
This is a repository copy of Perceptually smooth timbral guides by state-space analysis of
phase-vocoder parameters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1429/

Article:

Bailey, N. and Cooper, D. (2000) Perceptually smooth timbral guides by state-space
analysis of phase-vocoder parameters. Computer Music Journal, 24 (1). pp. 32-42. ISSN
0148-9267

https://doi.org/10.1162/014892600559164

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

32 Computer Music Journal

Computer Music Journal, 24:1, pp. 32–42, Spring 2000
© 2000 Massachusetts Institute of Technology.

Sculptor is a phase-vocoder-based package of pro-
grams that allows users to explore timbral ma-
nipulation of sound in real time. It is the product
of a research program seeking ultimately to per-
form gestural capture by analysis of the sound a
performer makes using a conventional instrument.
Since the phase-vocoder output is of high dimen-
sionality—typically more than 1,000 channels per
analysis frame—mapping phase-vocoder output to
appropriate input parameters for a synthesizer is
only feasible in theory. For example, a lookup
table of dimension 1,024 with only 16 points on
each axis contains more than 101,200 entries. Even
using simplex-based storage schemes (Bowler et al.
1990), it is clear that the number of dimensions
must be reduced if direct gestural capture is to be-
come practical.

State-space models promise to reduce the dimen-
sionality of the problem, but the coefficients they
produce are not well correlated to the acoustic input
in the way that a spectrum generated by a phase vo-
coder is. The need arose to integrate within a real-
time framework the facility to manipulate signals
in both the frequency and Laplace domains.

Sculptor uses state-space techniques to model the
formant characteristics of a sound. It allows the
user to use both spectrum- and filter-based resyn-
thesis models, which can be edited and auditioned
in real time. The source code of the package is
freely available, allowing researchers to develop fur-
ther functionality. Because the package combines
and simultaneously presents the interfaces associ-
ated with filter-based and spectral methods, new al-
gorithms can be tested in the appropriate domain.

Background

The phase vocoder has become widely used as a
tool in computer music over the two decades since
Michael Portnoff’s article describing its digital
implementation using FFTs (Portnoff 1976;
Moorer 1978; Dolson 1986). The phase vocoder of-
fers a convenient means of analyzing and resyn-
thesizing sound in terms of perceptual correlates.
In particular, it mitigates against the inherent
limitation of Fourier analysis, namely, the depen-
dency of frequency resolution on window length.
The frequency separation of FFT analysis bins is
equal to the sampling frequency divided by the
number of samples in the analysis window; thus,
the longer the window, the finer is the effective
frequency resolution. In order to have a frequency
resolution of, for example, 0.1 Hz, a 10-sec win-
dow is required, making a real- or near-real-time
system impossible, given the intrinsic delay and
the considerable computational load.

The phase vocoder makes use of the phase as
well as the magnitude information provided by the
Fourier transform. Given two overlapping analysis
frames, it is possible to calculate the phase of any
output bin from the presented frequency and the
time delay between the two frames. As long as
only a single partial lies within any output bin,
and the spectral content is effectively constant
across the overlapping frames (“quasi-stationary”),
any advance or retard of the phase value of the bin
in the second frame relative to the same bin in the
first one will provide a much more accurate esti-
mate of the frequency of the partial the analysis
bin contains. For example, given a sampling rate of
44,100 Hz and a Fourier bin with a center fre-
quency of 441 Hz, it takes 100 samples to com-

Perceptually Smooth
Timbral Guides
by State-Space Analysis
of Phase-Vocoder
Parameters

Nick Bailey* and David Cooper†

*Department of Electronic and
Electrical Engineering
†Department of Music
The University of Leeds
Leeds LS2 9JB, UK
n.j.bailey@leeds.ac.uk
d.g.cooper@leeds.ac.uk

Bailey and Cooper 33

plete a single cycle, during which the phase will
have advanced by 2π radians. If the equivalent
Fourier bin is examined at an overlap of 100
samples (by moving the sampling window forward
by 100 samples) and the frequency is exactly 441
Hz, the phase angle should have advanced by 2π
radians relative to the same bin in the previous
frame. Since 2π radians is a full cycle, the phase of
that bin will appear to be the same in both analy-
sis frames because of phase wrapping. If the phase
angle is greater than 0, then the actual frequency
must be higher than 441 Hz, and vice versa.
Within the constraints of at most one partial to a
bin and acceptable signal-to-noise ratio, the fre-
quency of that partial can be found to a degree of
accuracy, which exceeds the FFT bin spacing
(Puckette and Brown 1998).

