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Perceptually Unequal Packet Loss Protection by
Weighting Saliency and Error Propagation
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Abstract—We describe a method for achieving perceptually
minimal video distortion over packet-erasure networks using
perceptually unequal loss protection (PULP). There are two main
ingredients in the algorithm. First, a perceptual weighting scheme
is employed wherein the compressed video is weighted as a
function of the nonuniform distribution of retinal photoreceptors.
Secondly, packets are assigned temporal importance within each
group of pictures (GOP), recognizing that the severity of error
propagation increases with elapsed time within a GOP. Using
both frame-level perceptual importance and GOP-level hierar-
chical importance, the PULP algorithm seeks efficient forward
error correction assignment that balances efficiency and fairness
by controlling the size of identified salient region(s) relative to
the channel state. PULP demonstrates robust performance and
significantly improved subjective and objective visual quality in
the face of burst packet losses.

Index Terms—Forward error correction, human visual system,
internet video, perceptual coding, unequal loss protection (ULP).

I. Introduction

W
ITH THE EXPLOSIVE growth of multimedia envi-

ronments, the robust transmission of video data has

become an important requirement to enable smooth and seam-

less interaction with multimedia content [1], [2]. In error-

prone environments, significant spatio-temporal dependencies

in the video data may be lost owing to congestion, jitter,

or delays over packet-erasure networks. This leads to sub-

stantial deterioration of received video quality from error

propagation. To minimize visual quality degradation from

packet losses, it is necessary to simultaneously consider the

question of perceptual video quality [3]–[11] while accounting

for error propagation effects arising from the video coding

structure [13]–[21].
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Here, we present a packet loss resilience scheme that is

based on an unequal loss protection (ULP) method that seeks

to minimize perceptual distortions in the compressed video bit

stream. This is accomplished by assigning unequal importance

to different levels in the video coding structure using models of

human visual sensitivity. We begin by quantifying the relative

importance of video frames within each group-of-pictures

(GOP) [13]–[15]. The motion compensation that is computed

from the frames in each GOP causes the picture quality of a

current reconstructed frame to be strongly dependent on the

reconstructed version of its preceding frames. Generally, when

packet losses occur earlier in a GOP, the reconstructed quality

of following frames will be more severely compromised owing

to the longer error propagation. In this sense, the perceptual

importance of each frame descends from the first frame to

the last frame in each GOP. We then define a procedure for

incorporating perceptual weights into an ULP scheme [22],

[23]. Similar approaches have been used to improve visual

quality in other resource allocation schemes, by allocating

more resources to perceptually important bit information via

the use of visual saliency weights [3], [4]. In [6]–[9], a nonuni-

form spatial filtering law, called foveation, was employed

to define spatial perceptual weights on coding macroblocks

(MBs). Larger weights were applied near presumed visual

fixation points, which were represented at high resolution,

while lower weights were assigned to peripheral points. This

process of foveal weighting attempts to match the nonuniform

density of photoreceptors over the retina to achieve better vi-

sual quality. In that approach, a nonuniform foveation filtering

method causes the local spatial bandwidth (LSB) to rapidly

decrease with distance from the presumed fixation point(s).

Fig. 1 depicts the dependence of packet loss induced per-

ceptual quality degradation on the error resilience scheme.

Specifically, the degree of visual quality degradation that oc-

curs in the 45th frame of the Foreman sequence due to a packet

loss in the 30th frame. Fig. 1(a) and (b) shows the 30th and

40th reconstructed frames when a perceptually salient region

is protected from packet loss in the 30th frame. It is assumed

in this example that the point of fixation is on the face in the

spatial center of the 30th frame, although this need not be the

case. By contrast, Fig. 1(c) and (d) shows the same frames

suffering from the same degradation, but without the per-

ceptual weighting mechanism. In previous paper, it has been

observed that higher perceptual video quality can be obtained

by protecting those portions of the bitstream corresponding to

salient regions from packet loss [14], [22], [23]. However, the
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question remains as to how to achieve the minimum degree of

visual quality degradation from packet loss for a given video

coding algorithm, using limited channel resources. The general

approach we take is that, for a given number of channel coding

bits and a given video coding structure, formulate an optimiza-

tion procedure that enables forward error correction (FEC)

based on an appropriate perceptual weighting mechanism.

More specifically, we propose a performance metric based

on both foveal weighting and on the temporal error propaga-

tion effect. The metric consists of two factors. One is the LSB

obtained using a foveation filter model [7]–[11]. The other is

called the perceptual weight on error propagation (PWEP). Us-

ing this metric, we develop an optimal FEC assignment algo-

rithm which perceptually allocates channel coding resources.

There have been related studies of error propagation modeling

[24], [25]. However, these are computationally formidable

when applied on a video server providing multiple concurrent

video streams. Therefore, we developed a simple, alternative

temporal error propagation model that requires much less com-

putation. Of course, any type of error propagation modeling

could be applied to our proposed scheme without difficulty. We

chose to adopt a performance metric derived from the packet

loss rate, and concentrating on the perceptual application of

FEC in terms of fairness and efficiency.

This optimal allocation is defined in terms of efficiency

and fairness as a function of the spatio-temporal weight

carried in each packet. At high-packet loss rates, efficiency

is given greater emphasis by allocating increased protection

to localized salient regions. In this way, if degradation from

packet loss occurs in less salient regions, higher quality can

be still attained in more salient region(s). On the other hand,

at low-packet loss rates, the size of the salient region(s) can

be expanded. Fairness among data packets is fulfilled by

allocating more bits to region(s) of low saliency. Thus, a

tradeoff between efficiency and fairness is mediated based on

the number of available channel coding bits and the channel

status. In the simulations, it is shown that definite performance

gains are achieved in terms of visual quality, efficiency and

fairness, relative to conventional algorithms.

