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Percolation and Cluster Distribution. II. Layers, 
Variable-Range Interactions, and Exciton Cluster Model 
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Monte Carlo simulations for the site percolation problem are presented for 
lattices up to 64 x 106 sites. We investigate for the square lattice the variable- 
range percolation problem, where distinct trends with bond-length are 
found for the critical concentrations and for the critical exponents/~ and 7. 
We also investigate the layer problem for stacks of square lattices added to 
approach a simple cubic lattice, yielding critical concentrations as a func- 
tional of layer number as well as the correlation length exponent u. We 
also show that the exciton migration probability for a common type of 
ternary lattice system can be described by a cluster model and actually 
provides a cluster generating function. 

KEY WORDS: Percolation; critical exponents; cluster model; exciton 

migration; critical concentration. 

1. INTRODUCTION 

In a recent  paper  (1~ (I) we in t roduced  a new me thod  to evaluate  pe rco la t ion  

probabi l i t i es  and  cri t ical  pe rco la t ion  concentra t ions ,  where we uti l ized a 

cluster  mul t ip le  label ing technique ( C M L T )  to de te rmine  cluster size dis- 

t r ibu t ions  in a s imula ted  lattice. In  this pape r  we focus our  a t ten t ion  on some 

results involving the site p rob l em for a number  of  lat t ice topologies .  

Typical ly ,  da t a  on the lat t ice pe rco la t ion  p rob l e m are  given for  the 

nearest  ne ighbor  or  next  neares t  ne ighbor  sites. (2~ However ,  long-range 

in teract ions  may  p lay  a significant role, when qua n tum mechanica l  effects (3-5~ 

such as tunnel ing are  encountered.  Tunnel ing  o f  t r iple t  exci tons can account  

for  the  low perco la t ion  concen t ra t ion  threshold  detected in subs t i tu t ional ly  

d i so rdered  molecu la r  crystals.  (3~ Similarly,  electr ical  conduct iv i ty  o f  l ightly 

d o p e d  semiconductors  has been viewed as a long-range  perco la t ion  process.  (4,5~ 
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It has been demonstrated by Skal et al. (4~ that long-range correlations effec- 
tively reduce the dependence of the critical percolation concentration on the 
structural characteristics of the system in question/5~ Hence, percolation in 
systems with long-range site-site interactions (~ can be described in terms of 
continuous percolation models (6~ (and vice versa). We introduce some basic 
definitions for two- and three-dimensional systems, but mainly concentrate 
on results for the two-dimensional (square lattice) topology: critical con- 
centrations, percolation probabilities, and critical exponents. While the criti- 
cal concentration behavior appears to merge smoothly into a "classical" 
behavior as the interaction range increases, this is definitely not the case for 
the critical exponents (/3, 7). The latter essentially are unchanged from the 
values found for the shortest range topology (square lattice with coordination 

number 4). 
Critical percolation phenomena are characteristic of two- and three- 

dimensional lattices. An interesting question in this context is that of per- 
colation in systems consisting of thin layers. Actually, thin-layer lattices 

provide an interesting intermediate case between two- and three-dimensional 
systems. Certain molecular aggregates in biological systems as well as some 
adsorbed layers and coatings formed by vapor deposition may provide 
suitable examples for percolation in thin layers. This problem has already 
been discussed for magnets by Binder, (7~ who also derived the critical 
exponents (A = v -1) related to the finite size scaling theory. ~8,9~ More work 
regarding the correlation length exponent v and finite-size scaling theory has 

been done very recently by Levinshtein et al. ~~ and by Sur et al. ( m  We give 
here our results, using simulations on larger lattices and a somewhat different 
method of data analysis. 

We also give some Monte Carlo numerical results on the critical con- 
centration and critical exponents/3 and 7 of simple two-dimensional lattices 
(square and triangular), together with some preliminary results on the ratio 

of "cluster mean sizes" above and below the critical concentration. These 
results are compared to literature values and discussed accordingly. For the 
sake of interested experimentalists, we give also some simple graphical 
presentations of the percolation probability and average cluster size. We also 
give here a brief summary of "exciton percolation" theory (~2~ and its relation 
to lattice percolation and to cluster models in magnetism. This gives some 
new insight into cluster generating functions, in terms of specially defined 
ternary ("polychromatic") systems. 

2. M E T H O D  OF  C O M P U T A T I O N  

A crystal is simulated for the site problem by having each site occupied 
with a probability C (or unoccupied with a probability 1 - C). Here C 
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denotes the concentration of  one component  in a binary random crystal. In 

the Monte Carlo simulation, sites are represented by vectors S. The occupa- 

tion of sites is determined by random numbers X~ generated in the range 

0 < X~ < 1. A site i is occupied if X~ ~< C. The site is not occupied if C > X~. 

The vector element S~ is set to - 1 if site i is occupied. Otherwise it is set to 0. 

