determine are on the silhouette. As a result,
silhouette regions of the object are simplified less aggressively –
just the behavior one would expect in a perceptually driven
simplification algorithm. Note however that even at these higher
contrast levels silhouette regions can still be simplified if they
represent very fine details (high spatial frequencies).

3.4 Imperceptibility distance

For best-effort perceptual simplification, we would like a model
to predict which simplifications will have the least visual effect.
Put another way, under the constraints of real-time rendering we
will sometimes have to perform perceptible simplifications; we
would like to predict which perceptible simplifications will be the
least distracting or objectionable. However, the CSF models
threshold performance of the visual system, predicting the
minimal contrast at which a stimulus of a given spatial frequency
may become perceptible. Unfortunately, the CSF cannot predict
suprathreshold performance: given two stimuli, both above
threshold contrast, which one is more perceptible?

While a great deal of work has explored threshold behavior of
the visual system, much less research has investigated
suprathreshold performance. We know of no computational model

of suprathreshold perception suitable for interactive rendering;
this is a crucial open problem in perceptually driven rendering. As
a stopgap measure, Luebke and Hallen suggest inverting the
function. Instead of looking up the threshold contrast for a given
frequency, they map the contrast associated with a simplification
to the spatial frequency at which it becomes visible. Note that for
the general CSF this mapping is not necessarily a single-valued
function, but because we clamp frequencies below peak
sensitivity, the threshold contrast monotonically decreases with
frequency. Given the spatial frequency at which a given
simplification would become visible, and the screen-space extent
of that simplification’s effect (which we estimate using the texture
deviation), we can compute the imperceptibility distance, or
distance from the image at which the simplification should be
imperceptible. The imperceptibility distance for an LOD is the
maximum imperceptibility distance of all the local simplification
operations used to generate it. Because it is based on the CSF, we
cannot claim that imperceptibility distance necessarily predicts
suprathreshold performance, or that simplifying according to
imperceptibility distance will necessarily provide the best
simplification when viewed from less than that distance. But it at
least provides an intuitive physical measure of the fidelity
achieved: for a given LOD, the system can report the distance
from the screen at which the CSF model predicts the LOD will be
indistinguishable from the original model. As we discuss in
Section 6, simplifying according to imperceptibility distance
seems to do well in practice.

4 PREPROCESSING

We build our MTs by progressive edge collapse simplification
with the goal of minimizing object-space texture deviation. We
then run a preprocessing stage that augments a basic MT with the
structures used by our perceptual run-time simplification. The
preprocessing maps nodes in the MT to the triangles in the
original model to which they correspond in the texture
parameterization, and calculates texture luminance ranges,
bounding spheres, and normal cones from those triangles.

To facilitate mapping nodes to their corresponding full-
resolution triangles, we build an image pyramid of the original
textures. The bottom level of this pyramid represents the full-
resolution texture, and we store for every texel a list of the
triangles that intersect it. From these lists, we can compute a
bounding sphere that contains all triangles that map to that texel,
normal cones that bound the normals of the triangles and vertices
or normal map, and a luminance range Lmin – Lmax for those
triangles. We can propagate this information up the pyramid to
represent bounding spheres, normal cones, and luminance ranges
for progressively larger patches of the original surface.

Once the image pyramid is built, we determine the perceptual
structures for a given node by hierarchically rasterizing coarse-
resolution the triangles of the node into the pyramid and updating
the bounding sphere, normal cones, and luminance ranges
according to the regions those triangles cover in the pyramid. If a
region of the pyramid is completely covered, we can use the
bounds stored with the region directly; if a region partially
intersects a triangle, we recursively test the triangle against the
next level of the pyramid. The hierarchical evaluation makes the
precomputation fairly efficient; preprocessing the armadillo
model, with 500,000 triangles and over 100 textures, takes about
15 minutes on a 1.2 GHz PC. We believe this could be further
accelerated by clever use of the graphics hardware, but have not
felt the need to do so. The image pyramids themselves may be
discarded after the data for all the MT nodes have been computed.

A note about calculating luminance: we compute luminance
using the standard RGB Y coefficients for modern CRT
monitors in Recommendation 109 [Poynton 1998], gamma

corrected for our display hardware and accounting for the
measured ambient light level in our lab. Clearly much more care
and calibration would be required to guarantee true imperceptible
simplification; however, for our best-effort approach a rough
approximation that captures the shape of the curve suffices.

