
 Open access  Journal Article  DOI:10.1016/J.IMAGE.2013.08.007

Perceptually optimized blind repair of natural images — Source link 

Anush K. Moorthy, Anish Mittal, Alan C. Bovik

Institutions: University of Texas at Austin

Published on: 01 Nov 2013 - Signal Processing-image Communication (Elsevier)

Topics: Image quality, Image restoration, Image processing, Feature detection (computer vision) and Image warping

Related papers:

 No-Reference Image Quality Assessment in the Spatial Domain

 Image quality assessment: from error visibility to structural similarity

 Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain

 Image information and visual quality

 Making a “Completely Blind” Image Quality Analyzer

Share this paper:    

View more about this paper here: https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-
2e1rrmrnix

https://typeset.io/
https://www.doi.org/10.1016/J.IMAGE.2013.08.007
https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix
https://typeset.io/authors/anush-k-moorthy-2piwfej5ta
https://typeset.io/authors/anish-mittal-1jg3n4r400
https://typeset.io/authors/alan-c-bovik-142c9102z2
https://typeset.io/institutions/university-of-texas-at-austin-i19lu0sj
https://typeset.io/journals/signal-processing-image-communication-16hrl7x9
https://typeset.io/topics/image-quality-22xxcavt
https://typeset.io/topics/image-restoration-14frn4g8
https://typeset.io/topics/image-processing-22uxqmf7
https://typeset.io/topics/feature-detection-computer-vision-u7x25zf2
https://typeset.io/topics/image-warping-qsv8vjsn
https://typeset.io/papers/no-reference-image-quality-assessment-in-the-spatial-domain-2mnlvf25ig
https://typeset.io/papers/image-quality-assessment-from-error-visibility-to-structural-1rlwcqe34t
https://typeset.io/papers/blind-image-quality-assessment-a-natural-scene-statistics-2at3p0z79b
https://typeset.io/papers/image-information-and-visual-quality-4c5g658z92
https://typeset.io/papers/making-a-completely-blind-image-quality-analyzer-4rsald8tn3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix
https://twitter.com/intent/tweet?text=Perceptually%20optimized%20blind%20repair%20of%20natural%20images&url=https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix
https://typeset.io/papers/perceptually-optimized-blind-repair-of-natural-images-2e1rrmrnix


This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Perceptually optimized blind repair of natural images

Anush Krishna Moorthy n, Anish Mittal, Alan Conrad Bovik

Laboratory for Image and Video Engineering, Department of Electrical and Computer Engineering, The University of Texas at Austin, USA

a r t i c l e i n f o

Article history:

Received 10 September 2012

Received in revised form

8 July 2013

Accepted 21 August 2013
Available online 6 September 2013

Keywords:

Image quality

Image repair

Distortion identification

Perceptual image repair

a b s t r a c t

We define the new idea of blind image repair as a process of correcting one or more

different and unknown types of distortions afflicting an image. These distortions could

introduce linear or non-linear degradations, compression artifacts, noise, etc., or combi-

nations of these. Thus the concept encompasses denoising, deblurring, deblocking,

deringing, and other post-acquisition image improvement processes that address distor-

tions. The problem is distortion-blind when the natures of the distortion processes are

unknown prior to analyzing the image. Towards solving this problem, we describe a new

framework for repairing an image that has undergone an unknown set of distortions,

based on identifying the distortion(s) present in the image (if any) and applying possibly

multiple distortion-specific image repair algorithms. Our philosophy is based on the

principle that the task of general purpose image repair is one of agglomeration, i.e., the

algorithm should embody multiple high-performing distortion-specific repair modules

such that seamless general purpose image repair is achieved. Our proposed framework –

the GEneral-purpose No-reference Image Improver (GENII) – enables the design of

algorithms that are blind to distortion type as well as to distortion parameters, and only

requires as input the distorted image to be repaired. The GENII framework is modular and

easily extensible to image repair problems beyond those considered here. GENII operates

by using natural scene statistic models to identify distortion, to perceptually optimize the

distortion parameter(s), to assess the quality of the intermediate repaired images, and to

perceptually optimize the repair processes. We explain the general purpose image repair

framework and one specific realization, dubbed GENII-1, which assumes that the image

has been affected by one or more of four possible distortion types.The performance of

GENII-1 is evaluated on 4000 distorted images, and shown to deliver substantial

improvements in both quantitative and qualitative visual quality.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Image repair is the process of correcting one or more

possibly different types of distortions afflicting an

image. The general purpose image repair problem is

formulated as

y¼H � f ðxÞþn ð1Þ

where y is the observed distorted image, x is the original

pristine image that we seek to recover, n is the additive

noise, f ð�Þ is a local non-linearity and H is a matrix that

models multiplicative distortion (e.g., a low-pass filter)

[1,2]. The model in (1) is not restricted to the spatial

domain (where the vectors x and y would be columnized

versions of the 2D image) and we do not assume that the

models for image repair are limited to the spatial domain.

The general image repair problem is ill-posed, and

in order to solve the problem, certain assumptions

are usually made about the structure of f ;H and n. For

example, for image denoising, fix f to be an identity
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transform, and H¼ I , where I is the identity matrix, and

assume a distribution and correlation structure on the

noise n [3]. For deblurring (deconvolution), assume a zero-

mean noise model with known variance, then estimate x

from the observed y [4] and so on. Solving the problem (1)

has recently become quite compelling, given the prolifera-

tion of digital consumer grade cameras and the vast

numbers of digital pictures being taken (about 80 billion/

year [5]) and uploaded onto personal computers and social

networking sites. These pictures are commonly distorted,

often severely, and often by multiple distortions such as

low-light noise and blur, over and under-exposure, motion

effects, etc. Being able to automatically identify and fix

these distortions completely blindly is highly desirable.