The next step is to determine the cluster size distribution, i.e., the number of  

clusters of  a given size. The determination of the cluster size distribution is 

achieved by applying the CMLT,  <~ which assigns a set of  natural numbers 

{ml c~, m2e,.., mJ,. . . ,  rnt '~} (1) 

to label sites belonging to each cluster in the lattice, where ~ denotes the 

cluster in question and m~ ~ is the smallest number of  the set in Eq. (1) and 

is defined as the proper cluster label of  the ~ cluster. The labels of  Eq. (1) are 

interrelated by a set of  integers, 

{N(mS), N(m2"),..., N(m,") ..... N(m?),...} (2) 

of  which only ~V(mJ) is a positive number and denotes the c~ cluster size, i.e., 

the number of  sites belonging to the cluster. The labels m ?  are related to m~ ~ 

by 

m J  = - ~V( - N ( . . .  N (  - IV(mr 'O) . . . ) )  (3) 

Hence, the cluster size distribution can be determined from )V(rnsO after the 

simulated lattice is scanned and labeled. The critical percolation concentration 

Cc ~ is determined from the maximum of the reduced average cluster size I2v 

function <1> defined by 

/ 'v(C)  = imrn 2 G - rn~ax/  G 
\m=l 

(4) 

where m is the cluster size, mm~x is the size of  the largest cluster, i~ is the 

frequency of occurrence of a cluster of  size m, and G = C N  is the total 

number of  occupied sites in the simulated lattice. The estimated probability 

Pm of locating any cluster of  size m is 

Pm = mim/G (5) 

The probability that any given guest site is a member  of  the largest cluster is 

simply 
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The relation of the percolation probability/5| to P~ax is discussed in 
Ref. 1 and also in Section 3. We note that our above criterion for finding the 
critical concentration is an integral and basic part of the results described 
below 

3= THE REDUCED AVERAGE CLUSTER SIZE FUNCTION 

In Fig. 1, the second moment for the cluster size distribution 

m m a x  

I~ = ~ i,~m2/G (6) 
m = l  

is shown for a 200 x 200 square lattice. The function Iav rises asymptotically 
at the percolation thresheld Ccs. Although it is apparent from Fig. 1 that I~v 
does not provide an accurate measure for Cc s, it does indicate the percolation 

threshold region. We shall see in the following figures that I[v of Eq. (4) gives 
a sharper definition for Ccs. We note that Fig. 1 is mainly for illustration. 

In Fig. 2, I[v vs. guest concentration is plotted for four different 
topologies. The effect of removing the contribution of the largest cluster from 
the averaging summation [see Eq. (4)] is insignificant below C{, as can be 

seen by comparing the square lattice results in Fig. 2 with those in Fig. 1. 
At concentrations just below C{, there are several large clusters and the 

removal of the largest one does not significantly alter the I[v curve, compared 

2250 ~- 

1750~ 

1000 

500 

200x200 

/ 

I I I I J i  I ~ r / 
0.1 0.2 0:30.Z, 0.5 0.6 0.7 0.8 0.9 1.0 

CG 

Fig. 1. Average cluster size Iav vs. occupied 
site (guest) concentration C9 in a 200 • 200 
square lattice; see Eq. (6). Notice that the 
sharp rise of the curve roughly gives the 
percolation concentration Cc 8. 
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Fig. 2. The reduced average cluster size [Eq. (4)] vs. occupied site (guest) concentration 
for square, triangular, square (1, 2), and simple cubic lattices. The sharp maxima give the 
respective critical percolation concentrations C~ ~. The three two-dimensional topologies 
refer to a lattice of 200 x 200 sites, while the simple cubic lattice has 100 x 100 x 30 

sites (see Fig. 8). The peak heights are a result of statistical fluctuations. (See text .)  

to I~v. Only at the point where these large clusters coalesce into one maxi- 

cluster does the value of I~v drop precipitously, a) For any type of  topology 

we define Cc ~ to be at the occupation probability where the value of  I[v is at a 

maximum. (1) [The variation in the height of the maximum of I[v with different 

topologies (Fig. 2) is not significant, as it is a simulation artifact due to 

statistical fluctuations, i.e., it is due to the finite size effects of  the sample.] 

In Fig. 3 the function Pm~x(C) [see Eq. (5a)] is shown for four different 

topologies. Once the value of Cc s is known, it is possible to obtain the values 

of /5~(C)  from the Pm~x curves in Fig. 3. For C < Cc ~ we set/5~o(C) = 0 and 

for C > C~ ~ we set/5~(C) = P ~ .  Again, Fig. 3 is given mainly for illustra- 

tion purposes, and as a comparison for the layer and long-range percolation 

results below, since we give much more refined data in a future publication. 
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Fig. 3. The probability Pmax that an occupied site belongs to the largest cluster [see 
Eq. (5a)] as a function of the occupied site concentration for four topologies. The square 
points represent the square lattice, the triangles represent the triangular lattice, the 
diagonal crosses represent the square (1, 2), and the stars represent the simple cubic 

lattice. The two-dimensional lattices contain 200 • 200 sites and the cubic lattice 
contains lOO • 100 • 30 sites. 