5 RUN-TIME SIMPLIFICATION

Here we describe our framework for run-time perceptual
simplification. Our basic algorithm is triangle budget
simplification driven by imperceptibility distance. We begin with
an overview of our technique for adapting an MT to a budget,
followed by a description of how we modify our contrast
computation to account for texture content, silhouettes, and
dynamic lighting.

5.1 Best-effort MT refinement

Best-effort simplification aims to minimize some error criterion –
in our case the LOD’s imperceptibility distance – while remaining
within the user-specified triangle budget. Recall that each node in
the MT can be thought of as a reversible local simplification
operation. These local simplifications each incur some error,
captured by the node’s imperceptibility distance. We can simplify
to a budget using a simple greedy top-down algorithm that starts
each frame by moving the cut to the source node (simplest model)
and iteratively raises the node with the largest imperceptibility
distance (thus refining the model in that region). This top-down
algorithm is effectively an adaptation of [Luebke and Erikson
1997] budget simplification technique for the MT, and is simple
but slow. Traversing from the root usually incurs extra overhead,
because every frame many nodes are unnecessarily evaluated,
enqueued, shuffled around the heap, dequeued, and raised. We
improve the efficiency of this algorithm by using a dual-queue
implementation similar to the ROAM terrain simplification
algorithm by [Duchaineau et al. 1997]. This approach exploits
temporal coherence by beginning each frame with the cut X and
queue pair L,R from the previous frame:

simplifyBudget(cut X,

 raiseQueue R,

 lowerQueue L,

 int Budget)

R.updateErrorKeys();

L.updateErrorKeys();

while (liftNode != dropNode)

 while (X.numTris > Budget && !L.isEmpty())

 Node dropNode = L.removeTop();

 X.lowerNode(dropNode);

 while (X.numTris <= Budget && !R.isEmpty())

 Node liftNode = R.removeTop();

 X.raiseNode(liftNode);

The priority queue R stores nodes directly below the cut

(candidates to raise) and L stores nodes directly above the cut
(candidates to lower). Each frame the algorithm recomputes the
imperceptibility distance of nodes in the queues; it then iteratively
lifts the node with the maximum distance and drops the node with
the minimum distance until these represent the same node. Again,
lifting a node may require lifting parent nodes that are below the
cut while dropping a node may require recursively dropping child
nodes, and then a node is lifted or dropped, it and its parents or
children must be added to the appropriate queue. We also
amortize the cost of updating the queues over several frames in a
fashion similar to [Duchaineau et al. 1997] and [Hoppe 1997].

5.2 Texture contrast

On textured models, estimating the contrast of a given node is a
straightforward process that may be precomputed prior to
rendering. Each node represents a mesh simplification operation
over the triangles on a given patch of surface. The
parameterization of the texture lets us map this patch to the
corresponding small patch on the original surface, generating a
list of all triangles on the original surface that share the same
portion of the texture [Schilling and Klein 1998]. Given the
original triangles that map to a node, we can precompute the
luminance values of all texels covered by those triangles. Section
4 discussed the details of this preprocess.

Note that it would be incorrect to examine only the texture
covered by the simplified triangles in the node, because those
triangles may not map to the exact region of the texture mapped to
by the original model. This highlights an important point: because
we base simplification decisions on the perceptibility of features
from the original model, we must take care to always consider the
cumulative, rather than incremental, effect of a simplification.

5.3 Silhouettes and visibility

As discussed in Section 3, the silhouette status of a region affects
its possible contrast. Accounting for the higher contrast of
silhouette regions provides a natural framework for silhouette
preservation grounded in perceptual principles. To detect whether
nodes are on the silhouette, we use the standard approach
described by [Luebke and Erikson 1997] of storing a silhouette
normal cone with each node that bounds the set of triangle
normals; comparing the normal cone, bounding sphere, and view
vector lets us quickly decide whether the node might be on the
silhouette. The normals that comprise a node’s silhouette normal
cone come from the triangles in the original model that are
associated with the node, and from the triangles of the node itself
(because a simplified surface may well contain sharper dihedral
angles than the original).

Our normal cone based silhouette test also indicates whether a
node is back facing at no additional cost. Back facing nodes and
nodes that lie outside the view frustum comprise a special class of
invisible nodes that are imperceptible from any distance. We set
the imperceptibility distance of invisible nodes to zero to reflect
the fact that they cannot locally influence the error associated with
simplification. Although these tests incur some overhead to
perform, knowing that an invisible node’s associated triangles
can’t be seen saves us some time during rendering.

