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Abstract

Let each point of a homogeneous Poisson process in R
d independently

be equipped with a random number of stubs (half-edges) according to a
given probability distribution µ on the positive integers. We consider
translation-invariant schemes for perfectly matching the stubs to obtain
a simple graph with degree distribution µ. Leaving aside degenerate
cases, we prove that for any µ there exist schemes that give only finite
components as well as schemes that give infinite components. For a
particular matching scheme that is a natural extension of Gale-Shapley
stable marriage, we give sufficient conditions on µ for the absence and
presence of infinite components.

1 Introduction

Let P be a homogeneous Poisson process with intensity 1 on R
d. Furthermore,

let µ be a probability measure on the strictly positive integers. We shall study
translation-invariant simple random graphs whose vertices are the points of P
and where the degrees of the vertices are i.i.d. with law µ. Deijfen [7] studied
moment properties achievable for the edge lengths in such graphs. Here, we
shall instead be interested in the percolation-theoretic question of whether the
graph contains a component with infinitely many vertices.

We next formally describe the objects that we will work with. For any
random point measure Λ we write [Λ] := {x ∈ R

d : Λ({x}) > 0} for its
support, or point-set. Let ξ be a random integer-valued measure on R

d with
the same support as P, and which, conditional on P, assigns i.i.d. values with
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law µ to the elements of [P]. The pair (P, ξ) is a marked point process with
positive integer-valued marks. For x ∈ [P] we write Dx for ξ({x}), which we
interpret as the number of stubs at vertex x.

A matching scheme for a marked process (P, ξ) is a point process M
on (Rd)2 with the property that almost surely for every pair (x, y) ∈ [M] we
have x, y ∈ [P], and such that in the graph G = G(P,M) with vertex set [P]
and edge set [M], each vertex x has degree Dx. The matching schemes under
consideration will always be simple, meaning that G has no self-loops and
no multiple edges, and translation-invariant, meaning that M is invariant
in law under the action of all translations of R

d. We say that a translation-
invariant matching is a factor if it is a deterministic function of the Poisson
process P and the mark process ξ, that is, if it does not involve any additional
randomness. We write P and E for probability and expectation on the prob-
ability space supporting the random triplet (P, ξ,M). For later purposes, we
note that the notion of a matching scheme generalizes from the Poisson case
to general simple point processes.

Let (P∗, ξ∗,M∗) be the Palm version of (P, ξ,M) with respect to P, and
write P

∗ and E
∗ for the associated probability law and expectation operator.

Informally speaking, P
∗ describes the conditional law of (P, ξ,M) given that

there is a point at the origin, with the mark process and the matching scheme
taken as stationary background; see [16, Chapter 11] for more details. Note

that since P is a Possion process, we have [P∗]
d
= [P] ∪ {0}. Let C denote

the volume of the component of the origin vertex for P ∗, that is, C is the
number of vertices that can be reached by a path in G(P ∗,M∗) from the
origin. Our first result states that, excluding trivial cases, on one hand it is
always possible to obtain configurations that contain only finite components
in a translation-invariant way, while on the other hand infinite components
can always be achieved. Furthermore, a connected graph is possible if and
only if the expected degree is at least 2.

Theorem 1.1. Let P be a Poisson process of intensity 1 in R
d, for any d ≥ 1,

and let D be a random variable with law µ.

(a) For any degree distribution µ, there is a simple translation-invariant
factor matching scheme such that P

∗(C < ∞) = 1.

(b) If P(D ≥ 2) > 0, then there is a simple translation-invariant factor
matching scheme such that G has exactly one infinite component a.s.,
and furthermore P

∗(C = ∞ | D0 ≥ 2) = 1.

(c) The following are equivalent.

(i) E[D] ≥ 2.

(ii) There exists a simple translation-invariant matching scheme for
which the graph G is a.s. connected.

(iii) There exists a simple factor matching scheme for which the graph
G is a.s. connected.
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The implication (ii)⇒(i) of (c) is analogous to various results for percolation
on lattices to the extent that the expected degree of vertices in infinite clusters
must be at least 2; see, e.g. [11, Theorem 2] and [1, Theorem 6.1].

