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ABSTRACT 

We present a new algorithm for best-effort simplification of 
polygonal meshes based on principles of visual perception. 
Building on previous work, we use a simple model of low-level 
human vision to estimate the perceptibility of local simplification 
operations in a view-dependent Multi-Triangulation structure. Our 
algorithm improves on prior perceptual simplification approaches 
by accounting for textured models and dynamic lighting effects. 
We also model more accurately the scale of visual changes 
resulting from simplification, using parametric texture deviation 
to bound the size (represented as spatial frequency) of features 
destroyed, created, or altered by simplifying the mesh. The 
resulting algorithm displays many desirable properties: it is view-
dependent, sensitive to silhouettes, sensitive to underlying texture 
content, and sensitive to illumination (for example, preserving 
detail near highlight and shadow boundaries, while aggressively 
simplifying washed-out regions). Using a unified perceptual 
model to evaluate these effects automatically accounts for their 
relative importance and balances between them, overcoming the 
need for ad hoc or hand-tuned heuristics.  

CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling—Geometric algorithms, 
languages, and systems 

Keywords: Level of detail, perceptually motivated rendering, 
mesh simplification 

1 INTRODUCTION 

Interactive graphics has come to rely on level of detail or LOD 
techniques. These techniques simplify the geometric 
representation of a scene to reduce its rendering cost, while 
attempting to preserve visual fidelity. A great deal of excellent 
research has studied how to simplify polygonal meshes, but the 
question of how to evaluate visual fidelity to guide that 
simplification has received less attention. Mesh simplification has 
been guided primarily by geometric metrics. Usually, however, 
the important question is not geometric but perceptual: does the 
simplification look like the original? 

Of course, researchers in LOD have long recognized the 
importance of perceptual issues, but have tended to address those 
issues in an ad hoc fashion. For example, silhouettes are known to 
play a key role in object recognition and detection, and therefore 
even the earliest mesh simplification algorithms included 
heuristics to preserve detail in high curvature regions, which are 
more likely to project onto the silhouette; see for example the 
[Rossignac and Borrel 1993] vertex-clustering approach, or the 
decimation algorithm of [Schroeder et al. 1992]. View-dependent 
simplification research has also emphasized silhouette 
preservation; for example, [Luebke and Erikson 1997] enforce a 
tighter screen-space error threshold for silhouette regions than 
interior regions. Similarly, the presence and movement of 
specular highlights across a surface are known to provide 
important clues to its shape, so [Xia and Varshney 1996] and 
[Klein and Schilling 1999] describe view-dependent 
simplification schemes that preserve detail where such highlights 
are likely to appear. Many researchers have used heuristics and 
user-specified weights to balance the importance of geometric 
fidelity during simplification against preservation of appearance-
related attributes, such as color, normals, and texture coordinates 
[Garland and Heckbert 1998, Erikson and Manocha 1999, Hoppe 
1999]. At a higher level, [Funkhouser and Sequin 1993] describe 
a predictive system for choosing LODs to maintain visual quality 
at constant frame rates; their system accounts for many perceptual 
factors. Again, the system is fundamentally heuristic, with user-
tunable parameters to control the relative importance of various 
perceptually-motivated factors. 

We describe a polygonal simplification algorithm grounded 
directly in principles of visual perception. Briefly, we estimate the 
contrast that would be induced by local simplification operations 
(Figure 1), and the maximum spatial frequency of the resulting 
distortion, and predict the perceptibility of the operations based on 
a simple model of low-level vision called the contrast sensitivity 
function or CSF. Though the CSF does not provide a complete 
perceptual model, the resulting system achieves many effects 
desirable in a simplification algorithm, such as preservation of 
silhouette boundaries and shading- or illumination-sensitive 
simplification. More importantly, these effects proceed naturally 
from the perceptual model. This addresses the question of how, 
without heuristics or user input, to trade off such factors as 
silhouette preservation with distortion of a model’s underlying 
color or texture coordinates. Note that we do not claim to achieve 
such effects for free; for example, we maintain normal cones to 
determine which regions occupy the visual silhouette. But the 
importance of that silhouette status—the decision of when to 
simplify a silhouette region rather than an interior region—derives 
from the perceptual model. 

1.1 Motivation: a pragmatic approach 

The primary goal of prior perceptual LOD approaches has been 
imperceptible simplification: create or select a level of detail 
visually indistinguishable from the original model. We argue that 
this approach is flawed. First, most interactive systems forced to 
use LOD to maintain frame rate must compromise ideal visual 
quality to do so. Put another way, if you can’t afford to render the 
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original model, you probably can’t afford to render an 
indistinguishable approximation. Second, the users of an 
application in which simplification must not be perceptible are 
unlikely to trust even a simplification algorithm that claims 
imperceptibility. A scientist, for example, might prefer to suffer 
slow frame rates rather than to trust that important features of a 
visualization are not being simplified away. Finally, and most 
importantly, at this time it does not appear feasible to evaluate a 
sophisticated model of visual perception fast enough to be used in 
interactive rendering. 