II. Related Work

Retransmission-based error control techniques such as au-

tomatic retransmission request have been shown to enhance

the reliability of video transmission [26]. Nevertheless, simple

techniques of this sort present limitations in real-time situa-

tions, owing due to delays arising from retransmitted packets.

As an alternative, FEC deployed at the application layer yields

a greater degree of efficiency. FEC can be adapted to variable

bandwidths with reduced delay in wireless networks as well as

in best-effort Internet networks. A number of researchers have

proposed unequal FEC assignments to improve the quality of

videos corrupted by packet loss [13]–[36]. For single layer

videos, unequal protection can be conducted as a function

of the coding type of each frame along the temporal axis.

In [16] and [17], FEC codes were unequally assigned to I-

and P-frames in each GOP according to the channel status.

Unequal importance can also be assigned at the packet level.

Fig. 1. Comparison of perceptual quality. (a) 30th frame using a perceptual
ULP when a packet loss occurs in the frame. (b) 45th frame after error
propagation from the 30th frame in (a). (c) 30th frame using a conventional
ULP when a packet loss occurs in the frame. (d) 45th frame after error
propagation from the 30th frame in (c).

For example, the packet header, motion information, and text

information can be adapted to improve video quality in packet

erasure networks [15]. In multilayered coding schemes, such

as set partitioning in hierarchical trees, different degrees of im-

portance can be assigned to the base and enhancement layers.

By assigning unequal importance to the packets in different

layers, unequal FEC schemes have been efficiently applied

to multilayered coding [19], [20]. In [21], unequal error

protection (UEP) is applied to MPEG-4 fine granular scalable

(FGS) compressed video data using rate-distortion information

for each layer. UEP schemes for multiple description coding

(MDC) and for hybrid space-time coding have also been de-

veloped to achieve more robust video transmission [30], [31].

In recent years, source and channel rate allocation schemes

have been deeply investigated for video communications [33]–

[36]. A rate allocation scheme with a delay constraint was

presented in [33]. The number of FEC codes is determined

based on the network delay and the packet generation interval.

The number of redundant packets is then allocated to attain

a required packet loss ratio. In [34], a lower bound on the

total transmission rate was computed by exploiting both source

coding bits to attain minimum quality and channel coding bits

to achieve the required packet loss ratio.

III. Perceptually Unequal Loss Protection (PULP)

A. Motivation

Fig. 2 shows the mechanics of PULP as compared to

a conventional approach. If the available resources for

video coding or transmission are plentiful, then we do not

expect a performance improvement of the proposed scheme

relative to conventional ones. However, when the resources

are insufficient, then noticeably better performance can be

attained by protecting perceptually important regions. The new

approach balances a tradeoff between fairness and efficiency

from the perspective of perceptual improvement. Fairness

and efficiency mediate the visual quality by controlling the
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size(s) of identified salient region(s). As the fairness level

is increased, salient regions are increased in size, leading

to improved visual quality of the reconstructed video. The

conventional approach, shown in Fig. 2(b) employs equal

perceptual weighting across the fairness levels. No spatial

assignment of visual importance or salience is used in defining

the fairness levels. Nevertheless, there are opportunities for

incorporating perceptual relevance. For example, if regions

that attract visual attention can be identified, then resources

can be allocated to them, while also taking into account human

contrast sensitivity when selecting the quantization level or

the prediction block size. By comparison, Fig. 2(c) shows the

proposed PULP framework, which adaptively configures each

fairness level to the channel behavior. FEC assignments are

based on perceptual weights, which are dynamically selected

as a function of the channel state. The size of the salient

region(s) is adaptively adjusted as a function of the fairness

level and of the channel state. The larger the size of the

salient region, the higher the fairness level is. For example,

the fairness of level 1 is larger than that of level 0 in Fig. 2(c).

When the packet loss rate increases, the size of the salient

region is reduced, to improve efficiency by setting a low-

fairness level. When the packet loss rate decreases, the size of

the salient region is expanded by setting a high-fairness level.

B. Overview of the PULP Algorithm

Fig. 3 diagrams various essential aspects of PULP. Fig. 3(a)

shows the flow of PULP. Raw video frames are first fed into

the video encoding module. During the encoding process, the

degree of degradation due to packet loss is estimated used a

quality metric called PWEP. The packet loss rate is estimated

using the Markov model in [46]. It can then be reported by

the underlying protocol, such as the real time control proto-

col (RTCP) [32]. Furthermore, by deploying cross-layer co-

operation, the channel signal-to-interference-plus-noise-ratio

(SINR) can be measured using the pilot channel. From the

SINR, the bit error rate and the packet error rate (PER)

can then be estimated. If the PER information is fed back

periodically to the end-user via RTCP packets, the QoS may

be more reliably controlled. PWEP values are obtained using a

foveal weighting model and a GOP-level hierarchical weight-

ing model. The foveal weighting model calculates the LSB

for each video packet. The LSB is decreased exponentially

from the centers of each salient region, which are called

foveation points. The exponential drop-off is such that, when a

visual fixation falls on the salient region, the projection of the

distribution of LSBs onto the retina will approximately match

the nonuniform distribution of retinal photoreceptors [3]–[9].