Image repair algorithms have been broadly partitioned

into blind and non-blind classes. Blind algorithms do not

assume prior knowledge of the distortion parameters,

while non-blind models assume that the parameters are

known. Given the ill-posed nature of the problem, there

has been more activity and success on various non-blind

image repair problems than on blind image repair pro-

blems [6,7]. While the general field of image repair has

seen quite a bit of research, especially on single distortion

problems such as denoising [6,7], deconvolution [8,4] and

deblocking [9,10], the general purpose blind image repair

problem, where the specific distortion(s) afflicting the

image are unknown, has been little studied. There has

been some work dealing with two image distortions

simultaneously (and blindly, if the blur/noise parameters

are unknown), the classic example being the image

restoration problem [8] of simultaneously deblurring and

denoising an image. The common theme of these

approaches is that it is known a priori what the distortions

are that afflict the image. A blind algorithm then seeks to

discover the parameters of the distortion (noise, blur) and

then ameliorate them.

We take a different approach to the problem of general

purpose image repair. We begin by assuming that the

distortion(s) (if any) afflicting a given image are unknown

and possibly multiple, although they are assumed to come

from a finite population of possible image distortions.

We refer to such a problem framework as distortion blind.

We also recognize that for specific image distortions of

general interest, there exist algorithms that ostensibly

correct that particular distortion reasonably well. This is

not always the case, of course; for example, image restora-

tion (deblur and denoise simultaneously) is a particularly

difficult inverse problem that requires precise modeling to

achieve worthwhile results. This is often impossible given

that blur nearly always arises from a non-linear process. In

any case, in this work we do not attempt to improve upon

the state of the art of any type of image repair problem.

Rather, we propose the new idea of preprocessing the

image to determine the distortion(s) afflicting it and any

unknown parameters of the distortion(s), then once done,

ameliorate these using the best algorithm available. Of

course, if the distortion identification stage is particular

effective (e.g., by better parameter estimation), then per-

formance may be notably improved.

Thus we define the task of a general purpose image

repair algorithm to be agglomeration, i.e., automatically

deploy any of multiple high-performing image repair

algorithms towards achieving seamless general purpose

image repair across a wide variety of distortion types. Such

a general purpose image repair algorithm should perform

as well as the best algorithms on each included subclass of

distortion (since it embodies these algorithms in its

architecture). As mentioned, given the ill-posed nature of

many inverse image repair problems, it is natural that

repair algorithms (even the best of them) would fail in

certain situations. In these cases we further posit that the

general-purpose image repair algorithm should be able to

detect the failure and act on it so that the repaired image is

given the best perceptual quality at the output, thereby

rejecting failures by the internal repair algorithms. Further,

given that each of the subclass repair algorithms may also

introduce new artifacts (e.g., deblocking can introduce blur

in the image), the general-purpose algorithm should

enable iterative distortion correction within the set of

subclasses that it encompasses. Finally, if some of the best

repair algorithms are non-blind, the general-purpose

image repair algorithm could include blind parameter

estimation modules so that these non-blind algorithms

operate using these estimated parameters, towards solving

a class-specific blind image repair.

Here we propose both a general design framework –

the GEneral-purpose No-reference Image Improver (GENII)

– for general purpose distortion-blind image repair as well

as an example working model and algorithm dubbed

GENII-1. Our framework and exemplar models are based

on using natural scene statistics (NSS) [11,12,3] to identify

distortions by type and severity. The specific exemplar

model, GENII-1, is capable of restoring images distorted by

additive noise, Gaussian blur, JPEG compression or

JPEG2000 compression, without knowing in advance

which (if any) of the distortions impairs the image, or

the parameters of the distortion. Given a distorted image,

the algorithm uses natural scene statistic (NSS) features to

first identify whether the image has been distorted, and if

so, identify (a) the distortion that afflicts the image, (b) the

associated distortion parameter (e.g., noise variance) and

(c) the perceptual quality of the image. The algorithm then

proceeds to apply an appropriate off-the-shelf image

repair algorithm based on the identified distortion cate-

gory. The perceptual quality of the repaired image so

obtained is repeatedly evaluated and the general-purpose

image repair loop continues until a maximum level of

objectively determined perceptual quality is obtained.

Thus our model seeks to guarantee that the final repaired

image will not only be distortion-reduced, but will also

present the best possible perceptual quality. The entire

process is completely blind both to the distortion types

and the distortion parameters. The only information avail-

able to the algorithm is the fact that the image it is trying

to repair belongs to the category of natural images1 and

that the distortions (if any) belong to one of the multiple

diverse distortions.

1 Natural images are those images captured by a camera, and do not

include computer-generated renders of the visual world.
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In order to achieve these goals, we use realizations of a

previously proposed two-stage framework for image qual-

ity assessment [13] that first identifies the distortion that

afflicts the image [14] and then proceeds to assess quality.

Two realizations of this two-step framework have been

developed – one in the wavelet domain [15] and the other

in the spatial domain [16] – both capable of accurate

distortion-identification as well as blind parameter esti-

mation and blind image quality assessment. Either can be

combined with off-the-shelf distortion-specific image

repair algorithms to perform distortion-blind general-

purpose, image repair. We are unaware of any approach

that takes this approach to the general image repair

problem and to the best of our knowledge, the proposed

model is the first of its kind.

Before we proceed, we define the terminology used in

the rest of this paper. A distortion class refers to a

particular kind of distortion afflicting the image, e.g., blur

or noise. A distortion type refers to a particular type of a

distortion class, e.g., Gaussian noise, or spatially invariant

Gaussian blur. Image repair refers to eliminating distor-

tions arising from any one of the multiple classes of

distortions. An exemplar implementation of the GENII

framework (GENII-1) ameliorates distortions arising from

a finite set of multiple distortion types.

The diverse subfields of image repair that we address

have been well explored and broadly surveyed and hence

we refrain from a thorough review of these techniques.

Instead, we summarize some key algorithms and where

appropriate point the reader to other literature in the field.

We (very briefly) summarize relevant research on the

following subclasses of image repair: (1) deringing, (2)

deblocking, (3) denoising and (4) deblurring/deconvolu-

tion. While we are unaware of algorithms that tackle all

the four distortions considered here, some algorithms

tackle more than one of these distortions and this is noted

in the summary below.

Deringing: Existing approaches include iterative projec-

tion onto convex sets (POCS) [17], total variation [18–20],

anisotropy [21], bilateral filtering and its variants [22–25]

and quadtree decompositions [26–28].