In particular, the CSF models used by researchers to date (see 
Section 2.1) provide a reasonable first approximation to low-level 
perceptibility, but fail to take into account many important 
perceptual factors. Variations between individual users, 
adaptation to environmental lighting conditions, temporal 
sensitivity to flicker or sudden onset (as of a “pop” between 
LODs), chromatic versus achromatic contrast sensitivity, and 
facilitation/suppression via visual masking are all effects not 
modeled by the simple CSF. Some state-of-the-art models for 
accelerating offline rendering incorporate many of these effects 
[Ramasubramanian et al. 1999, Myszkowski et al. 2001], but 
require orders of magnitude longer than the few milliseconds 
available in interactive rendering. To guarantee imperceptible 
rendering under these conditions currently appears out of reach, 
and to achieve it in practice requires making conservative 

decisions that prevent much simplification; for example, [Luebke 
and Hallen 2001] report that models in their system could be 
simplified two to three times further without introducing 
perceptible artifacts. Therefore, we take a pragmatic approach that 
focuses on perceptually-guided best-effort reduction to a triangle 
budget. 

1.2 Contributions 

To briefly summarize the contributions of this paper:  

• We extend the perceptual simplification framework of [Luebke 
and Hallen 2001] to textured models. The result: a more 
applicable algorithm capable of texture-content-sensitive 
simplification. 

• We also use parametric texture deviation to measure distortion 
more accurately than the Luebke-Hallen approach. The result is 
better simplification for a given polygon count.  

• We introduce techniques to incorporate the effect of dynamic 
lighting calculations. We can account for both specular and 
diffuse effects, under both Gouraud-shaded vertex lighting and 
per-pixel normal-map lighting. The result is better 
simplification of lit models. 

• We evaluate our results against prior work both visually and 
with a sophisticated image metric. 

Figure 1: Contrast calculation and simplification effects on a textured and lit torus. The model is shown (a) at full resolution 
with 57,660 triangles and (b) simplified by 50%. The close-up (c) illustrates preservation of silhouettes and extra simplification 
in low-contrast areas, such as washed-out specular highlights and deeply shadowed regions. Image (d) shows the contrast due 
only to dynamic lighting; (e) shows the contrast due solely to the spotted texture; (f) shows the combined contrast used to 
generate the simplifications shown in (b) and (c). 

(a) (b) (c) 

(f) (e)(d) 



Our work builds on research efforts by several groups. Our 
algorithm relates most closely to the approach of Luebke and 
Hallen, but applies to a much broader class of models because we 
account for textures and dynamic lighting. They also emphasize 
imperceptible simplification, while we focus on the pragmatic 
approach of perceptually-guided best-effort rendering to a budget. 
We also incorporate work by [Cohen et al. 1998] on bounding 
parametric texture deviation, as well as the Multi-Triangulation 
(MT) data structure by [DeFloriani et al. 1997, DeFloriani et al. 
1998]. We discuss this and other related research in the following 
sections. 

2 RELATED WORK 

2.1 Perceptually guided rendering 

Perceptually guided rendering is hardly a new field; many 
researchers have investigated algorithms to accelerate rendering 
by avoiding computation for which the result will be 
imperceptible. Examples include [Bolin and Meyer 1998], 
[Myszkowski et al. 2001], and [Ramasubramanian et al. 1999]. 
Unlike our work, which targets interactive rendering, most 
previous perceptually based rendering approaches have examined 
offline realistic rendering approaches such as ray and path tracing. 
These frameworks typically require seconds or minutes to create 
an image, and can therefore employ sophisticated perceptual 
models such as that described by [Ferwerda et al. 1997]. State-of-
the-art perceptual models account for much of the known 
behavior of the low-level visual system, but are simply too costly 
for real time rendering. For example, Ramasubramanian et al. 
report times of several seconds to evaluate a 512x512 image. Such 
models are clearly out of reach for interactive rendering, which 
measures frame time in milliseconds.  

[Reddy 1997] describes an early attempt to guide LOD 
selection entirely by a principled perceptual model. Reddy 
analyzed the frequency content of objects and their LODs in 
several images rendered from multiple viewpoints. If a high-
resolution and a low-resolution LOD differed only at frequencies 
beyond the modeled visual acuity, or greatest perceptible spatial 
frequency, the system used the low-resolution LOD. Later, Reddy 
[2001] presented an updated version of this approach for terrains.  
In similar work, [Scoggins et al. 2000] analyzed the frequency 
content by transforming a prerendered reference image to 
frequency space and modulating the resulting spectrum by a 
perceptually modeled transfer function, then using mean-squared 
error to choose an appropriate LOD. Both approaches rely on 
images from just a few viewpoints, which introduces the 
possibility of sampling error, and both use a small set of discrete 
LODs, which prevents adaptive simplification (for example to 
preserve silhouettes). 

[Lindstrom and Turk 2000] describe an image-driven 
approach for guiding the simplification process itself. They 
render, from multiple viewpoints, each model that would result 
from many possible simplification operations, and evaluate the 
cost of each operation by differencing the rendered images from 
images of the original model. Again, sampling from limited 
viewpoints and using static LODs have disadvantages for 
perceptually based simplification, but Lindstrom and Turk’s 
approach has the important benefit that simplification is 
ultimately guided not by geometric error, nor by some 
combination of geometric and shading attribute error, but by an 
estimation of what the effect the simplification will have on the 
final rendering. This approach is therefore close in spirit to our 
work, which strives to drive simplification directly by a model of 
its perceptual effect. 