Fig. 3(b) shows the reconstructed 35th frame of the video

test clip "Silent" after applying perceptual weighting, where

three salient regions were identified. The figure also depicts

the foveal weighting model. Assume that the face and the left

hand, both of which are in motion, are selected as a region of

heightened visual interests. Picture-level perceptual weighting

is allocated as a function of the spatial placement within the

indicated iso-contours of the foveation-induced LSBs. In this

example, video packets in region A are located in a highly

salient region and are thus well protected. Video packets in

Fig. 2. Proposed PULP framework compared to conventional ULP.
(a) Channel status. (b) Conventional ULP. (c) PULP.

region B are located in a low-saliency region and are less

well protected. The spatial weighting is obtained for each

frame in the GOP. In addition, the GOP-level hierarchical

weighting model is used to identify regions that have unequal

importance in the compressed video packets. Specifically, in

each GOP the pictures have importance that descends with

time relative to the first reference frame (I-frame), owing

to the increasing severity of error propagation with elapsed

time within the GOP. Using both of frame-level perceptual

importance and GOP-level hierarchical importance, the PULP

FEC assigner seeks to balance and optimize efficiency and

fairness in order to achieve improved visual quality. The right

portion of Fig. 3(c) depicts the architecture of the model-

based FEC assignment algorithm. Video packets from the

video encoder are assembled into blocks of packets (BOP)

by the BOP assembler for each GOP. Since channel error

propagation is terminated within each GOP, this assembling

leads to improved FEC capacity. The bit stream is sequentially

packetized without considering regions of interest. Reed–

Solomon (RS) codes are used across packets for FEC in the

face of packet loss in packet erasure networks [15], [39]. The

(N, K) RS code has a code rate of K/N, where N packets

are transmitted over the channel for K video packets. These

N packets build a BOP, and this code rate can be adjusted

for each BOP as a function of the unequal importance of the

visual quality degradation and the channel state.

1) Problem Formulation: Let Fj denote the number of

FEC packets assigned into BOP j, Then, the FEC assignment

vector for the current GOP is �F = [F1, F2, ..., FJ ]. The optimal

FEC assignment vector �F ∗ can be obtained by minimizing an

appropriate performance metric D( �F ) which is defined in the

next section. For a given Fj in BOP j, we denote γ(Fj) to be

the packet loss rate after recovering with RS (Nj, Kj) codes.

A two-state Markov model is used to model the packet loss

rate [46]. If Pr(m, N) is the probability of losing m packets

among N packets, then the original data can be recovered if the

number of lost packets is less than the number of protection

packets. γ(Fj) can be formulated as

γ(Fj) =

Nj
∑

m=Nj−Kj+1

Pr(m, Nj) (1)
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Fig. 3. Overview of the proposed VULP scheme. (a) Block diagram of the proposed VULP scheme. (b) Depiction of the foveation-based perceptual weighting
model. (c) Architecture of the model-based FEC assignment algorithm.

An optimal FEC assignment vector �F ∗ can be obtained

by minimizing the spatio–temporal performance metric D( �F ),

which is the measure of quality degradation due to packet loss

from the previous section. The problem of finding the optimal

FEC assignment vector �F ∗ is then

min
�F

[

D( �F )
]

(2)

subject to

γ(Fj) ≤ γ(Fĵ) if j ≤ ĵ (3)

where j and ĵ are BOP indices. The constraint (3) is referred

as “descending priority” from the sorted performance metric

in the GOP

J
∑

j=1

Hj · Fj ≤ Bch (4)

where J is the total number of BOPs for a given K. In

constraint (4), Bch is the available number of channel bits for

constructing FEC packets. Hj is the length of FEC packets

in BOP j as determined by Hj = max
k=1,2,...,Kj

{hk,j} where hk,j

is the length of the kth video packet in BOP j. For smaller

video packets, filler bytes are used to equalize the length of

the video packets before FEC encoding.

IV. Perceptual Weight of Error Propagation

(PWEP)

Here, we describe a model-based performance metric for

measuring the amount of visual quality degradation that occurs

due to packet loss in a GOP.

A. Salient Point Selection

Selection of salient points is designed under the following

assumption: The HVS often directs more attention to moving

objects than to a stationary background [10], [11], [42], [44].

The HVS deals unequally with incoming visual information

according to selective focal attention. This selectivity implies

that if the human gaze is directed toward any specific loca-

tions in a video, then that observer is less likely to notice

defects in other areas of the video [43]. In PULP, available

MB saliency information, such as velocity magnitude, and

motion partition, can be used to define salient MBs. This

can be used in conjunction with standard video formats,

such as H.264/AVC, which provide inter and intra prediction

modes to obtain improved coding performance [45]. The MB

partition information for the (i, j)th MB in the kth picture

is defined as Pk(i, j) and it is calculated by using rate-

distortion optimization (RDO) for each MB. An example of

MB partition information is showed in Fig. 4(a) by using the

13th frame in the ‘Soccer’ test video clip. Small partition

sizes are generally identified with detailed regions or the

edges of objects. Large partition sizes are usually associated

with monotonous, stationary image regions. For intra picture
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coding, a similar rule can be applied. Prediction modes that

deploy a small block partition size are usually used to represent

detailed regions. Larger partition sizes are used to coding

homogeneous areas.

In addition to Pk(i, j), we utilize the velocity magnitude

to define salient areas. The motion intensity of (i, j)th MB

in the kth picture is defined as Ik(i, j) and it is calculated

by Ik(i, j) =
√

MV k
x (i, j)2 + MV k

y (i, j)2 where MV k
x (i, j) and

MV k
y (i, j) represent the horizontal and vertical direction veloc-

ity magnitude for the (i, j)th MB in the kth frame, respectively.