4. S Q U A R E  LATTICE SITE PERCOLATION T H R E S H O L D  

In  order to justify the results discussed below, especially those concern- 

ing the critical exponents, we quote here our  current results for  the critical 

concentrat ion (site percolation threshold) Cc for the square lattice. Table I 

gives these results. A compar ison with literature data is given in Table II. 

5, CRIT ICAL E X P O N E N T S  FOR THE S Q U A R E  LATTICE 

A N D  " C L U S T E R  M E A N  SIZES'" 

The critical exponents/3, 7, and 7' have been o f  much interest in general (16) 

and in percolat ion theory in particular317,1a) We note that  one o f  the simplest 

tests o f  scaling theory (or renormalizat ion group theoryy  1~ is to check the 

equality 

7 = 7' (7) 
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Table I. Square Lattice Site Percolation Threshold 
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Number  of Cyclic boundary 

Size configurations conditions ~ C~ 

100 x 100 80 No 0.5905 • 0.002 ~ 

200 x 200 ~ 10 No 0.593 • 0.003 ~ 

400 x 400 57 No 0.5931 • 0.0006 b 

1000 x 1000 30 No 0.5931 • 0.0006 b 

4000 x 4000 17 No 0.5927 • 0.0003 b 

In a few calculations pe~'formed with cyclic boundary  conditions, the result appeared 

unchanged within the error limits. In the percolation model, as sites are not  correlated, 

the existence of surfaces does not  affect the site distribution. Cluster numbers  are 

marginally affected by the sample surfaces. This effect is roughly proportional to the 

fraction of the surface sites. In correlated systems such as the Ising model, the role of  

surfaces is much  more pronounced because of the site-site interact ions--see Stoll and 

Schneider.(47) 

b At 68% confidence. 

Estimated. 

where 

and 

We also define 

i ~ ( c )  = k l C  - C : l - ' ,  c < c :  

1 L ( C )  = k ' l C  - C : I - " ,  C > Co s 

P ~ ( C )  = k " [ C  - C~] e 

(8) 

(9) 

(10) 

Table II. Square Lattice Site Percolation Threshold-- (Li terature Data) a 

Number  of 

Size configuration CBC ~ Cc Method Ref. 

- -  0.59 • 0.1 

- -  0.593 • 0.002 

- -  0.591 • 0.001 

20 x 20 100) 
/ 

50 x 50 1 0 0 |  
/ 

100 x 100 25~ 

300 x 300 

1000 x 1000 

No 0.595 

For  further literature data see Refs. 38-44. 

b Cyclic boundary  conditions. 

Series Harris et  al. (I8) 

Series Sykes et  aL (~4) 

Cluster  sizes Stauffer (21) 

inter- 

polation 

Network Roussenq  et  aL (15) 

simulation 
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Fig. 4. Critical exponents/3, 7, and 7" for a square lattice of 400 x 400 sites. The value 

of C~ ' is obtained by first averaging the value I [ , (C)  for a sample of lattice configurations. 

The maximum of the I2v distribution is then taken to be the critical site percolation 

concentration. For the exponents 3 and y the chosen sample of configurations yielded 

Cc" = 0.5935, while those chosen for the determination of 7' yielded Cc ~ = 0.5952. 

We note that we have used the normalization is  -=- (1 - P~) - z I2v  for the region 

C~ > C0, where v' is the critical exponent. This is very similar to the function defined by 

Fisher and Essam (a4~ and by Sykes et al. (aS~ (However, the latter authors later 

switched (~~ to a function equivalent to our m I~.)  

where 

P=(C)  ~ / P ~ a x ( C ) ,  C > C~ ~ (11) 
ko, c e  c /  

Logarithmic plots for the relationships of  gqs. (8)-(10) are given in Fig. 4. 
The results are compared with literature results in Table III. 

We conclude from Fig. 4 that, within our uncertainty, 

7' ~ 7' (12) 

as expected from scaling theory. More refined values and tests for 7', 7",/3, 
and the above equality are in progress. 

The ratio of  the "cluster mean sizes" above and below Cc is given by the 
ratio of  the preexponential factors k/k', assuming 7' = 7". Our preliminary 
result for the square lattice is 

k/k' z 16(+83, - 9 )  
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Table Ii1, Critical Exponents ~, y, and y' for the Square Lattice Site Percola- 

tion Problem a 

Method fl 7 7" Ref. 

Monte Carlo b 0.19 + 0.05 2.09 _ 0.2 2.28 _+_ 0.3 c Our "preliminary" data 
Series 0.148 + 0.004 2.3 +__ 0.1 - -  Harris et  aL (~3~ 

0.138 + 0.007 2.43 _ 0.03 1.25 -1.75 ~ Sykes et  al. C2~ 

2.0 -2.1 a 
Monte Carlo 0.136 -0.15 2.3 _+ 0.1 Kirkpatrick (36~ 

For further literature data see Refs. 11, 31, 44-46. 
b Size: 400 x 400. 
c Using as definition L'v (see text). 
a Using as definition Is 

which, so far, is practically " c o n s i s t e n t "  with the two very conflicting 

li terature data  of  (2~ 2 and of  (2~ 100. Obviously,  the severe statistical scatter 

is a warning tha t  we should await  higher quality data. This is currently 

underway,  using lattices tha t  are two or more  orders of  magni tude  larger. 