Some simplification algorithms, though not guided by a 
perceptual model, attempt to preserve the appearance of an object 
directly by using enough polygons to prevent simplification 

artifacts larger than half a pixel. [Cohen et al. 1998] track the 
parametric surface distortion to derive a screen-space bound on 
the movement of color (represented by a texture map) and lighting 
(represented by a normal map) across the surface. Similar work by 
[Schilling and Klein 1998], and later work by the same authors 
[Klein and Schilling 1999 ], also deserves mention. In the former, 
they account for texture distortion using a surface mapping 
technique similar to that of Cohen et al; in the latter, they account 
separately for lighting artifacts in vertex-lit models using cones 
that bound the normals and halfway vectors. Our work improves 
on these approaches by providing best-effort simplification to a 
budget, and by using a perceptual model to regulate geometric, 
texture, and lighting effects in a single framework. This opens up 
opportunities to simplify more aggressively, for example in the 
washed-out region of a specular highlight (see Figure 1). 

Our approach most closely follows the work of [Luebke and 
Hallen 2001], who also guide view-dependent simplification with 
a model of the CSF. The key idea behind the Luebke-Hallen 
approach is to evaluate local simplification operations according 
to the worst-case contrast and worst-case spatial frequency of 
features they could induce in the image. This provides a 
principled way to reason about the perceptibility of the resulting 
simplification. We extend these concepts to a more general and 
practical framework for simplification of meshes. 

2.2 Texture deviation 

An appropriate geometric way to measure the error of texture 
mapped surfaces is to bound the texture deviation [Cohen et al. 
1998, Lee et al. 2000, Sander et al. 2001]. The texture deviation is 
a 3D distance in object space between pairs of corresponding 
points. The correspondence is established in parameter space. 
Thus it tells us how far any point on the original surface—for 
example the point corresponding to a particular texel—may move 
in 3D when we replace the surface with the simplified version. 

One way to use this texture deviation metric in a view-
dependent level of detail system is to project it to screen space. 
We find or approximate the closest point to the eye point of the 
bounding sphere of some node. Using this distance from the eye 
to the bounding sphere, we compute the length of the texture 
deviation vector in screen space. This measures the number of 
pixels of deviation for the model and bounds the shift of texels in 
screen-space as a result of simplification. 

As we will see in Section 3, the 3D texture deviation may also 
be used in combination with a node’s texture contrast to bound the 
spatial frequency of its most perceptible feature and compute its 
imperceptibility distance. 

2.3 The Multi-Triangulation 

In this section we briefly describe the MT data structure 
introduced by [DeFloriani et al. 1997]. The MT is a hierarchical 
model in the form of a directed acyclic graph, represented by a set 
of nodes connected by a set of arcs. The topmost root node of the 
graph is called the source, and the bottommost node is the drain. 
Figure 2 illustrates a small example. 

Each node of the MT represents a small change to the mesh: a 
refinement operation if we are traversing downward, or a 
simplification operation if we are traversing upward. We create 
these nodes from the drain to the root during an offline bottom-up 
simplification process. Each arc represents one or more mesh 
triangles. The triangles removed from the model by a 
simplification operation are stored with the child arcs of the 
operation’s node, and the coarser replacement triangles are 
associated with its parent arcs. Thus applying the local 
simplification operation encoded by the end node of an arc A (the 
node beneath A) will create the triangles encoded in the arc, and 
applying the simplification encoded by its start node (above A) 
removes the triangles.  



The arcs of the MT represent the dependencies of one mesh 
operation on another. So, for example, if we wish to perform the 
refinement indicated by a node, we must first perform the 
refinements indicated by all of the node’s parents. Performing the 
node’s operation amounts to replacing the primitives of a node’s 
parent arcs with those of its child arcs, or vice versa. 

To extract a connected, consistent representation of the 
surface, we generate a cut of the graph. A cut is a set of arcs that 
partitions the nodes of the MT, leaving the source node above the 
cut, and the drain node below it. In addition, if the cut contains arc 
A, then it must not contain any ancestor or descendent of A. The 
triangles of such a cut represent our input surface at some 
resolution. The cut representing the coarsest level of detail crosses 
all the child arcs of the source node, whereas the cut representing 
the finest level of detail crosses all the parent arcs of the drain. 
We discuss how to generate cuts representing a particular triangle 
budget in Section 5.1. 

For our application, the MT has two major advantages over 
other well-known simplification hierarchies. In the MT, all 
triangles in all possible simplifications are explicitly represented, 
allowing us to precompute accurate object-space error bounds, 
texture contrasts, and normal cones. In hierarchies, such as the 
vertex-merging trees of [Hoppe 1997] and [Luebke and Erikson 
1997], the exact extent and shape of triangles in the neighborhood 
of a particular simplification (vertex merge) operation depends on 
whether nearby vertices have been simplified. A secondary 
benefit of the MT is rendering efficiency: because the triangles 
associated with each arc are known in advance, we can easily 
optimize arc geometry for the graphics hardware using triangle 
strips and vertex arrays.  