Deblocking: Prominent deblocking algorithms include

those that use a field of experts model for natural images

[9,29], those operating in the DCT domain [30], those that

use local smoothing filters [10], and block processing

[31,32] and those based on POCS [33]. A shape adaptive

DCT algorithm for denoising has also been shown to

perform well at deblocking images [34].

Denoising: Algorithms for denoising include subband

methods [3,35–38], those that use sparse coding [39] and

those based on collaborative filtering and local shape

adaptation in the DCT domain [34,40]. Reviews and analysis

may be found in [6,7].

Deblurring: Deconvolution algorithms include approaches

based on collaborative Wiener filtering [41], statistics of

natural images in the gradient domain [4,42], color statistics

of natural images [8], space-variant Gaussian scale mixture

(GSM) statistical modeling of wavelet coefficients [43,44] and

those that tackle spatially varying blur [45]. The approaches

in [8,43,44] (among others) are capable of performing both

denoising and deblurring.

The main contributions of this paper are: (1) a method

to use perceptual image quality assessment predictions to

perform distortion-blind and distortion-severity-blind

image repair; (2) a method to perceptually optimize the

parameters of distortion repair algorithms so that the

repaired image attains maximum perceptual quality and

(3) a general purpose framework that allows for iterative

distortion repair to maximize output perceptual quality.

The GENII approach to image repair is markedly different

from conventional image processing thinking, yielding

fertile ground for addressing many questions in image

optimization and perceptual image processing.

2. Distortion blind image repair

2.1. Distortion-identification and quality assessment

Recently, a two-stage model was proposed for design-

ing distortion-blind no-reference image quality assess-

ment (IQA) algorithms that first seeks to identify the

distortion(s) that are present in the image, then proceeds

to perform distortion-specific quality assessment [13].

A combination of the two stages leads to a general-

purpose blind IQA model. Two realization of this frame-

work both based on natural scene statistics (NSS) but

operating in different domains (wavelet and space) were

later proposed in [15,16]. The first of these, the Distortion

Identification-based Image Integrity and Verity Evaluation

(DIIVINE) index operates in the wavelet domain [15], while

the Blind/Referenceless Image Spatial QUality Evaluator

(BRISQUE) is defined in the spatial domain [16].

Both algorithms generally proceed as follows. Given a

distorted image, the algorithms extract a set of features

from the image and ‘learn’ the mapping from feature space

to distortion-category and for each distortion class, learn

the map to quality. The same set of features is used for

distortion-identification and for quality assessment.

The extracted statistical features quantitatively capture

‘naturalness’ in the image, and are hence useful for

detecting and assessing unnatural distortions that cause

perceptual annoyance. This philosophy is supported by

the widely understood notion that visual cortical neurons

have adapted to these ‘natural’ statistics [46]. From a

performance point of view, both DIIVINE and BRISQUE

correlate well with human judgements of quality as

measured against large public databases of distorted

images and subjective scores [47]. Fig. 1 illustrates this

two-stage concept.

The algorithms are detailed in [15,16]; both are capable

of identifying distortions in images that they have been

Fig. 1. An illustration of the DIIVINE/BRISQUE approach to image quality

assessment [15,16] which consists of two stages: probabilistic distortion

identification followed by distortion-specific quality assessment.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 1478–14931480
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trained for. With respect to computation, BRISQUE is a far

more efficient implementation than DIIVINE.

2.2. General purpose image repair

Our approach to general purpose image repair is

summarized as follows. Given an input (possibly) distorted

image, first extract statistical DIIVINE/BRISQUE features

from the image, then use these features to attempt to

identify the distortion afflicting the image. Once a distor-

tion class has been posited, the same features are used to

predict the perceptual quality of the image using the

second stage of quality assessment. If the predicted quality

of the image lies above a certain threshold, then the

quality of the image is deemed to be high enough that

repair does not need to be performed; in which case, the

algorithm halts, yielding as output the input image. If the

predicted quality falls below this threshold, the algorithm

continues.

Given identified distortion(s), the same DIIVINE/BRIS-

QUE features are used to perform blind parameter estima-

tion for the corresponding image repair problem, for

example, these features might predict the noise variance

in the image if the distortion is predicted to be Gaussian

noise. The algorithm then proceeds to invoke the appro-

priate image repair algorithm, providing as input to this

algorithm the distorted image to be repaired and the

associated parameter(s) that the off-the-shelf (possibly

non-blind) algorithmmay require. The repaired intermedi-

ate image so obtained is then passed back into the loop in

order to evaluate quality and identify distortion. This loop

continues until the obtained intermediate image has the

highest possible quality or if a specified finite number of

repair iterations have been performed. While this proce-

dure does not guarantee convergence, we have not found

any example among the 4000 distorted images that we

tested on (see below) that produced convergence issues.

Generally the question of convergence of a general

repair algorithm of this sort is complex. Indeed, whether

a general repair algorithm depends on the component

repair modules would require a careful analysis of each

algorithm and its convergence under a perceptual criter-

ion. More pragmatically, it is likely sufficient to simply

place a limit on the maximum number of iterations, unless

a maxima is attained, or a desired level of quality is

reached, which need not be DMOS¼0 (highest achievable

quality).

Finally, the algorithm determines whether the repaired

image has a higher predicted visual quality than the input

distorted image, and only outputs the repaired image if it

has a higher visual quality, thereby avoiding unpalatable

distortions that the repair algorithm may introduce as well

as compensating for the failure of the repair algorithm. An

illustration of this general purpose image repair scheme is

diagrammed in Fig. 2.

Note that the approach that we have proposed is highly

modular in the sense that any repair scheme can be

replaced by another repair scheme deemed to be more

effective than the one on the system. Further, the model

that we have described may deploy either blind or non-

blind repair algorithms. When non-blind, our features can

be used to predict repair algorithm parameters.

In this paper, we demonstrate the efficacy of our

general-purpose image repair framework using four dis-

tortion repair subtypes. This four-distortion blind repair

system is both unique and unprecedented in its ability to

Fig. 2. An illustration of the GENII framework. DIVIINE/BRISQUE features are used to predict the distortion class, the visual quality, and the distortion

parameters that may serve as inputs to a possibly non-blind repair algorithm. The intermediate repaired image is fed back to the system until the best

possible quality is achieved at the output.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 1478–1493 1481



Author's personal copy

handle (deduce and repair) multiple unknown distortions.