We also notice tha t  while the scaling law 7 = 7' is widely accepted, it is not  so 

clear which is the best function for  deriving 7'. The  different possible defini- 

t ions (normalizat ions)  for  I[v (see capt ion to Fig. 4) have been pointed out  

independent ly by Sykes e t  al .  ~2~ and by Hoshen  e t  al .  (1"26~ This p rob lem 

requires fur ther  study. 

6. F R A C T I O N A L  D I M E N S I O N  P E R C O L A T I O N  A N D  

C O R R E L A T I O N  L E N G T H  E X P O N E N T  

Do percolat ion parameters  change f rom two- to three-dimensional  

lattices " g r a d u a l l y " ?  An answer to this question can be provided in the 

context  of  the " l aye r  c a k e "  problem,  i.e., an investigation of  " t h i n  c rys ta l s"  

made  of  n layers, where n ranges f rom 1 to L, L being the size of  the two- 

dimensional  lattice forming each layer. This p rob lem has been dealt  with 

previously by Binder, (7~ S u r e t  a l . ,  m ~  Levinshtein e t  a l . ,  (1~ as well as by us. (12~ 

The  practical  applications of  this investigation have ranged f rom magnets  to 

surface excitons. 

Figure 5 illustrates the appl icat ion of  our  method,  the use o f  I~v for  the 

determinat ion o f  the site percolat ion threshold (critical concentrat ion)  Cc as 

a function of  the number  of  square lattice layers. We notice that,  except for 

the top and bo t t om layers, each lattice site has a simple cubic coordinat ion  

number  of  " s i x . "  I t  appears  remarkable  to us tha t  within abou t  1~ (the 

precision of  Fig. 5) the Pm~x curve for such a 20-layer " c a k e "  (n = 20) is the 

same as that  for  a simple cubic lattice cube (n -- 100). Obviously,  the I[v 
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Fig. 5. The reduced average cluster size I~'v vs. the occupied site (guest) concentration 

Cg for a three-dimensional simple cubic lattice of 100 x 100 x n sites. The maxima in 

the plots give the percolation concentrations (Co s ) for various values of the third dimen- 

sion parameter n. 

peaks in Fig. 5 become sharper with increasing n, simply because of the 

concomitant increase in the total number of  sites n. 

The expected (7-11) power law for the effect of n on Cc is given by 

n = A I C c  '~ - C [ ~ [ - v  (13) 

where v should be the correlation length exponent. Figure 6 is based on our 

data for 400 x 400 layers (L = 400) with n o  periodic boundary conditions. 

We get the values v = 0.92 and A = 0.38 (correlation 0.990). I f  we exclude 

the n = 64 point (due to its lower statistical quality and closeness to the 

" n o t  quite infinite" value of n = 400), we get v = 0.98, A = 0.33 (correla- 

tion 0.995). Weighting even heavier the smaller lattices gave v = 1.04 (Fig. 6). 

Comparisons to previous work are given in Table IV. 

Table IV. Critical Exponent v (Three Dimensions) 
i 

Method Value Ref. 

Monte Carlo 

Conductivity (and scaling) 

Series expansion 

Monte Carlo (finite size scaling) 

Monte Carlo ("layer cake") 

0.9 + 0.05 

1 

0.82 _ 0.05 

0.8 • 0.1 
0.97 4- 0.11 

Levinshtein et aL ~~ 

Shu# 22) 
Dunn et aL (2s) 

Sur et aL (11) 

Present work 
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Fig. 6. Critical exponent v from the layer cake percolation. This is based on the assump- 
tion that Cc ~~176 is close to Cc | However, while for n - +  oo one has ICe" - Cc~~ 0, 
this is not correct for [Co n - C~~176 Therefore we did put maximum weight on points 
where n << 400, in addition to the obviously lower uncertainty for these points due to 
(a) the larger absolute value of [Co n - C~~176 and (b) the larger number of configurations 

used in our work for these points, due to reduced computational costs. Note also that 
when uncertainty limits are absent, they are about equal to or less than the size of the 
circle. They are significantly lower for n = 1, 2. 

T o  fu r t he r  test  t he  cons i s t ency  o f  o u r  resul ts  (Co ~, v), we  p lo t  a " f i n i t e  

size sca l ing  c u r v e "  in ana logy  to  Sur  et al. 11 W e  e m p h a s i z e  he re  t he  

f o l l o w i n g :  

1. T h e  f ini te  " s i z e "  o f  the  s ample  (Sur  et al.'s L )  is t he  n u m b e r  o f  

layers  n (each l ayer  be ing  o f  size 400 x 400). 