We move on to consider a particular natural type of matching scheme
which in the special case where µ({1}) = 1 (i.e., deterministically one stub
per vertex) is known as the stable matching. See, e.g., [14]. The natural
extension to general degrees, called the stable multi-matching, is defined
as follows; here and throughout, distance |x − y| and edge length are defined
in terms of Euclidean metric on R

d.

Definition 1.1. A matching scheme M is said to be a stable multi-

matching if a.s., for any two distinct points x, y ∈ [P], either they are linked
by an edge or at least one of x and y has no incident edges longer than |x−y|.

We remark that the concept of a stable multi-matching can be defined anal-
ogously for general point sets. Here however we will use the term restricted
to the specific situation described above. We will see in Proposition 2.2 in
Section 2 below that, for any dimension d ≥ 1 and any µ, there is then a
unique stable multi-matching. Our main result on the stable multi-matching
is the following, giving sufficient conditions for existence and non-existence of
an infinite cluster. It may be noted that the gap between the conditions in (a)
and (b) is quite large; see Section 6 for some discussion on this point.

Theorem 1.2. Consider the stable multi-matching.

(a) For any d ≥ 2, there exists a k = k(d) such that if P(D ≥ k) = 1, then
P
∗(C = ∞) > 0.

(b) For any d ≥ 1 we have that if P(D ≤ 2) = 1 and P(D = 1) > 0, then
P
∗(C = ∞) = 0.

The rest of this paper is organized as follows. In Section 2 we offer some further
background on the model considered here. In Section 3 we prove Theorem 1.1,
while in Sections 4 and 5 we prove parts (a) and (b), respectively, of Theorem
1.2. Finally, in Section 6 we briefly mention some open problems and scope
for further work.

2 Background and preliminaries

2.1 Random graph models with i.i.d. degrees

Random graphs with prescribed degree distribution have been extensively
studied in non-spatial settings; see e.g. [2], [3], [4], [5], [19] and [20]. Dei-
jfen and Meester [9] studied the problem of constructing translation-invariant
graphs with Z as vertex set and i.i.d. degrees assigned to the vertices. They
focussed on the question of what moment properties on edge lengths are achiev-
able. Deijfen and Jonasson [8] obtained further results in this direction, which
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(a) P(D = 1) = 1− P(D = 2) = 0.05.

(b) P(D = 2) = 1

Figure 1: Stable multi-matchings on the torus, with given degree distributions.
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(a) P(D = 3) = 1− P(D = 2) = 0.05.

(b) P(D = 3) = 1

Figure 2: Stable multi-matchings on the torus, with given degree distributions.
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Jonasson [15] extended to more general deterministic lattices. Finally Deijfen
[7] considered the same problem for the Poisson process P on R

d, which is the
setting we are concerned with here.

2.2 Stable matchings and stable multi-matchings

The concept of stable matchings goes back to Gale and Shapely [10], and
has been extensively studied ever since. Holroyd and Peres [14] considered
the case of matching Poisson points in R

d, while Holroyd et al. [13] went on
to consider bipartite matching of two independent Poisson processes. These
last two references provide constructions that will be useful to us in later
sections. We isolate the relevant findings in the following result concerning the
existence of matchings schemes with constant degree 1 in translation-invariant
point processes. The intensity of a translation-invariant point process is the
expected number of points in a fixed set of unit volume. A set U ⊂ R

d is
said to be non-equidistant if there are no distinct points x, y, u, v ∈ U with
|x− y| = |u− v| or |x− y| = |y − v|, while a descending chain is an infinite
sequence {xi} ⊂ U such that |xi − xi−1| is strictly decreasing.

Proposition 2.1 (Existence of matchings).

(a) Let R be translation-invariant point processes on R
d with finite inten-

sity, and assume that a.s. [R] is non-equidistant and has no descending
chains. Then a factor matching scheme for R with constant degree 1
exists.

(b) Let R and S be point processes on R
d, jointly ergodic under translations,

and with equal finite intensities. Assume that [R] ∪ [S] is almost surely
non-equidistant and has no descending chain. Then there exists a factor
matching scheme with constant degree 1 for [R]∪ [S], having the property
that every point in [R] is linked to a point in [S] and vice versa.