3 PERCEPTUAL MODEL 

Our underlying perceptual model is the contrast sensitivity 
function (CSF), which predicts the low-level perceptibility of 
simple visual stimuli called contrast gratings (Figure 3). A 
contrast grating is sinusoidal luminance pattern; its contrast is a 
function of its peak luminance values Lmin and Lmax. Contrast 
grating studies use Michaelson contrast, defined as (Lmax – Lmin) / 
(Lmax + Lmin), and spatial frequency, defined as the number of 
cycles per degree (cpd) of visual arc. The threshold contrast at a 
given spatial frequency is the minimum perceivable contrast for a 
grating of that frequency, and contrast sensitivity is defined as the 

reciprocal of threshold contrast. The CSF plots contrast sensitivity 
against spatial frequency, and so describes the range of 
perceptible contrast gratings. We adapt the approximation by 
[Rushmeier et al. 1995] of the Daly CSF model [Daly 1993]: 

 

ff
eef

f
fC

3.03.0

2.0

5.1
06.0142.11

008.0
)( +








+= −

−

, 

 
where C represents contrast sensitivity and f represents spatial 
frequency in cycles per degree. In practice, we represent this 
computationally expensive empirical formula with a lookup table. 

3.1 Applying the model 

We follow Luebke and Hallen’s approach of equating local 
simplification operations to a worst-case grating. More precisely, 
we consider the scale of features of the original surface that the 
simplification could eliminate. The key observation underlying 
their approach, which we only summarize below, is that the 
threshold perceptibility of those features can be conservatively 
equated to the perceptibility of a grating at the lowest frequency 
and maximum contrast possibly induced by that change.  

3.2 Spatial frequency 

Given that peak contrast sensitivity occurs around 2-4 cycles per 
degree, and most local simplification operations on a complex 
model will only affect much higher frequencies, we can assume 
that contrast at lower spatial frequencies is more perceptible than 
at higher frequencies.1 Because the minimum frequency 
component of an image feature that spans n degrees of visual arc 
is one cycle per 2n degrees, the maximum wavelength needed to 
represent a region of the image is twice the maximum spatial 
extent of that region. Consequently, we can reduce finding the 
worst-case frequency induced by a simplification operation to 
finding the screen-space extent of the affected feature. One of our 
contributions is an improved method for estimating this extent by 
using texture deviation. 

                                                                 
1 We ensure that this assumption holds by clamping our worst-case 

frequency to be no lower than the point of peak sensitivity (Figure 3).  
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Figure 3. A contrast sensitivity function predicts the 
threshold perceptibility of a stimulus given its size and 
contrast. The horizontal dashed line indicates how we 
clamp the CSF for low spatial frequencies below the 
maximally sensitive peak. The four contrast gratings 
illustrate particular combinations of contrast and spatial 
frequency from the plot. Figure courtesy of Martin Reddy, 
Pixar Animation Studios. 

Figure 2: A small Multi-Triangulation containing 24 
original triangles. The letters indicate the source (S) and 
drain (D) nodes. The cut contains 12 triangles. 
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Our approach is motivated by the ability of texture mapping 
to hide simplification artifacts. This is partially due to a perceptual 
effect called visual masking, in which frequency content in certain 
channels suppresses the perceptibility of other frequencies in that 
channel [Ferwerda et al. 1997]. We do not account for visual 
masking, leaving that as an important and interesting area for 
future work. But texture mapping is inherently more robust to 
simplification of the underlying surface than Gouraud shading for 
another reason: it decouples the surface color from the exact 
position and number of vertices. Luebke and Hallen permit only 
prelit Gouraud-shaded models, and bound the spatial extent of a 
mesh simplification operation with a bounding sphere that 
contains all triangles involved in the operation. By using a 
texture-mapped model, we can achieve a better bound on the size 
of features affected by a local simplification operation. A texture 
deviation of ε can create or destroy features on the surface no 
larger than 2ε. The texture deviation induced by a simplification is 
usually much smaller than the bounding sphere of the 
simplification neighborhood, leading to a much tighter bound on 
the screen-space region affected. 

3.3 Contrast 

Given a worst-case spatial frequency for a simplification 
operation, determined by the maximum size of any affected 
features in the image, the next task is to find the maximum 
contrast of those features. The contrast of a feature is defined by 
its intrinsic luminance versus the luminance of the surrounding 
background. We estimate these using the range of luminance 
covered by the patch of surface affected by simplification. 
Because our simplification operation is a single edge collapse, this 
patch is relatively small. This leads to some of the most 
interesting contributions of our algorithm. By accounting for the 
intrinsic contrast of the texture map, we achieve texture-content 
sensitive simplification. Incorporating the lighting model into our 
contrast computation extends our approach to dynamically lit 
models and enables illumination sensitive simplification. We 
describe these contrast calculations further in Section 4. 