Using Pk(i, j) and Ik(i, j), candidate salient points can be

selected. The detailed decision procedure is described in

Fig. 4(b). If Pk(i, j) is small, it is probable that the MB

contains details or information-bearing edges. Such MBs are

taken to be part of salient regions. However, in the case that

an MB is a part of the background, then Pk(i, j) may not

be large enough to report a possible saliency. Thus, after

filtering out MBs using Pk(i, j) we use the additional step

of Ik(i, j). If Ik(i, j) > 0, the MB is regarded as part of

a salient region. If Ik(i, j) is too large, the viewer may not

perceive such a rapid change, or might only obtain a limited

amount of information [42], [44]. This explains the use of a

variable threshold on Ik(i, j) for selecting salient points in the

kth frame. The variability depends the global mean of velocity

magnitudes in the frame (denoted by σk) which accounts for

egomotion. Assuming that each frame is divided into M × N

MBs, σk then is calculated as σk = 1
M·N

∑M−1
i=0

∑N−1
j=0 Ik(i, j).

All other MBs excluding the selected salient MBs are

treated as nonsalient MBs. Based on Ik(i, j), Pk(i, j), and σk,

we describe the decision algorithm for selecting salient points

in Step 1 and 2.

Step 1) Calculate Ik(i, j), Pk(i, j) and σk for the (i, j)th

MB in the kth frame.

Step 2) We define a binary function Ak(i, j) as an indicator

of whether or not the (i, j)th MB in kth frame

belongs to a salient region. Ak(i, j) = 1 means a

salient point, while Ak(i, j) = 0 means others.

By using Ik(i, j), Pk(i, j) and σk, we determine

whether Ak(i, j) is 1 or 0 as follows:

Ak(i, j) =

⎧

⎨

⎩

1, if ( Pk(i, j)< MODE 16 × 16 and

0 < Ik(i, j)< σk)

0, otherwise.
(5)

A result of the proposed algorithm is shown in Fig. 4(c).

B. Foveation-Based Perceptual Weighting

Since video images are intended for human viewers, it is

presumed that the point of visual fixation falls somewhere

on the displayed video. It is also a reasonable assumption

that visual input is dominated by the response of the cones

(photopic vision), since the central dominant photoreceptors

are highly responsive to bright objects, such as a glowing

display monitor. The point on an object or monitor surface

that projects light onto the center of the fovea, presuming that

the gaze is fixed, is termed a point of visual fixation. At certain

locations in the video stream where it is deemed likely that

Fig. 4. Salient point selection for the 13th frame in the Soccer sequence.
(a) A result of the MB block partition (Pk(i, j)) obtained from H.264/AVC.
(b) Salient MB selection algorithm. (c) Selected salient MBs.

the human gaze will fall at a given point in space and time,

the video will be either represented at a higher resolution than

other locations, and possibly given another kind of priority,

such as increased error resilience. Such locations in the video

stream will be referred to as foveation points. In the vicinity

of a foveation point, the video is represented with a high-

spatial resolution which falls off systematically away from the

foveation point [except near other fixation point(s)]. In this

way, the video presentation is made to have high resolution

where the observers’ visual fixations are known or predicted to

be placed. There has been useful work done on determining the

visual resolution response (contrast sensitivity) as a function

of the placement of the stimulus on the retina relative to

the fovea, which is known as the retinal eccentricity [41],

[42], [44].

For any given point �x = (x1, x2) (pixels) in an image or

video frame, the eccentricity (e) can be found by assuming

that the position of the foveation point �xf = (x
f

1 , x
f

2 ) (pixels)

in the image plane and the viewing distance u from the eye

to the image of size W(pixels) are known. The distance from

�x to �xf is d(�x, �xf ) =

√

(

x1 − x
f

1

)2

+
(

x2 − x
f

2

)2

(pixels). The

eccentricity is e(u, �x) = tan−1( d(�x,�xf )
Wu

) [8].

For a given eccentricity, e(u, �x), the local spatial cut-off

frequency (cycle/degree) in �x, wc is defined in the sense that

any higher frequency component beyond it is less visible or

invisible. By setting the maximum possible contrast sensitivity

to 1.0, wc is calculated as follows:

wc(e(u, �x)) =
e2 ln( 1

CT0
)

α(e(u, �x) + e2)

(

cycles

degree

)

(6)

where CT0 is a minimum contrast threshold, e2 is a half-

resolution eccentricity constant, and α is a spatial frequency
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Fig. 5. Distribution of normalized w
n,k
c (u) of the 5th horizontal MBs for

W=1024 and u=30 cm.

decay constant. The fitting parameters given in [41] are

a = 0.106, e2 = 2.3, and CT0 = 1/64.

In a displayed digital image, the maximum effective res-

olution is limited by the display’s visual resolution r (pix-

els/degree), which is approximately

r ≈ Wu
π

180

(

pixels

degree

)

. (7)

Based on the sampling theorem, the highest displayed

Nyquist frequency is half the display resolution from (7)

wd(u) =
r

2
≈ Wu

π

360

(

cycles

degree

)

. (8)

Combining (6) and (8), the local foveal cutoff frequency for

a given location �x is

wc(u, �x) = min(wc(e(u, �x)), wd(u)). (9)

In addition, the cutoff frequency of the kth MB in the nth

frame, wn,k
c (u) can be expressed as the average value of the

cutoff frequencies in the macroblock

wn,k
c = avg(wc(u, �x)) (10)

where the �x are the pixels in the kth MB.

As an example, Fig. 5 shows the distribution of normalized

wn,k
c (u) of the 5th horizontal MBs for W=1024 and u=30 cm.