Fig. 7. Test for finite-size scaling for 
P,(C). Here C~ = 0.3135, fl = 0.35, and 
v = 0.97 (see text). The codes for n = 32, 
64, 128, and 400 are given in the figure. 
Note that here we "sca le"  only one 
dimension (the layer number n), in con- 
trast to all three dimensions (L) in the 

similar plot of Sur et al. (11) Only one 
4003 configuration was used. We thank 

one referee for suggesting this plot. 

o 

OA 

0 

o 

| 

400 x 400 x n 

o n =400 
�9 n-128 
e n=64 
z~ n=32 

o 

I I ~  I o I 
2 4 6 

~"Vlic-cc)/c I 
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2. We have de te rmined  our  cri t ical  concent ra t ion  Cc" a pr ior i  for  each 

layer  pa r ame te r  n via our  me thod  o f  f inding the I~v peak.  

3. We  have not  used subjective techniques to minimize  the  scat ter  o f  

the poin ts  f rom an  " i m a g i n a r y "  scaling funct ion X (X1 o f  Sur 

et al.). ~ 

4. We have used the value o f  fl = 0.35 taken  f rom Shur. (22~ 

5. We have used our  values o f  Cc --- 0.3135 and v = 0.97. 

This scaling p lo t  is given in Fig.  7. We  note  that ,  using the values/3 = 0.41 

and  C~ = 0.3115 f rom Sur et al. ( ~  we got  a significantly higher  scat ter  o f  

points  ("  as discerned by  the eye") .  We are not  quite sure wha t  the significance 

x 
cI2 
~K 

[3_ 

r 0,20 0,30 0.~0 0.59 0,60 0.70 0.80 
C [0CCUP]EO) 

Fig. 8. The probability P=~= that an occupied site belongs to the largest cluster, as a 

function of the occupied site concentration for a three-dimensional simple cubic lattice 

containing 100 x 100 • n sites. The layer index n is varied from 1 (simple two- 
dimensional square lattice), as represented by the asterisks, to 30, represented by the 

five-pointed stars. (Larger n values give identical curves, within the precision of this 
figure.) Note that as the thickness of the lattice increases, the P~ax curves shift from right 
to left on the concentration axis. 
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of the above consistency test is and to what extent it really discriminates 

between the results of Shur, (22) Sur et  al., (11~ and ours. 

For future reference and potential use by experimentalists we give here 

some rough curves of the maxicluster probability P ~ ( C )  with the number 

of  layers n as a parameter (Fig. 8). We also quote here the value of  C~ ~ = 

0.310 + 0.004, derived from series expansions of the mean cluster size. (24~ 

7. L O N G - R A N G E  I N T E R A C T I O N S  A N D  

C O N T I N U O U S  P E R C O L A T I O N  

In order to look at percolation due to long-range interactions, some 

slight modifications of  the previous notations are necessary. We can define an 

integer quantity Sm~ as the maximum number of successive lattice constants 

over which an interaction between two sites can occur. In a square lattice, 

the values of  S ~  map out diamond-shaped regions of  interaction, denoting 

the number of  neighbors of a given site. Figure 9 shows graphically what this 

region of  interaction looks like. The number of sites in this interaction zone 

is given by 

M = ( S ~  + 1) 2 + S~2  (14) 

The number of neighbors for a given site is then M - 1. Thus, the trivial case 

of the square lattice with nearest neighbor interactions only, with S ~ x  = 1, 

has four interacting sites. The CMLT is easily adapted to search for these 

longer range interactions and thus I" v values can be calculated for various 

guest concentrations, yielding values of C~ s for each given Sm~x. The results 

Fig. 9. A representative portion of a 
two-dimensional square lattice, where the 
maximum number of successive nearest 
neighbor bonds over which an interac- 
tion between two sites can occur, Sm~x, 
is equal to six. The number of sites in- 
cluded in the interaction region is equal 
to M = S~x + (Sma~ + 1) 2 �9 
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Fig. 10. Long-range percolation for a 
square lattice. Smax is the maximum num- 
ber of successive nearest neighbor bonds 
over which an interaction between two 
sites can occur (see Fig. 9). I~v is the re- 
duced average cluster size. Cg is the 
fraction of occupied sites (guests). The 
discontinuity in the l~v vs. the molar guest 
concentration Cg curve gives the critical 
percolation concentration, for a lattice of 
500 x 500 sites. The differences in the 
ordinate value of I~v for different Sm~x are 
not significant, due to statistical fluctua- 
tions. Results for Smax > 7 are not shown 
here. 

o f  these simulations are shown in Figs. 10 and 11 for  values o f  Sma~ up to 7 

and 8, respectively. We have calculated C / f o r  values o f  Smax up to 12, where 