However, the GENII framework encompasses the possibi-

lity of more extensive implementations capable of hand-

ling more than the four distortion classes considered here,

diverse subtypes of the distortions (different types of blur,

noise, missing data, or other artifacts), and appropriate

combinations of distortion. The resulting algorithm, GENII-1,

is responsive to these distortions although blind to which

(if any) of these distortions occur. We envision that future

research on the GENII idea will result in repair models that

handle even larger number of distortion types. However,

this will first require the development of blind IQA algo-

rithms that can handle more distortion types, which in turn

will require that large human studies be conducted on

these distortion on which blind IQA algorithm can be

trained.

2.3. Image repair algorithms

As described in the introduction, GENII uses a two-

stage framework, where once distortions are identified,

off-the-shelf image repair algorithms are deployed to

conduct distortion-specific image repair. Now we shall

summarize the exemplar repair algorithms that we have

decided to use to demonstrate the principle of general

purpose image repair, in our prototype implementation

GENII-1. The algorithms were chosen since they were

either readily available online or were easy to implement,

have a previously demonstrated high-level of perfor-

mance, and adequate computational efficiency without

sacrificing performance. The modularity of our model

implies that any one of these algorithms could be sub-

stituted for by a suitable alternative.

The algorithms below are used to ameliorate distor-

tions stemming from JPEG compression, JP2K compres-

sion, additive white Gaussian noise and spatially invariant

Gaussian blur. The corresponding repair schemes used are

deblocking, derininging, denoising and deblurring. Note

that this scheme assumes that the compression schemes of

JPEG and JP2K introduce mainly blocking and ringing

artifacts.

2.3.1. Deblocking

We use the simple algorithm proposed in [48], which

iteratively applies JPEG compression at the quality level at

which the distorted image was compressed, to shifted

versions of the distorted image. The resulting collection of

images is averaged to produce a final deblocked image. The

premise behind this approach is explained in [48], and we

have found that the algorithm efficiently reduces blocking

artifacts in a perceptually satisfying manner. The input

parameter required, since the algorithm is not blind, is the

quality factor at which the image was compressed. This

can be read from the JPEG header, or it can be estimated,

as we demonstrate below.

2.3.2. Deringing

We use the trilateral filter described in [49] to remove

ringing artifacts from the image. The trilateral filter is an

extension of the bilateral filter [23], which first computes a

texture map from the gradient information and then filters

the image using a locally adaptive filtering procedure,

where the filter kernels are functions of the image inten-

sity and the textural information at each location. We tried

other deringing approaches (for example, the one in [50]).

However, while these approaches reduced ringing arti-

facts, the images produced had poorer quality than the

distorted image, both by visual inspection and by quanti-

tative QA analysis [51], whereas the trilateral filter pro-

duced higher quality images. This algorithm does not need

any input parameter, i.e., the algorithm is blind.

2.3.3. Denoising

We use the Block matching 3D (BM3D) algorithm for

denoising [40]. The BM3D algorithm operates as follows.

Given a distorted image, with known noise variance, a set

of groups of 2D image patches is created via block-

matching to produce a 3D group of image patches, each

of which are then denoised in a sparse transform domain

using a popular wavelet shrinkage based approach [52].

These denoised patches yield a basic estimate of the

denoised image, which is then used to perform re-group-

ing, followed by collaborative Wiener filtering, where the

‘collaboration’ is between the image patches in the group.

The algorithm, which was designed for Gaussian noise, is

not blind and the input parameter is the noise variance.

2.3.4. Deblurring

The approach proposed in [4] is used for deconvolution.

Local image gradients are modeled using a heavy-tailed

distribution, which forms a natural image prior. A max-

imum a posterior (MAP) problem is solved using the

iterative re-weighted least squares (IRLS) approach [53].

The algorithm requires the blur kernel as prior information

to be able to perform deblurring. Since we consider

spatially invariant Gaussian blur, the parameter to be

estimated is simply the variance of the blur kernel.

3. Implementation and performance evaluation

Since there are a variety of stages involved in the

exemplar image repair algorithm, GENII-1, we evaluate

each stage individually, then the overall performance.

Further, in order to demonstrate the robustness the GENII

concept, instead of evaluating it only on a standard set of

images, we perform a more complete analysis of the repair

performance of GENII-1 on a much larger database. To this

end, we created a large database of distorted images

spanning a wide range of distortion levels encompassing

the four types that GENII-1 has been designed to repair:

JPEG2000 compression (JP2K), JPEG compression (JPEG),

additive white noise (WN) and Gaussian blur (Blur).

A total of 300 reference images from the Berkeley

image segmentation database [54] were distorted at 10

different degrees of severity for each distortion type to

produce a total of 12,000 distorted images (3000 per

class). JPEG compression was implemented using

MATLAB's imwrite command; JPEG2K was implemented

using the Kakadu encoder [55]; zero-mean WN was added

to the image using MATLAB's imnoise command; and

Blur was simulated using a Gaussian kernel to filter the

image. The various control parameters for these

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 1478–14931482
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distortions and the ranges of these parameters for the

simulated distortion levels are listed in Table 1. The

distortion levels were uniformly sampled on a log-scale

between the minimum and maximum parameter values.

Fig. 3 plots some sample reference and associated dis-

torted images to give a sense of the distortion levels

created.

In the discussion above, we described how GENII-1

performs distortion identification and blind parameter

estimation. To achieve this, GENII-1 requires a training

phase in which the extracted features are mapped onto the

associated distortion type as well as to the distortion

parameters. In order to train our algorithm, we split the

above database randomly, based on image content, such

that 200 reference images (and the associated 8000

distorted images) are used for training and the remaining

100 reference images (and the associated 4000 distorted

images) are used for testing. All results to follow are

reported on this testing set. This train-test split procedure

ensures that there is no content overlap between the

training and test sets. Next, we summarize the training

procedure.