Proof. As an example that proves (a), we can take the stable matching, whose
existence and uniqueness is established in [14, pp. 10-11]. For (b) we can take
the stable bipartite matching of R and S (i.e. the stable matching where two
points that are either both in R or both in S are postulated to have distance
∞, while the distance between other pairs of points is the usual Euclidean one),
whose existence and uniqueness is established in of [13, Proposition 9].

We remark at this point that the Poisson process P satisfies the assump-
tions of Proposition 2.1 (a), because it satisfies the no descending chains prop-
erty as first noted in [12]; see also [6].

Moving on to stable multi-matchings, consider the following procedure for
matching the stubs of (P, ξ). In a set of points S ⊂ R

d, call a distinct pair
x, y ∈ S mutually closest if x is the closest point to y in S \ {y}, and
vice-versa.
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Step 1. Consider the set [P] of all points. An edge is created between each
mutually closest pair in this set, and one stub is removed from each of
these points.

Step 2. Consider the set of all points that still have at least one stub after
step 1. Two such points are called compatible if no edge was created
between them in step 1. An edge is created between each compatible
mutually closest pair in this set, and one stub is removed from each of
these points.

...

Step n. Consider the set of all points that still have at least one stub. Two
such points are called compatible if no edge has been created between
them. An edge is created between each compatible mutually closest pair
in this set, and one stub is removed from each of these points.

...

It is immediate that this procedure will not produce self-loops or multiple
edges, and the resulting process is clearly translation-invariant. We will show
that a.s. all stubs are eventually matched, and moreover that the resulting
graph is the unique stable multi-matching of (P, ξ).

Proposition 2.2. Let (P, ξ) be a marked Poisson process as before. Almost
surely, the iterative multi-matching procedure described above exhausts the set
of stubs, and the limiting graph (after an infinite number of iterations) is a
stable multi-matching. No other stable multi-matching of (P, ξ) exists.

Proof. For the case where µ({1}) = 1 this is an application the result from
[14] mentioned in the proof of Proposition 2.1 (a). The general case is a
straightforward adaptation of their argument, as follows.

Let P ′ be the process of points with at least one unmatched stub on them
after the above matching procedure is completed. Then P ′ is an ergodic point
process and hence has either a.s. infinitely many points or a.s. no points. To
rule out the former case, call two points in [P ′] compatible if they do not
have an edge between them in the configuration obtained from the matching
procedure. Then create a directed graph G′ with [P ′] as vertex set by drawing
a directed edge from each point to its nearest compatible point (which exists
because the initial numbers of stubs were finite). Some thought reveals that G′

cannot contain cycles of length more than two, and that each finite component
must contain precisely one cycle of length two. However, a cycle of length two
is also impossible, since it corresponds to two mutually closest points with no
edge between them and an unmatched stub at each point, and between such
points an edge would indeed have been created at some stage in the matching
procedure. Hence G′ has no finite components, and no cycles. This implies
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that if [P ′] is non-empty, then following the outgoing edges starting at any
x ∈ [P ′] yields a descending chain. Since descending chains do not exist P
(and hence not in P ′), we conclude that [P ′] is a.s. empty, as desired.

That the resulting multi-matching is stable follows from the definition: an
unstable pair of points would have had an edge created between them at some
stage of the matching procedure. That it is the unique matching with this
property follows by induction over the stages in the algorithm to show that
each edge that is present in the resulting configuration must be present in any
stable matching of the stubs.

Remark 2.1. Note that the given procedure works and proves Proposition
2.2 in the greater generality where the Poisson process P is replaced by any
point process satisfying the requirements of Proposition 2.1.

Remark 2.2. We will later want to apply the given procedure in situations
where some pairs of vertices already have an edge between them and additional
connections between such vertices are prohibited. Provided the existing edges
form a translation-invariant process, the proof of Proposition 2.2 shows that
the process still exhausts all remaining stubs, and results in a translation-
invariant process.