5.4 Dynamic lighting

We can also account for dynamically lit models in our contrast
calculation. In addition to standard Gouraud-shaded vertex
lighting, we can apply perceptual simplification to normal maps
for extremely high quality LODs. Normal maps, once an esoteric
feature only available offline or on the most exotic hardware, are
now supported on commodity graphics chipsets. Visual quality of
simplified models is often drastically increased by the use of
normal mapping, so this is a useful mode to support. The choice
of normal map versus per-vertex lighting can drastically affect the
perceptual quality of the resulting simplification, because per-
vertex lighting effects (for example, a specular highlight) are
interpolated by Gouraud shading across all triangles in a node. In
other words, a color shift caused by applying the local
simplification operation encoded by a node can affect the entire
region of the image spanned by the node. With normal maps, on
the other hand, as with texture maps, the shading is somewhat
decoupled from the underlying mesh: the same normals are used
for the original and simplified surface, and the extent of a color
shift is bounded by the texture deviation. To incorporate lighting
effects into our system, therefore, we calculate spatial frequency

using a feature size based on either the projected extent of the
texture deviation (for normal map lighting) or the node’s
bounding sphere (for per-vertex lighting).

Integrating dynamic lighting also requires us to dynamically
adjust the contrast associated with nodes. The luminance range
associated with a lit node is a function not only of its intrinsic
color, but also of the light vector, view vector, and its shading
normal cone. The shading normal cone, like the silhouette normal
cone, simply bounds the normals associated with a node; the only
difference is that the silhouette cone is constructed from the
original triangles associated with a node, while the shading cone
is constructed from the normal map or vertex normals spanned by
those triangles.

Our normal mapping algorithm was implemented as a texture
combiner program on an nVidia GeForce3, and is simpler than the
full OpenGL lighting model. The luminance Y at a vertex is given
by:

() ()n

a dY k T k T N L N H= + • + • ,

where T is the intrinsic surface color read from a texture map, L is
the light vector, H is the halfway vector of the Blinn-Phong
lighting model, N is from the normal map, ka and kd are the
ambient and diffuse lighting coefficients, respectively, and n is the
specular exponent. The light source and viewer are assumed to be
at infinity in this calculation. For per-vertex lighting, we calculate
luminance using OpenGL’s light model for an infinite directional
light source and viewer. We could support more complex lighting
models (e.g., point sources), or more than one light, at the cost of
some additional computation.

Given the lighting model, we can bound the luminance of the
diffuse contribution by calculating the vector encompassed by the

shading normal cone that is closest in direction to L and the vector
furthest in direction from L. Similarly, we find the range of
specular contribution using the halfway vector. Note that this
computation is similar to that of [Klein and Schilling 1999].

6 RESULTS AND EVALUATION

Thus far we have described the simplification effects that our
algorithm automatically accounts for: silhouette preservation,
texture-content sensitive simplification, and illumination sensitive
simplification. Here we visually and quantitatively compare the
quality of the resulting simplifications to those produced by other
algorithms.

We provide a rigorous comparison of our system to a view-
dependent implementation of the appearance-preserving
simplification (APS) scheme of [Cohen et al. 1998], one of the
highest-fidelity simplification algorithms available. APS was the
first simplification algorithm to make strong guarantees on the
rendered fidelity of LOD; it focuses on bounding the possible
screen-space distortion caused by simplification. Like our system,
APS measures parametric distortion and factors appearance into
color (represented by texture maps) and shading (represented with
normal maps). Whereas the original algorithm uses this bound to
choose a static LOD, the view-dependent version uses our MT
implementation to simplify to a budget while minimizing
projected screen-space error of nodes on the MT cut.