3.1. Training the model

3.1.1. Classification

A multi-class support vector machine (SVM) [56,57]

was trained to classify the distorted images into one of

four distortion types using DIIVINE or BRISQUE features as

inputs and the labels associated with the distortion types

as the outputs. The parameters of the SVM are set via

cross-validation. Once trained, when fed with DIIVINE/

BRISQUE features, the SVM returns a distortion type and a

probability distribution over all distortion types which

corresponds to the predicted type and the confidence

associated with the classification respectively. This pre-

dicted distortion type is used to select the right image

repair algorithm.

3.1.2. Quality assessment

The confidence associated with the prediction (prob-

ability estimates) is used in conjunction with regression

modules to accomplish quality assessment. This procedure

is described in great detail in [15,13]. Supposing n distor-

tion types (in GENII-1, n¼4), n regression modules (sup-

port vector regression (SVRs) [56]) are trained, taking as

input DIIVINE or BRISQUE features, and then regressed

onto (known) quality scores for each of the distortion

types independently. Since human opinion scores are not

available for the database that we created, we instead use

the multi-scale structural similarity (MS-SSIM) index [51]

to supply quality scores. MS-SSIM produces quality pre-

dictions that correlate quite well with human judgments

of quality of images impaired by these and many other

types of distortions [47]. As such it is a useful proxy for

human opinion scores. However, MS-SSIM correlates non-

linearly with human judgments of quality. Therefore,

instead of using the MS-SSIM scores directly, the MS-

SSIM scores are remapped to human opinion scores

obtained from the LIVE IQA database [58]. These remapped

scores have a range of [0, 100], where ‘0’ is the best

possible subjective quality. This procedure is detailed in

the Appendix. In order that the distinction between the

MS-SSIM scores and the remapped MS-SSIM scores is

clear, the remapped scores are labelled MS-SSIMD.

During the test phase, given an input distorted image,

the algorithm uses the classifier module to produce prob-

ability estimates for the types pi, and for each distortion

type produces a quality scores qi. The final DIIVINE/

BRISQUE predicted quality score is then ∑i piqi.

3.1.3. Parameter estimation

The repair algorithms used by GENII-1 are mostly non-

blind and require as input certain parameters described in

Section 2. To predict these repair parameters, for each

distortion type and for each image in the training set, we

use DIIVINE/BRISQUE features to train a regression module

(SVR [56]) to perceptually optimize the parameter of

interest (e.g., variance of the blur kernel). Given the input

test image, the image is first classified by the distortion

type and the appropriate (trained) regression module is

queried to output the estimated parameter of that distor-

tion. This parameter and the appropriate repair algorithm

are used to produce a repaired image.

Denoising using BM3D [40] is handled in a slightly

different manner to promote an improved perceptual

result. Although BM3D requires noise variance as the

input, when fed with the actual noise variance in the

distorted image, the algorithm tends to over-smooth the

image resulting in lower quality than when the algorithm

is fed with a different (albeit incorrect) input noise

variance [59]. For example, Fig. 4 shows a noisy image,

its repaired version using the correct noise variance input

to BM3D, and the perceptually optimized approach

detailed below, which uses a different variance parameter

as input to BM3D. BM3D tends to oversmooth images

when provided with the actual noise variance, and is

capable of producing better quality images when supplied

with a different input parameter. We modify BM3D to

improve visual quality using an important new aspect of

GENII: perceptually optimized training of distortion repair

parameters.The training procedure for the denoising mod-

ule is modified in the following way.

To maximize the visual quality of the denoised image,

we use the training procedure outlined in [59]. Specifically,

during the training phase, the distorted image is denoised

multiple times using BM3D with different input noise

variances. The resulting repaired image is then quality-

assessed using the perceptually relevant MS-SSIM [51]

index. For each distorted image, the value of the input

noise variance that maximizes the visual quality (as

gauged by MS-SSIM) is the parameter value to train the

Table 1

Distortion parameters and their minimum and maximum values used for

inducing distortions.

Distortion type and parameter Min. value Max. value

JP2K (bit-rate) 0.05 0.25

JPEG (quality parameter) 7.5 20

WN (s2 of filter) 0.001 0.05

Gblur (s of filter) 1 10
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Fig. 3. Sample simulated distorted images (crops) from the Berkeley image segmentation database [54]. (a) Reference image, (b) reference crop,

(c) distorted crop: JP2K, (d) distorted crop: JPEG, (c) distorted crop: WN and (d) distorted crop: Blur.
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noise parameter regression module. In summary, instead

of using the actual noise variance as input to the regression

module, a different perceptually optimized value is chosen.

Note that this training procedure is specific to the

BM3D denoising algorithm and may not be needed for

other algorithms that might be used to replace BM3D in an

improved GENII implementation. On the other hand,

perceptual optimization of an image repair parameters is

a powerful option.

In summary, we train one classification module of GENII-1

that outputs a probability distribution over distortion types,

four regression modules that output quality scores indepen-

dently for each of the classes, and four parameter estimation

regression modules which output appropriate distortion

parameters, all of which utilize as input only natural scene

statistic DIIVINE/BRISQUE features. During the test phase, the

DIIVINE/BRISQUE features are extracted just once and from

them all of the necessary outputs are produced using the

trained modules to (1) classify the image, (2) assess quality,

and (3) estimate distortion parameters. The predicted domi-

nant (most possible) distortion type and the distortion

parameters are used to perform image repair. As we noted

before, this entire process can be repeated until a maximum

quality is achieved.

We first consider the case of a single pass through the

system i.e., the output repaired image is not fed back into the

loop for further correction. Later we also demonstrate itera-

tive image repair. Fig. 5 shows an example of the operation of

the GENII-1, where deconvolution was performed.

3.2. Performance evaluation

Next, we evaluate the specific instantiation of our

general purpose image repair framework, GENII-1, on the

test image database. Specifically, we evaluate the accuracy

achieved when predicting distortion type, intermediate

image quality, distortion parameters and the final

improvement in visual quality obtained after repair.

3.2.1. Classification and quality assessment

Table 2 reports classification accuracy for each distor-

tion type as well as the overall classification accuracy over

the 4000 distorted images using both DIIVINE and BRISQUE

features. Excellent classification accuracy was achieved;

there was very little confusion between distortion types

(o1%) and hence, for brevity, we do not report these

numbers here.