It may be observed that larger weights are assigned to salient

regions. These weights decrease as wn,k
c (u) is decreased expo-

nentially as a function of the distance from the foveation point.

This process of foveation and weighting makes it possible to

eliminate visual redundancies from nonsalient regions in order

to improve coding efficiency. For brevity, wn,k
c (u) is expressed

by wn,k
c to eliminate the dependence on u. Based on wn,k

c , the

perceptual weighting of the ith video packet of the jth BOP,

µi,j can be calculated as

µi,j =
∑

k∈S(pi,j)

wn,k
c (11)

where pi,j is the ith video packet of the jth BOP and S(pi,j)

is the set of MBs in pi,j .

TABLE I

Normalized Local Spatial Frequency, Ns(m, n) in the 4 × 4 DCT

Domain

Item(m,n) 0 1 2 3

0 0.01 0.13 0.25 0.38
1 0.13 0.18 0.28 0.40
2 0.25 0.28 0.35 0.45
3 0.38 0.40 0.45 0.50

C. GOP-Level Hierarchical Weighting

To quantify the temporal propagation effects of packet loss

on video quality, we use the length of the possible error

propagation for each video packet. For example, a packet loss

of the first frame causes a much more severe impact on the

quality of the reconstructed sequence than a packet loss in

one of the frames near the end ending. This simple method of

assessing frame quality loss due to error propagation also has

the virtue of simplicity and low complexity. Let fi,j and λi,j be

the frame index in a GOP, and the length of error propagation

of the ith video packet of the jth BOP, respectively. Then, λi,j

is given by

λi,j = G + 1 − fi,j. (12)

Using (11) and (12), we then define the perceptual weight

of error propagation (PWEP), χi,j , which combines effects of

both spatial and temporal video quality degradation

χi,j = µi,j·λi,j. (13)

V. Optimal FEC Assignment in PULP: Efficiency

and Fairness

The PWEP for each video packet can be obtained from

(13) by using the spatial and temporal weighting principles

outlined in the preceding. In order to minimize visual quality

degradation as a function of the perceptual weighting, the

proposed FEC assignment is adjusted as a function of the size

of the salient region(s) and the channel status.

A. PWEP-FL(l)

For simplicity, denote the fairness level l as FL(l). The

PWEP in (14) is specifically determined, as a function of

the channel status, to achieve a desirable tradeoff between

efficiency and fairness using the FL(l) algorithm. We term

the proposed performance metric PWEP-FL(l). In the FL(l)

algorithm, video packets having large LSB are protected from

packet loss by adding more protection bits, and vice-versa.

The lower the fairness level the algorithm obtains, the more

unfair the video packets having a low LSB will be. Therefore

it is important to carefully determine FL(l) to maintain an

appropriate modicum of fairness for each channel state. Given

the FL(l), a threshold on the cutoff frequency is determined.

If wn,k exceeds the threshold, then the kth MB becomes a part

of the salient region, and so on.

Fig. 6(a) and (b) shows the mechanics of the proposed

PULP framework as a function of the channel status. In this
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Fig. 6. PULP framework. (a) Illustration of variation of the saliency size across the fairness level, FL(l). (b) Distribution of perceptual weighting in the FL(l)
algorithm as a function of the channel status. (c) Distribution of normalized PWEP-FL(l) for each BOP.

Fig. 7. For the 17th Stefan test sequence, shown are (a) contours of w
n,k
c , (b) contours of ŵ

n,k
c from w

n,k
c , (c) contours of vn,k from ŵ

n,k
c .

example, the 17th frame of the "Stefan" test sequence is

utilized. In Fig. 6(a), the lowest fairness level 0 is assigned

by setting FL(0). By maintaining the smallest salient region, it

is possible to maximally protect perceptual quality within the

salient region against a high-packet loss rate. For a moderate

packet loss rate, the fairness level is increased by assigning an

intermediate value of the LSB to, for example, FL(4), leading

to enlargement of the salient region. Finally, at a low-packet

loss rate, increased fairness can be assured by assigning a low

threshold on the cutoff frequency. For example, for FL(9), the

size of the salient region is noticeably larger. The LSB of

those MBs lying within the salient region is set to the highest

value of 0.5 in the discrete frequency domain. To decide the

size of the salient region(s), wn,k
c from (10) is mapped onto a

discrete level of frequency sensitivity, which varies with the

frequency indices of the transform coefficients, the coefficient

magnitudes, and the block luminances [3], [10], [11]. Let m

and n be the indices of 2-D transform coefficients in a block.

Then, the normalized local spatial frequency (cycle/degree)

can be expressed as Ns(m, n) = 1
N

√
m2 + n2 where Ns(m, n)

is normalized by 0.5 in [10]. As shown in Table I, 10 values of

Ns(m, n) are used to control the size of the salient region(s).

For this purpose, wn,k
c is quantized as a function of the value

of Ns(m, n), so that the perceptual weighting of each MB is

modified and the size of the salient region(s) is controlled.

Let ŵn,k
c be the quantized version of wn,k

c , where ŵn,k
c is

mapped into the nearest discrete value of Ns(m, n). Fig. 7(a)

and (b) shows the distribution of wn,k
c and ŵn,k

c . The values of

ŵn,k
c are mapped onto integer values denoted vn,k in the range

[0, 9], as shown in Fig. 7(c). The relationship between vn,k

and ŵn,k
c is defined by a weighting function ϕn,k as follows:

ŵn,k
c = ϕn,k(vn,k) (14)

where vn,k is an index used in Table I. If vn,k = 9, the associated

MB obtains the highest discrete value ŵn,k
c = 0.5. At the

other extreme, if vn,k = 0, then the lowest value ŵn,k
c = 0.01

is assigned to the MB.