Our experiments compare the new perceptual error metric
with three others: object-space (view-independent) error, screen-
space texture deviation, and screen-space texture deviation with a
ten-fold multiplicative factor in silhouette regions. This last
variant exemplifies a common heuristic: user-specified weighting

(

(

(

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8 16 32 64

L
td

iff
 E

rr
o
r

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64

Degree of simplif ication (% of original model)

L
td

if
f
E

rr
o

r

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64

L
td

iff
 E

rr
o
r

View -independent

Screen-space

Screen-space w ith heuristics

Perceptual

0.0

10.0

20.0

30.0

40.0

50.0

60.0

4 8 16 32 64

Degree of simplif ication (% of original model)

L
td

iff
 E

rr
o
r

Figure 4: Results of ltdiff evaluation on the scenes in Figure 6. (a) 500,000-triangle red armadillo model with per-vertex
illumination. (b) The same armadillo with normal maps for per-pixel illumination. (c) 500,000-triangle textured terrain model, no
lighting. (d) 238,140-triangle torus with per-vertex lighting and puzzle texture.

(a) (b)

(c) (d)

of silhouette importance (which is difficult to tune). We
investigate fully APS-compliant scenarios, using texture and
normal maps, as well as those with per-vertex normals and even
no normals.

We quantitatively measure simplification quality by pairwise
comparison of 1024x1024 images. For a given triangle budget and
view of the model we capture images with and without
simplification enabled. We calculate the error due to
simplification by using Lindstrom’s ltdiff image metric on
these image pairs [Lindstrom 2000]. The ltdiff image metric
utilizes a computational model of the human visual system
tailored to estimate the perceptual differences between 3D models
(see Figure 5 and Plate 2). This metric provides a more accurate
measure of perceptible error due to simplification than simpler
methods such as finding the root-mean-squared error (RMSE) of
image differences. For example, the ltdiff metric attenuates
the phase information associated with silhouette simplification
that RMSE over-emphasizes in error measurement. However,

because high contrast silhouettes still do affect the ltdiff error,
we maximize fairness by setting the background color to a mid-
level gray in all scenes. In fact, our algorithm often performs
better with a black background to conceal dark silhouette edges.
We include plots of ltdiff error from a single representative
view against triangle budget for different scenes, textures, and
lighting conditions (Figure 4).

As we expect, using a perceptual model generally provides
improved simplification. The benefit is most pronounced on
vertex-lit models, primarily because the distortion and tessellation
artifacts in specular highlights are highly perceptible (Figure
4a,d). Using normal maps maintains smooth highlights even at
low resolutions. Under these conditions the primary differences
between our algorithm and APS are the ability to simplify low-
contrast regions (washed out highlights or dark shadow), and the
ability to preserve high-contrast areas such as silhouettes.
Likewise, the perceptual method with texture maps alone does not
provide the significant improvement that is found in lighting with
per-vertex normals. Except at significant simplification levels,
these effects are less important visually.

7 DISCUSSION AND FUTURE WORK

Just as view-dependent algorithms gain benefits and incur costs
not present in view-independent systems, our perceptual model
provides intelligent simplification not present in other
algorithms—aggressive simplification in low-contrast regions,
such as uniform texture areas and washed-out specular highlights,
along with intelligent refinement at specular highlights and
silhouette regions—but comes at a computational cost. Other
algorithms have been augmented with manually weighted
heuristics to account for most of these opportunities, such as the
use of tighter error thresholds for silhouettes. One could argue that
evaluating such heuristics probably requires less computation than
our perceptual model, and that heuristics could be developed to
account for all the simplification effects we support. But this
would be missing the point: our chief contribution is a way to
avoid ad hoc hand-tuned heuristics—or perhaps, in future work, to
guide their development—by reasoning directly from principles of
visual perception.

7.1 Avenues for future work

While our initial system shows promise, many avenues of future
work remain. Perhaps the most important topic for future research
is the integration of better perceptual models. We would like to
extend our perceptual model to include important effects such as
local adaptation (TVI effects), chromatic contrast sensitivity, and
temporal effects (flicker sensitivity, sudden onset). In particular, it
would seem fruitful to investigate efficient ways to model visual
masking. The frequency content of textures and normal maps has
a strong effect on the perceptibility of the simplification; we

Figure 6. Scenes used to gather the data in Figure 5: 500,000-triangle red armadillo model; 500,000-triangle terrain model,
240,000-triangle torus model.

Figure 5. Top: rear view of the 500,000 triangle armadillo
model, 98% simplified under per-vertex lighting
conditions. Bottom: ltdiff visualization of the error
associated with simplification from the original model.
Darker areas indicate larger error. Notice that
perceptually driven simplification exhibits fewer strong
errors on the high contrast back than screen-space error.