We computed the Spearman's rank ordered correlation

coefficient (SROCC) between the predicted quality scores

from DIIVINE and BRISQUE and the objective predicted by

MS-SSIMD on the test images across all distortions. We also

computed the commonly used full-reference peak signal-to-

noise ratio (PSNR) as an additional comparison. The SROCC

values relative to MS-SSIMD that were observed were –

PSNR¼0.8066, DIIVINE¼0.9308, BRISQUE¼0.9490. True

MS-SSIM would be at an SROCC of 1.0. As expected, DIIVINE

and BRISQUE both correlate much better with the percep-

tually relevant MS-SSIMD than does PSNR.

To verify that the predicted SSIM scores relate to quality

well, we also computed SROCC between the DIIVINE

predicted MS-SSIM scores and the quality scores from

another high-performing full-reference algorithm – the

visual information fidelity (VIF) index, and obtained an

SROCC of 0.7757. True MS-SSIM values achieve an SROCC

of 0.8138, while PSNR achieves an SROCC of 0.6302. We

also trained the features on VIF scores and tested the

correlation with respect to VIF and MS-SSIMD; the SROCC

so obtained for DIIVINE with respect to VIF is 0.9316 and

0.7471 with respect to MS-SSIMD while PSNR achieves a

correlation of 0.6302 with respect to VIF.

Thus, the NR measures predict quality as well as MS-

SSIM, and exhibit good correlation with human perception.

3.2.2. Parameter estimation

Fig. 6 plots the mean estimated parameters for each

distortion type as a function of the actual input parameters.

The associated standard error bars across the 100 different

contents in the test set are given for both DIIVINE and

BRISQUE. The figure also lists the root mean-squared-error

(RMSE) between the actual value and the predicted value.

Both DIIVINE and BRISQUE do a good job of predicting the

distortion parameter, and hence their predictions can be

used as inputs to non-blind repair algorithms.

Note that in GENII-1, for the denoising task, we do not

actually use the predicted noise variance as the parameter

for BM3D, for reasons explained earlier. Also, the deringing

algorithm used does not require any input parameter. The

plot simply demonstrates that the DIIVINE/BRISQUE fra-

mework is capable of predicting these distortion para-

meters with a high degree of accuracy.

3.2.3. Image repair

Having demonstrated that DIIVINE/BRISQUE features

are capable of classifying images according to distortion

Fig. 4. Accurate noise variance as input to the algorithm in [40] produces poorer quality denoised images: (a) noisy image (s¼ 0:0158, MS-SSIMD¼107.26),

(b) denoised with s¼ 0:0158 (MS-SSIMD¼64.00) and (c) denoised with s¼ 0:0040 (MS-SSIMD¼53.82).
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types, quality assessment, and blind parameter estimation,

we now demonstrate how these stages can be combined to

fully realize GENII-1 using off-the-shelf algorithms for image

repair. Since we are unaware of any other general purpose

image repair technique similar to GENII-1, comparisons are

impossible. Hence, we report the mean increment in MS-

SSIMD quality (and the standard error bars) after the repair

process over the baseline MS-SSIMD quality of the distorted

image in Fig 7 for each distortion type, and across distortion

classes. Fig. 7 shows results for a single-pass of GENII-1,

which only repairs the image once based on the distortion

category and then calls the appropriate repair algorithm. This

single-pass implementation of GENII-1 also checks the image

quality at the output and returns the image (repaired or

input distorted) having the higher quality, as predicted by

the image quality index being used (DIIVINE or BRISQUE).

This quality check guarantees the best quality at the output,

and accounts for distortions possibly introduced in the repair

process which may have reduced the perceptual quality

(although the original distortion may have been repaired,

e.g., deblocking leading to blur).

For comparison purposes, Fig. 7 also plots the quantitative

quality improvement obtained when using each image repair

algorithm with perfect knowledge of the distortion (i.e.,

without the classifier stage), and perfect knowledge of the

input distortion parameters (i.e., using non-blind algo-

rithms). In order to demonstrate that the use of MS-SSIMD

does not bias the results, we also use another high-

performance quality measure: the visual information fidelity

index (VIF) [60] as a validating measure. Note that VIF scores

are not on the DMOS scale, and hence the differences are

non-linearly related to quality, thereby magnifying them. The

differences in gains across the two quality measures are a

function of how each of them correlate with human percep-

tion for that particular distortion and how well the algo-

rithms correlate with each other (SROCC¼0.8138).

The ‘perfect’ baseline could be viewed as being unfair to

the GENII since it has perfect information. Alternatively, one

could view GENII as having an unfair advantage owing to its

‘quality-aware self correction’. Thus, while not the ideal

algorithm to compare against the ‘perfect’ repair, it provides

insights into the performance of the proposed approach.

Fig. 7 indicates that GENII-1 performs quite well predict-

ing and ameliorating the distortions present in the image.

Note that the improvement in quality that GENII-1 delivers is

limited by the performance of the repair modules that it

uses. A better repair algorithm will lead to greater increases

in visual quality, as evidenced by the large gains in MS-SSIMD

obtained for deconvolution and denoising.

In order to study the effect of the amount of distortion on

the performance of GENII-1, Fig. 8, plots the gain in quality (as

measured by MS-SSIMD) as a function of distortion severity

for each distortion type. Again, the gains that would be

obtained by the (unfair) baseline approach equipped with

perfect knowledge of the distortion type and the input

distortion parameters are also plotted for comparison pur-

poses. For all distortions, an increase in severity reduces gains

in objective quality (MS-SSIMD). The results indicate that the

perceptually optimized GENII-1 performs as well as (if not

better than) the ‘perfect’ repair scheme, even though the

‘perfect’ scheme has full knowledge of the distortion

parameters.

Fig. 5. Illustration of the operation of GENII-1 using DIIVINE features extracted from the input image. These features are used to identify the distortion,

predict the quality and estimate the blur kernel standard deviation. The distorted image and the blur kernel are then fed to the appropriate repair scheme –

deconvolution – to produce the output repaired image.

Table 2

Classification accuracies of DIIVINE and BRISQUE.

JP2K (%) JPEG (%) WN (%) Blur (%) All (%)

DIIVINE 98.10 98.20 100 99.30 98.90

BRISQUE 99.30 100 99.90 99.30 99.63
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The case of JP2K requires further explanation. Although

the perfect repair algorithm is a somewhat unfair baseline,

it does not have the added advantage of quality-driven

self-correction and so, in many cases the output images

obtained are of inferior quality relative to the input

distorted image.