Several packages are currently available for
phase-vocoder-based modification of sound.
Csound, the widely used audio-processing system
developed by Barry Vercoe of MIT, includes a
range of tools developed by Richard Karpen to ma-
nipulate soundfiles using phase-vocoder analysis
(Vercoe 1992; Fitch 1998). These include time-
stretching without pitch change, transposition
maintaining original duration, and spectral inter-
polation and rescaling. The Moore-Loy CARL
phase vocoder is implemented as part of the UK
Composers’ Desktop Project (CDP), with a set of
command-line tools for manipulation of analysis
files (Moore and Loy 1983). Some 90 operations are
available, including frame interleaving, spectral
tracing, spectral sweeping, spectral shifting and
stretching, and conventional vocoding (in which
the magnitude data from one analysis file is super-
imposed on that of another) (Fischman 1997). The
IRCAM Super Phase Vocoder provides graphical
facilities through the AudioSculpt program for the
manipulation of the phase-vocoder files, e.g., by al-
lowing users to superimpose filter characteristics
on the spectrogram representation of a sound.

The interfaces of the CDP and Csound imple-
mentations undeniably provide the greater flexibil-
ity and power to users, but also place greater
demands on them, essentially requiring a com-
puter program to be written. The AudioSculpt
family of applications is certainly an impressive

suite, but is not open-source, thus denying the aca-
demic community the opportunity to modify or
extend its capabilities in a particular direction.

Sculptor

Sculptor is an open-source package developed in C
on the Linux operating system, and is easily por-
table to any system that supports X Windows and
Sun’s xview widget set. It enables the analysis, pa-
rameterization, and editing of sounds in real time
using the phase vocoder, and it simultaneously
provides graphical representation and spectral ma-
nipulation. A major feature of the software is its
ability to derive all-pole models from quasi-station-
ary spectral samples using state-space techniques—
elements that are explained in detail below. Mod-
els derived by the algorithm can be edited and au-
ditioned in real time. This provides a particularly
useful tool for the electroacoustic composer, in
that it can generate perceptually smooth transi-
tions between different timbres. Because the soft-
ware is open-source and is written in a popular
language, it also provides a framework within
which users can add their own desired functional-
ity.

Computer musicians are familiar with the con-
cept of a spectrum. In formal terms, the spectrum
can be regarded as the output of a Fourier transfor-
mation of a time series, or a sequence of time
samples. The spectrum is useful for representing
certain perceived properties of a sound using easily
understood correlates, but it is in fact just one of
many possible transformations.

In the same way that a Fourier transformation
transforms a time series into a spectrum, the
Laplace transform can be used to display certain
other properties of a sound, starting from its time
series. The Laplace transform is only applicable to
continuous-time systems, whereas digital filters
work in discrete time. We have chosen the Laplace
representation to reinforce the idea that the system
under analysis—the musical instrument or voice—
operates in continuous time. Another program in
the Sculptor system, Prism, generates a predictor
model from spectral information from the phase-vo-

34 Computer Music Journal

coder analysis. This eliminates the need to compen-
sate for the time quantization at the analysis stage.

The Laplace transform contains a few salient pa-
rameters that characterize the timbral information
of a sound. While its output is highly concise and
perceptually relevant, it still possesses meaningful
physical analogs relating to the vibrations and
resonance of a physical system. Such physical sys-
tems are essentially characterized by their transfer
functions, which describe how an input, such as
impulses of air from an opening and closing reed,
work through the system to produce its output,
e.g., by stimulating a column of air to vibrate.