Suppose that there are L fairness levels. For a given fairness

level l, the perceptual weighting of each MB is fixed by

ϕn,k(v̂n,k(l)) from (14), where v̂n,k(l) indicates the modified

value of vn,k from the fairness level l, which is calculated as

v̂n,k(l) =

{

L, vn,k ≥ L − l

vn,k + (L − l), otherwise
(15)
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Fig. 8. Variation of vn,k ,v̂n,k(l), and ϕn,k(v̂n,k(l)) when l =2.

where L = 9 in the implementation. This means that

ϕn,k(v̂n,k(l)) is decreased in proportion to the distance from the

center of the salient region, and is shifted as a function of the

fairness level l. For example, when l=2, the variation of vn,k,

v̂n,k(l), and ϕn,k(v̂n,k(l)) is depicted in Fig. 8. Using (14) and

(15), v̂n,k(2) is 9 until vn,k is 7, and thereafter is decremented

in units. ϕn,k(v̂n,k(l)) shows the value of ŵn,k
c obtained from

v̂n,k(l). Using the FL(l) algorithm, the perceptual weighting of

the ith video packet of the jth BOP, which is denoted µ̂i,j(l),

is found by including the fairness level l in µi,j in (11), and

expressed using (14) and (15) as follows:

µ̂i,j(l) =
∑

k∈S(pi,j)

ϕn,k(v̂n,k(l)). (16)

Finally, the performance metric PWEP-FL(l), χ̂i,j(l) is found

by using (16) from (13)

χ̂i,j(l) = µ̂i,j(l)·λi,j. (17)

The average value of PWEP-FL(l) for the FEC assignment

of the jth BOP is then calculated as

Bj
avg(l) =

1

Kj

Kj
∑

i=1

χ̂i,j(l) (18)

where Kj is the number of video packets in the jth BOP.

Fig. 6(c) depicts the distribution of Bj
avg as a function of

FL(l) with l = 0, 4, 9. The slope of Bj
avg for PWEP-FL(0) is

steeper than for PWEP-FL(9) or PWEP-FL(4), since the size

of the salient region(s) are reduced by setting a low-fairness

level, when protecting the visual quality in a high-packet loss

rate environment. As the fairness level is increased, then the

slope of Bj
avg becomes reduced, when improving the visual

quality of expanded salient region(s) in a low-packet loss rate

environment.

B. Optimal FEC Assignment

Based on the weighting for each BOP in (18), the PULP

FEC assigner performs an optimal FEC assignment to min-

imize perceptual degradations, subject to a given protection

redundancy and depending on the channel state. Expressed in

terms of the packet loss rate in (18), and the average value of

PWEP-FL(l) in (18), the spatio-temporal performance metric

in (2) becomes

D( �F, l) =

J
∑

j=1

Bj
avg(l) · γ(Fj). (19)

Using the definition of D( �F, l), an optimal FEC assignment

vector, �F ∗ is found using a local hill-climbing search algorithm

as in the following Steps 1–7.

Step 1) lcurr and lprev represent the current and previous

fairness levels, respectively. Initially, lcurr and lprev are

set to 0. Thus, the smallest saliency region is initially

used for searching the optimal FEC assignment as

a function of the channel state. For given lcurr and

lprev, the average distortions from (19) are denoted

as D( �F, lcurr) and D( �F, lprev) which are initially set

to high values.

Step 2) Following compression of the video sequence

within a GOP, video packets are generated. The

perceptual weights χ̂i,j(lcurr) are calculated by using

(17). Each packet is then sorted to construct BOPs

ordered by χ̂i,j(lcurr). For a given K in RS(N, K),

the collection of J BOPs is partitioned as shown

in Fig. 3(c). The value Bj
avg(lcurr) associated with

BOP j is calculated to allow the assignment of FEC

packets.

Step 3) The number of FEC packets for BOP j in the

face of a burst packet loss can be initially set to

be F init
j =

⌊

(

Bch · Hj

)

/

J
∑

i=1

Hj

⌋

where J is the

maximum number of BOPs. Then D( �F init, lcurr) is

calculated by using (19).

Step 4) Next, �F best and �F start are defined as the best FEC

assignment in the GOP level and the starting point for

the FEC assignment in the BOP level, respectively.

The algorithm seeks �F best at the GOP level. The

initial values of �F best and D( �F best, lcurr) are �F init and

D( �F init, lcurr), respectively. Also, the initial value of
�F start is set to a zero vector. �F start is replaced by �F best

and the algorithm proceeds to Step 5.

Step 5) At the BOP level, the algorithm seeks the value of
�F , denoted by �F temp that achieves an optimal FEC

assignment in the sense of minimizing D( �F ). F
temp
j ∈

�F temp is assumed to fall in the interval [−�j, �j],

where �j is the search distance for BOP j which

is determined by �j = max
{⌊

ε · Bj
avg

⌋

, 1
}

. This

means that �j I determined relative to the degree

of the importance of the visual quality degradation

from packet loss. If r is the determined value in the

interval [−�j, �j], then F
temp
j is updated as follows

�F temp = �F start, F
temp
j = F

temp
j + r.

Step 6) We calculate D( �F temp) =
J
∑

j=1

Bj
avg · γ(F

temp
j ).