2.3 Mass transport

The so-called mass transport method in percolation theory was originally de-
veloped for the setting of nonamenable lattice (see [1] for background) but
has turned out to be a convenient tool also for the more familiar setting of
processes living on Z

d or R
d. Here we formulate a special case adapted to the

particular needs of the present paper. We define a mass transport to be a
random measure T on (Rd)2 that is invariant in law under translations of R

d,

that is, T (A + x,B + x)
d
= T (A,B) for all Borel A,B ⊆ R

d and x ∈ R
d, where

we write T (A,B) := T (A × B). We interpret T (A,B) as the amount of mass
transported from A to B. Let Q denote the unit cube [0, 1)d.

Lemma 2.1 (Mass Transport Principle). Let T be a mass transport. Then

E T (Q, Rd) = E T (Rd, Q) .

Proof.

E T (Q, Rd) =
∑

z∈Zd

E T (Q,Q + z) =
∑

z∈Zd

E T (Q − z,Q) = E T (Rd, Q) .

3 Anything is possible

The task in this section is to prove Theorem 1.1, and we begin with part (a).
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Proof of Theorem 1.1 (a). We need to describe a factor matching scheme that
gives only finite components. To this end, let Pn denote the process of points
x ∈ [P] with Dx = n (recall that Dx denotes the number of stubs attached to
x). We will partition [Pn] into groups of size n + 1. The configuration is then
taken to consist of complete graphs on each of these groups.

Take n such that Pn is non-empty. To partition [Pn], we assign each
point in [Pn] a type i ∈ {1, . . . , n + 1} as follows. Let R∗ be the distance
from the origin to the closest other point in the Palm version of Pn and let
0 = r0, r1, . . . , rn, rn+1 = ∞ be such that

P
∗(ri−1 < R∗ ≤ ri) =

1

n + 1
, i = 1, . . . , n + 1. (1)

For x ∈ [Pn], let Rx denote the distance to the nearest other point in [Pn].
We assign x ∈ [Pn] type i if ri−1 < Rx ≤ ri, and let P i

n be the process of
points of Pn of type i. Note that this assignment involves no randomness
beyond the Poisson process itself, and that for each given n, the processes
P1

n, . . . ,Pn+1
n have equal intensities and are jointly ergodic under translations.

By Proposition 2.1 (b), this means that for each i = 1, . . . , n we can find a
matching scheme that matches each type i point to a unique type i + 1 point
and vice versa. The components of the graph obtained by taking the union of
these matchings partition [Pn] into groups of size n + 1 with one point of each
type in each group.

For the proofs of parts (b) and (c) of Theorem 1.1 the following lemma
will be useful.

Lemma 3.1. For a Poisson process with exactly 2 stubs on each point, there
exists a factor matching scheme in which G has a single component consisting
of a doubly infinite path.

Proof. This is contained in the proof of [14, Theorem 1]. For expository pur-
poses, let us nevertheless say a few words about how it is proved. The main
step is to construct, in a translation-invariant way, a one-ended tree whose
vertex set is [P]. Once that is done, the single doubly infinite path is easily
constructed from the tree by first ordering the children of each vertex ac-
cording to distance from the parent, then ordering all vertices according to
depth-first search, and finally linking each pair vertices that fall next to each
other in this ordering by an edge.

Remark 3.1. If we relax the requirement in Lemma 3.1 to ask for a union of
doubly infinite paths rather than a single infinite path (this will be enough for
our proof of Theorem 1.1 (b) but not for the proof of Theorem 1.1 (c)), then
the tree construction of [14] can be replaced by the following construction:
Define the cone V = {y ∈ R

d : y1 ≥ |(y2, . . . , yd)|}, where y = (y1, . . . , yd),
and, for x ∈ [P], put a directed edge to the (almost surely unique) point in
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(x+V )∩[P] whose first coordinate is minimal among all points in (x+V )∩[P].
The resulting graph is clearly a forest and it is shown in [14, pp. 10-11] that
the trees are indeed one-ended. Directed infinite paths can then be created
from each tree as in the proof of Lemma 3.1.

Proof of Theorem 1.1 (b). It is sufficient to provide a factor matching scheme
where all vertices of degree at least 2 belong to a single infinite component.