Screen-space Perceptual

believe a simple model of visual masking, perhaps based on pre-
computed frequency content in the textures, would often enable
much more aggressive simplification. Along these lines the work
on perceptual texture caching by [Dumont et al. 2001] appears
promising for future investigation. More generally, a dire need
exists for adequate models of suprathreshold perceptibility that
are efficient enough for an interactive framework.

One useful extension would be to account for MIP-map
filtering when calculating texture contrast. Many textures have
noise or high-frequency components that introduce a great deal of
contrast to our algorithm, which simply assigns a node a contrast
from the luminance range it covers in the texture. Often these
high-frequency components are filtered out in the first or second
MIP level, leaving a low-contrast texture that could be simplified
much more aggressively. We expect, for example, that our
perceptual simplification system would out-perform APS on
terrain visualization if equipped with MIP-mapping support
(Figure 4c).

We would also like to investigate optimizing the MT
construction for perceptual simplification. Currently we simply
apply our perceptual metrics to pre-built MTs, which were
constructed with the goal of minimizing texture deviation.
However, building MTs tailored for given textures should allow
the construction process more leeway, for example in areas of low
contrast. It also seems helpful to investigate “quick and dirty”
parameterizations that could be used to apply our algorithm to
non-textured models. A great deal of excellent research has been
carried out in the realm of automatic parameterization, but it
remains a difficult problem. However, even a simplistic approach
should suffice for our method, which simply needs to establish a
correspondence between nodes in the MT and the original
triangles to which they relate.

ACKNOWLEDGEMENTS

We would like to thank Venkat Krishnamurthy, Marc Levoy,
Peter Schröder at Caltech for making the armadillo model
available; Hugues Hoppe, the USGS, and Chad McCabe for
providing the Grand Canyon model, Greg Turk for the jigsaw
puzzle texture, and Peter Lindstrom for the use of his excellent
ltdiff perceptual error estimation code. This work was
supported in part by NSF awards 0092973, 9703080, and
0205586.

REFERENCES

BOLIN, M., MEYER, G. 1998. A Perceptually Based Adaptive Sampling

Algorithm. Proceedings of SIGGRAPH 98, 299-309.

COHEN, J.D., OLANO, M., AND MANOCHA, D. 1998. Appearance-

Preserving Simplification. Proceedings of SIGGRAPH 98, 115-122.

DALY, S. 1993. The Visible Differences Predictor: An Algorithm for the

Assessment of Image Fidelity. In A. Watson, ed. Digital Images and

Human Vision. MIT Press, Cambridge, MA, 179-206.

DEFLORIANI, L., MAGILLO, P., AND PUPPO, E. 1997. Building and

Traversing a Surface at Variable Resolution. Proceedings of IEEE

Visualization '97, 103-110.

DEFLORIANI, L., MAGILLO, P., AND PUPPO, E. 1998. Efficient

Implementation of Multi-Triangulations. Proceedings of IEEE

Visualization '98, 43-50.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D.E., MILLER, M.C., ALDRICH,

C., AND MINEEV-WEINSTEIN, M.B. 1997. ROAMing Terrain: Real-time

Optimally Adapting Meshes. Proceedings of Visualization '97, 81-88.

DUMONT, R., PELLACINI, F., AND FERWERDA, J.A. 2001. A Perceptually-

Based Texture Caching Algorithm for Hardware-Based Rendering.

Proceedings of 2001 Eurographics Workshop on Rendering, 249-256.

ERIKSON, C. AND MANOCHA, D. 1999. GAPS: General and Automatic

Polygonal Simplification. Proceedings of 1999 ACM Symposium on

Interactive 3D Graphics, 79-88.

FERWERDA, J. A., PATTANAIK, S., SHIRLEY, P., AND GREENBERG, D. P.

1997. A Model of Visual Masking for Computer Graphics. Proceedings

of SIGGRAPH 97, 143-152.

FUNKHOUSER, T. A. AND SEQUIN, C. H. 1993. Adaptive Display

Algorithm for Interactive Frame Rates During Visualization of Complex

Virtual Environments. Proceedings of SIGGRAPH 93, 247-254

GARLAND, M. AND HECKBERT, P. 1998. Simplifying Surfaces with Color

and Texture using Quadric Error Metrics. Proceedings of IEEE

Visualization '98, 263-270.

HOPPE, H. 1999. Optimization of Mesh Locality for Transparent Vertex

Caching. Proceedings of SIGGRAPH 99, 269-276.