The training procedure for WN was also modified to

provide perceptually optimized denoised images, and the

perfect reconstruction baseline does not have this

training-based advantage. Although the gains obtained

are not reflected in the mean quality-gain plots, on

individual images, such a training procedure does indeed

produce better quality, as exemplified by Fig. 4.

Finally, to provide a visual illustration of the results,

Fig. 9 plots samples of distorted images from the test set

and their repaired versions using GENII-1 with DIIVINE

features along with the quantitative changes in objective

quality that were obtained. Additional result is plotted in

the accompanying Supplementary Material.

3.2.4. Iterative image repair

Iterative repair using GENII-1 can proceed as illustrated

in Fig. 2, where the repair is performed in a loop until a

stopping condition is reached. This condition could be a

pre-fixed threshold on quality (which may not always be

achieved) or one that assesses the amount of improvement

in quality, and stops when the improvement becomes

small, ceases to be positive or some combination.

The improvement in quality obtained could be computed

relative to the original distorted image at each iteration, or as

a difference between the quality at the current iteration and

the previous one. Since the repair chain is not guaranteed to

produce a steady improvement in quality at each iteration,

the best solution would be the former, where one computes

the difference between the current quality and the distorted

image quality and continues the loop until the improvement

is negative. The algorithm would then pick the intermediate

image which yields the highest predicted perceptual quality.

While this solution is optimal in the current setup, it is time

consuming, and stopping if the quality change is negative as

compared to the previous iteration may be an attractive

alternative in a practical implementation. We now demon-

strate two examples of iterative repair using these stopping

criteria in Figs. 10 and 11.

Fig. 10 illustrates a case where the quality increases

steadily with iteration count reaching a well-defined

minimum at the fifth repair iteration. Beyond this point,

deconvolution failure occurs at iteration 13, and the

algorithm stops. Due to our design, the best quality image

(iteration 5) is produced as output. In this case, the

stopping criterion which checks only the previous itera-

tion would have produced the same result.
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Fig. 6. Parameter estimation using DIIVINE and BRISQUE: plots of (mean) predicted vs. actual parameters and the standard error bars of distortions

considered here. Each subfigure indicates the distortion type and the root mean-squared-error (RMSE) between the actual and predicted values. (a) JP2K:

bit rate, (b) JPEG: quality parameter, (c) WN: noise standard deviation and (d) Blur: standard deviation of blur kernel.
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Fig. 11 plots a case where the objective quality degrades

in iteration 3 as compared to iteration 2. The simpler

stopping criterion would have produced as output the

image at iteration 2 (Fig. 11(b)). However, the quality score

at iteration 4 is far lower (better) than at iterations 2 and 3.

If the more exhaustive stopping criterion was used, the

image at iteration 4 would be produced as the output.

Deconvolution failure occurs at iteration 6 (image not

shown), where the algorithm stops.

3.3. Images with multiple distortions

Images with multiple distortions have generally not

been explored much in the context of image repair except

for the image restoration problem (blurþnoise) [8]. There

has also been some work on quality assessment of images

distorted with multiple distortions [61]. Understanding

how multiple distortions in an image interact and mask

each other and their effect on perceptual quality and image

repair schemes is a large field that deserves considerable

study (certainly beyond the scope of this article). However,

we conducted a preliminary analysis of general purpose

image repair for the case of additive white Gaussian

noiseþ JPEG compression. This scenario is common; for

example, a low-light image compressed and uploaded on

one of the photo-sharing websites (noiseþ JPEG).

We randomly chose a reference image from the test set

and simulated the multi-distorted image, where the indi-

vidual distortions were applied in sequence. The noise

variance was set at s
2 ¼ 0:01 and JPEG quality (MATLAB)

was set at Q¼5. We then applied our iterative image repair

process using GENII-1. Since there are multiple distortions

in the image, the distortion type predicted to have the

maximum probability of being present (as indicated by the

classifier) is picked. Ties are broken randomly. The iterative

process of repair continues as outlined before, and is

stopped after two repair stages. Fig. 12 plots the multi-

distorted image, the output image at the first iteration and

the final repaired image.

The first distortion identified is blocking, which is

ameliorated by the deblocking algorithm. The deblocked

image is less noisy due to smoothing of the deblocking

algorithm, which in turn introduces blur, so the deblocked

image is identified as having blur. The deconvolution step

fails, and GENII-1 produces the deblocked image.

As Fig. 12 indicates, GENII-1 performs well on identify-

ing the distortions present in the image, even when the

image is distorted with multiple distortions. Naturally

more robust deconvolution algorithm would possibly fail

less often, producing better quality output images. Note

that we did not re-train the classifier to accommodate

multi-distorted images. Generally, modeling multiply dis-

torted images and their repair processes remains an

appealing area for future work.

4. Discussion and conclusion

We have introduced a distortion-blind perceptually

optimizable general-purpose image repair paradigm called

GENII that repairs images distorted by any of multiple

distortions by using natural scene statistics to (1) identify

the likely distortion(s) impairing the image, (2) to estimate

the quality of the distorted image, (3) and to estimate the

parameters (i.e., distortion severity) of the distortion, and

(4) based on these estimated data, selects an appropriate

(possibly non-blind) repair module. Steps (1)–(3) are

performed using NSS features extracted from the image

either in the wavelet domain or in the spatial domain

[15,16]. We demonstrated a working prototype, dubbed

GENII-1, capable of repairing images impaired by any of

JPEG200, JPEG, additive Gaussian white noise or linear

Gaussian blur distortions.

GENII is the first system of its kind that first identifies

any of multiple unknown distortions coming from a

trained set and then attempts to fix the image. It is

modular and easily extensible to distortions beyond those

considered here. The modularity of the approach implies

that one could replace any of the repair modules used (e.g.,

by GENII-1) with better or more appropriate repair algo-

rithms leading to even better performance. New modules

could be added for additional distortion classes and/or

types, including multi-distortions. This will require design

and creation of suitable distorted image databases and

associated human studies. Further, the GENII framework

was designed such that the output image quality will
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always be at least as good as the input image quality, as

measured by a high-quality, objective but perceptually

relevant image quality assessment algorithm, thereby

accounting for failures of the repair modules. The iterative

nature of GENII implies that distortions introduced by the

repair algorithms may also be eliminated, thereby increas-

ing the quality of the output image.