The silhouette status of the surface patch being simplified also 
affects the maximum resulting contrast. If the patch, or local 
neighborhood of the simplification, lies on the silhouette, we must 
account for more than the luminance of nearby points on the 
surface: a small change may distort the surface and could in 
principle cover or uncover the brightest or darkest spot in the 
scene. Because we cannot easily know how much contrast this 
could cause, we conservatively assign maximal contrast to 
simplifications we determine are on the silhouette. As a result, 
silhouette regions of the object are simplified less aggressively – 
just the behavior one would expect in a perceptually driven 
simplification algorithm. Note however that even at these higher 
contrast levels silhouette regions can still be simplified if they 
represent very fine details (high spatial frequencies). 

3.4 Imperceptibility distance 

For best-effort perceptual simplification, we would like a model 
to predict which simplifications will have the least visual effect. 
Put another way, under the constraints of real-time rendering we 
will sometimes have to perform perceptible simplifications; we 
would like to predict which perceptible simplifications will be the 
least distracting or objectionable. However, the CSF models 
threshold performance of the visual system, predicting the 
minimal contrast at which a stimulus of a given spatial frequency 
may become perceptible. Unfortunately, the CSF cannot predict 
suprathreshold performance: given two stimuli, both above 
threshold contrast, which one is more perceptible?  

While a great deal of work has explored threshold behavior of 
the visual system, much less research has investigated 
suprathreshold performance. We know of no computational model 

of suprathreshold perception suitable for interactive rendering; 
this is a crucial open problem in perceptually driven rendering. As 
a stopgap measure, Luebke and Hallen suggest inverting the 
function. Instead of looking up the threshold contrast for a given 
frequency, they map the contrast associated with a simplification 
to the spatial frequency at which it becomes visible. Note that for 
the general CSF this mapping is not necessarily a single-valued 
function, but because we clamp frequencies below peak 
sensitivity, the threshold contrast monotonically decreases with 
frequency. Given the spatial frequency at which a given 
simplification would become visible, and the screen-space extent 
of that simplification’s effect (which we estimate using the texture 
deviation), we can compute the imperceptibility distance, or 
distance from the image at which the simplification should be 
imperceptible. The imperceptibility distance for an LOD is the 
maximum imperceptibility distance of all the local simplification 
operations used to generate it. Because it is based on the CSF, we 
cannot claim that imperceptibility distance necessarily predicts 
suprathreshold performance, or that simplifying according to 
imperceptibility distance will necessarily provide the best 
simplification when viewed from less than that distance. But it at 
least provides an intuitive physical measure of the fidelity 
achieved: for a given LOD, the system can report the distance 
from the screen at which the CSF model predicts the LOD will be 
indistinguishable from the original model. As we discuss in 
Section 6, simplifying according to imperceptibility distance 
seems to do well in practice. 

4 PREPROCESSING 

We build our MTs by progressive edge collapse simplification 
with the goal of minimizing object-space texture deviation. We 
then run a preprocessing stage that augments a basic MT with the 
structures used by our perceptual run-time simplification. The 
preprocessing maps nodes in the MT to the triangles in the 
original model to which they correspond in the texture 
parameterization, and calculates texture luminance ranges, 
bounding spheres, and normal cones from those triangles. 

To facilitate mapping nodes to their corresponding full-
resolution triangles, we build an image pyramid of the original 
textures. The bottom level of this pyramid represents the full-
resolution texture, and we store for every texel a list of the 
triangles that intersect it. From these lists, we can compute a 
bounding sphere that contains all triangles that map to that texel, 
normal cones that bound the normals of the triangles and vertices 
or normal map, and a luminance range Lmin – Lmax for those 
triangles. We can propagate this information up the pyramid to 
represent bounding spheres, normal cones, and luminance ranges 
for progressively larger patches of the original surface. 

Once the image pyramid is built, we determine the perceptual 
structures for a given node by hierarchically rasterizing coarse-
resolution the triangles of the node into the pyramid and updating 
the bounding sphere, normal cones, and luminance ranges 
according to the regions those triangles cover in the pyramid. If a 
region of the pyramid is completely covered, we can use the 
bounds stored with the region directly; if a region partially 
intersects a triangle, we recursively test the triangle against the 
next level of the pyramid. The hierarchical evaluation makes the 
precomputation fairly efficient; preprocessing the armadillo 
model, with 500,000 triangles and over 100 textures, takes about 
15 minutes on a 1.2 GHz PC. We believe this could be further 
accelerated by clever use of the graphics hardware, but have not 
felt the need to do so. The image pyramids themselves may be 
discarded after the data for all the MT nodes have been computed. 

A note about calculating luminance: we compute luminance 
using the standard RGB Y coefficients for modern CRT 
monitors in Recommendation 109 [Poynton 1998], gamma 



corrected for our display hardware and accounting for the 
measured ambient light level in our lab. Clearly much more care 
and calibration would be required to guarantee true imperceptible 
simplification; however, for our best-effort approach a rough 
approximation that captures the shape of the curve suffices. 