Figure 1a represents a Laplace transform of the
transfer function of a simple system. The transfor-
mation itself is in fact a surface above the graph. We
are only interested in the places where the surface
touches infinity or zero. In the simple system
above, there are two infinities (poles), labeled with
crosses. In any real system, these poles will occur in
conjugate pairs at equal distances above and below
the horizontal (real) axis. One can think of the hori-
zontal axis as representing the amount of damping
in the system. In Figure 1a, the poles are near the
vertical (imaginary) axis and on the left-hand side.
This tells us that the system is lightly damped (be-
cause of proximity to the imaginary axis) and stable
(because the poles occur on the left-hand side). If
this system were in a quiescent state and received

an impulse, like the tapping of a wine glass, it
would oscillate for some time before decaying. Mov-
ing the poles to the left increases the damping,
from, say, that of a wine glass, through the sound of
a beer glass, to a decay so rapid that only a dull thud
would remain. Increasing the vertical distance be-
tween the poles broadly has the effect of changing
the natural frequency of oscillation: a small wine
glass with a high pitch is described by poles that are
further separated than those for a larger glass. The
timbral characteristics of the system are contained
in the number and position of these poles. The
Laplace transformation is linear, so that if the
stimulation is doubled in intensity, the height of
the surface away from the graph in the direction of
the reader doubles also. However, the position of
the poles remains constant. In short, the glass
struck with a greater force sounds louder, but it has
the same fundamental timbre.

Laplace transformations describe the behavior of
continuous-time systems where the forces that
cause oscillations are continuously variable as the
system moves; z-transforms describe sampled-
time systems in which updates are made at regular
discrete intervals based upon observations of the
values at a previous time, as is the case with digi-
tal filters. The Laplace transform and the z-trans-
form are closely related by the substitution z = est,
because of the effect of a sample unit delay in

Figure 1. A simple reso-
nator, in the s-domain
(left) and in the z-domain
(right).

(a) (b)

Bailey and Cooper 35

Laplace space. The transfer function of the system
associated with Figure 1a in z-space is shown in
Figure 1b. Note that the entire left-hand side of
the s-plane is mapped inside the unit circle in the
z-plane. The Laplace transformation is used by
Prism because of the way the analysis is per-
formed, starting with the spectrum and not with
the time series. Conversion to z-space is made af-
ter the parameters have been manipulated in the s-
domain, although this is purely for programming
convenience, and not for any theoretical reason.

Knowing the Laplace transformation of a system’s
response, it is a relatively simple matter to con-
struct a digital filter that behaves in the same way.
The Q of the filter (its center frequency divided by
its bandwidth) is related to the pole’s characteristic
frequency and damping. In a real system, several
pole pairs will exist, and the overall response is the
sum of the contribution of each simple filter.

Placing the Poles

The positions of the poles of a system characterize
its response to excitation (i.e., its impulse re-
sponse). The poles essentially define a model for
an instrument, albeit one which is not strongly
correlated to the instrument’s physical operation,
as is the case with physical models. This is true
because, while each system posses a unique trans-
fer function, it is not true that each transfer func-
tion describes a unique system. In the Laplace
model, one can think of the poles as characterizing
the system resonance, in the same way that the
position of the formants in the spectrum of a spo-
ken sound determines the vowel. The resonances
of an instrument determine the spectral envelope,
but the absolute position of the partials is also re-
lated to the excitation.

One method of extracting the pole positions from
a time series is to use linear prediction (Makhoul
1975). The linear predictor is a filter that attempts
to “best guess” the next sample in a time series
based on several previous samples (typically in the
order of 10–20). A predictor filter is constructed
that takes the statistics of a signal into account,
and the subsequent sample is predicted on the basis

that it will minimize the mean-squared error of the
predicted sample against the real sample for any se-
quence of samples that have occurred in the recent
past. The process essentially separates the system’s
resonances from its excitation, so that if the poles
of the filter can be found, then the system can be
modeled to an arbitrary degree of accuracy.

However, Prism uses the Levinson-Durbin algo-
rithm (of which Makhoul [1975] provides an excel-
lent overview) to find the poles recursively,
stopping when the model error has reached a pre-
defined level. By setting the termination threshold
appropriately, the poles thus calculated describe
the formants present in the spectrum; if the pre-
dictor were allowed to continue to much higher
orders, it would probably identify the partials as
individual formants or else fail because of numeri-
cal inaccuracy. The Levinson-Durbin algorithm
enables the predictor filter to be determined from
the short-term autocorrelation of a time sequence,
and this is easily available to the Sculptor suite be-
cause it is simply the inverse Fourier transforma-
tion of the signal’s power spectrum. Algorithms
exist with superior performance, such as Discrete
All-Pole Modeling (El-Jaroudi and Makhoul 1991),
but these include considerable associated compu-
tational overhead. Because the formants are in-
tended to be edited interactively by the user, the
simpler Levinson-Durbin algorithm was adopted.