To match the stubs in the Poisson configuration in such a way that an
infinite component is obtained we proceed as follows. First consider all vertices
of degree at least 2 and create in a translation-invariant and deterministic
way a directed infinite path that contains all of them; this is possible by
Lemma 3.1 (or, if we opt for a union of infinite paths which is sufficient for
the existence but not for the uniqueness of the infinite component, by the
more elementary result in Remark 3.1). When this is done we are left with a
reduced stub configuration. This is then matched up using the stable multi-
matching described prior to Proposition 2.2 with the obvious modification that
we do not allow connections between points that already have an edge between
them arising from the connections along the paths. Proposition 2.2 along with
Remark 2.2 guarantee that this indeed leads to a multi-matching.

For the proof of Theorem 1.1 (c), one more lemma – a generalization of
Proposition 2.1 (b) – will be convenient.

Lemma 3.2. Let ν be a probability measure on the strictly positive integers
and let X be a random variable with law ν. Let R and S be translation-
invariant point processes on R

d, jointly ergodic under translations, and with
finite intensities λR and λS satisfying

λR ≤ E[X]λS . (2)

Assign degree 1 to each point in R and assign i.i.d. degrees with law ν to the
points in S. If [R]∪ [S] is almost surely non-equidistant and has no descending
chains, then there exists a translation-invariant partial matching scheme, a
deterministic function of (R,S), that matches each point in [R] to a stub in
[S]. If (2) holds with equality, then the procedure also exhausts all stubs in [S].

Proof. Define

m = inf

{
j :

j∑

i=1

P(X ≥ i)λS ≥ λR

}

(with m = ∞ if (2) holds with equality) and, if m ≥ 2, let

pi =
P(X ≥ i)λS

λR
, i = 1, . . . ,m − 1,

and if m < ∞ let pm = 1−
∑m−1

i=1 pi. If m = 1, just let p1 = 1. As in the proof
of Theorem 1.1 (a), we let R∗ be the distance from the origin to the closest
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other point in the Palm version of R and, analogously to (1), we define real
numbers 0 < r1 < · · · < rm−1 such that

P
∗(R∗ ≤ r1) = p1

P
∗(r1 < R∗ ≤ r2) = p2

...
P
∗(rm−2 < R∗ ≤ rm−1) = pm−1

P
∗(R∗ > rm−1) = pm.

For x ∈ [R], say that x is of type i ∈ {1, . . . ,m − 1} if ri is the first number
in the ordered sequence r1 < · · · < rm−1 that exceeds the distance from x to
the nearest other point in [R], and of type m if the distance from x to the
nearest other point in [R] is larger than rm−1. This divides the process R into
processes Ri (i = 1, . . . ,m) with intensities λRpi. Write Si for the process of
vertices in S with degree at least i. By the choice of pi, for i = 1, . . . ,m − 1,
the intensity of Ri coincides with the intensity of Si, and condition (2) implies
that the intensity of Rm is at most by the intensity of Sm (indeed, the intensity
of Rm is λR −

∑m−1
i=1 P(X ≥ i)λS which does not exceed P (X ≥ m)λS by the

choice of m).
Now, for each i = 1, . . . ,m, match the points of Ri to the points of Si

using Proposition 2.1 (b). For i = 1, . . . ,m − 1 we get a perfect matching of
the points (since the intensities of the processes coincide) and, for i = m, it is
not difficult to see that all points in Rm get matched up (while some points
in Sm may not be used).

Proof of Theorem 1.1 (c). To show that conditions (i), (ii) and (iii) are equiv-
alent, it suffices to show that (iii)⇒(ii)⇒(i)⇒(iii). Since (iii)⇒(ii) is trivial,
we only need to show that (i)⇒(iii) and that (ii)⇒(i).