5 RUN-TIME SIMPLIFICATION 

Here we describe our framework for run-time perceptual 
simplification. Our basic algorithm is triangle budget 
simplification driven by imperceptibility distance. We begin with 
an overview of our technique for adapting an MT to a budget, 
followed by a description of how we modify our contrast 
computation to account for texture content, silhouettes, and 
dynamic lighting. 

5.1 Best-effort MT refinement 

Best-effort simplification aims to minimize some error criterion – 
in our case the LOD’s imperceptibility distance – while remaining 
within the user-specified triangle budget. Recall that each node in 
the MT can be thought of as a reversible local simplification 
operation. These local simplifications each incur some error, 
captured by the node’s imperceptibility distance. We can simplify 
to a budget using a simple greedy top-down algorithm that starts 
each frame by moving the cut to the source node (simplest model) 
and iteratively raises the node with the largest imperceptibility 
distance (thus refining the model in that region). This top-down 
algorithm is effectively an adaptation of [Luebke and Erikson 
1997] budget simplification technique for the MT, and is simple 
but slow. Traversing from the root usually incurs extra overhead, 
because every frame many nodes are unnecessarily evaluated, 
enqueued, shuffled around the heap, dequeued, and raised. We 
improve the efficiency of this algorithm by using a dual-queue 
implementation similar to the ROAM terrain simplification 
algorithm by [Duchaineau et al. 1997]. This approach exploits 
temporal coherence by beginning each frame with the cut X and 
queue pair L,R from the previous frame: 

 
simplifyBudget(cut X,  

  raiseQueue R,  

  lowerQueue L,  

  int Budget) 

R.updateErrorKeys();   

L.updateErrorKeys(); 

while (liftNode != dropNode) 

      while (X.numTris > Budget && !L.isEmpty())  

      Node dropNode = L.removeTop(); 

      X.lowerNode(dropNode); 

   while (X.numTris <= Budget && !R.isEmpty()) 

      Node liftNode = R.removeTop(); 

      X.raiseNode(liftNode); 

 
The priority queue R stores nodes directly below the cut 

(candidates to raise) and L stores nodes directly above the cut 
(candidates to lower). Each frame the algorithm recomputes the 
imperceptibility distance of nodes in the queues; it then iteratively 
lifts the node with the maximum distance and drops the node with 
the minimum distance until these represent the same node. Again, 
lifting a node may require lifting parent nodes that are below the 
cut while dropping a node may require recursively dropping child 
nodes, and then a node is lifted or dropped, it and its parents or 
children must be added to the appropriate queue. We also 
amortize the cost of updating the queues over several frames in a 
fashion similar to [Duchaineau et al. 1997] and [Hoppe 1997]. 

5.2 Texture contrast 

On textured models, estimating the contrast of a given node is a 
straightforward process that may be precomputed prior to 
rendering. Each node represents a mesh simplification operation 
over the triangles on a given patch of surface. The 
parameterization of the texture lets us map this patch to the 
corresponding small patch on the original surface, generating a 
list of all triangles on the original surface that share the same 
portion of the texture [Schilling and Klein 1998]. Given the 
original triangles that map to a node, we can precompute the 
luminance values of all texels covered by those triangles. Section 
4 discussed the details of this preprocess. 

Note that it would be incorrect to examine only the texture 
covered by the simplified triangles in the node, because those 
triangles may not map to the exact region of the texture mapped to 
by the original model. This highlights an important point: because 
we base simplification decisions on the perceptibility of features 
from the original model, we must take care to always consider the 
cumulative, rather than incremental, effect of a simplification. 

5.3 Silhouettes and visibility 

As discussed in Section 3, the silhouette status of a region affects 
its possible contrast. Accounting for the higher contrast of 
silhouette regions provides a natural framework for silhouette 
preservation grounded in perceptual principles. To detect whether 
nodes are on the silhouette, we use the standard approach 
described by [Luebke and Erikson 1997] of storing a silhouette 
normal cone with each node that bounds the set of triangle 
normals; comparing the normal cone, bounding sphere, and view 
vector lets us quickly decide whether the node might be on the 
silhouette. The normals that comprise a node’s silhouette normal 
cone come from the triangles in the original model that are 
associated with the node, and from the triangles of the node itself 
(because a simplified surface may well contain sharper dihedral 
angles than the original). 

Our normal cone based silhouette test also indicates whether a 
node is back facing at no additional cost. Back facing nodes and 
nodes that lie outside the view frustum comprise a special class of 
invisible nodes that are imperceptible from any distance. We set 
the imperceptibility distance of invisible nodes to zero to reflect 
the fact that they cannot locally influence the error associated with 
simplification. Although these tests incur some overhead to 
perform, knowing that an invisible node’s associated triangles 
can’t be seen saves us some time during rendering. 