313 sites are included in the zone o f  interaction. In  order  to compare  our  

results for  long-range interactions with the results given by Pike and Seager (5) 

for the continuous percolation problem, we shall assume that  the simulated 

lattice, which contains N sites, occupies a unit  area. Thus, the site density for 

the concentrat ion C is G = N C .  Now we shall define a radius o f  interaction 

0 given by 

p = ( M / r r N )  1'2 (15) 

where P is given in terms of  the number  o f  neighbor sites (M - 1) as defined 

in Eq. (14). Following Pike and Seager, we shall define a parameter  r, 

corresponding to an average distance between occupied sites: 

r .  = (TrNC)  -1/2 (16) 

N o w  p can be rewritten as a dimensionless quanti ty R, 

R = p/2r~ = ( M C ) ~ ' 2 / 2  (17) 
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t ra t ion  C~ ~ vs. the range of  ex tended  in- 

teract ion S ~  (see Fig. 10). The size of  

the lattice was 500 • 500 sites. (For  

S ~ x  = 9 and 10, see Fig. 12.) 
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and a critical radius Rc can be defined in terms of  Cc ~. Hence, the following 

relationship is obtained from Eq. (17): 

M ~/2 = 2Re(Cos) -~/2 ( 1 8 )  

In Fig. 12, M 1/2 is plotted vs. (4/Cc~)I/L This curve exhibits remarkable 

linearity for Sm~ > 2, confirming previous estimates r on the value of  Rr 

which we find to be ~ 1.0. The lack of dependence of the continuous percola- 

tion parameter R~ on the interaction distance is a strong indication that the 

particular lattice structure has virtually no effect on these longer range values 

of CcL We thus get, for two-dimensional square lattices, 

Cc ~ = 4 R  2 M  -1 

C~(S~,~,)  "~ 4 M  -~ = 4 / [ S ~ , ,  + ( S ~ x  + 1) 2] iff 

(19a) 

S ~ x  > 2 

(19b) 

A similar derivation is easily carried through for the three-dimensional 

case. The result is 

M 1/3 = 2Rc(CJ) -1'3 (20) 

Here one can plot M v3 vs. (8/Cos) ~/3 and find the R~ parameter. According to 

Pike and Seager, ~5~ we expect Rc ~ 0.7 for the three-dimensional case. (We 



234 J. Hoshen, R. Kopelman, and E, M .  Monberg 

12 

~ -  Smo x 

0 

3 

4 

- - 0  
I I I I I I I 

4 ~, 12 

Fig. 12. A plot of M 112 [given by Eq. (14) 1 vs. (4/Cc~) 1t2 [see Eq. (18)]. 

plan to check this out.) We also note that for a simple cubic lattice we get 

(analogously to Eq. (14)): 

M = �89 + 1)(2S~x + 2 S ~  + 3) (21) 

This gives, for a simple cubic lattice, 

C~s(S~)  = 8R~3M -~ = 24Rca/[(2Sm~ + 1 ) ( 2 S ~  + 2Sm~ + 3)] 

(22) 

8 .  L O N G - R A N G E  P E R C O L A T I O N  A N D  

C R I T I C A L  E X P O N E N T S  

It is usually assumed (16) that classical "mean  field" theories are valid 

provided that the interaction range is large, We have thus been encouraged 

by one referee to list here our results for large Sm~x. We give some pre- 

liminary results in Fig. 13. The important results are: 

1. The exponent 7' is the same, within the statistical uncertainties, for all 

Sm~x values 2-7. The average result (2.1 _+ 0.3) is practically the same as our 

result given above for Sm~ = 1, i.e., the simple square lattice case (coordin- 

ation number 4), where 7 = 2.1. 

2o The same is true for/3, even though here, for lack of  enough data 

points, we had to scramble the results for all values of  2 ~< S ~ x  ~< 7. This 

should not be bad, assuming that the individual slopes are parallel. Consulting 

the data points of Fig. 13, our argument seems convincing. Here we note that 
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Fig. 13. Critical exponents  ~, and/3  for long-range percola t ion  in two dimensions.  The 

paramete r  n is actually Smax (see text), not to be confused with the  number  of  layers n 

used before.  The overall  values ~, = 2.1 and /3 = 0.14 are prel iminary (see text). The 

lattice size is 500 x 500 (and the  typical  n u m b e r  of  configurat ions  is three). Here  

log = log10. 

the slope 13 = 0.14 is actually in excellent agreement with the values for short 

range two-dimensional lattices (Table III). 

3. We have a very preliminary value for 7', also derived by "scrambling" 

the results for 2 ~< S ~ x  <~ 7. While the scatter is large, we give a tentative 

value of 2.15 + 0.5. 
4. The above results, assuming scaling, (17~ give other exponents, like 

= 1 + 7'/13 = 16.(25) 

5. Our results for 7', 7", and/3 are ex tremely  far from the classical (1~,17) 

limiting values of unity. On the other hand, they are practically indistinguish- 

able from the simple square lattice results. It is not clear to us whether the 

observation of a crossover to mean field exponents requires just an order of 

magnitude ~(or two) larger interaction distance C27) or also a nonabrupt 

interaction cutoff. (2m 
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9. T E R N A R Y  LATTICES A N D  EXCITON P E R C O L A T I O N  