By considering n autocorrelation values, one can
generate an nth-order predictor filter to guess the
next sample. The predictor filter is a recursive fil-
ter, as shown in Figure 2.

The nth-order predictor will have n poles in its
Laplace transform, each of which represents a simple
resonator contributing to the system response. A
tenth-order predictor, for example, can locate five
formant regions in Laplace space. However, this is of
little immediate use in attempting to decompose the
system into the simplest possible model.

Because the model realization is carried out in
discrete time, the transfer function of the filter is a
polynomial in order n expressed in the z domain:

H z
a a z a zn

n() =
+ + +− −

1

0 1
1

L

where z–1 represents a sample delay. The presence

36 Computer Music Journal

of a pair of poles in the Laplace transform maps
onto a pair of poles in the z-domain, as previously
described. However, in order to extract useful in-
formation from the system, we would prefer to
express the transfer function as the sum of many
simple second-order filters, each representing the
frequency and significance of a formant region.
This will enable us to represent the spectral enve-
lope using a series of formants, and, using Prism,
manipulate the parameters of each of these
formants while hearing the consequences of do-
ing so in real time. There are two significant ad-
vantages to this approach over direct access to
the polynomial coefficients an: adjusting the
formant positions individually generates percep-
tually smooth timbral guides; and the user inter-
face is easily designed to prevent the user from
placing poles in regions of instability (the right-
hand side of the s-plane, or outside the circle in
the z-plane).

Using state-space techniques, it is possible to
perform the decomposition into second-order fil-
ters. First, it is necessary to represent the predictor

filter in state-space form. This will involve consid-
ering the filter as a state machine and writing
down a matrix equation describing the transition
between the current state and the next state. Con-
sider once more the resynthesis filter in Figure 2
and its behavior when a new excitation sample is
presented. The output of the filter is still given by
the weighted sum of the current and delayed in-
puts, but all of the stored values will “march up”
the shift register, making space for the previous
output. The ones in the trailing diagonal perform
the shifting operation, while the top row calculates
the next output sample. If the filter is considered
to be a vector of predictor coefficients [v1. . .,vn]T

and the new input sample is x[n], then the state
equation can be written as follows:

s

v v v

S

x n

n

n

n+ =

+

[]

1

1 2

1 0 0 0
0 1 0

0 0 1 0

0
0

0

L L

L

L M

M O O O M

L
M

 .

Figure 2. Linear prediction
architecture.

Bailey and Cooper 37

This is known as the companion form of the state-
space matrix.

The system is described by the state-space matrix,
but the matrix itself describes more than the re-
sponse of the predictor filter: it also describes the
filter’s structure. It is possible to build other filters
with identical responses but with completely differ-
ent structures. Information about the response of the
system is contained entirely within the state-space
matrix’s eigenvalues. Subject to certain conditions, a
matrix has a set of vectors which, when operated on
by the matrix, do not change their directions. These
are called the eigenvectors of the matrix. Multiply-
ing a matrix and one of its eigenvectors simply
scales the eigenvector; this scale factor is referred to
as an eigenvalue of the matrix. Because the predictor
filter’s response is defined completely by the eigen-
values, any rearrangement of the state-space matrix
which retains the eigenvalues will not change the
characteristics of the predictor filter. This is equiva-
lent to changing the organization of a filter without
changing its response.

One such rearrangement of the state-space ma-
trix yields the so-called Jordan canonical form:

λ
λ

λ
λ

1

2

1

0

0 0

0 0

0

L

L

M O O O

n

n

−

where λ are the (complex) eigenvalues of the state-
space matrix in its companion form. This is, to say
the least, useful, because the independent eigen-
values are also the positions of the poles in
Laplace space, and the structure of the Jordan ca-
nonical form implies decomposition into a set of
n/2 independent second-order filters, the outputs
of which are summed together to produce a re-
sponse equivalent to that of the original predictor.
In fact, the matrix is not guaranteed to be diago-
nal: it may be that the second-order sections are
not independent, but for most spectra arising from
sampled audio input, experimentation shows that
the matrix practically always reduces to this form.