5.4 Dynamic lighting 

We can also account for dynamically lit models in our contrast 
calculation. In addition to standard Gouraud-shaded vertex 
lighting, we can apply perceptual simplification to normal maps 
for extremely high quality LODs. Normal maps, once an esoteric 
feature only available offline or on the most exotic hardware, are 
now supported on commodity graphics chipsets. Visual quality of 
simplified models is often drastically increased by the use of 
normal mapping, so this is a useful mode to support. The choice 
of normal map versus per-vertex lighting can drastically affect the 
perceptual quality of the resulting simplification, because per-
vertex lighting effects (for example, a specular highlight) are 
interpolated by Gouraud shading across all triangles in a node. In 
other words, a color shift caused by applying the local 
simplification operation encoded by a node can affect the entire 
region of the image spanned by the node. With normal maps, on 
the other hand, as with texture maps, the shading is somewhat 
decoupled from the underlying mesh: the same normals are used 
for the original and simplified surface, and the extent of a color 
shift is bounded by the texture deviation. To incorporate lighting 
effects into our system, therefore, we calculate spatial frequency 



using a feature size based on either the projected extent of the 
texture deviation (for normal map lighting) or the node’s 
bounding sphere (for per-vertex lighting). 

Integrating dynamic lighting also requires us to dynamically 
adjust the contrast associated with nodes. The luminance range 
associated with a lit node is a function not only of its intrinsic 
color, but also of the light vector, view vector, and its shading 
normal cone. The shading normal cone, like the silhouette normal 
cone, simply bounds the normals associated with a node; the only 
difference is that the silhouette cone is constructed from the 
original triangles associated with a node, while the shading cone 
is constructed from the normal map or vertex normals spanned by 
those triangles.  

Our normal mapping algorithm was implemented as a texture 
combiner program on an nVidia GeForce3, and is simpler than the 
full OpenGL lighting model. The luminance Y at a vertex is given 
by: 

( ) ( )n

a dY k T k T N L N H= + • + • , 
 

where T is the intrinsic surface color read from a texture map, L is 
the light vector, H is the halfway vector of the Blinn-Phong 
lighting model, N is from the normal map, ka and kd are the 
ambient and diffuse lighting coefficients, respectively, and n is the 
specular exponent. The light source and viewer are assumed to be 
at infinity in this calculation. For per-vertex lighting, we calculate 
luminance using OpenGL’s light model for an infinite directional 
light source and viewer. We could support more complex lighting 
models (e.g., point sources), or more than one light, at the cost of 
some additional computation.  

Given the lighting model, we can bound the luminance of the 
diffuse contribution by calculating the vector encompassed by the 

shading normal cone that is closest in direction to L and the vector 
furthest in direction from L. Similarly, we find the range of 
specular contribution using the halfway vector. Note that this 
computation is similar to that of [Klein and Schilling 1999 ]. 

6 RESULTS AND EVALUATION 

Thus far we have described the simplification effects that our 
algorithm automatically accounts for: silhouette preservation, 
texture-content sensitive simplification, and illumination sensitive 
simplification. Here we visually and quantitatively compare the 
quality of the resulting simplifications to those produced by other 
algorithms. 

We provide a rigorous comparison of our system to a view-
dependent implementation of the appearance-preserving 
simplification (APS) scheme of [Cohen et al. 1998], one of the 
highest-fidelity simplification algorithms available. APS was the 
first simplification algorithm to make strong guarantees on the 
rendered fidelity of LOD; it focuses on bounding the possible 
screen-space distortion caused by simplification. Like our system, 
APS measures parametric distortion and factors appearance into 
color (represented by texture maps) and shading (represented with 
normal maps). Whereas the original algorithm uses this bound to 
choose a static LOD, the view-dependent version uses our MT 
implementation to simplify to a budget while minimizing 
projected screen-space error of nodes on the MT cut. 

Our experiments compare the new perceptual error metric 
with three others: object-space (view-independent) error, screen-
space texture deviation, and screen-space texture deviation with a 
ten-fold multiplicative factor in silhouette regions. This last 
variant exemplifies a common heuristic: user-specified weighting 
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Figure 4: Results of ltdiff evaluation on the scenes in Figure 6. (a) 500,000-triangle red armadillo model with per-vertex 
illumination. (b) The same armadillo with normal maps for per-pixel illumination. (c) 500,000-triangle textured terrain model, no 
lighting. (d) 238,140-triangle torus with per-vertex lighting and puzzle texture. 
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of silhouette importance (which is difficult to tune). We 
investigate fully APS-compliant scenarios, using texture and 
normal maps, as well as those with per-vertex normals and even 
no normals. 

We quantitatively measure simplification quality by pairwise 
comparison of 1024x1024 images. For a given triangle budget and 
view of the model we capture images with and without 
simplification enabled. We calculate the error due to 
simplification by using Lindstrom’s ltdiff image metric on 
these image pairs [Lindstrom 2000]. The ltdiff image metric 
utilizes a computational model of the human visual system 
tailored to estimate the perceptual differences between 3D models 
(see Figure 5 and Plate 2). This metric provides a more accurate 
measure of perceptible error due to simplification than simpler 
methods such as finding the root-mean-squared error (RMSE) of 
image differences. For example, the ltdiff metric attenuates 
the phase information associated with silhouette simplification 
that RMSE over-emphasizes in error measurement. However, 

because high contrast silhouettes still do affect the ltdiff error, 
we maximize fairness by setting the background color to a mid-
level gray in all scenes. In fact, our algorithm often performs 
better with a black background to conceal dark silhouette edges. 
We include plots of ltdiff error from a single representative 
view against triangle budget for different scenes, textures, and 
lighting conditions (Figure 4). 