The GENII framework is a radically different approach

to image repair, that seeks to maximize the visual quality

of the images, as measured by a no-reference image

quality assessment algorithm, instead of simply targeting

the distortion(s) present in the image. We showed that

this new approach to image repair leads to signifi-

cant improvements in output quality both visually and
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Fig. 9. Sample distorted images (first row) and their repaired versions (second row) obtained using the proposed blind general purpose image repair

framework. Distortions (quality gains), left–right: JP2K (7.90), JPEG (15.27), WN (70.60), Blur (51.18).
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quantitatively as measured by a high-performance full-

reference objective image quality assessment algorithm. To

the best of our knowledge, the proposed framework is the

first of its kind to approach the general image repair

problem from a perceptual optimization point of view

although related problems such as objective quality-driven

models for image restoration [62], denoising [63], com-

pression [64,65], and deblocking [66] have been studied.

It is also the first model to combine a no-reference image

quality index with distortion identification to perform

general purpose image repair.

GENII uses off-the-shelf algorithms for image repair,

and an important point to address is the choice of

these algorithms. In the exemplar model GENII-1, we

chose algorithms that are computationally efficient and

that result in repaired images exhibiting higher levels of

Fig. 10. Example iterative image repair using GENII-1 driven by DIIVINE features for image distorted with white noise, see text for explanation. (a)

Distorted image, (b) best quality repaired image, (c) deconvolution failure at iteration 13, (d) quality as a function of repair iterations with predicted

distortion type labels. GENII-1 outputs (b).
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(predicted) visual quality. Since the repair performance of

GENII is as good as the individual algorithms used,

improvements in the performance of GENII can be

obtained as image repair algorithms continue to evolve.

The choice of the repair algorithms may also be governed

by the complexity and the requirements of the application

where GENII is deployed. The use of state-of-the-art

algorithms would lead to a GENII performance at least as

good as these algorithms.

GENII is extendible to distortions beyond those con-

sidered here. While we have not explicitly demonstrated

this here, we have previously shown that NSS-based

classification is capable of handling other distortions such

as packet loss [15,16]. We are currently studying NSS-

based classification for other a wider variety of distortions.

As we state this, it may be prudent to temper expectations.

In its current form, GENII-1 is capable of repairing images

distorted with only four classes of distortions. Even

amongst these classes, the distortion types are limited to

what may be viewed as simplistic distortions: additive

white Gaussian noise and spatially invariant Gaussian blur.

While we remain cautiously optimistic about the general

GENII philosophy, we nevertheless realize that GENII is not

a panacea to all distortions classes and types.

The results we have obtained indicate that misclassifi-

cation very rarely occurs amongst the distortions that

GENII-1 handles, and when it does, it generally occurs on

high quality images where distortion(s) may be only

weakly perceptible [14]. If one were to set the threshold

of quality at the outset before conducting repair (as

described in GENII, but not implemented in GENII-1), then

the frequency of misclassification would be reduced.

Fig. 11. Example iterative image repair using GENII-1 driven by DIIVINE features, see text for explanation. (a) Distorted image (MS-SSIMD¼50.1), (b)

repaired image at iteration 2 (MS-SSIMD¼38.51) , (c) repaired image at iteration 4, highest quality (MS-SSIMD¼30.81), (d) quality as a function of repair

iterations. GENII-1 outputs (c).

Fig. 12. Multiply distorted images and their repaired versions. GENII-1 outputs (b). (a) Noiseþ JPEG, (b) deblocked and (c) deblurred.
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Further, since a quality check is performed on the output,

incorrectly repaired images are discarded yielding output

image quality that is at least as good as the input image.

Our current and future work involves extending the

GENII concept to distortions even more diverse and

extensive than those considered here and modeling

images distorted by multiple coincident distortion and

suitable repair processes for such images. The develop-

ment of GENII models capable of handling multiple dis-

tortions will require a number of new developments. First,

since the GENII framework is NSS-based, studies of NSS of

multiply distorted images will need to be undertaken. This

will necessarily include studies of human subjective jud-

gements of these multi-distortions, since the complex way

in which the distortion may interact, both in terms of the

way in which they modify image structure and the way

they are perceived, is likely to be nonlinear and compli-

cated. In essence, they must be viewed as new distortions.

Such a deeper NSS and perception-based analysis will

enable modifications of current no-reference IQA indices,

such as DIIVINE and BRISQUE, to handle such multi-

distortions.
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Appendix A. Mapping MS-SSIM to DMOS

Instead of directly using the MS-SSIM scores to quantify

quality, we re-map the MS-SSIM scores to the more easily

interpreted perceptual scale of differential mean opinion

scores (DMOS), obtained from human subjective studies

such as that in [47]. We use the human DMOS obtained

from [47], and map MS-SSIM scores via a logistic function

fit (2), where the parameters βi fi¼ 1; 2;…;5g are esti-

mated via a nonlinear optimization procedure (MATLAB

function nlinfit) between the DMOS and the MS-SSIM

scores. This was done for each of the four distortions

targeted by GENII-1, to produce MS-SSIMD.

f ðxÞ ¼ β1
1

2
�

1

1þexpð�β2ðx�β3ÞÞ

� �

þβ4xþβ5 ð2Þ

The non-linear fitting procedure detailed here is iden-

tical to that used in [47] prior to computating linear

correlation and root-mean squared error between algo-

rithm scores and DMOS.

While such a remap using a database is limited by the

database and is specific to it, the LIVE IQA database of [47]

incorporates a wide variety of distortions levels and spans

a good range of visual quality and hence, the re-mapped

scores obtained are reasonable representations of visual

quality on the linear DMOS scale, where 0 indicates the

best quality and 100 indicates the worst quality.

Appendix B. Supplementary material

Supplementary data associated with this article can be

found in the online version at http://dx.doi.org/10.1016/j.

image.2013.08.007.
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