A more rigorous treatment of this issue is given
elsewhere (Bailey and Cooper in press).

A Practical Implementation

Sculptor is written in C, and makes use of Fortran
math library calls. It compiles and runs “as is” on
Linux platforms with xview libraries installed.
Machine-specific routines (mostly audio output)
are segregated for easy porting. As of version 3.2,
the Sculptor package contains five programs. The
first, Analyse, is a batch-mode, command-driven
program that generates phase-vocoder data files in
the appropriate format, given a Sun/NeXT audio
file as input. Prism, a playback program which re-
synthesizes the phase-vocoder data file, permits
simple speed variation and various other effects
using command-line flags. Xprism is a playback
program with interactive facilities for pitch, rate,
and formant manipulation. Finally, two simple
programs, Fermions and Timbres, demonstrate
how Prism can be used as a real-time, general-pur-
pose additive synthesizer.

Figure 3 shows a screen shot of Prism. The up-
per section of the screen provides a spectrogram
view, while the lower portion shows the spectral
content on the right-hand side with tracked
formants superimposed. (In this example, four
main formant regions have been identified.) An
additional dialog box (not shown in the example)
allows the user to edit individual formant regions
by adjusting the center frequency, damping factor,
and normalization gain of each of the second-or-
der filters. The graph at the lower left-hand side of
the screen shot plots the pole positions; the verti-
cal axis indicates center frequency (ω/2π), and the
horizontal axis displays damping (ζ). This repre-
sentation is preferred over a simple mapping in
the z-plane, because the latter representation
groups all poles of timbral significance near the
unit circle, yielding a poor display. Even with our
alternative representation, which is more akin to
the s-plane, nonlinear axes had to be used to
present the results effectively.

The source code for the Sculptor package has
been made publicly available for other researchers

38 Computer Music Journal

Figure 3. An editing ses-
sion using Prism.

Bailey and Cooper 39

using a Linux platform with xview who wish to
experiment in an environment where both spectral
and Laplacian representations of sampled audio are
available concurrently. The structure of the most
interesting program, Prism, is shown in Figure 4.

Analyse reads a Sun/NeXT format audio file to
build a file of phase-vocoder data. Even though
UNIX operating systems are generally not noted
for real-time performance ability, Prism is capable
of moderate real-time interaction, even on very-
low-power processors. Indeed, the choice of the
Linux platform was made because of its efficient
implementation of concurrent solutions and its
superior software-development environment.
When the project began, a 40-MHz 80386 com-
puter without a floating-point coprocessor was
found to be capable of real-time 8-bit resynthesis
at sampling rate of 8,000 Hz. The same algorithms
compiled using Microsoft operating systems and
compilers returned such low benchmark results as
to make the project infeasible. Table 1 shows the
results of repeatedly running the core FFT algo-
rithms on a 50-MHz 486DX machine with 8 MB of
memory; the fastest time is commensurate with
real-time output at a sampling rate of approxi-

mately 21 kHz. The difference in performance was
so pronounced that the cause was not investigated,
although a significant factor was likely to be that
Microsoft systems of the time were still producing
16-bit Intel binaries.

Having chosen the implementation platform,
the issue of obtaining a sufficiently prompt real-
time response was addressed. On startup, Prism
checks to see whether it is running in interactive
mode, and if so, starts two processes communicat-
ing via a shared memory block. The entire analysis
file is read into this block. The resynthesis process
begins to produce a stream of phase-vocoder out-
put using parameters taken from the shared
memory block. As it does so, it overlaps, windows

Figure 4. Interprocess
communication in Prism.

Table 1. Benchmarks for Prism’s FFT algorithm.

Linux: gcc with -O2 optimization 9 min, 43 sec

Microsoft DOS EXE “fastest” 40 min, 11 sec
code-generation option

Microsoft QuickWin, “fastest” 29 min, 14 sec
code-generation option

40 Computer Music Journal

(with a raised cosine window function), and adds
the output before writing it directly to the audio
device. Movement through the spectral data is
achieved by incrementing the spectrograph index
at the end of each resynthesis call by an amount
the control process sets asynchronously.