As we expect, using a perceptual model generally provides 
improved simplification. The benefit is most pronounced on 
vertex-lit models, primarily because the distortion and tessellation 
artifacts in specular highlights are highly perceptible (Figure 
4a,d). Using normal maps maintains smooth highlights even at 
low resolutions. Under these conditions the primary differences 
between our algorithm and APS are the ability to simplify low-
contrast regions (washed out highlights or dark shadow), and the 
ability to preserve high-contrast areas such as silhouettes. 
Likewise, the perceptual method with texture maps alone does not 
provide the significant improvement that is found in lighting with 
per-vertex normals. Except at significant simplification levels, 
these effects are less important visually. 

7 DISCUSSION AND FUTURE WORK 

Just as view-dependent algorithms gain benefits and incur costs 
not present in view-independent systems, our perceptual model 
provides intelligent simplification not present in other 
algorithms—aggressive simplification in low-contrast regions, 
such as uniform texture areas and washed-out specular highlights, 
along with intelligent refinement at specular highlights and 
silhouette regions—but comes at a computational cost. Other 
algorithms have been augmented with manually weighted 
heuristics to account for most of these opportunities, such as the 
use of tighter error thresholds for silhouettes. One could argue that 
evaluating such heuristics probably requires less computation than 
our perceptual model, and that heuristics could be developed to 
account for all the simplification effects we support. But this 
would be missing the point: our chief contribution is a way to 
avoid ad hoc hand-tuned heuristics—or perhaps, in future work, to 
guide their development—by reasoning directly from principles of 
visual perception. 

7.1 Avenues for future work 

While our initial system shows promise, many avenues of future 
work remain. Perhaps the most important topic for future research 
is the integration of better perceptual models. We would like to 
extend our perceptual model to include important effects such as 
local adaptation (TVI effects), chromatic contrast sensitivity, and 
temporal effects (flicker sensitivity, sudden onset). In particular, it 
would seem fruitful to investigate efficient ways to model visual 
masking. The frequency content of textures and normal maps has 
a strong effect on the perceptibility of the simplification; we 

Figure 6. Scenes used to gather the data in Figure 5: 500,000-triangle red armadillo model; 500,000-triangle terrain model, 
240,000-triangle torus model.  

Figure 5. Top: rear view of the 500,000 triangle armadillo 
model, 98% simplified under per-vertex lighting 
conditions. Bottom: ltdiff visualization of the error 
associated with simplification from the original model. 
Darker areas indicate larger error. Notice that 
perceptually driven simplification exhibits fewer strong 
errors on the high contrast back than screen-space error. 

Screen-space Perceptual



believe a simple model of visual masking, perhaps based on pre-
computed frequency content in the textures, would often enable 
much more aggressive simplification. Along these lines the work 
on perceptual texture caching by [Dumont et al. 2001] appears 
promising for future investigation. More generally, a dire need 
exists for adequate models of suprathreshold perceptibility that 
are efficient enough for an interactive framework. 

One useful extension would be to account for MIP-map 
filtering when calculating texture contrast. Many textures have 
noise or high-frequency components that introduce a great deal of 
contrast to our algorithm, which simply assigns a node a contrast 
from the luminance range it covers in the texture. Often these 
high-frequency components are filtered out in the first or second 
MIP level, leaving a low-contrast texture that could be simplified 
much more aggressively. We expect, for example, that our 
perceptual simplification system would out-perform APS on 
terrain visualization if equipped with MIP-mapping support 
(Figure 4c). 

We would also like to investigate optimizing the MT 
construction for perceptual simplification. Currently we simply 
apply our perceptual metrics to pre-built MTs, which were 
constructed with the goal of minimizing texture deviation. 
However, building MTs tailored for given textures should allow 
the construction process more leeway, for example in areas of low 
contrast. It also seems helpful to investigate “quick and dirty” 
parameterizations that could be used to apply our algorithm to 
non-textured models. A great deal of excellent research has been 
carried out in the realm of automatic parameterization, but it 
remains a difficult problem. However, even a simplistic approach 
should suffice for our method, which simply needs to establish a 
correspondence between nodes in the MT and the original 
triangles to which they relate. 
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Plate 1: Contrast calculation and simplification effects on a textured and lit torus. The model is shown at full resolution with 
57,660 triangles (a)  and simplified by 50% (b). The close-up (c) illustrates preservation of silhouettes and extra simplification 
in low-contrast areas, such as washed-out specular highlights and deeply shadowed regions.   

(a) (b) (c) 

Plate 2: Visual comparison of the 500,000-triangle armadillo model, rendered with per-vertex lighting and simplified by 98% 
with (a) screen-space deviation and (b) our perceptual metric.  (c) and (d) show ltdiff visualizations of the resulting error as 
compared to the full-resolution model for the screen-space and perceptual metrics, respectively.   ltdiff reports errors of 
3,689 for the screen-space metric and 3,123 for the perceptual metric. 
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