Step 7) If D( �F temp) < D( �F best) and
∑J

i=1 F
temp
j < Bch,

then D( �F best) and �F best are replaced by D( �F temp)

and �F temp, respectively. If D( �F temp) ≥ D( �F best), the

number of FEC packets in each BOP are adjusted to

minimize D( �F temp) in the interval [−�j, �j], then

the algorithm returns to Step 5. If the search range

falls outside the interval [−�j, �j], then BOP j is

shifted into the next BOP using j = j + 1, and the

algorithm returns to Step 5. If the index j of the

BOP reaches the last value J , the algorithm goes to

Step 8.

Step 8) If �F best is equal to �F start, �F ∗ is replaced by
�F best and the FEC assignment process goes to
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Fig. 9. Performance comparison of average FSSIM and PSNR between
PULP and conventional ULP algorithms for a FEC ratio of 15%. (a) FSSIM
of City. (b) PSNR of City. (c) FSSIM of Stefan. (d) PSNR of Stefan.
(e) FSSIM of Silent. (f) PSNR of Silent. (g) FSSIM of Soccer. (h) PSNR
of Soccer.

the next step. Otherwise, the algorithm jumps to

Step 4.

Step 9) If D( �F ∗, lcurr) is lower than D( �F ∗, lprev), we in-

crease the fairness level by 1: lcurr + 1. This means

that the size of the salient region is enlarged to adapt

to the channel state. Then, D( �F ∗, lprev) is updated:

D( �F ∗, lcurr) and processing proceeds to Step 2. Oth-

erwise, the FEC assignment process is terminated.

It can be seen that the computational complexity of the

proposed FEC assignment algorithm depends on the choice

of ε.

VI. Simulation Results

In order to evaluate the performance of the proposed FEC

scheme, extensive experiments under various test conditions

Fig. 10. Performance comparison of average FSSIM and PSNR between
PULP and conventional ULP algorithms for a FEC ratio of 5%. (a) FSSIM of
City. (b) PSNR of City. (c) FSSIM of Stefan. (d) PSNR of Stefan. (e) FSSIM
of Silent. (f) PSNR of Silent. (g) FSSIM of Soccer. (h) PSNR of Soccer.

were conducted. Four CIF video sequences City, Stefan,

Silent, and Soccer, were used. The number of frames for

each sequence is 81 and the frame rate is 30 f/s. The initial

quantization parameter is set to be 35. The videos were

encoded using the H.264 reference software [45]. In the

encoding configuration, the RDO mode and the loop filter

were enabled. The content-based adaptive binary arithmetic

coding option was enabled and variable block sizes with a

search range of 32 were utilized for block motion estimation.

The length of each GOP was selected to be 15 and the packet

size 1280 bits. These sequences were encoded at a constant bit

rate. A two-state Markov channel model described in [46] was

used to model the packet loss with an average burst length of

LB and an average packet loss rate of PB. The simulation

parameters are shown in Table II. The error concealment

scheme for H.264 [8] in the reference software [45] was

applied at the decoder side. The simulations were conducted
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Fig. 11. Performance comparison of frame-by-frame FSSIM between PULP
and conventional ULP algorithms for a FEC ratio of 5%–15% in City. (a) FEC
ratio=15% and Pb=10%. (b) FEC ratio=15% and Pb=20%. (c) FEC ratio=5%
and Pb=10%. (d) FEC ratio=5% and Pb=20%.

TABLE II

Simulation Parameters

Sequence Name Stefan City Soccer Silent

FEC ratio (%) 5 and 15 5 and 15 5 and 10 5 and 10
LB 2 2 1 3

PB (%) from 5 to 20
K in RS(N, K) 16

over the 20 different random channel loss patterns, and their

results averaged.

The foveal weighting model was configured using a block

size of 4 × 4 to evaluate ŵn,k
c . The parameter ε in PULP

was set to 1.0. The simulation results were analyzed from

two perspectives: objective perceptual quality and subjective

perceptual quality.

Fig. 12. Performance comparison of frame-by-frame FSSIM between PULP
and conventional ULP algorithms for a FEC ratio of 5%–15% in Soccer.
(a) FEC ratio=15% and Pb=10%. (b) FEC ratio=15% and Pb=20%. (c) FEC
ratio=5% and Pb=10%. (d) FEC ratio=5% and Pb=20%.

A. Objective Visual Quality Evaluation

We evaluated PULP algorithm over different channel states.

Two fairness levels l = 0 and 8 were considered for high

and low-packet loss rates. Due to the randomness of such a

channel, 100 different runs of the simulation were conducted

using different packet loss rates ranging from 5% to 20%. We

investigated how well PULP adapted to channel variations as

compared to other ULP schemes.

1) FEC-FL(0): Using FL(0) and PWEP-FL(0), the FEC

assignment was performed for pure efficiency.

2) FEC-FL(8): Using FL(8) and PWEP-FL(8), the FEC

assignment was performed to achieve intermediate per-

formance between efficiency and fairness.
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Fig. 13. Subjective quality comparison on the 15th frame of the Stefan test video clip (PB = 5%). (a) Original video clip. (b) FEC-FL(0). (c) FEC-FL(8).
(d) GRIP. (e) Equal FEC.

3) GOP and Resynchronization Integrated Protection

(GRIP): The ULP scheme in [15] was performed using

the length of error propagation as the performance

metric, without using perceptual weights in each video

packet. The resynchronization weighting scheme was

not considered.

4) Equal FEC: The ULP scheme allocates FEC packets

without considering either the packet loss rate or the

perceptual significance of error propagation. If FEC-

FL(9) runs ULP without considering the packet loss rate

in the FEC assignment, then this scheme becomes the

same as the equal FEC.

To evaluate the quality of foveated video, the so-called

foveal-peak signal-to-noise ratio (PSNR) was developed in [7].