Using this method, it is possible for the control
process, as a result of user-interface events, to set
a playback rate through the analysis data, or, by
setting an increment of zero, to manipulate the
spectrogram index directly to force resynthesis
from data at an absolute position in the spectral
array. The user interface supports the former tech-
nique by providing a “play speed” slider; it also
permits the user to click and drag on the spectro-
gram itself. This strategy delegates problems asso-
ciated with the real-time output requirement to
the Linux kernel, and in practice it performs par-
ticularly well. The machine on which Prism is
currently being developed has a twin processor ar-
chitecture, for which the two-process shared-
memory paradigm is particularly well suited.

In addition to allocating sufficient shared-
memory resources for the storage of the spectro-
gram and the shared control block, additional
buffers of a size equal to the FFT used in the resyn-
thesis process are also reserved. These can be used
for the synthesis of arbitrary spectra, such as those
produced by the linear predictor module.

Because the spectral information is always avail-
able and is the basis for the continuous resynthe-
sis, a somewhat nonstandard route has been
adopted for the calculation of the prediction coeffi-
cients. In a speech-linear-predictive-coding (LPC)
system, a residual or error signal is calculated,
which helps determine whether the segment of
waveform under consideration represents a voiced
or unvoiced sound. When the waveform is resyn-
thesized, an appropriate excitation signal is used
to ring the filter according to the state of the re-
sidual and the particular system used (generally ei-
ther Codebook-Excited Linear-Predictive Coding
or the simpler Residual-Excited Linear Prediction)
(Roads 1996). However, the system described in
this article does not calculate a residual signal at
all, and a repeated-pulse excitation (RPE) stimulus
is used to ring the synthesis filter.

Clicking at any point on the spectrogram causes
the AR algorithm to use that spectrum to generate
a predictor filter. Selecting the filter as the resyn-
thesis source causes the displayed filter response to
be used as an envelope for partials separated by the
pitch period. This is equivalent to the RPE method
familiar from speech processing, and the “pitch-
bend” slider presented by the user interface is used
to set the fundamental frequency (see Figure 5).

At this point, a second dialog box is presented
that permits interactive variation of the parameters
associated with the predictor filter. The user thus
exercises some timbral control over the resynthe-
sized sound by manipulating a few parameters. The
formants are also explicitly ordered so that when
interpolation is required, formants moving from
one position to another may be distinguished from
formants that fade to zero and are replaced by new
formants of steadily increasing amplitude.

A simple extension of the basic model allows
the user to save timbral snapshots which can be
kept as an ordered series, providing a means of per-
ceptually smooth morphing from one timbre to
another. In this case, the formant parameters de-
rived from analysis provide the set of timbral
guides alluded to in this article’s title.

Extending Sculptor Further

Because Sculptor is an open-source package, it may
be extended by anyone in the computer music com-
munity with the appropriate programming skills,
without the need for “forum” membership. We hope
that the facility to easily add algorithms that can op-
erate synchronously or asynchronously in the fre-
quency, time, or Laplacian parametric domains will
offer a genuinely useful resource to other researchers.

Figure 5. Manipulating a
predictor filter.

Bailey and Cooper 41

The authors have already identified a number of
possible extensions of the core functionality of the
software. In particular, consideration has been
given to the placing of zeros as well as poles. The
current model is prone to some extent to
oversmoothing of the spectral envelope, and recent
advances in the area of the so-called rational cova-
riance extension problem suggest that this ten-
dency may be ameliorated (Byrnes, Gusev, and
Lindquist 1998). In fact, zeros arising from the vi-
brational nulls of the system generating the sound
are already implicitly included in the user interface
presented here. In addition to controlling the cen-
ter frequency and Q of each pole, users can also
control another parameter, A, which determines
the maximum gain of the resonator. Readers famil-
iar with the dynamics of vibrating systems know
that the quality factor Q not only relates center
frequency to bandwidth, but it also determines the
maximum gain of the filter. The Sculptor package
is able to isolate Q and A adjustments, because the
A slider changes the amplitude of the spectral peak
without modifying its center frequency or band-
width. This can be considered in two equivalent
ways: the prefiltering of the RPE stimulus to
modify the energy available to the resonator; and
the addition of a zero of similar characteristic fre-
quency to but different damping factor from the
pole. Depending on forthcoming results which
should indicate the sufficiency or otherwise of the
parameter set presented here, it may be necessary
to modify Prism to deal with zeros more explicitly.