The problem of  exciton supertransfer in a binary lattice that also contains 
a small fraction of  exciton sensor has been described by us previouslyJ 12~ 

The formalism has been worked out specifically for Frenkel excitons, i.e., 

electronic, vibrational, or vibronic excitations of molecular "paren tage"  in 

molecular solids. The exciton is usually assumed to be localized at one 

"gues t"  site at a time and to move (coherently, stochastically, or "in-  

betweenly") from one guest site to the next. However, the exciton is excluded 

from visiting " h o s t "  sites due to energy considerations. Thus, the "gues t"  

site can be considered as an exciton carrier and the " h o s t "  site as an exciton 

barrier. However, in addition, a small fraction of the guest sites are distinct 

and designated as sensors. When the exciton visits such a sensor ("super- 

t rap")  site it may be captured (" t rapped")  irreversibly. This act is also called 

"registration," as the captured exciton decays with a well-known probability 

and this decay is monitored experimentally (i.e., via the radiative decay). 

Usually the "hos t ,"  the ordinary "guest ,"  and the "sensor"  guest sites are 

occupied by molecules that differ from each other only by isotopic or minor 

chemical substitution, and thus the lattice topology is assumed to be un- 

changed from that of the pure "gUest" (or "hos t " )  crystal under the same 

thermodynamic conditions. The supertransfer limit is that limit where the 

exciton lifetime is long enough to permit registration provided only that 

there exists a topological "guest bridge" connecting the original site of  the 

exciton with at least one sensor site. Alternatively, the "bridge topology" 

may be defined so as to guarantee sufficient registration time. 

The probability P of exciton transfer and registration at the sensor is (12~ 

P = ~ [1 - (1 - m / G ) Z ] i m m / G  = 1 - ~ (1 - m / G ) Z i m m / G  (23) 
m m 

iff 1 <<Z<<G 

where m is the size of a cluster, im is the frequency of  the cluster size m, G is 

the number of guests, and Z is the number of sensors (assuming a trapping 

efficiency of unity). 

In the thermodynamic limit of large ("infinite") samples, the f i n i t e  

clusters have a limited size m, whereas the numbers G and Z (and the cluster 

number ira) approach infinity. Then 

)~m - (1 - m / G )  z = e - m z / e  = e - m % / %  (24) 

or, for the finite clusters, 

= e - z / a  = e - C , l %  ~< 1 (25) 

and Cg and Cs are, respectively, the guest (total guest) and sensor concentra- 
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tions (mole fractions). Noting that A m -~ 0 for the infinite cluster, we can infer 

that A is given by Eq. (25) in the following expression derived from Eq. (23) : 

P = P(C,  A) = 1 - G -1 ~. immA m (26) 
m 

In this way the parameter A, introduced mathematically by Gaunt and 

Sykes, ~25~ is identified with an experimental quantity. 2 We also note that the 

ratio Z I G  = C~/Co corresponds to a "no t iona l"  or effective field, i.e., the 

magnetic field in other cluster models (1~ (we are indebted to one referee for 

the above points). 

The function P = P ( C , ,  A) has been shown (25~ to exhibit a dominant 

critical point singularity at the critical concentration Co: 

Pc(A) = P(Cc, A) oc E(1 - A) 1/~ (26a) 

where the amplitude E has been estimated ~25~ to be about 1.1 and 3 is about 

16 (see above) or ~26~ 18. Figures 14 and 15 demonstrate the behavior of 

P(Co, A) for various values of the parameter Cs, which in turn specifies A. 

Using Eq. (26a), with Co = 0.593 and 3 = 18, we calculate Pc(A) to be 

0.66, 0.71, 0.73, 0.78, and 0.82 for the Cs values of 0.0002, 0.0006, 0.001,0.004, 

and 0.008, respectively. These calculated values are consistent with the values 

of Pc in Figs. 14 and 15, considering the large uncertainties involved (both 

in the Ref. 25 parameters and in these crude simulations). 

Using the CMLT, we can obtain the values of  m and im for a given 

binary lattice and then calculate the value of P as a function of Cg for different 

sensor concentrations. If  we consider only the regions where Cg >> Cfl or 

Co << Cc ~, where there are not many large clusters, then we can simplify 

Eq. (23) to ~12~ [compare also Eqs. (24), (25)] 

P = Poo + ( Z / G  2) ~ iram 2 (27) 
m ~ m '  

Using the definition of the average cluster size [Eq. (6)], we arrive at the simple 

expression ~2o~ 

P = P~o + Z G - ~ I L  (28) 

these percolation probabilities are given in Fig. 14 for four different 

sensor concentrations. The effect of  the sensor concentration on the percola- 

tion probability is the largest for guest concentrations just below percolation 

but is negligible above the critical percolation concentration, in the domain 

of supertransfer. ~12~ As the sensor concentration is decreased, the probability 

of an exciton registering at a scarce sensor site approaches that of  _P=, as 

only in an "infinite" cluster is there an appreciable probability for a cluster 

to contain a sensor. Equation (23) is a good approximation only when Z << G. 