The foveal-PSNR is defined by weighting the LSB relative to

the mean square error (MSE). This performance metric has

been demonstrated to be a good objective quality measurement

tool for predicting subjective quality of foveated images. Here,

we introduce foveal-SSIM (FSSIM) in a manner similar to

foveal-PSNR, but replacing the MSE with SSIM [29]. To

compute FSSIM on each frame, the quantized LSB ŵn,k
c of

the nth frame is applied to the SSIM index similar to [29]

FSSIMn =

∑M
k=1 SSIM(on,k, dn,k) · ŵn,k

c
∑M

k=1 ŵ
n,k
c

(20)

where M is the number of MBs in a frame, and on,k and dn,k

are the kth matched MBs of the nth original and distorted

frames.

The LSB varies for each window, frame and sequence over

the spatial and temporal axes. Therefore, the final score over

the video is obtained using the simple pooling

FSSIM =

∑T
n=1 FSSIMn · ŵn

sum
∑T

n ŵn
sum

(21)

where T is the number of frames in the sequence, and ŵn
sum =

∑T
n=1 ŵn,k

c .

In addition to conducting a perceptually relevant examina-

tion using the FSSIM index, we also use the traditional (but

perceptually questionable) average PSNR to evaluate the error.

Figs. 9 and 10 compare the average FSSIM and PSNR values

for the conventional ULP and PULP algorithms, using the

FEC ratios of 5 % and 15 %. At the low-packet loss rate,

the FEC-FL(8) scheme exhibits higher FSSIM values than do

FEC-FL(0), GRIP and Equal FEC by 0.01–0.05 over all the

test video frames. Relative to rate, a fair FEC assignment was

performed for each BOP by enlarging the size of the salient

region, leading to improved objective quality. Conversely, at

the high-packet loss rate, the FEC-FL(0) scheme achieved

graceful degradation as measured by FSSIM in the range

PB = 15%–20%, while the GRIP and Equal FEC schemes

resulted in steep degradation as measured by FSSIM. The

gradual decrease of FSSIM in the proposed FEC scheme is

due to the better protection from the packet loss, of those

video packets having a large impact on visual quality, by

maintaining a small salient region. On the other hand, the

PSNR comparison shows that the GRIP scheme without visual

weighting delivers higher PSNR values than does the proposed

PULP algorithm. In particular, at a high-packet loss rate, since

the smallest size of the salient regions is set by the proposed

algorithm, the difference in PSNR values is largest within the

feasible range of the packet loss rate. However, the subjective

visual quality comparison in the next subsection makes it clear

that the proposed FEC algorithm yields better visual quality

than does the conventional FEC algorithm.

Figs. 11 and 12 plot the frame-by-frame FSSIM using the

FEC assignment scheme on the first 80 frames of the two

test sequences, “City” and “Soccer” using FEC ratios of 5%

and 15%. For each packet loss rate, it can be seen that the

salient regions are better protected by FEC-FL(0) and FEC-

FL(8) than those by the other protection schemes. Thus, spatial

and temporal error propagation can be effectively alleviated

using the proposed FEC assignment algorithm.

B. Subjective Quality Comparison

To conduct subjective quality comparisons, we utilized a

video test clip reconstructed using the benchmark methods

with average packet loss rates of 5% and 20%, respectively.

Fig. 13 shows the 15th frame of the “Stefan” test video

clip. Fig. 13(a) is the original video clip, while Fig. 13(b)–

(e) are the reconstructed clips using FEC-FL(0), FEC-FL(8),

GRIP, and Equal FEC, respectively, at a packet loss rate of

PB = 5%. It may be observed that improved subjective quality

was delivered by the FEC-FL(8) scheme as compared to the

GRIP, Equal FEC or FEC-FL(0) schemes. Thus, it may be

deduced that fairness is more important than efficiency toward

improving subjective video quality, by maintaining a wider

range of salient regions given a low-packet loss rate.

Fig. 14 depicts the subjective quality comparison at the

high-packet loss rate of PB = 20% using the 15th frame of the

“Soccer” test video clip. Since FEC-FL(8) allocates FEC codes

to video packets having a wide range of sizes of the salient

region, noticeable degradations of subjective quality occur
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Fig. 14. Subjective quality comparison on the 15th frame of the Soccer test video clip(PB = 20%). (a) Original video clip. (b) FEC-FL(0). (c) FEC-FL(8).
(d) GRIP. (e) Equal FEC.

in the reconstructed image. It is noticeable that FEC-FL(0)

improves the subjective video quality more effectively than

the fairness scheme at the high-packet loss rate. In the GRIP

scheme, evident perceptual degradation occurs in the middle of

the frame, owing to the lack of FEC codes. Conversely, FEC-

FL(0) effectively inhibits perceptual degradations in areas of

identified perceptual importance, by allocating channel coding

resource to those video packets.

VII. Conclusion

We proposed a new PULP algorithm appropriate for op-

eration in a packet erasure network. To enable adaptation to

the nonuniform resolution of the visual photoreceptors, we

developed a simple and efficient performance metric, called

PWEP. The proposed PULP scheme was developed based

on two essential objectives, namely, enforcing efficiency and

fairness across various channel states to improve visual quality.

To mediate the tradeoff between efficiency and fairness, we

proposed a FEC algorithm with a variable fairness level, FEC-

FL(l) to allocate resources in order to manage the FEC codes

for each video packet. The simulation results show that PULP

algorithm achieves higher foveal-SSIM scores than conven-

tional algorithms. It was demonstrated that PULP adapts well

to dynamic channel environments, yielding good control of

QoS, which is vital for achieving high quality and reliable

video communication.
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