To prove (i)⇒(iii), first note that the matching scheme described in the
proof of Theorem 1.1 (b) gives a connected graph as soon as all vertices have
degree at least 2 (provided we use the construction in Lemma 3.1 rather than
the one in Remark 3.1). To handle the case where P(D = 1) > 0, let X be
a random variable distributed as D − 2 conditional on that D ≥ 3 and note
that E[D] ≥ 2 implies that

P(D = 1) ≤ E[X]P(D ≥ 3) (3)

with equality if and only if E[D] = 2.
Consider first the case E[D] = 2. For a matching scheme here, first employ

the scheme in the proof of Theorem 1.1 (b) in order to connect up all points
in [R] that are assigned degree 2 or more into an infinite path. This leaves the
points that are assigned degree 1, plus the points initially assigned degree 3
or more, each having two of their stubs already matched. Since (3) holds with
equality, Lemma 3.2 is exactly tailored to produce a factor matching of the
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degree 1 points to the unmatched stubs of the degree ≥ 3 points. This gives
a connected graph, so the case E[D] = 2 is settled.

For the case E[D] > 2 we proceed as with E[D] = 2 by first constructing
the infinite path and then connecting up degree 1 points to it by the scheme
offered in the proof of Lemma 3.2. This time, however, the latter scheme,
although resulting in a connected graph, fails to use up all the stubs of the
degree ≥ 3 points. These remaining stubs can be hooked up to each other by
the stable multi matching scheme described prior to Proposition 2.2 with the
restriction that we do not allow connections between points that already have
an edge between them on the infinite path. Using Remark 2.2, this completes
the proof of the (i)⇒(iii) implication.

To prove (ii)⇒(i) we employ a mass-transport argument. Assume (ii), and
let M be a matching scheme that produces a connected graph. Consider the
mass transport where each point x ∈ [P] sends a unit mass to y ∈ [P] if and
only if x and y are connected by an edge, and removing that edge would leave
x in a finite component. Note that the mass M out

x sent from x cannot exceed
1. We claim that, for any vertex x,

Dx − 2 ≥ M in
x − Mout

x . (4)

This follows by considering separately the two cases M out
x = 1 and Mout

x = 0.
When Mout

x = 1 we get M in
x = Dx − 1 and (4) holds with equality. When

Mout
x = 0 we have that x is connected to infinity via at least two edges adjacent

to it, which implies that M in
x ≤ Dx − 2, and again (4) holds.

By the mass transport principle (Lemma 2.1), the expectation of the right-
hand side of (4) summed over all Poisson points x in the unit cube Q is 0. But
the expectation of Dx − 2 summed over all Poisson points in the unit cube Q

is simply E[D]−2 (because the Poisson process has intensity 1), so (4) implies
E[D] ≥ 2, as desired.

4 Percolation in the stable multi-matching

In this section we prove Theorem 1.2 (a), that is, we show that if each Poisson
point has sufficiently many stubs attached to it, then the edge configuration
resulting from the stable multi-matching percolates. The proof uses the result
from [18] concerning domination of r-dependent random fields by product
measures, where a random field {Xz}z∈Zd is said to be r-dependent if for any
two sets A,B ∈ Z

d at l∞-distance at least r from each other we have that
{Xz}z∈A is independent of {Xz}z∈B . The version we need is as follows.

Theorem 4.1 (Liggett, Schonmann & Stacey (1997)). For each d ≥ 2 and
r ≥ 1 there exists a pc = pc(d, r) < 1 such that the following holds. For any
r-dependent random field (Xz)z∈Zd satisfying P(Xz = 1) = 1− P(Xz = 0) ≥ p

with p > pc, the 1’s in (Xz)z∈Zd percolate almost surely.
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Proof of Theorem 1.2 (a). The idea of the proof is a renormalization proce-
dure. We partition R

d into cubes and declare a cube to be good if it contains
at least one but not too many Poisson points and if the same holds for all
cubes close to it, where “too many” and “close” will be specified below. We
then use Theorem 4.1 to deduce that the good cubes can be made to percolate,
and we observe that, if each Poisson point has sufficiently many stubs attached
to it, then each point in a good cube must be connected to each point in its
adjacent cubes in the stable multi-matching. This forces the existence of an
infinite component in the stable multi-matching.

To make this reasoning more precise, for a ∈ R, let aZ
d = {az : z ∈ Z

d}
and partition R

d into cubes {Caz}z∈Zd centered at the points of aZ
d and with

side a. Two cubes Caz and Cay are called adjacent if |z− y| = 1, and we write
m = m(d) for the smallest integer such that the maximal possible Euclidean
distance between points in adjacent cubes does not exceed ma. For each cube
Caz a super-cube Saz is defined, consisting of the cube itself along with all
cubes Cay with y at l∞-distance at most 2m from z. A super-cube hence
contains (4m + 1)d cubes.