2 Note that, below percolation, aP(Cg, S)/~Sts~o = l=v(Cg), where S = Z/G, while 
above percolation this derivative is equal to I'~.,(C). 
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Fig. 14. Exciton supertransfer probabili ty P vs. guest concentration Cg (mole fraction) 

with sensor concentration C~ as parameter  (all concentrations in mole percent). These 

150 • 150 square lattice curves are calculated from Eq. (23). The P= curve is calculated 

from Eq. (5a). Note that  a random number  generation subroutine was used to form a 

random binary system, independent  of the value of Cs (=Z/N).  

Thus, for the high sensor concentration, we get abnormally high values of P 

for Cg << C/in Fig. 14. 
An alternative and more empirical method of approaching this problem 

is illustrated in Fig. 15. In addition to the binary lattice used in the CMLT, 

we label Z = C~N sites as sensors and then calculate P~, the fraction of  the 

total guest that is connected via a succession of nearest neighbor guest inter- 

actions to a sensor. With the assumption of supertransfer, we would expect 

that, for low sensor concentrations, the two curves Pu and P should be equiva- 

lent. The function Py does not run into problems at high C~, unlike the 

function P, because there are no approximations involved in its evaluation2 

3 We note that  we give here a simple topological interpretation to the generating func- 

t ion ~25~ A and the probabili ty ~25) P(C, ,~). The latter is the probabili ty that  any cluster 

contains a "sensor , "  where this sensor concentration (in the "gues t " )  is S = - l o g  ,~. 
We have recently used an even simpler approach, where A = 1 - S is simply the 
"non- senso r "  site concentration. This gives similar results, but E--+ 1 as A--+0 

(i.e., S--+ l).  
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Fig. 15. A computer simulation of the exciton supertransfer probability Pu vs. guest 
concentration Cg (mole fraction) with sensor concentration C~ (mole percent) as a param- 
eter. The 150 • 150 square lattice is generated by the computer, with the help of a random 
number generating subroutine, as a ternary system, including C~ mole percent of a 
supertrap (sensor). Pv is the fraction of total guest that is connected via a succession of 
nearest neighbor guest interactions to a sensor. 

Both above approaches are valid only in the exciton supertransfer limit, (12~ 

i.e., where no dynamic (time) constraints are involved. This is often a reason- 

able assumption for real systems. (I2~ It is also useful as a check on time- 

dependent calculations, (z2~ providing a convenient limiting behavior. [On 

the other hand, this limit is correct "by  definition" if the cluster connectivity 

is defined by the available time (see above).] 

We briefly illustrate here an application of Eq. (18) to the Frenkel 

exciton superexchange problem. (3~ First, we solve the quadratic equation 

(19b) and get, for the square lattice case, 

n-~ S ~ x  ~. [ - 1  + ( - 1  + 8/Cc)1'2]/2 (29) 

Now, the exciton superexchange interaction in a typical isotopically doped 

crystal is (~2~ 

Jo,,~ = F,~fl'~/A'~-x (30) 
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where F, is the number of paths, involving n lattice constants, between guest 
site 0 and a guest site being n lattice constants away./~ is the exciton exchange 
interaction (for one lattice constant) and A is the " trap depth" (guest-host 
energy separation in the ideal mixed crystal). (29~ In an experimental situation 
where time (or other considerations) (3~ determines the smallest effective value 
o f J  (=]o,n), it does determine a cutoff value for n, designated as ft. One can 
thus easily connect J to a critical percolation concentration Co, by combining 
Eqs. (29) and (30). This relationship is important for anisotropic crystals, 
where the exciton exchange is essentially two-dimensional/a,29~ The extension 

to isotropic (i.e., simple cubic) cases is straightforward. 

10. D I S C U S S I O N  

In recent years more information has become available on the critical 
behavior of percolating systems. Although exact methods are not available 
for the determination of the critical percolation parameters for real lattices, 
some dimensional invariants have been determined. These include the above 
discussed critical radius (5~ and the  critical volume (3~ for continuous systems, 
as well as the exponential scaling factors discussed above. 

An interesting problem is to determine the change of the universal 
quantities (al~ upon changing the dimensionality of lattices, i.e., by observing 

the change in the universal quantities as the number of two-dimensional 
tayers increases. It is also possible to proceed continuously from one lattice 
topology to another by assigning bond probabilities to some nearest neighbor 
bonds. Thus, if the two bonds perpendicular to a crystal plane in a simple 
cubic lattice were assigned a bond probability p, where 0 <~ p ~< I, we would 
have a continuous transition from a cubic three-dimensional lattice, where 
p = 1, to a planar square lattice, where p = 0. In this case we would be 
dealing with a generalized site-bond percolation problem. In a future paper (3a~ 
(III), we shall be discussing algorithms on percolation and cluster size 
distribution for the generalized site-bond problem. Finally, we would like to 

emphasize the limited relationship between our ternary system functions and 
the recently discussed "polychromatic" percolation. (aT~ 
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