HOPPE, H. 1997. View-Dependent Refinement of Progressive Meshes.

Proceedings of SIGGRAPH 97, 189-198.

KLEIN, R. AND SCHILLING, A. 1999. Efficient rendering of multiresolution

meshes with guaranteed image quality. The Visual Computer 15, 9, 443-

452.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced Subdivision

Surfaces. Proceedings of SIGGRAPH 2000, 85-94.

LINDSTROM, P. 2000. Model Simplification Using Image and Geometry-

Based Metrics. Ph.D. Thesis, Georgia Institute of Technology.

LINDSTROM, P., AND TURK, G. 2000. Image-driven Simplification. ACM

Transactions on Graphics 19, 3, 204-241.

LUEBKE, D., AND ERIKSON, C. 1997. View-Dependent Simplification of

Arbitrary Polygonal Environments. Proceedings of SIGGRAPH 97.

LUEBKE, D., AND HALLEN, B. 2001. Perceptually Driven Simplification

for Interactive Rendering. Proceedings of 2001 Eurographics Rendering

Workshop, 223-234.

MYSZKOWSKI, K., TAWARA T., AKAMINE, H., AND SEIDEL, H. 2001.

Perception-Guided Global Illumination Solution for Animation

Rendering. Proceedings of SIGGRAPH 2001, 221-230.

POYNTON, C. 1998. The Rehabilitation of Gamma. Proceedings of Human

Vision and Electronic Imaging III, 232-249.

RAMASUBRAMANIAN, M., PATTANAIK, S. N., AND GREENBERG, D. P.

1999. A Perceptually Based Physical Error Metric for Realistic Image

Synthesis. Proceedings of SIGGRAPH 99, 73-82.

REDDY, M.. 1997. Perceptually Modulated Level of Detail for Virtual

Environments. Ph.D. Thesis, University of Edinburgh.

REDDY, M. 2001. Perceptually Optimized 3D Graphics. IEEE Computer

Graphics and Applications 21, 5, 68-75.

ROSSIGNAC, J., AND BORREL, P. 1993. Multi-Resolution 3D

Approximations for Rendering Complex Scenes. Modeling in Computer

Graphics: Methods and Applications. Springer-Verlag, 455-465.

RUSHMEIER, H., WARD, G., PIATKO, C., SANDERS, P., AND RUST, B. 1995.

Comparing Real and Synthetic Images: Some Ideas About Metrics.

Proceedings of 1995 Eurographics Workshop on Rendering, 82-91.

SANDER, P.V., SNYDER, J., GORTLER, S.J., AND HOPPE, H.. 2001. Texture

Mapping Progressive Meshes. Proceedings of SIGGRAPH 2001, 409-

416.

SCHILLING, A. AND KLEIN, R. 1998. Rendering of Multiresolution Models

with Texture. Computers and Graphics 22, 6, 667-674.

SCHROEDER, W. J., ZARGE, J.A., AND LORENSEN, W. Decimation of

Triangle Meshes. Proceedings of SIGGRAPH 92, 65-70.

SCOGGINS, R., MACHIRAJU, R., AND MOORHEAD, R.J. Enabling Level of

Detail Matching for Exterior Scene Synthesis. Proceedings of IEEE

Visualization 2000, 171-178.

XIA, J. C. AND VARSHNEY, A.. Dynamic View-Dependent Simplification

for Polygonal Models. Proceedings of IEEE Visualization '96, 327-334.

Perceptually Guided Simplification of Lit, Textured Meshes

 Nathaniel Williams, David Luebke, Jonathan D. Cohen, Michael Kelley, Brenden Schubert

Plate 1: Contrast calculation and simplification effects on a textured and lit torus. The model is shown at full resolution with
57,660 triangles (a) and simplified by 50% (b). The close-up (c) illustrates preservation of silhouettes and extra simplification
in low-contrast areas, such as washed-out specular highlights and deeply shadowed regions.

(a) (b) (c)

Plate 2: Visual comparison of the 500,000-triangle armadillo model, rendered with per-vertex lighting and simplified by 98%
with (a) screen-space deviation and (b) our perceptual metric. (c) and (d) show ltdiff visualizations of the resulting error as
compared to the full-resolution model for the screen-space and perceptual metrics, respectively. ltdiff reports errors of
3,689 for the screen-space metric and 3,123 for the perceptual metric.

(a) (b)

(c)

(d)