Now, call a cube Caz acceptable if it contains at least one and at most
n = n(d) Poisson points, where n will be specified below, and it is good if all
cubes in Saz are acceptable. We have that

P(Caz is acceptable) = 1 − P[P(Caz) = 0] − P[P(Caz) > n].

The first probability on the right side can be made arbitrarily small by taking
a large, and, for a fixed a, the second probability can be made arbitrarily small
by taking n large. Hence, by choosing first a large and then n very large, we
can make the probability that a cube is good come arbitrarily close to 1. In
particular, by Theorem 4.1, we can make it large enough to guarantee that
the good cubes percolate. Fix such values of a and n, let k = n(4m + 1)d and
assume that P(D ≥ k) = 1. We will show that then each Poisson point in
a good cube is connected to all Poisson points in the adjacent cubes, which
completes the proof.

Say that a point x ∈ [P] with Dx stubs desires a point y ∈ [P] if y is one
of the Dx nearest points to x in [P]. Then a Poisson point x in a good cube
Caz desires all points in the adjacent cubes: For any point y in an adjacent
cube, the distance between x and y is at most ma, and the Euclidean ball
Bma(x) with radius ma centered at x is contained in the supercube Saz, which
contains at most k Poisson points (indeed, all (4m + 3)d cubes in Saz are
acceptable, which means that each one of them contains at most n points).
Since Dx ≥ k, it follows that y desires all points in Bma(x), so in particular x

desires y. Furthermore, each Poisson point y in a cube that is adjacent to a
good cube Caz desires each point in the good cube: Since the distance between
x and y is at most ma, we have that Bma(y) ⊂ B2ma(x). Moreover, the ball
B2ma(x) is contained in the supercube Saz, which contains at most k points.
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Hence Bma(y) contains at most k points and, since Dy ≥ k, it follows that y

desires all points in Bma(y).
We have shown that each point in a good cube desires each point in the

adjacent cubes and vice versa. All that remains is to note that two points that
desire each other will indeed be matched. This follows from the definition of
the stable multi-matching. Hence each point in a good cube is connected to
each point in the adjacent cubes and since the good cubes percolate this proves
part (a) of Theorem 1.2.

Remark 4.1. An easy modification of the above proof reveals that the fol-
lowing slightly stronger variant of Theorem 1.2 holds. For any ε > 0, there
exists k = k(d, ε) such that if P(D ≥ k) > ε, then P

∗(C = ∞) > 0.

5 Non-percolation in the stable multi-matching

In this section we prove Theorem 1.2 (b), that is, we show that if all points
have degree at most 2 and there is a positive probability for degree 1, then
almost surely the stable multi-matching gives configurations with only finite
components. The proof is based on the following lemma.

Lemma 5.1. In any translation-invariant matching scheme, a.s. G has no
component consisting of a singly infinite path.

Proof. Assume that components consisting of a singly infinite paths occur
with positive probability, and consider the mass transport where each Poisson
point that sits on a singly infinite path sends mass 1 to the endpoint of the
path. With positive probability the unit cube Q contains such an endpoint,
and hence the expected mass that is received by Q is infinite. But the expected
mass that is sent out from Q is at most 1, because the expected number of
Poisson points in Q is 1. This contradicts the mass transport principle (Lemma
2.1).

Proof of Theorem 1.2 (b). Let the degree distribution be such that P(D ≤
2) = 1 and P(D = 1) > 0. The only infinite components that can occur when
P(D ≤ 2) = 1 are infinite paths of degree 2 vertices that are connected to each
other and, by Lemma 5.1, any such path has to be bi-infinite. Assume for
contradiction that such a bi-infinite path occurs with positive probability. We
will describe a coupled configuration of vertex degrees, where, with positive
probability, the edge configuration remains unchanged except that a doubly
infinite path is cut apart and turned into two singly infinite paths. This
conflicts with Lemma 5.1.