A second obvious area for further investigation is
that of formant-corrected pitch shifting. The fail-
ure to formant-correct transposed samples results
in the so-called chipmunk effect (named for Ameri-
can cartoon characters whose voices were created
by speeding up adult speech). The chipmunk effect
becomes noticeable with transpositions as small as
a minor third for many musical signals. Current
implementations of formant-corrected transposi-
tion in the frequency domain tend to involve inter-
polation after the multiplication of input
frequencies by an appropriate ratio (for example by
3/2 for a perfect fifth higher) and scaling the magni-
tudes of the output bins so that the original spec-
tral envelope is superimposed (Bristow-Johnson

1995). It is probable that the method of location
and categorization of formant frequencies de-
scribed above may be useful in the development of
an algorithm for smooth formant-corrected pitch
shifting over extended frequency ratios. It is also
hoped that Sculptor could provide potentially use-
ful tools in the search for an objective analysis and
classification of timbre involving the transition be-
tween steady-state portions of tones (Grey 1977;
Wessel 1979; Pollard and Jansson 1982).

References

Bailey, N. J., and D. Cooper, In press. “Sculptor: Explor-
ing Timbre Spaces in Real Time.” Journal of the Au-
dio Engineering Society.

Bowler, I. W., P. D. Manning, A. Purvis, and N. J. Bailey.
1990. “On Mapping N Articulations onto M
Synthesiser Control Parameters.” Proceedings of the
1990 International Computer Music Conference. San
Francisco: International Computer Music Associa-
tion, pp. 181–184.

Bristow-Johnson, R. 1995. “A Detailed Analysis of a
Time-Domain Formant-Corrected Pitch-Shifting Al-
gorithm.” Journal of the Audio Engineering Society
43(5):340–352.

Byrnes, C. I, S. V. Gusev, and A. Lindquist. 1998. “A
Convex Optimization Approach to the Rational Co-
variance Extension Problem.” SIAM Journal of Con-
trol Optimization 37(1):211–229.

Dolson, M. 1986. “The Phase Vocoder: A Tutorial.”
Computer Music Journal 10(4):14–27.

El-Jaroudi, A., and J. Makhoul. 1991. “Discrete All-Pole
Modeling.” IEEE Transactions on Signal Processing
39:411–423.

Fischman, R. 1997. “The Phase Vocoder: Theory and
Practice.” Organised Sound 2(2):127–145.

Fitch, J. P. 1998. “Release Notes for Csound Version
3.44.” Program documentation, contained in the MS
Help file covering Csound 3.48, distributed with the
Winsound shell.

Grey, J. M. 1977. “Multidimensional Perceptual Scaling
of Musical Timbre.” Journal of the Acoustical Soci-
ety of America 61:1270–1277.

Makhoul, J. 1975. “Linear Prediction: A Tutorial Re-
view.” Proceedings of the IEEE 63(4):561–580.

Moore, F. R., and D. G. Loy. 1983. CARL Release Notes,
CARL Start-up Kit. Program documentation. La Jolla,
California: Computer Audio Research Lab, Center for

42 Computer Music Journal

Research in Computing and the Arts, University of
California, San Diego.

Moorer, J. A. 1978. “The Use of the Phase Vocoder in
Computer Music Applications.” Journal of the Audio
Engineering Society 26(1/2):41–45.

Pollard, H. F., and E. V. Jansson. 1982. “A Tristimulus
Method for the Specification of Musical Timbre.”
Acustica 51:162–171.

Portnoff, M. R. 1976. “Implementation of the Digital
Phase Vocoder Using the Fast Fourier Transform.”
IEEE Transactions on Acoustics, Speech, and Signal
Processing 24(3):243–248.

Puckette, M. S., and J. C. Brown. 1998. “Accuracy of
Frequency Estimates Using the Phase Vocoder.” IEEE
Transactions on Speech and Audio Processing
6(2):166–176.

Roads, C. 1996. The Computer Music Tutorial. Cam-
bridge, Massachusetts: MIT Press.

Vercoe, B. 1992. Csound User’s Manual. Cambridge,
Massachusetts: MIT Media Lab.

Wessel, D. L. 1979. “Timbre Space as a Musical Control
Structure.” Computer Music Journal 3(2):45–52.