Given the Poisson process P with associated degrees {Dx}x∈[P], we now in-

troduce a modified degree process {D̃x}x∈[P]. Conditional on P and {Dx}x∈[P],

let {D̃x}x∈[P] be independent random variables chosen as follows. With prob-

ability 1 − e−|x|, we set D̃x = Dx, where |x| is the Euclidean distance from
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x to the origin. With the remaining probability e−|x|, the degree D̃x is taken
to be an independent random variable with law µ. The Poisson points that
receive a newly generated degree in D̃x are referred to as re-randomized.
Note, crucially, that {D̃x}x∈[P] has the same distribution as {Dx}x∈[P]. Note
also that

E

∑

x∈[P]

1[x re-randomized] =

∫

Rd

e−|x|dx < ∞ .

Hence, by the Borel-Cantelli lemma, the number of re-randomized points is
finite almost surely.

Now, take a configuration of Poisson points and associated degrees for
which the graph G resulting from the stable multi-matching contains some
bi-infinite path. Let G̃ be the graph resulting from the modified degrees
{D̃x}x∈[P]. Along each such path (xi)

∞
i=−∞, there must be an edge that is

locally maximal, that is, an edge (xi, xi+1) with |xi+1 − xi| > max{|xi −
xi−1|, |xi+2 − xi+1|}. To see this, note that if such an edge did not exist, the
vertices of the path would either constitute a descending chain, or contain a
single locally minimal edge (defined in obvious analogy with locally maximal).
Descending chains do not occur in Poisson processes (as noted in Section 2.2)
while chains with a single minimal edge are ruled out by a mass transport
argument similar to the one on the proof of Lemma 5.1 (let each vertex on
such a path send unit mass to the midpoint of the unique invariant edge). Let
(xm, xm+1) be a locally maximal edge – say the one with a vertex closest to
the origin. Write A for the event that xm and xm+1 are the only two vertices
that are re-randomized and that D̃xm

= D̃xm+1
= 1, that is, the degrees of xm

and xm+1 are changed to 1’s while the rest of the degrees remain unchanged.
We claim that, on A, the modified graph G̃ consists of the same edges as

in the original G except that the edge between (xm, xm+1) is absent. Indeed,
since |xm+1−xm| ≥ max{|xm+2−xm+1|, |xm−xm−1|}, the edge (xm, xm+1) is
created at a later stage in the matching procedure than the edges (xm−1, xm)
and (xm+1, xm+2). On the event A, no stubs have been added or removed in
the modified configuration except that one stub is taken away from each of xm

and xm+1. Hence, up until the stage when the edge (xm, xm+1) was created
in the original process, precisely the same edges are created in the modified
configuration. At this stage, the vertices xm and xm+1 do not have a stub on
them, and so the edge (xm, xm+1) is not created in the modified configuration.
After this stage, the situation is as in the original configuration, and so the
same edges are again created.

The above shows that, on A, the modified stable multi-matching for the
modified configuration contains two singly infinite paths (xm+1, xm+2, . . .) and
(xm, xm−1, . . .). All that remains it to note that, since the number of re-
randomized vertices is finite almost surely, the event A has positive probability.
We have hence derived a contradiction with Lemma 5.1.

15



6 Open problems

Closing the gap in Theorem 1.2. Theorem 1.2 provides conditions for
when the stable multi-matching contains an infinite component and for when
it consists only of finite components. These conditions however are quite far
apart and it would be desirable to obtain a more precise understanding for
when the stable multi-matching percolates. Consider for instance the case
with exactly two stubs attached to each point, that is, µ({2}). Do infinite
components occur in this case? Simulations appear to suggest a positive an-
swer d = 1, but are less conclusive in d = 2.

Theorem 1.2 (b) states that percolation does not occur when there are only
degree 1 and degree 2 vertices. Roughly speaking, this is because the degree 1
vertices serve as dead ends in the configuration. Does this phenomenon persist
when a small proportion of degree 3 vertices is added? Does a sufficiently large
proportion of degree 1 vertices always guarantee non-percolation?

Finally, if degree distribution µ results in an infinite cluster, and we replace
µ by a distribution µ′ that stochastically dominates µ, do we still get an infinite
cluster?
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